Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution

Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of prot...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 10; no. 5; p. e1004328
Main Authors Gong, Lizhi Ian, Bloom, Jesse D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play.
AbstractList Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well- defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play.
Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza—here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. Mutations can fix during evolution for two reasons: they can be beneficial and fix for adaptive reasons, or they can be neutral or deleterious and fix solely by chance. Most studies focus on adaptation, where the evolving population is increasing in fitness due to a new selection pressure. Such studies have found an important evolutionary role for epistasis , the phenomenon where the effect of one mutation depends on another mutation. But adaptation only accounts for a fraction of overall evolutionary change. Here we investigate whether epistasis is as common during non-adaptive as adaptive evolution. We do this by comparing the same protein from human and swine influenza. Human influenza is constantly adapting to escape from the immunity that people acquire from previous influenza infections. But swine influenza is under less pressure to escape from acquired immunity since pigs have shorter lifetimes and are less likely to be infected with influenza multiple times. We find that epistasis is less common during the evolution of the swine influenza protein than its human influenza counterpart. Overall, our results suggest that mutations that interact via epistasis are more likely to fix during adaptive evolution.
Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play.Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play.
  Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play.
Audience Academic
Author Gong, Lizhi Ian
Bloom, Jesse D.
AuthorAffiliation Brown University, United States of America
Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
AuthorAffiliation_xml – name: Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
– name: Brown University, United States of America
Author_xml – sequence: 1
  givenname: Lizhi Ian
  surname: Gong
  fullname: Gong, Lizhi Ian
– sequence: 2
  givenname: Jesse D.
  surname: Bloom
  fullname: Bloom, Jesse D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24811236$$D View this record in MEDLINE/PubMed
BookMark eNqVk9uL00AUxoOsuBf9D0QDguhD69xy80EoS9XC4oqr-zrMtZ2SztSZSXH_eyfbVBoRUfKQcPL7vjlz-M55dmKdVVn2FIIpxBV8s3adt6ydbpfKTiEABKP6QXYGiwJPKgLIydH3aXYewhoAXNRN9Sg7RaSGEOHyLLudb02ILBrB2vYuX9ioPBPR2GV-0_EQTeyicTbkM6_yufVGrJTMZed7YibZNpqdyj97F5Wx-Xzn2nv-cfZQszaoJ8P7Ivv2fv718uPk6vrD4nJ2NRFlU8cJLxEoVaVFiYgqQdEITFK7JS8JEbUGXGtYA4wg0lXDKswxqGStOZFQCi41vsie7323rQt0GEmgsMDJDdUFScRiT0jH1nTrzYb5O-qYofcF55eU-XT9VlFRSAYhl6QpNOEl5KSpFESw5FxWTcGS17vhtI5vlBTKRs_aken4jzUrunQ7SgAkBDbJ4NVg4N33ToVINyYI1bbMKtf1fSNMQFXWKKEv9uiSpdaM1S45ih6nM1xjWBUV6g2nf6DSI9XGiBQYbVJ9JHg9EiQmqh9xyboQ6OLmy3-wn_6dvb4dsy-P2JVibVyFIThhDD47nvevQR_im4C3e0B4F4JXmgrTh9n14zcthYD2u3IIBu13hQ67ksTkN_HB_6-yn9EXGDg
CitedBy_id crossref_primary_10_1007_s12551_022_01005_w
crossref_primary_10_1111_mec_13474
crossref_primary_10_1128_JVI_01571_15
crossref_primary_10_1088_1367_2630_acf51a
crossref_primary_10_1038_nrmicro_2017_118
crossref_primary_10_1039_C4CS00351A
crossref_primary_10_7554_eLife_18491
crossref_primary_10_7554_eLife_88737
crossref_primary_10_1038_s41586_018_0170_7
crossref_primary_10_1371_journal_ppat_1005856
crossref_primary_10_7554_eLife_88737_3
crossref_primary_10_1103_PhysRevE_97_062404
crossref_primary_10_1371_journal_ppat_1006203
crossref_primary_10_1128_JVI_02988_15
crossref_primary_10_1186_s12864_015_2358_7
crossref_primary_10_1093_gbe_evaf010
crossref_primary_10_1093_molbev_msw052
crossref_primary_10_1093_molbev_msu311
crossref_primary_10_1093_ve_vex034
crossref_primary_10_1016_j_jmb_2016_04_033
crossref_primary_10_1016_j_jbc_2022_101665
crossref_primary_10_1186_s12864_019_5864_1
crossref_primary_10_3389_fmolb_2016_00008
crossref_primary_10_7554_eLife_03300
crossref_primary_10_1093_molbev_msac258
crossref_primary_10_1534_genetics_114_168351
crossref_primary_10_1016_j_tibs_2023_05_009
crossref_primary_10_1016_j_tig_2014_09_009
crossref_primary_10_1080_21541264_2025_2474367
crossref_primary_10_1038_s41559_016_0061
crossref_primary_10_1097_HJH_0000000000001732
crossref_primary_10_1038_srep33334
crossref_primary_10_1109_ACCESS_2019_2935911
crossref_primary_10_1007_s00239_017_9781_0
crossref_primary_10_1099_mgen_0_000025
crossref_primary_10_7554_eLife_72905
crossref_primary_10_1021_acsinfecdis_2c00216
crossref_primary_10_1371_journal_pgen_1005960
crossref_primary_10_1073_pnas_1411012111
crossref_primary_10_1021_acs_biochem_8b00948
crossref_primary_10_1021_acscatal_2c01426
crossref_primary_10_1371_journal_pgen_1005404
crossref_primary_10_1146_annurev_ecolsys_102320_112153
crossref_primary_10_1002_prot_25040
crossref_primary_10_1038_s41559_017_0338_9
crossref_primary_10_1093_molbev_msw220
crossref_primary_10_1093_molbev_msz298
Cites_doi 10.1111/evo.12192
10.1034/j.1600-065x.2001.1830104.x
10.1093/oxfordjournals.molbev.a025854
10.1534/genetics.110.125997
10.1016/j.micinf.2011.01.007
10.1126/science.1176225
10.1016/j.ygeno.2006.01.004
10.7554/eLife.00631
10.1126/science.1123539
10.1098/rstb.2000.0716
10.1073/pnas.1313424110
10.1038/nature05379
10.1186/1471-2148-7-214
10.1093/bioinformatics/btl446
10.1126/science.1187816
10.1038/nature05385
10.1016/S0022-2836(02)00599-5
10.1128/JVI.74.15.6800-6807.2000
10.1371/journal.pone.0022201
10.1126/science.1142819
10.1016/j.vetmic.2006.07.017
10.1099/0022-1317-74-6-1197
10.1099/0022-1317-83-4-723
10.1128/JVI.02005-07
10.1099/0022-1317-70-12-3297
10.1126/science.1203801
10.1073/pnas.0702207104
10.1128/JVI.00101-08
10.1126/science.164.3881.788
10.7554/eLife.01914
10.1007/s00285-007-0120-8
10.1038/nature06945
10.1007/s00239-009-9312-8
10.1038/nature12344
10.1016/S0022-2836(02)00400-X
10.1093/molbev/mst096
10.1088/1742-5468/2013/01/P01005
10.1016/j.virusres.2004.02.020
10.1093/molbev/mss075
10.1038/nature08249
10.1093/molbev/msr044
10.1186/1471-2172-9-1
10.1128/JVI.66.2.1066-1073.1992
10.1021/bi00032a005
10.1128/JVI.78.10.5216-5222.2004
10.1016/j.chom.2010.05.009
10.1073/pnas.0803151105
10.1111/j.1750-2659.2009.00096.x
10.1017/CBO9780511623486
10.1073/pnas.0510098103
10.1038/289373a0
10.1073/pnas.100133697
10.1016/S0065-3527(08)00403-X
10.1126/science.1203799
10.1093/nar/gkp1004
10.1038/290713a0
10.1099/vir.0.82120-0
10.1056/NEJMp0904819
10.1007/s00239-009-9282-x
10.1128/JVI.01966-10
10.1093/molbev/msp003
10.1126/science.1097211
10.1093/molbev/msi242
10.1016/j.humimm.2010.02.014
10.1128/JVI.01563-08
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Gong, Bloom 2014 Gong, Bloom
2014 Gong, Bloom. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gong LI, Bloom JD (2014) Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution. PLoS Genet 10(5): e1004328. doi:10.1371/journal.pgen.1004328
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Gong, Bloom 2014 Gong, Bloom
– notice: 2014 Gong, Bloom. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gong LI, Bloom JD (2014) Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution. PLoS Genet 10(5): e1004328. doi:10.1371/journal.pgen.1004328
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1004328
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale_Opposing Viewpoints In Context
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Epistasis Is Enriched during Adaptive Protein Evolution
EISSN 1553-7404
ExternalDocumentID 1536052854
oai_doaj_org_article_c5da11bd495f4b61b497e1216bbd795a
PMC4014419
A383175729
24811236
10_1371_journal_pgen_1004328
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01GM102198
– fundername: NIGMS NIH HHS
  grantid: R01 GM102198
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c698t-b6206e7fc624e6059c344046b644c8f0bff1803212f79a73b307d8fb4d1dcbdf3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:28 EST 2021
Wed Aug 27 01:10:20 EDT 2025
Thu Aug 21 18:11:21 EDT 2025
Fri Jul 11 04:44:16 EDT 2025
Tue Jun 17 21:32:21 EDT 2025
Tue Jun 10 20:29:07 EDT 2025
Fri Jun 27 05:02:19 EDT 2025
Fri Jun 27 03:46:13 EDT 2025
Fri Jun 27 05:00:53 EDT 2025
Thu May 22 20:53:28 EDT 2025
Mon Jul 21 05:54:55 EDT 2025
Tue Jul 01 01:02:25 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-b6206e7fc624e6059c344046b644c8f0bff1803212f79a73b307d8fb4d1dcbdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: JDB. Performed the experiments: LIG. Analyzed the data: JDB LIG. Contributed reagents/materials/analysis tools: JDB. Wrote the paper: JDB.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004328
PMID 24811236
PQID 1523407682
PQPubID 23479
ParticipantIDs plos_journals_1536052854
doaj_primary_oai_doaj_org_article_c5da11bd495f4b61b497e1216bbd795a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4014419
proquest_miscellaneous_1523407682
gale_infotracmisc_A383175729
gale_infotracacademiconefile_A383175729
gale_incontextgauss_ISR_A383175729
gale_incontextgauss_ISN_A383175729
gale_incontextgauss_IOV_A383175729
gale_healthsolutions_A383175729
pubmed_primary_24811236
crossref_citationtrail_10_1371_journal_pgen_1004328
crossref_primary_10_1371_journal_pgen_1004328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RB Chen (ref12) 2010; 70
ref13
NH Barton (ref11) 2000; 355
JA Draghi (ref22) 2013; 67
A Rambaut (ref27) 2008; 453
A Stamatakis (ref64) 2006; 22
A Portela (ref24) 2002; 83
JD Bloom (ref10) 2006; 103
DT Jones (ref66) 1992; 8
R Vita (ref58) 2010; 38
X Wang (ref19) 2002; 320
JK Taubenberger (ref48) 2010; 7
JT Voeten (ref54) 2000; 74
JD O'Brien (ref50) 2009; 26
MG Sheerar (ref37) 1989; 70
EJ Adams (ref36) 2001; 183
S Noble (ref42) 1993; 74
HH Chou (ref1) 2011; 332
DM Morens (ref46) 2009; 361
V Sideraki (ref18) 2001; 98
GI Lang (ref15) 2013; 500
AI Khan (ref3) 2011; 332
RJ Garten (ref40) 2009; 325
JD Bloom (ref67) 2010; 328
EA Ortlund (ref8) 2007; 317
GF Rimmelzwaan (ref30) 2004; 103
E Assarsson (ref55) 2008; 82
BM Beadle (ref6) 2002; 321
AL Vincent (ref39) 2006; 118
M Krasnitz (ref63) 2008; 82
M dos Reis (ref45) 2009; 69
VN Minin (ref49) 2008; 56
M Nei (ref17) 2005; 22
CJ Wei (ref43) 2010; 2
S Bershtein (ref7) 2006; 444
S Bhatt (ref52) 2011; 28
DC Wiley (ref29) 1981; 289
LI Gong (ref34) 2013; 2
C Brockwell-Staats (ref47) 2009; 3
JL King (ref14) 1969; 164
AL Vincent (ref38) 2008; 72
E Hoffmann (ref69) 2000; 97
M DiBrino (ref53) 1995; 34
YK Cheung (ref57) 2012; 18 Suppl 2
Y Bao (ref62) 2008; 82
AJ Drummond (ref65) 2007; 7
EG Berkhoff (ref32) 2007; 88
Q Ye (ref25) 2006; 444
DM Weinreich (ref5) 2006; 312
JD Bloom (ref68) 2011; 6
SM Luoh (ref41) 1992; 66
J Alexander (ref56) 2010; 71
J Sidney (ref59) 2008; 9
AW Covert 3rd (ref20) 2013; 110
J da Silva (ref60) 1998; 15
T Hertz (ref61) 2011; 85
JA Draghi (ref21) 2011; 187
EG Berkhoff (ref31) 2004; 78
ZD Blount (ref2) 2008; 105
AJ Drummond (ref51) 2012; 29
IG Szendro (ref23) 2013; 2013
JT Bridgham (ref9) 2009; 461
DJ Smith (ref26) 2004; 305
MF Schenk (ref4) 2013; 30
T Bedford (ref44) 2013; 3
W Gerhard (ref28) 1981; 290
M Lynch (ref16) 2007; 104 Suppl 1
C Renard (ref35) 2006; 88
SA Valkenburg (ref33) 2011; 13
20522774 - Science. 2010 Jun 4;328(5983):1272-5
19787384 - J Mol Evol. 2009 Oct;69(4):333-45
11127900 - Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1553-62
11782246 - Immunol Rev. 2001 Oct;183:41-64
18211710 - BMC Immunol. 2008;9:1
17874105 - J Math Biol. 2008 Mar;56(3):391-412
6163993 - Nature. 1981 Apr 23;290(5808):713-7
23682315 - Elife. 2013;2:e00631
23918358 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3171-8
10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
17702911 - Science. 2007 Sep 14;317(5844):1544-8
17151603 - Nature. 2006 Dec 21;444(7122):1078-82
19465683 - Science. 2009 Jul 10;325(5937):197-201
21799795 - PLoS One. 2011;6(7):e22201
24151997 - Evolution. 2013 Nov;67(11):3120-31
15163496 - Virus Res. 2004 Jul;103(1-2):97-100
17251571 - J Gen Virol. 2007 Feb;88(Pt 2):530-5
20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21
17996036 - BMC Evol Biol. 2007;7:214
16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
19081490 - Adv Virus Res. 2008;72:127-54
10888619 - J Virol. 2000 Aug;74(15):6800-7
21295153 - Microbes Infect. 2011 May;13(5):489-501
23676768 - Mol Biol Evol. 2013 Aug;30(8):1779-87
7543776 - Biochemistry. 1995 Aug 15;34(32):10130-8
12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95
20542248 - Cell Host Microbe. 2010 Jun 25;7(6):440-51
18842709 - J Virol. 2008 Dec;82(24):12241-51
22311355 - Hong Kong Med J. 2012 Feb;18 Suppl 2:17-21
18418375 - Nature. 2008 May 29;453(7195):615-9
21288876 - Genetics. 2011 Apr;187(4):1139-52
21636772 - Science. 2011 Jun 3;332(6034):1193-6
15113903 - J Virol. 2004 May;78(10):5216-22
19564629 - N Engl J Med. 2009 Jul 16;361(3):225-9
21084470 - J Virol. 2011 Feb;85(3):1310-21
17122770 - Nature. 2006 Dec 14;444(7121):929-32
16515853 - Genomics. 2006 Jul;88(1):96-110
19131426 - Mol Biol Evol. 2009 Apr;26(4):801-14
1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
8389804 - J Gen Virol. 1993 Jun;74 ( Pt 6):1197-200
16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74
20156506 - Hum Immunol. 2010 May;71(5):468-74
22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73
9787432 - Mol Biol Evol. 1998 Oct;15(10):1259-68
5767777 - Science. 1969 May 16;164(3881):788-98
6162101 - Nature. 1981 Jan 29;289(5796):373-8
18524956 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906
24497547 - Elife. 2014;3:e01914
11907320 - J Gen Virol. 2002 Apr;83(Pt 4):723-34
16962262 - Vet Microbiol. 2006 Dec 20;118(3-4):212-22
11114163 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):283-8
17942553 - J Virol. 2008 Jan;82(2):596-601
21415025 - Mol Biol Evol. 2011 Sep;28(9):2443-51
2558159 - J Gen Virol. 1989 Dec;70 ( Pt 12):3297-303
17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604
16120807 - Mol Biol Evol. 2005 Dec;22(12):2318-42
21636771 - Science. 2011 Jun 3;332(6034):1190-2
15218094 - Science. 2004 Jul 16;305(5682):371-6
18579605 - J Virol. 2008 Sep;82(17):8947-50
19779450 - Nature. 2009 Sep 24;461(7263):515-9
20041240 - J Mol Evol. 2010 Jan;70(1):98-105
1731091 - J Virol. 1992 Feb;66(2):1066-73
19768134 - Influenza Other Respir Viruses. 2009 Sep;3(5):207-13
19906713 - Nucleic Acids Res. 2010 Jan;38(Database issue):D854-62
23873039 - Nature. 2013 Aug 29;500(7464):571-4
12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96
16601193 - Science. 2006 Apr 7;312(5770):111-4
References_xml – volume: 67
  start-page: 3120
  year: 2013
  ident: ref22
  article-title: Selection biases the prevalence and type of epistasis along adaptive trajectories
  publication-title: Evolution; international journal of organic evolution
  doi: 10.1111/evo.12192
– volume: 183
  start-page: 41
  year: 2001
  ident: ref36
  article-title: Species-specific evolution of MHC class I genes in the higher primates
  publication-title: Immunological Reviews
  doi: 10.1034/j.1600-065x.2001.1830104.x
– volume: 15
  start-page: 1259
  year: 1998
  ident: ref60
  article-title: Conservation of cytotoxic T lymphocyte (CTL) epitopes as a host strategy to constrain parasite adaptation: evidence from the nef gene of human immunodeficiency virus 1 (HIV-1)
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025854
– volume: 187
  start-page: 1139
  year: 2011
  ident: ref21
  article-title: Epistasis increases the rate of conditionally neutral substitution in an adapting population
  publication-title: Genetics
  doi: 10.1534/genetics.110.125997
– volume: 13
  start-page: 489
  year: 2011
  ident: ref33
  article-title: Immunity to seasonal and pandemic influenza A viruses
  publication-title: Microbes and infection/Institut Pasteur
  doi: 10.1016/j.micinf.2011.01.007
– volume: 325
  start-page: 197
  year: 2009
  ident: ref40
  article-title: Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans
  publication-title: Science
  doi: 10.1126/science.1176225
– volume: 88
  start-page: 96-+
  year: 2006
  ident: ref35
  article-title: The genomic sequence and analysis of the swine major histocompatibility complex
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2006.01.004
– volume: 2
  start-page: e00631
  year: 2013
  ident: ref34
  article-title: Stability-mediated epistasis constrains the evolution of an influenza protein
  publication-title: eLife
  doi: 10.7554/eLife.00631
– volume: 312
  start-page: 111
  year: 2006
  ident: ref5
  article-title: Darwinian evolution can follow only very few mutational paths to fitter proteins
  publication-title: Science
  doi: 10.1126/science.1123539
– volume: 355
  start-page: 1553
  year: 2000
  ident: ref11
  article-title: Genetic hitchhiking
  publication-title: Philosophical Transactions of the Royal Society of London Series B-Biological Sciences
  doi: 10.1098/rstb.2000.0716
– volume: 110
  start-page: E3171
  year: 2013
  ident: ref20
  article-title: Experiments on the role of deleterious mutations as stepping stones in adaptive evolution
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1313424110
– volume: 444
  start-page: 1078
  year: 2006
  ident: ref25
  article-title: The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA
  publication-title: Nature
  doi: 10.1038/nature05379
– volume: 7
  start-page: 214
  year: 2007
  ident: ref65
  article-title: BEAST: Bayesian evolutionary analysis by sampling trees
  publication-title: BMC evolutionary biology
  doi: 10.1186/1471-2148-7-214
– volume: 22
  start-page: 2688
  year: 2006
  ident: ref64
  article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 328
  start-page: 1272
  year: 2010
  ident: ref67
  article-title: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance
  publication-title: Science
  doi: 10.1126/science.1187816
– volume: 2
  start-page: 24ra21
  year: 2010
  ident: ref43
  article-title: Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design
  publication-title: Sci Transl Med
– volume: 98
  start-page: 283
  year: 2001
  ident: ref18
  article-title: A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation
  publication-title: Proc Natl Acad Sci U S A
– volume: 444
  start-page: 929
  year: 2006
  ident: ref7
  article-title: Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein
  publication-title: Nature
  doi: 10.1038/nature05385
– volume: 321
  start-page: 285
  year: 2002
  ident: ref6
  article-title: Structural bases of stability-function tradeoffs in enzymes
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00599-5
– volume: 74
  start-page: 6800
  year: 2000
  ident: ref54
  article-title: Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes
  publication-title: J Virol
  doi: 10.1128/JVI.74.15.6800-6807.2000
– volume: 6
  start-page: e22201
  year: 2011
  ident: ref68
  article-title: A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022201
– volume: 317
  start-page: 1544
  year: 2007
  ident: ref8
  article-title: Crystal structure of an ancient protein: evolution by conformational epistasis
  publication-title: Science
  doi: 10.1126/science.1142819
– volume: 118
  start-page: 212
  year: 2006
  ident: ref39
  article-title: Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States
  publication-title: Veterinary microbiology
  doi: 10.1016/j.vetmic.2006.07.017
– volume: 74
  start-page: 1197
  issue: Pt 6
  year: 1993
  ident: ref42
  article-title: Antigenic and genetic conservation of the haemagglutinin in H1N1 swine influenza viruses
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-74-6-1197
– volume: 83
  start-page: 723
  year: 2002
  ident: ref24
  article-title: The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-83-4-723
– volume: 82
  start-page: 596
  year: 2008
  ident: ref62
  article-title: The influenza virus resource at the National Center for Biotechnology Information
  publication-title: J Virol
  doi: 10.1128/JVI.02005-07
– volume: 70
  start-page: 3297
  issue: Pt 12
  year: 1989
  ident: ref37
  article-title: Antigenic conservation of H1N1 swine influenza viruses
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-70-12-3297
– volume: 332
  start-page: 1193
  year: 2011
  ident: ref3
  article-title: Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population
  publication-title: Science
  doi: 10.1126/science.1203801
– volume: 104 Suppl 1
  start-page: 8597
  year: 2007
  ident: ref16
  article-title: The frailty of adaptive hypotheses for the origins of organismal complexity
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0702207104
– volume: 82
  start-page: 8947
  year: 2008
  ident: ref63
  article-title: Anomalies in the influenza virus genome database: new biology or laboratory errors?
  publication-title: J Virol
  doi: 10.1128/JVI.00101-08
– volume: 164
  start-page: 788
  year: 1969
  ident: ref14
  article-title: Non-Darwinian evolution
  publication-title: Science
  doi: 10.1126/science.164.3881.788
– volume: 3
  start-page: e01914
  year: 2013
  ident: ref44
  article-title: Integrating influenza antigenic dynamics with molecular evolution
  publication-title: Elife
  doi: 10.7554/eLife.01914
– volume: 56
  start-page: 391
  year: 2008
  ident: ref49
  article-title: Counting labeled transitions in continuous-time Markov models of evolution
  publication-title: Journal of mathematical biology
  doi: 10.1007/s00285-007-0120-8
– volume: 453
  start-page: 615
  year: 2008
  ident: ref27
  article-title: The genomic and epidemiological dynamics of human influenza A virus
  publication-title: Nature
  doi: 10.1038/nature06945
– volume: 70
  start-page: 98
  year: 2010
  ident: ref12
  article-title: Hitchhiking and the Population Genetic Structure of Avian Influenza Virus
  publication-title: Journal of molecular evolution
  doi: 10.1007/s00239-009-9312-8
– volume: 500
  start-page: 571
  year: 2013
  ident: ref15
  article-title: Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations
  publication-title: Nature
  doi: 10.1038/nature12344
– volume: 320
  start-page: 85
  year: 2002
  ident: ref19
  article-title: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00400-X
– volume: 30
  start-page: 1779
  year: 2013
  ident: ref4
  article-title: Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst096
– volume: 2013
  start-page: P01005
  year: 2013
  ident: ref23
  article-title: Quantitative analyses of empirical fitness landscapes
  publication-title: J Stat Mech
  doi: 10.1088/1742-5468/2013/01/P01005
– volume: 103
  start-page: 97
  year: 2004
  ident: ref30
  article-title: Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2004.02.020
– volume: 29
  start-page: 1969
  year: 2012
  ident: ref51
  article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss075
– volume: 461
  start-page: 515
  year: 2009
  ident: ref9
  article-title: An epistatic ratchet constrains the direction of glucocorticoid receptor evolution
  publication-title: Nature
  doi: 10.1038/nature08249
– volume: 28
  start-page: 2443
  year: 2011
  ident: ref52
  article-title: The genomic rate of molecular adaptation of the human influenza A virus
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr044
– volume: 9
  start-page: 1
  year: 2008
  ident: ref59
  article-title: HLA class I supertypes: a revised and updated classification
  publication-title: BMC immunology
  doi: 10.1186/1471-2172-9-1
– volume: 66
  start-page: 1066
  year: 1992
  ident: ref41
  article-title: Hemagglutinin mutations related to antigenic variation in H1 swine influenza viruses
  publication-title: J Virol
  doi: 10.1128/JVI.66.2.1066-1073.1992
– volume: 34
  start-page: 10130
  year: 1995
  ident: ref53
  article-title: Identification of the peptide binding motif for HLA-B44, one of the most common HLA-B alleles in the Caucasian population
  publication-title: Biochemistry
  doi: 10.1021/bi00032a005
– volume: 78
  start-page: 5216
  year: 2004
  ident: ref31
  article-title: A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro
  publication-title: J Virol
  doi: 10.1128/JVI.78.10.5216-5222.2004
– volume: 7
  start-page: 440
  year: 2010
  ident: ref48
  article-title: Influenza virus evolution, host adaptation, and pandemic formation
  publication-title: Cell host & microbe
  doi: 10.1016/j.chom.2010.05.009
– volume: 105
  start-page: 7899
  year: 2008
  ident: ref2
  article-title: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0803151105
– volume: 3
  start-page: 207
  year: 2009
  ident: ref47
  article-title: Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1)
  publication-title: Influenza and other respiratory viruses
  doi: 10.1111/j.1750-2659.2009.00096.x
– ident: ref13
  doi: 10.1017/CBO9780511623486
– volume: 8
  start-page: 275
  year: 1992
  ident: ref66
  article-title: The rapid generation of mutation data matrices from protein sequences
  publication-title: Computer applications in the biosciences : CABIOS
– volume: 103
  start-page: 5869
  year: 2006
  ident: ref10
  article-title: Protein stability promotes evolvability
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0510098103
– volume: 289
  start-page: 373
  year: 1981
  ident: ref29
  article-title: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation
  publication-title: Nature
  doi: 10.1038/289373a0
– volume: 97
  start-page: 6108
  year: 2000
  ident: ref69
  article-title: A DNA transfection system for generation of influenza A virus from eight plasmids
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.100133697
– volume: 72
  start-page: 127
  year: 2008
  ident: ref38
  article-title: Swine influenza viruses a North American perspective
  publication-title: Advances in virus research
  doi: 10.1016/S0065-3527(08)00403-X
– volume: 332
  start-page: 1190
  year: 2011
  ident: ref1
  article-title: Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation
  publication-title: Science
  doi: 10.1126/science.1203799
– volume: 38
  start-page: D854
  year: 2010
  ident: ref58
  article-title: The immune epitope database 2.0
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp1004
– volume: 290
  start-page: 713
  year: 1981
  ident: ref28
  article-title: Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies
  publication-title: Nature
  doi: 10.1038/290713a0
– volume: 88
  start-page: 530
  year: 2007
  ident: ref32
  article-title: Assessment of the extent of variation in influenza A virus cytotoxic T-lymphocyte epitopes by using virus-specific CD8+ T-cell clones
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.82120-0
– volume: 361
  start-page: 225
  year: 2009
  ident: ref46
  article-title: The persistent legacy of the 1918 influenza virus
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp0904819
– volume: 69
  start-page: 333
  year: 2009
  ident: ref45
  article-title: Using non-homogeneous models of nucleotide substitution to identify host shift events: application to the origin of the 1918 ‘Spanish’ influenza pandemic virus
  publication-title: Journal of molecular evolution
  doi: 10.1007/s00239-009-9282-x
– volume: 85
  start-page: 1310
  year: 2011
  ident: ref61
  article-title: Mapping the landscape of host-pathogen coevolution: HLA class I binding and its relationship with evolutionary conservation in human and viral proteins
  publication-title: J Virol
  doi: 10.1128/JVI.01966-10
– volume: 26
  start-page: 801
  year: 2009
  ident: ref50
  article-title: Learning to count: robust estimates for labeled distances between molecular sequences
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp003
– volume: 305
  start-page: 371
  year: 2004
  ident: ref26
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
  doi: 10.1126/science.1097211
– volume: 22
  start-page: 2318
  year: 2005
  ident: ref17
  article-title: Selectionism and neutralism in molecular evolution
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi242
– volume: 71
  start-page: 468
  year: 2010
  ident: ref56
  article-title: Identification of broad binding class I HLA supertype epitopes to provide universal coverage of influenza A virus
  publication-title: Human immunology
  doi: 10.1016/j.humimm.2010.02.014
– volume: 82
  start-page: 12241
  year: 2008
  ident: ref55
  article-title: Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans
  publication-title: J Virol
  doi: 10.1128/JVI.01563-08
– volume: 18 Suppl 2
  start-page: 17
  year: 2012
  ident: ref57
  article-title: Human immunogenic T cell epitopes in nucleoprotein of human influenza A (H5N1) virus
  publication-title: Hong Kong medical journal
– reference: 7543776 - Biochemistry. 1995 Aug 15;34(32):10130-8
– reference: 17942553 - J Virol. 2008 Jan;82(2):596-601
– reference: 18418375 - Nature. 2008 May 29;453(7195):615-9
– reference: 17874105 - J Math Biol. 2008 Mar;56(3):391-412
– reference: 23918358 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3171-8
– reference: 17122770 - Nature. 2006 Dec 14;444(7121):929-32
– reference: 20041240 - J Mol Evol. 2010 Jan;70(1):98-105
– reference: 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21
– reference: 21295153 - Microbes Infect. 2011 May;13(5):489-501
– reference: 20522774 - Science. 2010 Jun 4;328(5983):1272-5
– reference: 21799795 - PLoS One. 2011;6(7):e22201
– reference: 20542248 - Cell Host Microbe. 2010 Jun 25;7(6):440-51
– reference: 16601193 - Science. 2006 Apr 7;312(5770):111-4
– reference: 17151603 - Nature. 2006 Dec 21;444(7122):1078-82
– reference: 21288876 - Genetics. 2011 Apr;187(4):1139-52
– reference: 21636772 - Science. 2011 Jun 3;332(6034):1193-6
– reference: 5767777 - Science. 1969 May 16;164(3881):788-98
– reference: 10888619 - J Virol. 2000 Aug;74(15):6800-7
– reference: 11782246 - Immunol Rev. 2001 Oct;183:41-64
– reference: 6162101 - Nature. 1981 Jan 29;289(5796):373-8
– reference: 19768134 - Influenza Other Respir Viruses. 2009 Sep;3(5):207-13
– reference: 8389804 - J Gen Virol. 1993 Jun;74 ( Pt 6):1197-200
– reference: 24151997 - Evolution. 2013 Nov;67(11):3120-31
– reference: 17996036 - BMC Evol Biol. 2007;7:214
– reference: 1731091 - J Virol. 1992 Feb;66(2):1066-73
– reference: 16962262 - Vet Microbiol. 2006 Dec 20;118(3-4):212-22
– reference: 19081490 - Adv Virus Res. 2008;72:127-54
– reference: 22311355 - Hong Kong Med J. 2012 Feb;18 Suppl 2:17-21
– reference: 18211710 - BMC Immunol. 2008;9:1
– reference: 19564629 - N Engl J Med. 2009 Jul 16;361(3):225-9
– reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
– reference: 23682315 - Elife. 2013;2:e00631
– reference: 6163993 - Nature. 1981 Apr 23;290(5808):713-7
– reference: 22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73
– reference: 17702911 - Science. 2007 Sep 14;317(5844):1544-8
– reference: 23676768 - Mol Biol Evol. 2013 Aug;30(8):1779-87
– reference: 11114163 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):283-8
– reference: 17251571 - J Gen Virol. 2007 Feb;88(Pt 2):530-5
– reference: 19465683 - Science. 2009 Jul 10;325(5937):197-201
– reference: 12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95
– reference: 21084470 - J Virol. 2011 Feb;85(3):1310-21
– reference: 21415025 - Mol Biol Evol. 2011 Sep;28(9):2443-51
– reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
– reference: 20156506 - Hum Immunol. 2010 May;71(5):468-74
– reference: 11907320 - J Gen Virol. 2002 Apr;83(Pt 4):723-34
– reference: 19131426 - Mol Biol Evol. 2009 Apr;26(4):801-14
– reference: 19906713 - Nucleic Acids Res. 2010 Jan;38(Database issue):D854-62
– reference: 18579605 - J Virol. 2008 Sep;82(17):8947-50
– reference: 19787384 - J Mol Evol. 2009 Oct;69(4):333-45
– reference: 16120807 - Mol Biol Evol. 2005 Dec;22(12):2318-42
– reference: 12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96
– reference: 23873039 - Nature. 2013 Aug 29;500(7464):571-4
– reference: 21636771 - Science. 2011 Jun 3;332(6034):1190-2
– reference: 18842709 - J Virol. 2008 Dec;82(24):12241-51
– reference: 16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74
– reference: 9787432 - Mol Biol Evol. 1998 Oct;15(10):1259-68
– reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
– reference: 15218094 - Science. 2004 Jul 16;305(5682):371-6
– reference: 16515853 - Genomics. 2006 Jul;88(1):96-110
– reference: 18524956 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906
– reference: 2558159 - J Gen Virol. 1989 Dec;70 ( Pt 12):3297-303
– reference: 11127900 - Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1553-62
– reference: 19779450 - Nature. 2009 Sep 24;461(7263):515-9
– reference: 15113903 - J Virol. 2004 May;78(10):5216-22
– reference: 17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604
– reference: 24497547 - Elife. 2014;3:e01914
– reference: 15163496 - Virus Res. 2004 Jul;103(1-2):97-100
SSID ssj0035897
Score 2.3522253
Snippet Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change....
Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary change....
Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change....
  Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004328
SubjectTerms Antibiotics
Biology and Life Sciences
Documentation
Drug resistance
Epigenetic inheritance
Epistasis, Genetic
Epitopes - immunology
Evolution & development
Evolution, Molecular
Gene expression
Genetic research
Hogs
Humans
Influenza
Influenza A Virus, H1N1 Subtype - immunology
Influenza, Human - virology
Medicine and Health Sciences
Mutation
Nucleoproteins - genetics
Plasmids
Proteins
RNA polymerase
Studies
T-Lymphocytes, Cytotoxic - immunology
Viral Proteins - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G606iqCT7GX3c1u8lilpQpWUFv6tuxXauHIheau0P--M7u5cBGhffD1MgnczG_nI5n5DSEfjKuFD0LmXtUyF8I6OFKhzgNj1hhlKh_w1cD3Y3l0Ir6dlWdbq76wJyzRAyfF7bnSm6KwHhL5RlhZWFGrULBCWguPL2NqBDFvU0wlH8zLKq1VKUueKyjrh6E5roq9wUafOjAQ9ggIjpvYt4JS5O4fPfSsWyz7f6Wff3dRboWlw0fk4ZBP0v30Px6Te6F9Qu6nDZPXT8npQYcJYnxhvbimSA4Rx6Lac9qDy4h9Agg8ai4DBShhY6inaXaRGm869IY0kjlctDRcDUB9Rk4OD35_OcqHVQq5k3W1yq1kcxlU4yQTASqY2nEkBpQW0iFXNXPbNEU15xDHGlUbxS0cfV81VvjCO-sb_pzM2mUbdgjlTSmYUhWYuBYhVKYQgXPOnApzCwlLRvhGl9oNPOO47mKh48czBfVGUo1GC-jBAhnJx7u6xLNxi_xnNNMoiyzZ8QfAjh6wo2_DTkbeopF1Gjkdz7reh7Id0iqoOzLyPkogU0aLrTjnZt33-uuP0zsI_Tq-i9DPidDHQahZgs6cGWYkQPNI0zWR3J1IglNwk8s7iNuN6noNgQ3MjuOyGXm3wbLGu7DJrg3LNcowLvDLLMvIi4TtUb9MVAUS9WRETVA_McD0SnvxJ9KVi1i01y__h8VekQeQsYrUcbpLZqvLdXgNWeHKvokO4Abe_mCD
  priority: 102
  providerName: Directory of Open Access Journals
Title Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/24811236
https://www.proquest.com/docview/1523407682
https://pubmed.ncbi.nlm.nih.gov/PMC4014419
https://doaj.org/article/c5da11bd495f4b61b497e1216bbd795a
http://dx.doi.org/10.1371/journal.pgen.1004328
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61qZC4IN51W4JBSJxcxbtrr31AqEWpClIDKqTKbbUvp5UiJ8QJIv-embVjYVTUXuPZHOY9uzPfEPJOmZxbx9PIijyNONcGTMrlkaNUKyVUZh1eDVyM0vMx_zJJJjtku7O1YWB1a2mH-6TGy9nx75-bj2DwH_zWBhFvDx0vgOX46s8ZzXbJHsQmgaZ6wdt3BZZk9bqVJGGRgHK_Gab73790gpXH9G89d28xm1e3paX_dlf-Fa7OHpNHTZ4ZntSK8YTsuPIpeVBvntw8I1fDBSaO_iJ7tgkRNMKPS5XTsAJX4vsHUCFDtXQhqBg2jNqwnmkMlVUL9JKhB3m4KUP3q1Hg52R8Nvzx6TxqVixEJs2zVaRTOkidKExKuYPKJjcMAQNTDWmSyYqBLoo4GzCIb4XIlWAaXILNCs1tbI22BXtBeuW8dPskZEXCqRAZiD7nzmUq5o4xRo1wAw2JTEDYlpfSNPjjuAZjJv2jmoA6pGaNRAnIRgIBidpTixp_4w76UxRTS4vo2f6H-XIqG2OUJrEqjrWF4rDgOo01z4WLaZxqDSqbqIC8RiHLehS19QHyBMp5SLegHgnIW0-BCBoltuhM1bqq5OevV_cg-j66D9Flh-h9Q1TMgWdGNbMTwHmE7-pQHnUowVmYzud91Nst6yoJAQ_EjmO0AXmz1WWJp7D5rnTzNdJQxvHFlgbkZa3bLX8pz2IE8AmI6Gh9RwDdL-XNtYcx576Yzw_uZPYheQhpKq_bTI9Ib7Vcu1eQCq50n-yKieiTvdPh6Ntl31-o9L3F_wHl82H0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epistatically+interacting+substitutions+are+enriched+during+adaptive+protein+evolution&rft.jtitle=PLoS+genetics&rft.au=Gong%2C+Lizhi+Ian&rft.au=Bloom%2C+Jesse+D&rft.date=2014-05-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=10&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pgen.1004328&rft.externalDBID=n%2Fa&rft.externalDocID=A383175729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon