Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution
Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of prot...
Saved in:
Published in | PLoS genetics Vol. 10; no. 5; p. e1004328 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. |
---|---|
AbstractList | Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well- defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza—here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. Mutations can fix during evolution for two reasons: they can be beneficial and fix for adaptive reasons, or they can be neutral or deleterious and fix solely by chance. Most studies focus on adaptation, where the evolving population is increasing in fitness due to a new selection pressure. Such studies have found an important evolutionary role for epistasis , the phenomenon where the effect of one mutation depends on another mutation. But adaptation only accounts for a fraction of overall evolutionary change. Here we investigate whether epistasis is as common during non-adaptive as adaptive evolution. We do this by comparing the same protein from human and swine influenza. Human influenza is constantly adapting to escape from the immunity that people acquire from previous influenza infections. But swine influenza is under less pressure to escape from acquired immunity since pigs have shorter lifetimes and are less likely to be infected with influenza multiple times. We find that epistasis is less common during the evolution of the swine influenza protein than its human influenza counterpart. Overall, our results suggest that mutations that interact via epistasis are more likely to fix during adaptive evolution. Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play.Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza--here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. |
Audience | Academic |
Author | Gong, Lizhi Ian Bloom, Jesse D. |
AuthorAffiliation | Brown University, United States of America Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America |
AuthorAffiliation_xml | – name: Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America – name: Brown University, United States of America |
Author_xml | – sequence: 1 givenname: Lizhi Ian surname: Gong fullname: Gong, Lizhi Ian – sequence: 2 givenname: Jesse D. surname: Bloom fullname: Bloom, Jesse D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24811236$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk9uL00AUxoOsuBf9D0QDguhD69xy80EoS9XC4oqr-zrMtZ2SztSZSXH_eyfbVBoRUfKQcPL7vjlz-M55dmKdVVn2FIIpxBV8s3adt6ydbpfKTiEABKP6QXYGiwJPKgLIydH3aXYewhoAXNRN9Sg7RaSGEOHyLLudb02ILBrB2vYuX9ioPBPR2GV-0_EQTeyicTbkM6_yufVGrJTMZed7YibZNpqdyj97F5Wx-Xzn2nv-cfZQszaoJ8P7Ivv2fv718uPk6vrD4nJ2NRFlU8cJLxEoVaVFiYgqQdEITFK7JS8JEbUGXGtYA4wg0lXDKswxqGStOZFQCi41vsie7323rQt0GEmgsMDJDdUFScRiT0jH1nTrzYb5O-qYofcF55eU-XT9VlFRSAYhl6QpNOEl5KSpFESw5FxWTcGS17vhtI5vlBTKRs_aken4jzUrunQ7SgAkBDbJ4NVg4N33ToVINyYI1bbMKtf1fSNMQFXWKKEv9uiSpdaM1S45ih6nM1xjWBUV6g2nf6DSI9XGiBQYbVJ9JHg9EiQmqh9xyboQ6OLmy3-wn_6dvb4dsy-P2JVibVyFIThhDD47nvevQR_im4C3e0B4F4JXmgrTh9n14zcthYD2u3IIBu13hQ67ksTkN_HB_6-yn9EXGDg |
CitedBy_id | crossref_primary_10_1007_s12551_022_01005_w crossref_primary_10_1111_mec_13474 crossref_primary_10_1128_JVI_01571_15 crossref_primary_10_1088_1367_2630_acf51a crossref_primary_10_1038_nrmicro_2017_118 crossref_primary_10_1039_C4CS00351A crossref_primary_10_7554_eLife_18491 crossref_primary_10_7554_eLife_88737 crossref_primary_10_1038_s41586_018_0170_7 crossref_primary_10_1371_journal_ppat_1005856 crossref_primary_10_7554_eLife_88737_3 crossref_primary_10_1103_PhysRevE_97_062404 crossref_primary_10_1371_journal_ppat_1006203 crossref_primary_10_1128_JVI_02988_15 crossref_primary_10_1186_s12864_015_2358_7 crossref_primary_10_1093_gbe_evaf010 crossref_primary_10_1093_molbev_msw052 crossref_primary_10_1093_molbev_msu311 crossref_primary_10_1093_ve_vex034 crossref_primary_10_1016_j_jmb_2016_04_033 crossref_primary_10_1016_j_jbc_2022_101665 crossref_primary_10_1186_s12864_019_5864_1 crossref_primary_10_3389_fmolb_2016_00008 crossref_primary_10_7554_eLife_03300 crossref_primary_10_1093_molbev_msac258 crossref_primary_10_1534_genetics_114_168351 crossref_primary_10_1016_j_tibs_2023_05_009 crossref_primary_10_1016_j_tig_2014_09_009 crossref_primary_10_1080_21541264_2025_2474367 crossref_primary_10_1038_s41559_016_0061 crossref_primary_10_1097_HJH_0000000000001732 crossref_primary_10_1038_srep33334 crossref_primary_10_1109_ACCESS_2019_2935911 crossref_primary_10_1007_s00239_017_9781_0 crossref_primary_10_1099_mgen_0_000025 crossref_primary_10_7554_eLife_72905 crossref_primary_10_1021_acsinfecdis_2c00216 crossref_primary_10_1371_journal_pgen_1005960 crossref_primary_10_1073_pnas_1411012111 crossref_primary_10_1021_acs_biochem_8b00948 crossref_primary_10_1021_acscatal_2c01426 crossref_primary_10_1371_journal_pgen_1005404 crossref_primary_10_1146_annurev_ecolsys_102320_112153 crossref_primary_10_1002_prot_25040 crossref_primary_10_1038_s41559_017_0338_9 crossref_primary_10_1093_molbev_msw220 crossref_primary_10_1093_molbev_msz298 |
Cites_doi | 10.1111/evo.12192 10.1034/j.1600-065x.2001.1830104.x 10.1093/oxfordjournals.molbev.a025854 10.1534/genetics.110.125997 10.1016/j.micinf.2011.01.007 10.1126/science.1176225 10.1016/j.ygeno.2006.01.004 10.7554/eLife.00631 10.1126/science.1123539 10.1098/rstb.2000.0716 10.1073/pnas.1313424110 10.1038/nature05379 10.1186/1471-2148-7-214 10.1093/bioinformatics/btl446 10.1126/science.1187816 10.1038/nature05385 10.1016/S0022-2836(02)00599-5 10.1128/JVI.74.15.6800-6807.2000 10.1371/journal.pone.0022201 10.1126/science.1142819 10.1016/j.vetmic.2006.07.017 10.1099/0022-1317-74-6-1197 10.1099/0022-1317-83-4-723 10.1128/JVI.02005-07 10.1099/0022-1317-70-12-3297 10.1126/science.1203801 10.1073/pnas.0702207104 10.1128/JVI.00101-08 10.1126/science.164.3881.788 10.7554/eLife.01914 10.1007/s00285-007-0120-8 10.1038/nature06945 10.1007/s00239-009-9312-8 10.1038/nature12344 10.1016/S0022-2836(02)00400-X 10.1093/molbev/mst096 10.1088/1742-5468/2013/01/P01005 10.1016/j.virusres.2004.02.020 10.1093/molbev/mss075 10.1038/nature08249 10.1093/molbev/msr044 10.1186/1471-2172-9-1 10.1128/JVI.66.2.1066-1073.1992 10.1021/bi00032a005 10.1128/JVI.78.10.5216-5222.2004 10.1016/j.chom.2010.05.009 10.1073/pnas.0803151105 10.1111/j.1750-2659.2009.00096.x 10.1017/CBO9780511623486 10.1073/pnas.0510098103 10.1038/289373a0 10.1073/pnas.100133697 10.1016/S0065-3527(08)00403-X 10.1126/science.1203799 10.1093/nar/gkp1004 10.1038/290713a0 10.1099/vir.0.82120-0 10.1056/NEJMp0904819 10.1007/s00239-009-9282-x 10.1128/JVI.01966-10 10.1093/molbev/msp003 10.1126/science.1097211 10.1093/molbev/msi242 10.1016/j.humimm.2010.02.014 10.1128/JVI.01563-08 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Gong, Bloom 2014 Gong, Bloom 2014 Gong, Bloom. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gong LI, Bloom JD (2014) Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution. PLoS Genet 10(5): e1004328. doi:10.1371/journal.pgen.1004328 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Gong, Bloom 2014 Gong, Bloom – notice: 2014 Gong, Bloom. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gong LI, Bloom JD (2014) Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution. PLoS Genet 10(5): e1004328. doi:10.1371/journal.pgen.1004328 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1004328 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale_Opposing Viewpoints In Context Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Epistasis Is Enriched during Adaptive Protein Evolution |
EISSN | 1553-7404 |
ExternalDocumentID | 1536052854 oai_doaj_org_article_c5da11bd495f4b61b497e1216bbd795a PMC4014419 A383175729 24811236 10_1371_journal_pgen_1004328 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM102198 – fundername: NIGMS NIH HHS grantid: R01 GM102198 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c698t-b6206e7fc624e6059c344046b644c8f0bff1803212f79a73b307d8fb4d1dcbdf3 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:13:28 EST 2021 Wed Aug 27 01:10:20 EDT 2025 Thu Aug 21 18:11:21 EDT 2025 Fri Jul 11 04:44:16 EDT 2025 Tue Jun 17 21:32:21 EDT 2025 Tue Jun 10 20:29:07 EDT 2025 Fri Jun 27 05:02:19 EDT 2025 Fri Jun 27 03:46:13 EDT 2025 Fri Jun 27 05:00:53 EDT 2025 Thu May 22 20:53:28 EDT 2025 Mon Jul 21 05:54:55 EDT 2025 Tue Jul 01 01:02:25 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c698t-b6206e7fc624e6059c344046b644c8f0bff1803212f79a73b307d8fb4d1dcbdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: JDB. Performed the experiments: LIG. Analyzed the data: JDB LIG. Contributed reagents/materials/analysis tools: JDB. Wrote the paper: JDB. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004328 |
PMID | 24811236 |
PQID | 1523407682 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1536052854 doaj_primary_oai_doaj_org_article_c5da11bd495f4b61b497e1216bbd795a pubmedcentral_primary_oai_pubmedcentral_nih_gov_4014419 proquest_miscellaneous_1523407682 gale_infotracmisc_A383175729 gale_infotracacademiconefile_A383175729 gale_incontextgauss_ISR_A383175729 gale_incontextgauss_ISN_A383175729 gale_incontextgauss_IOV_A383175729 gale_healthsolutions_A383175729 pubmed_primary_24811236 crossref_citationtrail_10_1371_journal_pgen_1004328 crossref_primary_10_1371_journal_pgen_1004328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | RB Chen (ref12) 2010; 70 ref13 NH Barton (ref11) 2000; 355 JA Draghi (ref22) 2013; 67 A Rambaut (ref27) 2008; 453 A Stamatakis (ref64) 2006; 22 A Portela (ref24) 2002; 83 JD Bloom (ref10) 2006; 103 DT Jones (ref66) 1992; 8 R Vita (ref58) 2010; 38 X Wang (ref19) 2002; 320 JK Taubenberger (ref48) 2010; 7 JT Voeten (ref54) 2000; 74 JD O'Brien (ref50) 2009; 26 MG Sheerar (ref37) 1989; 70 EJ Adams (ref36) 2001; 183 S Noble (ref42) 1993; 74 HH Chou (ref1) 2011; 332 DM Morens (ref46) 2009; 361 V Sideraki (ref18) 2001; 98 GI Lang (ref15) 2013; 500 AI Khan (ref3) 2011; 332 RJ Garten (ref40) 2009; 325 JD Bloom (ref67) 2010; 328 EA Ortlund (ref8) 2007; 317 GF Rimmelzwaan (ref30) 2004; 103 E Assarsson (ref55) 2008; 82 BM Beadle (ref6) 2002; 321 AL Vincent (ref39) 2006; 118 M Krasnitz (ref63) 2008; 82 M dos Reis (ref45) 2009; 69 VN Minin (ref49) 2008; 56 M Nei (ref17) 2005; 22 CJ Wei (ref43) 2010; 2 S Bershtein (ref7) 2006; 444 S Bhatt (ref52) 2011; 28 DC Wiley (ref29) 1981; 289 LI Gong (ref34) 2013; 2 C Brockwell-Staats (ref47) 2009; 3 JL King (ref14) 1969; 164 AL Vincent (ref38) 2008; 72 E Hoffmann (ref69) 2000; 97 M DiBrino (ref53) 1995; 34 YK Cheung (ref57) 2012; 18 Suppl 2 Y Bao (ref62) 2008; 82 AJ Drummond (ref65) 2007; 7 EG Berkhoff (ref32) 2007; 88 Q Ye (ref25) 2006; 444 DM Weinreich (ref5) 2006; 312 JD Bloom (ref68) 2011; 6 SM Luoh (ref41) 1992; 66 J Alexander (ref56) 2010; 71 J Sidney (ref59) 2008; 9 AW Covert 3rd (ref20) 2013; 110 J da Silva (ref60) 1998; 15 T Hertz (ref61) 2011; 85 JA Draghi (ref21) 2011; 187 EG Berkhoff (ref31) 2004; 78 ZD Blount (ref2) 2008; 105 AJ Drummond (ref51) 2012; 29 IG Szendro (ref23) 2013; 2013 JT Bridgham (ref9) 2009; 461 DJ Smith (ref26) 2004; 305 MF Schenk (ref4) 2013; 30 T Bedford (ref44) 2013; 3 W Gerhard (ref28) 1981; 290 M Lynch (ref16) 2007; 104 Suppl 1 C Renard (ref35) 2006; 88 SA Valkenburg (ref33) 2011; 13 20522774 - Science. 2010 Jun 4;328(5983):1272-5 19787384 - J Mol Evol. 2009 Oct;69(4):333-45 11127900 - Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1553-62 11782246 - Immunol Rev. 2001 Oct;183:41-64 18211710 - BMC Immunol. 2008;9:1 17874105 - J Math Biol. 2008 Mar;56(3):391-412 6163993 - Nature. 1981 Apr 23;290(5808):713-7 23682315 - Elife. 2013;2:e00631 23918358 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3171-8 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 17702911 - Science. 2007 Sep 14;317(5844):1544-8 17151603 - Nature. 2006 Dec 21;444(7122):1078-82 19465683 - Science. 2009 Jul 10;325(5937):197-201 21799795 - PLoS One. 2011;6(7):e22201 24151997 - Evolution. 2013 Nov;67(11):3120-31 15163496 - Virus Res. 2004 Jul;103(1-2):97-100 17251571 - J Gen Virol. 2007 Feb;88(Pt 2):530-5 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21 17996036 - BMC Evol Biol. 2007;7:214 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 19081490 - Adv Virus Res. 2008;72:127-54 10888619 - J Virol. 2000 Aug;74(15):6800-7 21295153 - Microbes Infect. 2011 May;13(5):489-501 23676768 - Mol Biol Evol. 2013 Aug;30(8):1779-87 7543776 - Biochemistry. 1995 Aug 15;34(32):10130-8 12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95 20542248 - Cell Host Microbe. 2010 Jun 25;7(6):440-51 18842709 - J Virol. 2008 Dec;82(24):12241-51 22311355 - Hong Kong Med J. 2012 Feb;18 Suppl 2:17-21 18418375 - Nature. 2008 May 29;453(7195):615-9 21288876 - Genetics. 2011 Apr;187(4):1139-52 21636772 - Science. 2011 Jun 3;332(6034):1193-6 15113903 - J Virol. 2004 May;78(10):5216-22 19564629 - N Engl J Med. 2009 Jul 16;361(3):225-9 21084470 - J Virol. 2011 Feb;85(3):1310-21 17122770 - Nature. 2006 Dec 14;444(7121):929-32 16515853 - Genomics. 2006 Jul;88(1):96-110 19131426 - Mol Biol Evol. 2009 Apr;26(4):801-14 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82 8389804 - J Gen Virol. 1993 Jun;74 ( Pt 6):1197-200 16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74 20156506 - Hum Immunol. 2010 May;71(5):468-74 22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73 9787432 - Mol Biol Evol. 1998 Oct;15(10):1259-68 5767777 - Science. 1969 May 16;164(3881):788-98 6162101 - Nature. 1981 Jan 29;289(5796):373-8 18524956 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906 24497547 - Elife. 2014;3:e01914 11907320 - J Gen Virol. 2002 Apr;83(Pt 4):723-34 16962262 - Vet Microbiol. 2006 Dec 20;118(3-4):212-22 11114163 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):283-8 17942553 - J Virol. 2008 Jan;82(2):596-601 21415025 - Mol Biol Evol. 2011 Sep;28(9):2443-51 2558159 - J Gen Virol. 1989 Dec;70 ( Pt 12):3297-303 17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 16120807 - Mol Biol Evol. 2005 Dec;22(12):2318-42 21636771 - Science. 2011 Jun 3;332(6034):1190-2 15218094 - Science. 2004 Jul 16;305(5682):371-6 18579605 - J Virol. 2008 Sep;82(17):8947-50 19779450 - Nature. 2009 Sep 24;461(7263):515-9 20041240 - J Mol Evol. 2010 Jan;70(1):98-105 1731091 - J Virol. 1992 Feb;66(2):1066-73 19768134 - Influenza Other Respir Viruses. 2009 Sep;3(5):207-13 19906713 - Nucleic Acids Res. 2010 Jan;38(Database issue):D854-62 23873039 - Nature. 2013 Aug 29;500(7464):571-4 12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96 16601193 - Science. 2006 Apr 7;312(5770):111-4 |
References_xml | – volume: 67 start-page: 3120 year: 2013 ident: ref22 article-title: Selection biases the prevalence and type of epistasis along adaptive trajectories publication-title: Evolution; international journal of organic evolution doi: 10.1111/evo.12192 – volume: 183 start-page: 41 year: 2001 ident: ref36 article-title: Species-specific evolution of MHC class I genes in the higher primates publication-title: Immunological Reviews doi: 10.1034/j.1600-065x.2001.1830104.x – volume: 15 start-page: 1259 year: 1998 ident: ref60 article-title: Conservation of cytotoxic T lymphocyte (CTL) epitopes as a host strategy to constrain parasite adaptation: evidence from the nef gene of human immunodeficiency virus 1 (HIV-1) publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025854 – volume: 187 start-page: 1139 year: 2011 ident: ref21 article-title: Epistasis increases the rate of conditionally neutral substitution in an adapting population publication-title: Genetics doi: 10.1534/genetics.110.125997 – volume: 13 start-page: 489 year: 2011 ident: ref33 article-title: Immunity to seasonal and pandemic influenza A viruses publication-title: Microbes and infection/Institut Pasteur doi: 10.1016/j.micinf.2011.01.007 – volume: 325 start-page: 197 year: 2009 ident: ref40 article-title: Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans publication-title: Science doi: 10.1126/science.1176225 – volume: 88 start-page: 96-+ year: 2006 ident: ref35 article-title: The genomic sequence and analysis of the swine major histocompatibility complex publication-title: Genomics doi: 10.1016/j.ygeno.2006.01.004 – volume: 2 start-page: e00631 year: 2013 ident: ref34 article-title: Stability-mediated epistasis constrains the evolution of an influenza protein publication-title: eLife doi: 10.7554/eLife.00631 – volume: 312 start-page: 111 year: 2006 ident: ref5 article-title: Darwinian evolution can follow only very few mutational paths to fitter proteins publication-title: Science doi: 10.1126/science.1123539 – volume: 355 start-page: 1553 year: 2000 ident: ref11 article-title: Genetic hitchhiking publication-title: Philosophical Transactions of the Royal Society of London Series B-Biological Sciences doi: 10.1098/rstb.2000.0716 – volume: 110 start-page: E3171 year: 2013 ident: ref20 article-title: Experiments on the role of deleterious mutations as stepping stones in adaptive evolution publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1313424110 – volume: 444 start-page: 1078 year: 2006 ident: ref25 article-title: The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA publication-title: Nature doi: 10.1038/nature05379 – volume: 7 start-page: 214 year: 2007 ident: ref65 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC evolutionary biology doi: 10.1186/1471-2148-7-214 – volume: 22 start-page: 2688 year: 2006 ident: ref64 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 328 start-page: 1272 year: 2010 ident: ref67 article-title: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance publication-title: Science doi: 10.1126/science.1187816 – volume: 2 start-page: 24ra21 year: 2010 ident: ref43 article-title: Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design publication-title: Sci Transl Med – volume: 98 start-page: 283 year: 2001 ident: ref18 article-title: A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation publication-title: Proc Natl Acad Sci U S A – volume: 444 start-page: 929 year: 2006 ident: ref7 article-title: Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein publication-title: Nature doi: 10.1038/nature05385 – volume: 321 start-page: 285 year: 2002 ident: ref6 article-title: Structural bases of stability-function tradeoffs in enzymes publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00599-5 – volume: 74 start-page: 6800 year: 2000 ident: ref54 article-title: Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes publication-title: J Virol doi: 10.1128/JVI.74.15.6800-6807.2000 – volume: 6 start-page: e22201 year: 2011 ident: ref68 article-title: A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase publication-title: PLoS ONE doi: 10.1371/journal.pone.0022201 – volume: 317 start-page: 1544 year: 2007 ident: ref8 article-title: Crystal structure of an ancient protein: evolution by conformational epistasis publication-title: Science doi: 10.1126/science.1142819 – volume: 118 start-page: 212 year: 2006 ident: ref39 article-title: Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States publication-title: Veterinary microbiology doi: 10.1016/j.vetmic.2006.07.017 – volume: 74 start-page: 1197 issue: Pt 6 year: 1993 ident: ref42 article-title: Antigenic and genetic conservation of the haemagglutinin in H1N1 swine influenza viruses publication-title: J Gen Virol doi: 10.1099/0022-1317-74-6-1197 – volume: 83 start-page: 723 year: 2002 ident: ref24 article-title: The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication publication-title: J Gen Virol doi: 10.1099/0022-1317-83-4-723 – volume: 82 start-page: 596 year: 2008 ident: ref62 article-title: The influenza virus resource at the National Center for Biotechnology Information publication-title: J Virol doi: 10.1128/JVI.02005-07 – volume: 70 start-page: 3297 issue: Pt 12 year: 1989 ident: ref37 article-title: Antigenic conservation of H1N1 swine influenza viruses publication-title: J Gen Virol doi: 10.1099/0022-1317-70-12-3297 – volume: 332 start-page: 1193 year: 2011 ident: ref3 article-title: Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population publication-title: Science doi: 10.1126/science.1203801 – volume: 104 Suppl 1 start-page: 8597 year: 2007 ident: ref16 article-title: The frailty of adaptive hypotheses for the origins of organismal complexity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0702207104 – volume: 82 start-page: 8947 year: 2008 ident: ref63 article-title: Anomalies in the influenza virus genome database: new biology or laboratory errors? publication-title: J Virol doi: 10.1128/JVI.00101-08 – volume: 164 start-page: 788 year: 1969 ident: ref14 article-title: Non-Darwinian evolution publication-title: Science doi: 10.1126/science.164.3881.788 – volume: 3 start-page: e01914 year: 2013 ident: ref44 article-title: Integrating influenza antigenic dynamics with molecular evolution publication-title: Elife doi: 10.7554/eLife.01914 – volume: 56 start-page: 391 year: 2008 ident: ref49 article-title: Counting labeled transitions in continuous-time Markov models of evolution publication-title: Journal of mathematical biology doi: 10.1007/s00285-007-0120-8 – volume: 453 start-page: 615 year: 2008 ident: ref27 article-title: The genomic and epidemiological dynamics of human influenza A virus publication-title: Nature doi: 10.1038/nature06945 – volume: 70 start-page: 98 year: 2010 ident: ref12 article-title: Hitchhiking and the Population Genetic Structure of Avian Influenza Virus publication-title: Journal of molecular evolution doi: 10.1007/s00239-009-9312-8 – volume: 500 start-page: 571 year: 2013 ident: ref15 article-title: Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations publication-title: Nature doi: 10.1038/nature12344 – volume: 320 start-page: 85 year: 2002 ident: ref19 article-title: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00400-X – volume: 30 start-page: 1779 year: 2013 ident: ref4 article-title: Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene publication-title: Mol Biol Evol doi: 10.1093/molbev/mst096 – volume: 2013 start-page: P01005 year: 2013 ident: ref23 article-title: Quantitative analyses of empirical fitness landscapes publication-title: J Stat Mech doi: 10.1088/1742-5468/2013/01/P01005 – volume: 103 start-page: 97 year: 2004 ident: ref30 article-title: Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes publication-title: Virus Res doi: 10.1016/j.virusres.2004.02.020 – volume: 29 start-page: 1969 year: 2012 ident: ref51 article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7 publication-title: Mol Biol Evol doi: 10.1093/molbev/mss075 – volume: 461 start-page: 515 year: 2009 ident: ref9 article-title: An epistatic ratchet constrains the direction of glucocorticoid receptor evolution publication-title: Nature doi: 10.1038/nature08249 – volume: 28 start-page: 2443 year: 2011 ident: ref52 article-title: The genomic rate of molecular adaptation of the human influenza A virus publication-title: Mol Biol Evol doi: 10.1093/molbev/msr044 – volume: 9 start-page: 1 year: 2008 ident: ref59 article-title: HLA class I supertypes: a revised and updated classification publication-title: BMC immunology doi: 10.1186/1471-2172-9-1 – volume: 66 start-page: 1066 year: 1992 ident: ref41 article-title: Hemagglutinin mutations related to antigenic variation in H1 swine influenza viruses publication-title: J Virol doi: 10.1128/JVI.66.2.1066-1073.1992 – volume: 34 start-page: 10130 year: 1995 ident: ref53 article-title: Identification of the peptide binding motif for HLA-B44, one of the most common HLA-B alleles in the Caucasian population publication-title: Biochemistry doi: 10.1021/bi00032a005 – volume: 78 start-page: 5216 year: 2004 ident: ref31 article-title: A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro publication-title: J Virol doi: 10.1128/JVI.78.10.5216-5222.2004 – volume: 7 start-page: 440 year: 2010 ident: ref48 article-title: Influenza virus evolution, host adaptation, and pandemic formation publication-title: Cell host & microbe doi: 10.1016/j.chom.2010.05.009 – volume: 105 start-page: 7899 year: 2008 ident: ref2 article-title: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0803151105 – volume: 3 start-page: 207 year: 2009 ident: ref47 article-title: Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1) publication-title: Influenza and other respiratory viruses doi: 10.1111/j.1750-2659.2009.00096.x – ident: ref13 doi: 10.1017/CBO9780511623486 – volume: 8 start-page: 275 year: 1992 ident: ref66 article-title: The rapid generation of mutation data matrices from protein sequences publication-title: Computer applications in the biosciences : CABIOS – volume: 103 start-page: 5869 year: 2006 ident: ref10 article-title: Protein stability promotes evolvability publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0510098103 – volume: 289 start-page: 373 year: 1981 ident: ref29 article-title: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation publication-title: Nature doi: 10.1038/289373a0 – volume: 97 start-page: 6108 year: 2000 ident: ref69 article-title: A DNA transfection system for generation of influenza A virus from eight plasmids publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.100133697 – volume: 72 start-page: 127 year: 2008 ident: ref38 article-title: Swine influenza viruses a North American perspective publication-title: Advances in virus research doi: 10.1016/S0065-3527(08)00403-X – volume: 332 start-page: 1190 year: 2011 ident: ref1 article-title: Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation publication-title: Science doi: 10.1126/science.1203799 – volume: 38 start-page: D854 year: 2010 ident: ref58 article-title: The immune epitope database 2.0 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp1004 – volume: 290 start-page: 713 year: 1981 ident: ref28 article-title: Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies publication-title: Nature doi: 10.1038/290713a0 – volume: 88 start-page: 530 year: 2007 ident: ref32 article-title: Assessment of the extent of variation in influenza A virus cytotoxic T-lymphocyte epitopes by using virus-specific CD8+ T-cell clones publication-title: J Gen Virol doi: 10.1099/vir.0.82120-0 – volume: 361 start-page: 225 year: 2009 ident: ref46 article-title: The persistent legacy of the 1918 influenza virus publication-title: N Engl J Med doi: 10.1056/NEJMp0904819 – volume: 69 start-page: 333 year: 2009 ident: ref45 article-title: Using non-homogeneous models of nucleotide substitution to identify host shift events: application to the origin of the 1918 ‘Spanish’ influenza pandemic virus publication-title: Journal of molecular evolution doi: 10.1007/s00239-009-9282-x – volume: 85 start-page: 1310 year: 2011 ident: ref61 article-title: Mapping the landscape of host-pathogen coevolution: HLA class I binding and its relationship with evolutionary conservation in human and viral proteins publication-title: J Virol doi: 10.1128/JVI.01966-10 – volume: 26 start-page: 801 year: 2009 ident: ref50 article-title: Learning to count: robust estimates for labeled distances between molecular sequences publication-title: Mol Biol Evol doi: 10.1093/molbev/msp003 – volume: 305 start-page: 371 year: 2004 ident: ref26 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science doi: 10.1126/science.1097211 – volume: 22 start-page: 2318 year: 2005 ident: ref17 article-title: Selectionism and neutralism in molecular evolution publication-title: Mol Biol Evol doi: 10.1093/molbev/msi242 – volume: 71 start-page: 468 year: 2010 ident: ref56 article-title: Identification of broad binding class I HLA supertype epitopes to provide universal coverage of influenza A virus publication-title: Human immunology doi: 10.1016/j.humimm.2010.02.014 – volume: 82 start-page: 12241 year: 2008 ident: ref55 article-title: Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans publication-title: J Virol doi: 10.1128/JVI.01563-08 – volume: 18 Suppl 2 start-page: 17 year: 2012 ident: ref57 article-title: Human immunogenic T cell epitopes in nucleoprotein of human influenza A (H5N1) virus publication-title: Hong Kong medical journal – reference: 7543776 - Biochemistry. 1995 Aug 15;34(32):10130-8 – reference: 17942553 - J Virol. 2008 Jan;82(2):596-601 – reference: 18418375 - Nature. 2008 May 29;453(7195):615-9 – reference: 17874105 - J Math Biol. 2008 Mar;56(3):391-412 – reference: 23918358 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3171-8 – reference: 17122770 - Nature. 2006 Dec 14;444(7121):929-32 – reference: 20041240 - J Mol Evol. 2010 Jan;70(1):98-105 – reference: 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21 – reference: 21295153 - Microbes Infect. 2011 May;13(5):489-501 – reference: 20522774 - Science. 2010 Jun 4;328(5983):1272-5 – reference: 21799795 - PLoS One. 2011;6(7):e22201 – reference: 20542248 - Cell Host Microbe. 2010 Jun 25;7(6):440-51 – reference: 16601193 - Science. 2006 Apr 7;312(5770):111-4 – reference: 17151603 - Nature. 2006 Dec 21;444(7122):1078-82 – reference: 21288876 - Genetics. 2011 Apr;187(4):1139-52 – reference: 21636772 - Science. 2011 Jun 3;332(6034):1193-6 – reference: 5767777 - Science. 1969 May 16;164(3881):788-98 – reference: 10888619 - J Virol. 2000 Aug;74(15):6800-7 – reference: 11782246 - Immunol Rev. 2001 Oct;183:41-64 – reference: 6162101 - Nature. 1981 Jan 29;289(5796):373-8 – reference: 19768134 - Influenza Other Respir Viruses. 2009 Sep;3(5):207-13 – reference: 8389804 - J Gen Virol. 1993 Jun;74 ( Pt 6):1197-200 – reference: 24151997 - Evolution. 2013 Nov;67(11):3120-31 – reference: 17996036 - BMC Evol Biol. 2007;7:214 – reference: 1731091 - J Virol. 1992 Feb;66(2):1066-73 – reference: 16962262 - Vet Microbiol. 2006 Dec 20;118(3-4):212-22 – reference: 19081490 - Adv Virus Res. 2008;72:127-54 – reference: 22311355 - Hong Kong Med J. 2012 Feb;18 Suppl 2:17-21 – reference: 18211710 - BMC Immunol. 2008;9:1 – reference: 19564629 - N Engl J Med. 2009 Jul 16;361(3):225-9 – reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82 – reference: 23682315 - Elife. 2013;2:e00631 – reference: 6163993 - Nature. 1981 Apr 23;290(5808):713-7 – reference: 22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73 – reference: 17702911 - Science. 2007 Sep 14;317(5844):1544-8 – reference: 23676768 - Mol Biol Evol. 2013 Aug;30(8):1779-87 – reference: 11114163 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):283-8 – reference: 17251571 - J Gen Virol. 2007 Feb;88(Pt 2):530-5 – reference: 19465683 - Science. 2009 Jul 10;325(5937):197-201 – reference: 12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95 – reference: 21084470 - J Virol. 2011 Feb;85(3):1310-21 – reference: 21415025 - Mol Biol Evol. 2011 Sep;28(9):2443-51 – reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 – reference: 20156506 - Hum Immunol. 2010 May;71(5):468-74 – reference: 11907320 - J Gen Virol. 2002 Apr;83(Pt 4):723-34 – reference: 19131426 - Mol Biol Evol. 2009 Apr;26(4):801-14 – reference: 19906713 - Nucleic Acids Res. 2010 Jan;38(Database issue):D854-62 – reference: 18579605 - J Virol. 2008 Sep;82(17):8947-50 – reference: 19787384 - J Mol Evol. 2009 Oct;69(4):333-45 – reference: 16120807 - Mol Biol Evol. 2005 Dec;22(12):2318-42 – reference: 12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96 – reference: 23873039 - Nature. 2013 Aug 29;500(7464):571-4 – reference: 21636771 - Science. 2011 Jun 3;332(6034):1190-2 – reference: 18842709 - J Virol. 2008 Dec;82(24):12241-51 – reference: 16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74 – reference: 9787432 - Mol Biol Evol. 1998 Oct;15(10):1259-68 – reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 – reference: 15218094 - Science. 2004 Jul 16;305(5682):371-6 – reference: 16515853 - Genomics. 2006 Jul;88(1):96-110 – reference: 18524956 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906 – reference: 2558159 - J Gen Virol. 1989 Dec;70 ( Pt 12):3297-303 – reference: 11127900 - Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1553-62 – reference: 19779450 - Nature. 2009 Sep 24;461(7263):515-9 – reference: 15113903 - J Virol. 2004 May;78(10):5216-22 – reference: 17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 – reference: 24497547 - Elife. 2014;3:e01914 – reference: 15163496 - Virus Res. 2004 Jul;103(1-2):97-100 |
SSID | ssj0035897 |
Score | 2.3522253 |
Snippet | Most experimental studies of epistasis in evolution have focused on adaptive changes-but adaptation accounts for only a portion of total evolutionary change.... Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary change.... Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change.... Most experimental studies of epistasis in evolution have focused on adaptive changes--but adaptation accounts for only a portion of total evolutionary... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004328 |
SubjectTerms | Antibiotics Biology and Life Sciences Documentation Drug resistance Epigenetic inheritance Epistasis, Genetic Epitopes - immunology Evolution & development Evolution, Molecular Gene expression Genetic research Hogs Humans Influenza Influenza A Virus, H1N1 Subtype - immunology Influenza, Human - virology Medicine and Health Sciences Mutation Nucleoproteins - genetics Plasmids Proteins RNA polymerase Studies T-Lymphocytes, Cytotoxic - immunology Viral Proteins - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G606iqCT7GX3c1u8lilpQpWUFv6tuxXauHIheau0P--M7u5cBGhffD1MgnczG_nI5n5DSEfjKuFD0LmXtUyF8I6OFKhzgNj1hhlKh_w1cD3Y3l0Ir6dlWdbq76wJyzRAyfF7bnSm6KwHhL5RlhZWFGrULBCWguPL2NqBDFvU0wlH8zLKq1VKUueKyjrh6E5roq9wUafOjAQ9ggIjpvYt4JS5O4fPfSsWyz7f6Wff3dRboWlw0fk4ZBP0v30Px6Te6F9Qu6nDZPXT8npQYcJYnxhvbimSA4Rx6Lac9qDy4h9Agg8ai4DBShhY6inaXaRGm869IY0kjlctDRcDUB9Rk4OD35_OcqHVQq5k3W1yq1kcxlU4yQTASqY2nEkBpQW0iFXNXPbNEU15xDHGlUbxS0cfV81VvjCO-sb_pzM2mUbdgjlTSmYUhWYuBYhVKYQgXPOnApzCwlLRvhGl9oNPOO47mKh48czBfVGUo1GC-jBAhnJx7u6xLNxi_xnNNMoiyzZ8QfAjh6wo2_DTkbeopF1Gjkdz7reh7Id0iqoOzLyPkogU0aLrTjnZt33-uuP0zsI_Tq-i9DPidDHQahZgs6cGWYkQPNI0zWR3J1IglNwk8s7iNuN6noNgQ3MjuOyGXm3wbLGu7DJrg3LNcowLvDLLMvIi4TtUb9MVAUS9WRETVA_McD0SnvxJ9KVi1i01y__h8VekQeQsYrUcbpLZqvLdXgNWeHKvokO4Abe_mCD priority: 102 providerName: Directory of Open Access Journals |
Title | Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24811236 https://www.proquest.com/docview/1523407682 https://pubmed.ncbi.nlm.nih.gov/PMC4014419 https://doaj.org/article/c5da11bd495f4b61b497e1216bbd795a http://dx.doi.org/10.1371/journal.pgen.1004328 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61qZC4IN51W4JBSJxcxbtrr31AqEWpClIDKqTKbbUvp5UiJ8QJIv-embVjYVTUXuPZHOY9uzPfEPJOmZxbx9PIijyNONcGTMrlkaNUKyVUZh1eDVyM0vMx_zJJJjtku7O1YWB1a2mH-6TGy9nx75-bj2DwH_zWBhFvDx0vgOX46s8ZzXbJHsQmgaZ6wdt3BZZk9bqVJGGRgHK_Gab73790gpXH9G89d28xm1e3paX_dlf-Fa7OHpNHTZ4ZntSK8YTsuPIpeVBvntw8I1fDBSaO_iJ7tgkRNMKPS5XTsAJX4vsHUCFDtXQhqBg2jNqwnmkMlVUL9JKhB3m4KUP3q1Hg52R8Nvzx6TxqVixEJs2zVaRTOkidKExKuYPKJjcMAQNTDWmSyYqBLoo4GzCIb4XIlWAaXILNCs1tbI22BXtBeuW8dPskZEXCqRAZiD7nzmUq5o4xRo1wAw2JTEDYlpfSNPjjuAZjJv2jmoA6pGaNRAnIRgIBidpTixp_4w76UxRTS4vo2f6H-XIqG2OUJrEqjrWF4rDgOo01z4WLaZxqDSqbqIC8RiHLehS19QHyBMp5SLegHgnIW0-BCBoltuhM1bqq5OevV_cg-j66D9Flh-h9Q1TMgWdGNbMTwHmE7-pQHnUowVmYzud91Nst6yoJAQ_EjmO0AXmz1WWJp7D5rnTzNdJQxvHFlgbkZa3bLX8pz2IE8AmI6Gh9RwDdL-XNtYcx576Yzw_uZPYheQhpKq_bTI9Ib7Vcu1eQCq50n-yKieiTvdPh6Ntl31-o9L3F_wHl82H0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epistatically+interacting+substitutions+are+enriched+during+adaptive+protein+evolution&rft.jtitle=PLoS+genetics&rft.au=Gong%2C+Lizhi+Ian&rft.au=Bloom%2C+Jesse+D&rft.date=2014-05-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=10&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pgen.1004328&rft.externalDBID=n%2Fa&rft.externalDocID=A383175729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |