Regulation of Mutagenic DNA Polymerase V Activation in Space and Time
Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is prod...
Saved in:
Published in | PLoS genetics Vol. 11; no. 8; p. e1005482 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.08.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. |
---|---|
AbstractList | Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V ([UmuD'.sub.2]C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the [RecA.sup.*] nucleoprotein filament-mediated cleavage of UmuD[right arrow]UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut ([UmuD'.sub.2] C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′ 2 C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [ umuD (K97A)] or constitutively stimulate [ recA (E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′ 2 C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Escherichia coli , and many other bacteria, respond to high levels of DNA damage with an inducible system called the SOS response. In this response, bacteria first try to restart replication using non-mutagenic DNA repair strategies. If that fails, replication can be restored using DNA polymerases that simply replicate over DNA lesions, a desperation strategy that results in mutations. DNA polymerase V (pol V) is responsible for most mutagenesis that accompanies the SOS response. Because of the risk inherent to elevated mutation levels, pol V activation is tightly constrained. This report introduces a new layer of regulation on pol V activation, with a novel spatial component. After synthesis, the UmuC subunit of pol V is sequestered transiently at the membrane. Release into the cytosol and final activation depends on the activity of RecA protein and the autocatalytic cleavage of UmuD to generate the UmuD' subunit of pol V. The resulting delay in activation represents an additional molecular mechanism that limits the amount of time that this sometimes necessary but potentially detrimental enzyme spends on the DNA. Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD[right arrow]UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. |
Audience | Academic |
Author | Patel, Meghna McDonald, John P. Goodman, Myron F. Cox, Michael M. Wood, Elizabeth A. van Oijen, Antoine M. Caldas, Victor E. A. Ghodke, Harshad Robinson, Andrew Punter, Christiaan M. Woodgate, Roger |
AuthorAffiliation | 1 Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands 2 Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America Northeastern University, UNITED STATES 3 Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America 4 Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America |
AuthorAffiliation_xml | – name: 1 Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands – name: Northeastern University, UNITED STATES – name: 4 Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: 2 Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America – name: 3 Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America |
Author_xml | – sequence: 1 givenname: Andrew surname: Robinson fullname: Robinson, Andrew – sequence: 2 givenname: John P. surname: McDonald fullname: McDonald, John P. – sequence: 3 givenname: Victor E. A. surname: Caldas fullname: Caldas, Victor E. A. – sequence: 4 givenname: Meghna surname: Patel fullname: Patel, Meghna – sequence: 5 givenname: Elizabeth A. surname: Wood fullname: Wood, Elizabeth A. – sequence: 6 givenname: Christiaan M. surname: Punter fullname: Punter, Christiaan M. – sequence: 7 givenname: Harshad surname: Ghodke fullname: Ghodke, Harshad – sequence: 8 givenname: Michael M. surname: Cox fullname: Cox, Michael M. – sequence: 9 givenname: Roger surname: Woodgate fullname: Woodgate, Roger – sequence: 10 givenname: Myron F. surname: Goodman fullname: Goodman, Myron F. – sequence: 11 givenname: Antoine M. surname: van Oijen fullname: van Oijen, Antoine M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26317348$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAYhSM0xLbCP0AQCQnBRYs_43gXSNUYUGlsaBu7tRzHSV05domTif17nLVFDUIIlItEznNO3hyd9zg5cN7pJHkOwQxiBt-tfN86aWfrWrsZBICSHD1KjiCleMoIIAd7z4fJcQgrADDNOXuSHKIMQ4ZJfpScXem6t7Iz3qW-Sr_0nYx-RqUfLubpV2_vG93KoNPbdK46c7cBjUuv11LpVLoyvTGNfpo8rqQN-tn2Pkm-fTy7Of08Pb_8tDidn09VxvNuypmitFAYZkhlpQYlLSBCuGQU5boqMs2wrJQkNOM0l0zxQlFVKc40gTlXGZ4kLze-a-uD2CYQBGQIZJBggCOx2BCllyuxbk0j23vhpREPB76thWw7o6wWWvIMU8LjGJAUHBUklxBhgDDKlSp49Hq__VpfNLpU2nWttCPT8RtnlqL2d4JQirIY8CR5szVo_fdeh040JihtrXTa98PcIOcAIA4i-mqD1jKOZlzlo6MacDGPPxYnZWygZn-g4lXqxqjYj8rE85Hg7UgQmU7_6GrZhyAW11f_wV78O3t5O2Zf77FLLW23DN72Q5XCGHyxn_evoHdtjcDJBlCtD6HVlVCme6hkjMFYAYEYVmNXDDGshtiuRhST38Q7_7_KfgIo8A-B |
CitedBy_id | crossref_primary_10_1021_acs_biochem_7b00560 crossref_primary_10_1111_gtc_12729 crossref_primary_10_1021_acs_chemrestox_7b00224 crossref_primary_10_1016_j_bpj_2016_02_039 crossref_primary_10_1016_j_jmb_2021_167188 crossref_primary_10_1146_annurev_biochem_062917_011921 crossref_primary_10_1371_journal_pgen_1007161 crossref_primary_10_3389_fmicb_2024_1373344 crossref_primary_10_1038_s41467_018_02864_2 crossref_primary_10_1038_s42003_023_04423_y crossref_primary_10_1007_s11033_020_05437_z crossref_primary_10_1371_journal_pgen_1009972 crossref_primary_10_1042_BST20170055 crossref_primary_10_1371_journal_pgen_1007956 crossref_primary_10_1128_MMBR_00002_20 crossref_primary_10_1007_s00294_018_0840_x crossref_primary_10_1128_mmbr_00078_22 crossref_primary_10_1016_j_dnarep_2017_09_003 crossref_primary_10_1093_nar_gkz090 crossref_primary_10_1093_nar_gkaa579 crossref_primary_10_3390_cells10051083 crossref_primary_10_1093_nar_gkac515 crossref_primary_10_1038_s41467_018_03790_z crossref_primary_10_1186_s12864_024_10646_y crossref_primary_10_1016_j_jmb_2018_05_021 crossref_primary_10_1016_j_jmb_2023_168420 crossref_primary_10_1111_gtc_12334 crossref_primary_10_7554_eLife_23932 crossref_primary_10_1093_nar_gkx687 crossref_primary_10_1016_j_bpj_2016_05_047 crossref_primary_10_1111_mmi_14777 crossref_primary_10_1007_s00294_020_01134_3 crossref_primary_10_1021_acs_biochem_6b00117 crossref_primary_10_1111_mmi_14655 crossref_primary_10_1016_j_dnarep_2019_102658 crossref_primary_10_7554_eLife_42761 crossref_primary_10_1042_BST20180399 crossref_primary_10_1016_j_dnarep_2021_103163 crossref_primary_10_1146_annurev_biophys_070816_034106 crossref_primary_10_1038_s41598_019_49837_z crossref_primary_10_1093_nar_gkac041 crossref_primary_10_1016_j_dnarep_2021_103229 crossref_primary_10_1080_10409238_2017_1394262 crossref_primary_10_15252_msb_202211406 crossref_primary_10_1093_femsre_fuaa023 crossref_primary_10_1016_j_cobme_2019_08_013 crossref_primary_10_1371_journal_pone_0217524 crossref_primary_10_1016_j_dnarep_2019_102685 crossref_primary_10_1038_s41467_017_02333_2 crossref_primary_10_7554_eLife_67552 crossref_primary_10_3389_fphar_2017_00425 crossref_primary_10_1042_BST20190364 crossref_primary_10_1016_j_dnarep_2016_05_005 crossref_primary_10_1007_s00249_021_01555_z crossref_primary_10_7554_eLife_75628 crossref_primary_10_1002_em_22023 crossref_primary_10_1002_em_22267 crossref_primary_10_1083_jcb_201610025 crossref_primary_10_1093_nar_gkaa597 crossref_primary_10_1093_nar_gkae637 crossref_primary_10_1038_nmicrobiol_2016_186 crossref_primary_10_1002_mbo3_1316 crossref_primary_10_1073_pnas_1819297116 crossref_primary_10_1021_acs_chemrestox_7b00190 crossref_primary_10_1093_femsre_fuae018 crossref_primary_10_1073_pnas_1801101115 crossref_primary_10_7554_eLife_63747 crossref_primary_10_1093_nar_gkz003 crossref_primary_10_1093_nar_gkz960 crossref_primary_10_11603_1681_2727_2023_4_14241 crossref_primary_10_1093_nar_gkad310 crossref_primary_10_3389_fmicb_2020_585175 crossref_primary_10_1016_j_mrfmmm_2022_111787 crossref_primary_10_1080_10409238_2020_1768205 crossref_primary_10_3389_fmolb_2022_968424 crossref_primary_10_7717_peerj_6029 |
Cites_doi | 10.1016/j.tcb.2014.05.002 10.1038/nrg3415 10.1126/science.277.5331.1453 10.1128/JB.184.10.2674-2681.2002 10.1046/j.1365-2958.2000.01826.x 10.1016/j.tibs.2011.08.004 10.1007/BF00264207 10.1073/pnas.93.19.10291 10.3109/10409238.2010.480968 10.1111/j.1574-6976.2012.00338.x 10.1038/nrm3966 10.1126/science.1185757 10.1073/pnas.90.17.8169 10.18388/abp.1998_4298 10.1074/jbc.272.44.27919 10.3109/10409238.2014.881777 10.1128/JB.00368-11 10.1016/j.molcel.2013.10.020 10.1128/jb.175.17.5411-5419.1993 10.1016/S0076-6879(10)75011-4 10.1038/nmeth.2089 10.1128/jb.179.23.7435-7445.1997 10.1128/jb.179.19.6076-6083.1997 10.1128/jb.178.12.3550-3556.1996 10.1371/journal.pgen.1005066 10.1021/jp0467548 10.1038/nmeth.1258 10.1074/jbc.271.18.10767 10.1002/9781118131374.ch9 10.1038/nature08178 10.4161/cc.8.17.9390 10.1111/j.1365-2958.2006.05561.x 10.1038/nature05042 10.1073/pnas.1303301110 10.1146/annurev-physiol-021014-071649 10.1016/j.tcb.2013.01.009 10.1099/00221287-71-1-191 10.1016/0378-1119(84)90207-5 10.1111/j.1365-2958.2011.07579.x 10.3109/10409238.2014.959889 10.1534/genetics.113.151837 10.1007/BF00333788 10.1073/pnas.95.4.1478 10.1146/annurev-arplant-050312-120233 10.1016/j.dnarep.2012.01.012 10.1038/nrm3119 10.1007/BF00283484 10.1128/JB.163.3.870-876.1985 10.1128/JB.60.1.17-28.1950 10.1046/j.1365-2958.1998.00803.x 10.1073/pnas.85.6.1816 10.1038/nmeth1009-689 10.1073/pnas.96.16.8919 10.1128/jb.178.9.2559-2563.1996 10.7554/eLife.02384 10.1126/science.1209111 10.1006/jmbi.2000.3591 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robinson A, McDonald JP, Caldas VEA, Patel M, Wood EA, Punter CM, et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11(8): e1005482. doi:10.1371/journal.pgen.1005482 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robinson A, McDonald JP, Caldas VEA, Patel M, Wood EA, Punter CM, et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11(8): e1005482. doi:10.1371/journal.pgen.1005482 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1005482 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Regulation of Pol V in Space and Time |
EISSN | 1553-7404 |
ExternalDocumentID | 1720614303 oai_doaj_org_article_ea9635490d514b92b48a12302328ccb9 PMC4552617 A430963770 26317348 10_1371_journal_pgen_1005482 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES012259 – fundername: Intramural NIH HHS – fundername: NIGMS NIH HHS grantid: R01 GM021422 – fundername: NIEHS NIH HHS grantid: ES012259 – fundername: NIGMS NIH HHS grantid: R37 GM021422 – fundername: NIGMS NIH HHS grantid: U01 GM032335 – fundername: NIGMS NIH HHS grantid: GM32335 – fundername: NIGMS NIH HHS grantid: GM21422 – fundername: NIGMS NIH HHS grantid: R01 GM032335 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c698t-97c55bc3162c6de0d5b1223d7528efb6e73afca456958a7c9bc5cfc97e4189c63 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:13:41 EST 2021 Wed Aug 27 01:12:57 EDT 2025 Thu Aug 21 18:29:29 EDT 2025 Fri Jul 11 05:32:19 EDT 2025 Tue Jun 17 21:32:11 EDT 2025 Tue Jun 10 20:47:56 EDT 2025 Fri Jun 27 04:55:07 EDT 2025 Fri Jun 27 04:26:05 EDT 2025 Fri Jun 27 03:40:39 EDT 2025 Thu May 22 21:18:20 EDT 2025 Thu Apr 03 07:05:15 EDT 2025 Tue Jul 01 00:22:41 EDT 2025 Thu Apr 24 22:53:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c698t-97c55bc3162c6de0d5b1223d7528efb6e73afca456958a7c9bc5cfc97e4189c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: AR MMC RW MFG AMvO. Performed the experiments: AR JPM VEAC MP RW HG. Analyzed the data: AR RW. Contributed reagents/materials/analysis tools: AR JPM EAW CMP HG. Wrote the paper: AR MMC RW MFG AMvO. Current address: School of Chemistry, University of Wollongong, Wollongong, Australia The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005482 |
PMID | 26317348 |
PQID | 1708900290 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1720614303 doaj_primary_oai_doaj_org_article_ea9635490d514b92b48a12302328ccb9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552617 proquest_miscellaneous_1708900290 gale_infotracmisc_A430963770 gale_infotracacademiconefile_A430963770 gale_incontextgauss_ISR_A430963770 gale_incontextgauss_ISN_A430963770 gale_incontextgauss_IOV_A430963770 gale_healthsolutions_A430963770 pubmed_primary_26317348 crossref_citationtrail_10_1371_journal_pgen_1005482 crossref_primary_10_1371_journal_pgen_1005482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | LJ Sweetlove (ref28) 2013; 64 IJ Fijalkowska (ref41) 2012; 36 HX Xu (ref30) 2015; 77 LK Langeberg (ref26) 2015; 16 N Garvey (ref34) 1985; 163 J.S. Biteen (ref56) 2008; 5 JH Miller (ref45) 1992 JT Yeeles (ref20) 2011; 334 EG Frank (ref35) 1993; 90 S Mead (ref44) 2007; 63 H Yang (ref60) 2011 EM Witkin (ref17) 1982; 185 Q Jiang (ref13) 2009; 460 C Ho (ref43) 1993; 175 AL Erdem (ref14) 2014; 3 JP McDonald (ref49) 1998; 95 O Sliusarenko (ref58) 2011; 80 A Borden (ref3) 2002; 184 I Vlasic (ref18) 2011; 193 MM Fu (ref24) 2014; 24 LD Langston (ref38) 2009; 8 A Kornberg (ref1) 1992 T Nohmi (ref12) 1988; 85 E Tutucci (ref29) 2011; 12 CA Schneider (ref54) 2012; 9 AR Fernandez De Henestrosa (ref9) 2000; 35 ES Szekeres Jr. (ref51) 1996; 178 I Bruck (ref33) 1996; 271 YW Chan (ref32) 2014; 11 EG Frank (ref36) 2000; 297 M Gonzalez (ref48) 1998; 45 K Karata (ref11) 2012; 11 C Indiani (ref21) 2013; 110 YJ Kim (ref25) 2013; 23 JT Yeeles (ref42) 2013; 52 FR Blattner (ref52) 1997; 277 S Sommer (ref4) 1998; 28 RC MacLean (ref8) 2013; 14 T Kato (ref6) 1977; 156 LC Huang (ref53) 1997; 179 NA Tanner (ref55) 2010; 475 M Tang (ref5) 1999; 96 LP Watkins (ref59) 2005; 109 LB Bloom (ref2) 1997; 272 EG Frank (ref10) 1996; 93 D Zattas (ref31) 2015; 50 AL Schuh (ref27) 2014; 49 G Churchward (ref50) 1984; 31 CH Corzett (ref7) 2013; 194 SG Sedgwick (ref47) 1972; 71 M Patel (ref39) 2010; 45 EG Frank (ref16) 1996; 178 BD Davis (ref46) 1950; 60 Y Elbaz (ref23) 2011; 36 AJ Gruber (ref37) 2015; 11 R Reyes-Lamothe (ref22) 2010; 328 R Woodgate (ref15) 1991; 229 PN Hedde (ref57) 2009; 6 IJ Fijalkowska (ref40) 1997; 179 K Schlacher (ref19) 2006; 442 |
References_xml | – volume: 24 start-page: 564 year: 2014 ident: ref24 article-title: Integrated regulation of motor-driven organelle transport by scaffolding proteins publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2014.05.002 – volume: 14 start-page: 221 year: 2013 ident: ref8 article-title: Evaluating evolutionary models of stress-induced mutagenesis in bacteria publication-title: Nat Rev Genet doi: 10.1038/nrg3415 – volume: 277 start-page: 1453 year: 1997 ident: ref52 article-title: The complete genome sequence of Escherichia coli K-12 publication-title: Science doi: 10.1126/science.277.5331.1453 – volume: 184 start-page: 2674 year: 2002 ident: ref3 article-title: Escherichia coli DNA Polymerase III Can Replicate Efficiently past a T-T cis-syn Cyclobutane Dimer if DNA Polymerase V and the 3' to 5' Exonuclease Proofreading Function Encoded by dnaQ Are Inactivated publication-title: J Bacteriol doi: 10.1128/JB.184.10.2674-2681.2002 – volume: 35 start-page: 1560 year: 2000 ident: ref9 article-title: Identification of additional genes belonging to the LexA regulon in Escherichia coli publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.01826.x – volume: 36 start-page: 616 year: 2011 ident: ref23 article-title: Staying in touch: the molecular era of organelle contact sites publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2011.08.004 – volume: 229 start-page: 10 year: 1991 ident: ref15 article-title: Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage publication-title: Mol Gen Genet doi: 10.1007/BF00264207 – volume: 93 start-page: 10291 year: 1996 ident: ref10 article-title: Regulation of SOS mutagenesis by proteolysis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.19.10291 – volume: 45 start-page: 171 year: 2010 ident: ref39 article-title: A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2010.480968 – volume: 36 start-page: 1105 year: 2012 ident: ref41 article-title: DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2012.00338.x – volume: 16 start-page: 232 year: 2015 ident: ref26 article-title: Signalling scaffolds and local organization of cellular behaviour publication-title: Nature Rev Mol Cell Biol doi: 10.1038/nrm3966 – volume: 328 start-page: 498 year: 2010 ident: ref22 article-title: Stoichiometry and architecture of active DNA replication machinery in Escherichia coli publication-title: Science doi: 10.1126/science.1185757 – volume: 90 start-page: 8169 year: 1993 ident: ref35 article-title: Targeting of the UmuD, UmuD', and MucA' mutagenesis proteins to DNA by RecA protein publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.90.17.8169 – volume: 45 start-page: 163 year: 1998 ident: ref48 article-title: Structural insights into the regulation of SOS mutagenesis publication-title: Acta Biochim Pol doi: 10.18388/abp.1998_4298 – volume: 272 start-page: 27919 year: 1997 ident: ref2 article-title: Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies publication-title: J Biol Chem doi: 10.1074/jbc.272.44.27919 – volume: 49 start-page: 242 year: 2014 ident: ref27 article-title: The ESCRT machinery: From the plasma membrane to endosomes and back again publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2014.881777 – volume: 193 start-page: 4643 year: 2011 ident: ref18 article-title: Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.00368-11 – volume: 52 start-page: 855 year: 2013 ident: ref42 article-title: Dynamics of leading-strand lesion skipping by the replisome publication-title: Mol Cell doi: 10.1016/j.molcel.2013.10.020 – volume: 175 start-page: 5411 year: 1993 ident: ref43 article-title: A rapid method for cloning mutagenic DNA repair genes: isolation of umu-complementing genes from multidrug resistance plasmids R391, R446b, and R471a publication-title: J Bacteriol doi: 10.1128/jb.175.17.5411-5419.1993 – volume: 475 start-page: 259 year: 2010 ident: ref55 article-title: Visualizing DNA replication at the single-molecule level publication-title: Methods Enzymol doi: 10.1016/S0076-6879(10)75011-4 – volume: 9 start-page: 671 year: 2012 ident: ref54 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 179 start-page: 7435 year: 1997 ident: ref40 article-title: Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity publication-title: J Bacteriol doi: 10.1128/jb.179.23.7435-7445.1997 – volume: 179 start-page: 6076 year: 1997 ident: ref53 article-title: Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system publication-title: J Bacteriol doi: 10.1128/jb.179.19.6076-6083.1997 – volume: 178 start-page: 3550 year: 1996 ident: ref16 article-title: In vivo stability of the Umu mutagenesis proteins: a major role for RecA publication-title: J Bacteriol doi: 10.1128/jb.178.12.3550-3556.1996 – volume: 11 start-page: e1005066 year: 2015 ident: ref37 article-title: A RecA protein surface required for activation of DNA polymerase V publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005066 – volume: 109 start-page: 617 year: 2005 ident: ref59 article-title: Detection of intensity change points in time-resolved single-molecule measurements publication-title: J Phys Chem B doi: 10.1021/jp0467548 – volume: 5 start-page: 947 year: 2008 ident: ref56 article-title: Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP publication-title: Nat. Methods doi: 10.1038/nmeth.1258 – volume: 271 start-page: 10767 year: 1996 ident: ref33 article-title: Purification of a soluble UmuD'C complex from Escherichia coli: Cooperative binding of UmuD'C to single-stranded DNA publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.271.18.10767 – year: 2011 ident: ref60 article-title: Change-Point Localization and Wavelet Spectral Analysis of Single-Molecule Time Series doi: 10.1002/9781118131374.ch9 – volume: 460 start-page: 359 year: 2009 ident: ref13 article-title: The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP publication-title: Nature doi: 10.1038/nature08178 – volume: 8 start-page: 2686 year: 2009 ident: ref38 article-title: Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery publication-title: Cell Cycle doi: 10.4161/cc.8.17.9390 – volume: 63 start-page: 797 year: 2007 ident: ref44 article-title: Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05561.x – volume: 11 start-page: 4844 year: 2014 ident: ref32 article-title: Nat Commun publication-title: Nat Commun – volume: 442 start-page: 883 year: 2006 ident: ref19 article-title: RecA acts in trans to allow replication of damaged DNA by DNA polymerase V publication-title: Nature doi: 10.1038/nature05042 – volume: 110 start-page: 5410 year: 2013 ident: ref21 article-title: RecA acts as a switch to regulate polymerase occupancy in a moving replication fork publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1303301110 – volume: 77 start-page: 57 year: 2015 ident: ref30 article-title: Lysosomal Physiology publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-021014-071649 – volume: 23 start-page: 270 year: 2013 ident: ref25 article-title: Inositol lipid regulation of lipid transfer in specialized membrane domains publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2013.01.009 – volume: 71 start-page: 191 year: 1972 ident: ref47 article-title: Evidence for indirect production of DNA strand scissions during mild heating of Escherichia coli publication-title: J Gen Microbiol doi: 10.1099/00221287-71-1-191 – volume: 31 start-page: 165 year: 1984 ident: ref50 article-title: A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors publication-title: Gene doi: 10.1016/0378-1119(84)90207-5 – volume: 80 start-page: 612 year: 2011 ident: ref58 article-title: High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07579.x – year: 1992 ident: ref1 article-title: DNA Replication – volume: 50 start-page: 1 year: 2015 ident: ref31 article-title: Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2014.959889 – volume: 194 start-page: 409 year: 2013 ident: ref7 article-title: Competitive Fitness During Feast and Famine: How SOS DNA Polymerases Influence Physiology and Evolution in Escherichia coli publication-title: Genetics doi: 10.1534/genetics.113.151837 – volume: 185 start-page: 43 year: 1982 ident: ref17 article-title: Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli publication-title: Mol Gen Genet doi: 10.1007/BF00333788 – volume: 95 start-page: 1478 year: 1998 ident: ref49 article-title: Intermolecular cleavage by UmuD-like mutagenesis proteins publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.4.1478 – volume: 64 start-page: 723 year: 2013 ident: ref28 article-title: The Spatial Organization of Metabolism Within the Plant Cell publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050312-120233 – volume: 11 start-page: 431 year: 2012 ident: ref11 article-title: Simple and efficient purification of Escherichia coli DNA polymerase V: cofactor requirements for optimal activity and processivity in vitro publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2012.01.012 – volume: 12 start-page: 376 year: 2011 ident: ref29 article-title: Keeping mRNPs in check during assembly and nuclear export publication-title: Nature Rev Mol Cell Biol doi: 10.1038/nrm3119 – volume: 156 start-page: 121 year: 1977 ident: ref6 article-title: Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light publication-title: Mol Gen Genet doi: 10.1007/BF00283484 – volume: 163 start-page: 870 year: 1985 ident: ref34 article-title: Evidence for RecA protein association with the cell membrane and for changes in the levels of major outer membrane proteins in SOS-induced Escherichia coli cells publication-title: J Bacteriol doi: 10.1128/JB.163.3.870-876.1985 – volume: 60 start-page: 17 year: 1950 ident: ref46 article-title: Mutants of Escherichia coli requiring methionine or vitamin B12 publication-title: JBacteriol doi: 10.1128/JB.60.1.17-28.1950 – volume: 28 start-page: 281 year: 1998 ident: ref4 article-title: Specific RecA amino acid changes affect RecA-UmuD'C interaction publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1998.00803.x – year: 1992 ident: ref45 – volume: 85 start-page: 1816 year: 1988 ident: ref12 article-title: RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.85.6.1816 – volume: 6 start-page: 689 year: 2009 ident: ref57 article-title: Online image analysis software for photoactivation localization microscopy publication-title: Nat Methods doi: 10.1038/nmeth1009-689 – volume: 96 start-page: 8919 year: 1999 ident: ref5 article-title: UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.16.8919 – volume: 178 start-page: 2559 year: 1996 ident: ref51 article-title: Substitution of mucAB or rumAB for umuDC alters the relative frequencies of the two classes of mutations induced by a site-specific T-T cyclobutane dimer and the efficiency of translesion DNA synthesis publication-title: J Bacteriol doi: 10.1128/jb.178.9.2559-2563.1996 – volume: 3 start-page: e02384 year: 2014 ident: ref14 article-title: DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase publication-title: Elife doi: 10.7554/eLife.02384 – volume: 334 start-page: 235 year: 2011 ident: ref20 article-title: The Escherichia coli replisome is inherently DNA damage tolerant publication-title: Science doi: 10.1126/science.1209111 – volume: 297 start-page: 585 year: 2000 ident: ref36 article-title: Visualization of two binding sites for the Escherichia coli UmuD'(2)C complex (DNA pol V) on RecA-ssDNA filaments publication-title: J Mol Biol doi: 10.1006/jmbi.2000.3591 |
SSID | ssj0035897 |
Score | 2.4437482 |
Snippet | Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle... Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005482 |
SubjectTerms | Bacteria Chromosomes Deoxyribonucleic acid DNA DNA damage DNA Damage - genetics DNA polymerase DNA polymerases DNA repair DNA Replication - genetics DNA, Bacterial - genetics DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - metabolism DNA-Directed DNA Polymerase - radiation effects E coli Enzyme Activation - genetics Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Escherichia coli Proteins - radiation effects Funding Gene Expression Regulation, Bacterial - genetics Genetic aspects Genetic regulation Glucose Light Localization Mutagenesis Mutation Observations Physiological aspects Protein Processing, Post-Translational - genetics Rec A Recombinases - genetics RecA protein Regulation SOS Response, Genetics - genetics Transcription, Genetic - genetics Ultraviolet Rays |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8GChiExCk0a8ePHBdoVZBYUEur3qz4kbLSKlmR3UP_PTNxEjUIqT1wTcaHfDOZ-SaZByHvvMgqmVU-zb3laV7kPrV2zlKpvNc2CAg6XZXvUh6f5V8vxMW1VV9YExbHA0fgDkIJJgJJTOYhtNuC2VyX4G0h1DDtnO1a9yDmDclU9MFc6LhWRQieKkjr-6Y5ruYHvY4-bEBBWCMAlJ1NglI3u3_00LPNumn_RT__rqK8FpaOHpD7PZ-ki_gcD8mdUD8id-OGyavH5PAk7poH9GlT0W-7LfiPeuXo5-WC_mjWV_hNqg30nC7csOiMrmp6Cql0oGXtKfaIPCFnR4c_Px2n_eaE1MlCb9NCOSGs43PJnPQBsAP8GfdKMB0qK4PiZeVKIE-F0KVyhXXCVa5QIZ_rwkn-lMzqpg57hDIZcKY80DLIXbARt6pkAL3zLCsV8LWE8AE64_qx4rjdYm26f2UK0ouIhEHATQ94QtLx1CaO1bhB_iNqZZTFodjdBTAV05uKuclUEvIadWpih-n4aptFziGR40plCXnbSeBgjBorby7LXduaL9_PbyF0uryN0MlE6H0vVDWAmSv7lghAHqdyTST3J5LgA9zk9h6a6QBda4CWYqoP_CQhbwbTNXgKa-rq0OxQJtMF_pWF48-iKY_4Mgm8kuc6IWpi5BMFTO_Uq1_ddPJcCJzy__x_aOwFuQcEVcSCy30y2_7ehZdAArf2Vfe-_wGAxVSS priority: 102 providerName: Directory of Open Access Journals |
Title | Regulation of Mutagenic DNA Polymerase V Activation in Space and Time |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26317348 https://www.proquest.com/docview/1708900290 https://pubmed.ncbi.nlm.nih.gov/PMC4552617 https://doaj.org/article/ea9635490d514b92b48a12302328ccb9 http://dx.doi.org/10.1371/journal.pgen.1005482 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF6VVEi8IO4aSlgQEk-uHO_lfUAohVQFqaFKSdW3lb1el0iRHeJEIv-eGV_CqBV9jWckZ3aOb7xzEPI-FUEmgyz1eZown2ue-kkyCn2p0jRKnICgU1X5TuXpnH-7Eld7pN3Z2giwvDG1w31S8_Xy6Pev3Scw-I_V1gY1apmOViByvPUHEA5OeR9ik0JTPePdvQITkVZNA91tnL0AVc3x77z1YLUsypug6L8VlX-FqJNH5GGDLem4VobHZM_lT8j9etvk7imZzOq983AStMjo2XYDviRfWPplOqbnxXKH36dKRy_p2LZLz-gipxeQVjsa5ynFfpFnZH4y-fH51G-2KPhW6mjja2WFSCwbydDK1AWpgLMIWapEGLkskU6xOLMxACktolhZnVhhM6uV46NIW8mek0Fe5O6A0FA6nC8PEA3yGGzKzTLpQAdYEMQKsJtHWCs6Y5sR47jpYmmqezMFqUYtCYMCN43APeJ3XKt6xMZ_6I_xVDpaHJBd_VCsr01jb8bF4Fkg94W_O-KJDhMexRCkAaGEkbWJ9sgbPFNTd5t2Zm7GnEFSx5QKPPKuosAhGTlW4VzH27I0X79f3oHoYnoXolmP6ENDlBUgMxs37REgeZzQ1aM87FGCP7C9xweopq3oSgMQFdN-wCoeeduqrkEurK_LXbFFmiDSeEML7C9qVe7kG0rAmIxHHlE9Je8dQP9JvvhZTSrnQuDE_5e3v9Ir8gAgqKhLKg_JYLPeutcA8zbJkNxTV2pI9o8n0_PZsPpYMqys-Q_KklKx |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Mutagenic+DNA+Polymerase+V+Activation+in+Space+and+Time&rft.jtitle=PLoS+genetics&rft.au=Robinson%2C+Andrew&rft.au=McDonald%2C+John&rft.au=Caldas%2C+Victor&rft.au=Patel%2C+Meghna&rft.date=2015-08-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pgen.1005482&rft.externalDocID=1720614303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |