Regulation of Mutagenic DNA Polymerase V Activation in Space and Time

Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is prod...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 11; no. 8; p. e1005482
Main Authors Robinson, Andrew, McDonald, John P., Caldas, Victor E. A., Patel, Meghna, Wood, Elizabeth A., Punter, Christiaan M., Ghodke, Harshad, Cox, Michael M., Woodgate, Roger, Goodman, Myron F., van Oijen, Antoine M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.08.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.
AbstractList Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V ([UmuD'.sub.2]C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the [RecA.sup.*] nucleoprotein filament-mediated cleavage of UmuD[right arrow]UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut ([UmuD'.sub.2] C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.
Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.
Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′ 2 C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [ umuD (K97A)] or constitutively stimulate [ recA (E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′ 2 C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Escherichia coli , and many other bacteria, respond to high levels of DNA damage with an inducible system called the SOS response. In this response, bacteria first try to restart replication using non-mutagenic DNA repair strategies. If that fails, replication can be restored using DNA polymerases that simply replicate over DNA lesions, a desperation strategy that results in mutations. DNA polymerase V (pol V) is responsible for most mutagenesis that accompanies the SOS response. Because of the risk inherent to elevated mutation levels, pol V activation is tightly constrained. This report introduces a new layer of regulation on pol V activation, with a novel spatial component. After synthesis, the UmuC subunit of pol V is sequestered transiently at the membrane. Release into the cytosol and final activation depends on the activity of RecA protein and the autocatalytic cleavage of UmuD to generate the UmuD' subunit of pol V. The resulting delay in activation represents an additional molecular mechanism that limits the amount of time that this sometimes necessary but potentially detrimental enzyme spends on the DNA.
  Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD[right arrow]UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.
Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.
Audience Academic
Author Patel, Meghna
McDonald, John P.
Goodman, Myron F.
Cox, Michael M.
Wood, Elizabeth A.
van Oijen, Antoine M.
Caldas, Victor E. A.
Ghodke, Harshad
Robinson, Andrew
Punter, Christiaan M.
Woodgate, Roger
AuthorAffiliation 1 Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
2 Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
Northeastern University, UNITED STATES
3 Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
4 Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
AuthorAffiliation_xml – name: 1 Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
– name: Northeastern University, UNITED STATES
– name: 4 Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: 2 Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
– name: 3 Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
Author_xml – sequence: 1
  givenname: Andrew
  surname: Robinson
  fullname: Robinson, Andrew
– sequence: 2
  givenname: John P.
  surname: McDonald
  fullname: McDonald, John P.
– sequence: 3
  givenname: Victor E. A.
  surname: Caldas
  fullname: Caldas, Victor E. A.
– sequence: 4
  givenname: Meghna
  surname: Patel
  fullname: Patel, Meghna
– sequence: 5
  givenname: Elizabeth A.
  surname: Wood
  fullname: Wood, Elizabeth A.
– sequence: 6
  givenname: Christiaan M.
  surname: Punter
  fullname: Punter, Christiaan M.
– sequence: 7
  givenname: Harshad
  surname: Ghodke
  fullname: Ghodke, Harshad
– sequence: 8
  givenname: Michael M.
  surname: Cox
  fullname: Cox, Michael M.
– sequence: 9
  givenname: Roger
  surname: Woodgate
  fullname: Woodgate, Roger
– sequence: 10
  givenname: Myron F.
  surname: Goodman
  fullname: Goodman, Myron F.
– sequence: 11
  givenname: Antoine M.
  surname: van Oijen
  fullname: van Oijen, Antoine M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26317348$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAYhSM0xLbCP0AQCQnBRYs_43gXSNUYUGlsaBu7tRzHSV05domTif17nLVFDUIIlItEznNO3hyd9zg5cN7pJHkOwQxiBt-tfN86aWfrWrsZBICSHD1KjiCleMoIIAd7z4fJcQgrADDNOXuSHKIMQ4ZJfpScXem6t7Iz3qW-Sr_0nYx-RqUfLubpV2_vG93KoNPbdK46c7cBjUuv11LpVLoyvTGNfpo8rqQN-tn2Pkm-fTy7Of08Pb_8tDidn09VxvNuypmitFAYZkhlpQYlLSBCuGQU5boqMs2wrJQkNOM0l0zxQlFVKc40gTlXGZ4kLze-a-uD2CYQBGQIZJBggCOx2BCllyuxbk0j23vhpREPB76thWw7o6wWWvIMU8LjGJAUHBUklxBhgDDKlSp49Hq__VpfNLpU2nWttCPT8RtnlqL2d4JQirIY8CR5szVo_fdeh040JihtrXTa98PcIOcAIA4i-mqD1jKOZlzlo6MacDGPPxYnZWygZn-g4lXqxqjYj8rE85Hg7UgQmU7_6GrZhyAW11f_wV78O3t5O2Zf77FLLW23DN72Q5XCGHyxn_evoHdtjcDJBlCtD6HVlVCme6hkjMFYAYEYVmNXDDGshtiuRhST38Q7_7_KfgIo8A-B
CitedBy_id crossref_primary_10_1021_acs_biochem_7b00560
crossref_primary_10_1111_gtc_12729
crossref_primary_10_1021_acs_chemrestox_7b00224
crossref_primary_10_1016_j_bpj_2016_02_039
crossref_primary_10_1016_j_jmb_2021_167188
crossref_primary_10_1146_annurev_biochem_062917_011921
crossref_primary_10_1371_journal_pgen_1007161
crossref_primary_10_3389_fmicb_2024_1373344
crossref_primary_10_1038_s41467_018_02864_2
crossref_primary_10_1038_s42003_023_04423_y
crossref_primary_10_1007_s11033_020_05437_z
crossref_primary_10_1371_journal_pgen_1009972
crossref_primary_10_1042_BST20170055
crossref_primary_10_1371_journal_pgen_1007956
crossref_primary_10_1128_MMBR_00002_20
crossref_primary_10_1007_s00294_018_0840_x
crossref_primary_10_1128_mmbr_00078_22
crossref_primary_10_1016_j_dnarep_2017_09_003
crossref_primary_10_1093_nar_gkz090
crossref_primary_10_1093_nar_gkaa579
crossref_primary_10_3390_cells10051083
crossref_primary_10_1093_nar_gkac515
crossref_primary_10_1038_s41467_018_03790_z
crossref_primary_10_1186_s12864_024_10646_y
crossref_primary_10_1016_j_jmb_2018_05_021
crossref_primary_10_1016_j_jmb_2023_168420
crossref_primary_10_1111_gtc_12334
crossref_primary_10_7554_eLife_23932
crossref_primary_10_1093_nar_gkx687
crossref_primary_10_1016_j_bpj_2016_05_047
crossref_primary_10_1111_mmi_14777
crossref_primary_10_1007_s00294_020_01134_3
crossref_primary_10_1021_acs_biochem_6b00117
crossref_primary_10_1111_mmi_14655
crossref_primary_10_1016_j_dnarep_2019_102658
crossref_primary_10_7554_eLife_42761
crossref_primary_10_1042_BST20180399
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1146_annurev_biophys_070816_034106
crossref_primary_10_1038_s41598_019_49837_z
crossref_primary_10_1093_nar_gkac041
crossref_primary_10_1016_j_dnarep_2021_103229
crossref_primary_10_1080_10409238_2017_1394262
crossref_primary_10_15252_msb_202211406
crossref_primary_10_1093_femsre_fuaa023
crossref_primary_10_1016_j_cobme_2019_08_013
crossref_primary_10_1371_journal_pone_0217524
crossref_primary_10_1016_j_dnarep_2019_102685
crossref_primary_10_1038_s41467_017_02333_2
crossref_primary_10_7554_eLife_67552
crossref_primary_10_3389_fphar_2017_00425
crossref_primary_10_1042_BST20190364
crossref_primary_10_1016_j_dnarep_2016_05_005
crossref_primary_10_1007_s00249_021_01555_z
crossref_primary_10_7554_eLife_75628
crossref_primary_10_1002_em_22023
crossref_primary_10_1002_em_22267
crossref_primary_10_1083_jcb_201610025
crossref_primary_10_1093_nar_gkaa597
crossref_primary_10_1093_nar_gkae637
crossref_primary_10_1038_nmicrobiol_2016_186
crossref_primary_10_1002_mbo3_1316
crossref_primary_10_1073_pnas_1819297116
crossref_primary_10_1021_acs_chemrestox_7b00190
crossref_primary_10_1093_femsre_fuae018
crossref_primary_10_1073_pnas_1801101115
crossref_primary_10_7554_eLife_63747
crossref_primary_10_1093_nar_gkz003
crossref_primary_10_1093_nar_gkz960
crossref_primary_10_11603_1681_2727_2023_4_14241
crossref_primary_10_1093_nar_gkad310
crossref_primary_10_3389_fmicb_2020_585175
crossref_primary_10_1016_j_mrfmmm_2022_111787
crossref_primary_10_1080_10409238_2020_1768205
crossref_primary_10_3389_fmolb_2022_968424
crossref_primary_10_7717_peerj_6029
Cites_doi 10.1016/j.tcb.2014.05.002
10.1038/nrg3415
10.1126/science.277.5331.1453
10.1128/JB.184.10.2674-2681.2002
10.1046/j.1365-2958.2000.01826.x
10.1016/j.tibs.2011.08.004
10.1007/BF00264207
10.1073/pnas.93.19.10291
10.3109/10409238.2010.480968
10.1111/j.1574-6976.2012.00338.x
10.1038/nrm3966
10.1126/science.1185757
10.1073/pnas.90.17.8169
10.18388/abp.1998_4298
10.1074/jbc.272.44.27919
10.3109/10409238.2014.881777
10.1128/JB.00368-11
10.1016/j.molcel.2013.10.020
10.1128/jb.175.17.5411-5419.1993
10.1016/S0076-6879(10)75011-4
10.1038/nmeth.2089
10.1128/jb.179.23.7435-7445.1997
10.1128/jb.179.19.6076-6083.1997
10.1128/jb.178.12.3550-3556.1996
10.1371/journal.pgen.1005066
10.1021/jp0467548
10.1038/nmeth.1258
10.1074/jbc.271.18.10767
10.1002/9781118131374.ch9
10.1038/nature08178
10.4161/cc.8.17.9390
10.1111/j.1365-2958.2006.05561.x
10.1038/nature05042
10.1073/pnas.1303301110
10.1146/annurev-physiol-021014-071649
10.1016/j.tcb.2013.01.009
10.1099/00221287-71-1-191
10.1016/0378-1119(84)90207-5
10.1111/j.1365-2958.2011.07579.x
10.3109/10409238.2014.959889
10.1534/genetics.113.151837
10.1007/BF00333788
10.1073/pnas.95.4.1478
10.1146/annurev-arplant-050312-120233
10.1016/j.dnarep.2012.01.012
10.1038/nrm3119
10.1007/BF00283484
10.1128/JB.163.3.870-876.1985
10.1128/JB.60.1.17-28.1950
10.1046/j.1365-2958.1998.00803.x
10.1073/pnas.85.6.1816
10.1038/nmeth1009-689
10.1073/pnas.96.16.8919
10.1128/jb.178.9.2559-2563.1996
10.7554/eLife.02384
10.1126/science.1209111
10.1006/jmbi.2000.3591
ContentType Journal Article
Copyright COPYRIGHT 2015 Public Library of Science
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robinson A, McDonald JP, Caldas VEA, Patel M, Wood EA, Punter CM, et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11(8): e1005482. doi:10.1371/journal.pgen.1005482
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robinson A, McDonald JP, Caldas VEA, Patel M, Wood EA, Punter CM, et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11(8): e1005482. doi:10.1371/journal.pgen.1005482
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1005482
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Regulation of Pol V in Space and Time
EISSN 1553-7404
ExternalDocumentID 1720614303
oai_doaj_org_article_ea9635490d514b92b48a12302328ccb9
PMC4552617
A430963770
26317348
10_1371_journal_pgen_1005482
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES012259
– fundername: Intramural NIH HHS
– fundername: NIGMS NIH HHS
  grantid: R01 GM021422
– fundername: NIEHS NIH HHS
  grantid: ES012259
– fundername: NIGMS NIH HHS
  grantid: R37 GM021422
– fundername: NIGMS NIH HHS
  grantid: U01 GM032335
– fundername: NIGMS NIH HHS
  grantid: GM32335
– fundername: NIGMS NIH HHS
  grantid: GM21422
– fundername: NIGMS NIH HHS
  grantid: R01 GM032335
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c698t-97c55bc3162c6de0d5b1223d7528efb6e73afca456958a7c9bc5cfc97e4189c63
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:41 EST 2021
Wed Aug 27 01:12:57 EDT 2025
Thu Aug 21 18:29:29 EDT 2025
Fri Jul 11 05:32:19 EDT 2025
Tue Jun 17 21:32:11 EDT 2025
Tue Jun 10 20:47:56 EDT 2025
Fri Jun 27 04:55:07 EDT 2025
Fri Jun 27 04:26:05 EDT 2025
Fri Jun 27 03:40:39 EDT 2025
Thu May 22 21:18:20 EDT 2025
Thu Apr 03 07:05:15 EDT 2025
Tue Jul 01 00:22:41 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-97c55bc3162c6de0d5b1223d7528efb6e73afca456958a7c9bc5cfc97e4189c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: AR MMC RW MFG AMvO. Performed the experiments: AR JPM VEAC MP RW HG. Analyzed the data: AR RW. Contributed reagents/materials/analysis tools: AR JPM EAW CMP HG. Wrote the paper: AR MMC RW MFG AMvO.
Current address: School of Chemistry, University of Wollongong, Wollongong, Australia
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005482
PMID 26317348
PQID 1708900290
PQPubID 23479
ParticipantIDs plos_journals_1720614303
doaj_primary_oai_doaj_org_article_ea9635490d514b92b48a12302328ccb9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552617
proquest_miscellaneous_1708900290
gale_infotracmisc_A430963770
gale_infotracacademiconefile_A430963770
gale_incontextgauss_ISR_A430963770
gale_incontextgauss_ISN_A430963770
gale_incontextgauss_IOV_A430963770
gale_healthsolutions_A430963770
pubmed_primary_26317348
crossref_citationtrail_10_1371_journal_pgen_1005482
crossref_primary_10_1371_journal_pgen_1005482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References LJ Sweetlove (ref28) 2013; 64
IJ Fijalkowska (ref41) 2012; 36
HX Xu (ref30) 2015; 77
LK Langeberg (ref26) 2015; 16
N Garvey (ref34) 1985; 163
J.S. Biteen (ref56) 2008; 5
JH Miller (ref45) 1992
JT Yeeles (ref20) 2011; 334
EG Frank (ref35) 1993; 90
S Mead (ref44) 2007; 63
H Yang (ref60) 2011
EM Witkin (ref17) 1982; 185
Q Jiang (ref13) 2009; 460
C Ho (ref43) 1993; 175
AL Erdem (ref14) 2014; 3
JP McDonald (ref49) 1998; 95
O Sliusarenko (ref58) 2011; 80
A Borden (ref3) 2002; 184
I Vlasic (ref18) 2011; 193
MM Fu (ref24) 2014; 24
LD Langston (ref38) 2009; 8
A Kornberg (ref1) 1992
T Nohmi (ref12) 1988; 85
E Tutucci (ref29) 2011; 12
CA Schneider (ref54) 2012; 9
AR Fernandez De Henestrosa (ref9) 2000; 35
ES Szekeres Jr. (ref51) 1996; 178
I Bruck (ref33) 1996; 271
YW Chan (ref32) 2014; 11
EG Frank (ref36) 2000; 297
M Gonzalez (ref48) 1998; 45
K Karata (ref11) 2012; 11
C Indiani (ref21) 2013; 110
YJ Kim (ref25) 2013; 23
JT Yeeles (ref42) 2013; 52
FR Blattner (ref52) 1997; 277
S Sommer (ref4) 1998; 28
RC MacLean (ref8) 2013; 14
T Kato (ref6) 1977; 156
LC Huang (ref53) 1997; 179
NA Tanner (ref55) 2010; 475
M Tang (ref5) 1999; 96
LP Watkins (ref59) 2005; 109
LB Bloom (ref2) 1997; 272
EG Frank (ref10) 1996; 93
D Zattas (ref31) 2015; 50
AL Schuh (ref27) 2014; 49
G Churchward (ref50) 1984; 31
CH Corzett (ref7) 2013; 194
SG Sedgwick (ref47) 1972; 71
M Patel (ref39) 2010; 45
EG Frank (ref16) 1996; 178
BD Davis (ref46) 1950; 60
Y Elbaz (ref23) 2011; 36
AJ Gruber (ref37) 2015; 11
R Reyes-Lamothe (ref22) 2010; 328
R Woodgate (ref15) 1991; 229
PN Hedde (ref57) 2009; 6
IJ Fijalkowska (ref40) 1997; 179
K Schlacher (ref19) 2006; 442
References_xml – volume: 24
  start-page: 564
  year: 2014
  ident: ref24
  article-title: Integrated regulation of motor-driven organelle transport by scaffolding proteins
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2014.05.002
– volume: 14
  start-page: 221
  year: 2013
  ident: ref8
  article-title: Evaluating evolutionary models of stress-induced mutagenesis in bacteria
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3415
– volume: 277
  start-page: 1453
  year: 1997
  ident: ref52
  article-title: The complete genome sequence of Escherichia coli K-12
  publication-title: Science
  doi: 10.1126/science.277.5331.1453
– volume: 184
  start-page: 2674
  year: 2002
  ident: ref3
  article-title: Escherichia coli DNA Polymerase III Can Replicate Efficiently past a T-T cis-syn Cyclobutane Dimer if DNA Polymerase V and the 3' to 5' Exonuclease Proofreading Function Encoded by dnaQ Are Inactivated
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.10.2674-2681.2002
– volume: 35
  start-page: 1560
  year: 2000
  ident: ref9
  article-title: Identification of additional genes belonging to the LexA regulon in Escherichia coli
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01826.x
– volume: 36
  start-page: 616
  year: 2011
  ident: ref23
  article-title: Staying in touch: the molecular era of organelle contact sites
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2011.08.004
– volume: 229
  start-page: 10
  year: 1991
  ident: ref15
  article-title: Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00264207
– volume: 93
  start-page: 10291
  year: 1996
  ident: ref10
  article-title: Regulation of SOS mutagenesis by proteolysis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.19.10291
– volume: 45
  start-page: 171
  year: 2010
  ident: ref39
  article-title: A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2010.480968
– volume: 36
  start-page: 1105
  year: 2012
  ident: ref41
  article-title: DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2012.00338.x
– volume: 16
  start-page: 232
  year: 2015
  ident: ref26
  article-title: Signalling scaffolds and local organization of cellular behaviour
  publication-title: Nature Rev Mol Cell Biol
  doi: 10.1038/nrm3966
– volume: 328
  start-page: 498
  year: 2010
  ident: ref22
  article-title: Stoichiometry and architecture of active DNA replication machinery in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1185757
– volume: 90
  start-page: 8169
  year: 1993
  ident: ref35
  article-title: Targeting of the UmuD, UmuD', and MucA' mutagenesis proteins to DNA by RecA protein
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.90.17.8169
– volume: 45
  start-page: 163
  year: 1998
  ident: ref48
  article-title: Structural insights into the regulation of SOS mutagenesis
  publication-title: Acta Biochim Pol
  doi: 10.18388/abp.1998_4298
– volume: 272
  start-page: 27919
  year: 1997
  ident: ref2
  article-title: Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.44.27919
– volume: 49
  start-page: 242
  year: 2014
  ident: ref27
  article-title: The ESCRT machinery: From the plasma membrane to endosomes and back again
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2014.881777
– volume: 193
  start-page: 4643
  year: 2011
  ident: ref18
  article-title: Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.00368-11
– volume: 52
  start-page: 855
  year: 2013
  ident: ref42
  article-title: Dynamics of leading-strand lesion skipping by the replisome
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.10.020
– volume: 175
  start-page: 5411
  year: 1993
  ident: ref43
  article-title: A rapid method for cloning mutagenic DNA repair genes: isolation of umu-complementing genes from multidrug resistance plasmids R391, R446b, and R471a
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.17.5411-5419.1993
– volume: 475
  start-page: 259
  year: 2010
  ident: ref55
  article-title: Visualizing DNA replication at the single-molecule level
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(10)75011-4
– volume: 9
  start-page: 671
  year: 2012
  ident: ref54
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 179
  start-page: 7435
  year: 1997
  ident: ref40
  article-title: Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.23.7435-7445.1997
– volume: 179
  start-page: 6076
  year: 1997
  ident: ref53
  article-title: Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.19.6076-6083.1997
– volume: 178
  start-page: 3550
  year: 1996
  ident: ref16
  article-title: In vivo stability of the Umu mutagenesis proteins: a major role for RecA
  publication-title: J Bacteriol
  doi: 10.1128/jb.178.12.3550-3556.1996
– volume: 11
  start-page: e1005066
  year: 2015
  ident: ref37
  article-title: A RecA protein surface required for activation of DNA polymerase V
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005066
– volume: 109
  start-page: 617
  year: 2005
  ident: ref59
  article-title: Detection of intensity change points in time-resolved single-molecule measurements
  publication-title: J Phys Chem B
  doi: 10.1021/jp0467548
– volume: 5
  start-page: 947
  year: 2008
  ident: ref56
  article-title: Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1258
– volume: 271
  start-page: 10767
  year: 1996
  ident: ref33
  article-title: Purification of a soluble UmuD'C complex from Escherichia coli: Cooperative binding of UmuD'C to single-stranded DNA
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.271.18.10767
– year: 2011
  ident: ref60
  article-title: Change-Point Localization and Wavelet Spectral Analysis of Single-Molecule Time Series
  doi: 10.1002/9781118131374.ch9
– volume: 460
  start-page: 359
  year: 2009
  ident: ref13
  article-title: The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP
  publication-title: Nature
  doi: 10.1038/nature08178
– volume: 8
  start-page: 2686
  year: 2009
  ident: ref38
  article-title: Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.17.9390
– volume: 63
  start-page: 797
  year: 2007
  ident: ref44
  article-title: Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05561.x
– volume: 11
  start-page: 4844
  year: 2014
  ident: ref32
  article-title: Nat Commun
  publication-title: Nat Commun
– volume: 442
  start-page: 883
  year: 2006
  ident: ref19
  article-title: RecA acts in trans to allow replication of damaged DNA by DNA polymerase V
  publication-title: Nature
  doi: 10.1038/nature05042
– volume: 110
  start-page: 5410
  year: 2013
  ident: ref21
  article-title: RecA acts as a switch to regulate polymerase occupancy in a moving replication fork
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1303301110
– volume: 77
  start-page: 57
  year: 2015
  ident: ref30
  article-title: Lysosomal Physiology
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-021014-071649
– volume: 23
  start-page: 270
  year: 2013
  ident: ref25
  article-title: Inositol lipid regulation of lipid transfer in specialized membrane domains
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2013.01.009
– volume: 71
  start-page: 191
  year: 1972
  ident: ref47
  article-title: Evidence for indirect production of DNA strand scissions during mild heating of Escherichia coli
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-71-1-191
– volume: 31
  start-page: 165
  year: 1984
  ident: ref50
  article-title: A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors
  publication-title: Gene
  doi: 10.1016/0378-1119(84)90207-5
– volume: 80
  start-page: 612
  year: 2011
  ident: ref58
  article-title: High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2011.07579.x
– year: 1992
  ident: ref1
  article-title: DNA Replication
– volume: 50
  start-page: 1
  year: 2015
  ident: ref31
  article-title: Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2014.959889
– volume: 194
  start-page: 409
  year: 2013
  ident: ref7
  article-title: Competitive Fitness During Feast and Famine: How SOS DNA Polymerases Influence Physiology and Evolution in Escherichia coli
  publication-title: Genetics
  doi: 10.1534/genetics.113.151837
– volume: 185
  start-page: 43
  year: 1982
  ident: ref17
  article-title: Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00333788
– volume: 95
  start-page: 1478
  year: 1998
  ident: ref49
  article-title: Intermolecular cleavage by UmuD-like mutagenesis proteins
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.4.1478
– volume: 64
  start-page: 723
  year: 2013
  ident: ref28
  article-title: The Spatial Organization of Metabolism Within the Plant Cell
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-050312-120233
– volume: 11
  start-page: 431
  year: 2012
  ident: ref11
  article-title: Simple and efficient purification of Escherichia coli DNA polymerase V: cofactor requirements for optimal activity and processivity in vitro
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2012.01.012
– volume: 12
  start-page: 376
  year: 2011
  ident: ref29
  article-title: Keeping mRNPs in check during assembly and nuclear export
  publication-title: Nature Rev Mol Cell Biol
  doi: 10.1038/nrm3119
– volume: 156
  start-page: 121
  year: 1977
  ident: ref6
  article-title: Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00283484
– volume: 163
  start-page: 870
  year: 1985
  ident: ref34
  article-title: Evidence for RecA protein association with the cell membrane and for changes in the levels of major outer membrane proteins in SOS-induced Escherichia coli cells
  publication-title: J Bacteriol
  doi: 10.1128/JB.163.3.870-876.1985
– volume: 60
  start-page: 17
  year: 1950
  ident: ref46
  article-title: Mutants of Escherichia coli requiring methionine or vitamin B12
  publication-title: JBacteriol
  doi: 10.1128/JB.60.1.17-28.1950
– volume: 28
  start-page: 281
  year: 1998
  ident: ref4
  article-title: Specific RecA amino acid changes affect RecA-UmuD'C interaction
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1998.00803.x
– year: 1992
  ident: ref45
– volume: 85
  start-page: 1816
  year: 1988
  ident: ref12
  article-title: RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.85.6.1816
– volume: 6
  start-page: 689
  year: 2009
  ident: ref57
  article-title: Online image analysis software for photoactivation localization microscopy
  publication-title: Nat Methods
  doi: 10.1038/nmeth1009-689
– volume: 96
  start-page: 8919
  year: 1999
  ident: ref5
  article-title: UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.16.8919
– volume: 178
  start-page: 2559
  year: 1996
  ident: ref51
  article-title: Substitution of mucAB or rumAB for umuDC alters the relative frequencies of the two classes of mutations induced by a site-specific T-T cyclobutane dimer and the efficiency of translesion DNA synthesis
  publication-title: J Bacteriol
  doi: 10.1128/jb.178.9.2559-2563.1996
– volume: 3
  start-page: e02384
  year: 2014
  ident: ref14
  article-title: DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase
  publication-title: Elife
  doi: 10.7554/eLife.02384
– volume: 334
  start-page: 235
  year: 2011
  ident: ref20
  article-title: The Escherichia coli replisome is inherently DNA damage tolerant
  publication-title: Science
  doi: 10.1126/science.1209111
– volume: 297
  start-page: 585
  year: 2000
  ident: ref36
  article-title: Visualization of two binding sites for the Escherichia coli UmuD'(2)C complex (DNA pol V) on RecA-ssDNA filaments
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3591
SSID ssj0035897
Score 2.4437482
Snippet Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle...
  Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005482
SubjectTerms Bacteria
Chromosomes
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - genetics
DNA polymerase
DNA polymerases
DNA repair
DNA Replication - genetics
DNA, Bacterial - genetics
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
DNA-Directed DNA Polymerase - radiation effects
E coli
Enzyme Activation - genetics
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Escherichia coli Proteins - radiation effects
Funding
Gene Expression Regulation, Bacterial - genetics
Genetic aspects
Genetic regulation
Glucose
Light
Localization
Mutagenesis
Mutation
Observations
Physiological aspects
Protein Processing, Post-Translational - genetics
Rec A Recombinases - genetics
RecA protein
Regulation
SOS Response, Genetics - genetics
Transcription, Genetic - genetics
Ultraviolet Rays
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8GChiExCk0a8ePHBdoVZBYUEur3qz4kbLSKlmR3UP_PTNxEjUIqT1wTcaHfDOZ-SaZByHvvMgqmVU-zb3laV7kPrV2zlKpvNc2CAg6XZXvUh6f5V8vxMW1VV9YExbHA0fgDkIJJgJJTOYhtNuC2VyX4G0h1DDtnO1a9yDmDclU9MFc6LhWRQieKkjr-6Y5ruYHvY4-bEBBWCMAlJ1NglI3u3_00LPNumn_RT__rqK8FpaOHpD7PZ-ki_gcD8mdUD8id-OGyavH5PAk7poH9GlT0W-7LfiPeuXo5-WC_mjWV_hNqg30nC7csOiMrmp6Cql0oGXtKfaIPCFnR4c_Px2n_eaE1MlCb9NCOSGs43PJnPQBsAP8GfdKMB0qK4PiZeVKIE-F0KVyhXXCVa5QIZ_rwkn-lMzqpg57hDIZcKY80DLIXbARt6pkAL3zLCsV8LWE8AE64_qx4rjdYm26f2UK0ouIhEHATQ94QtLx1CaO1bhB_iNqZZTFodjdBTAV05uKuclUEvIadWpih-n4aptFziGR40plCXnbSeBgjBorby7LXduaL9_PbyF0uryN0MlE6H0vVDWAmSv7lghAHqdyTST3J5LgA9zk9h6a6QBda4CWYqoP_CQhbwbTNXgKa-rq0OxQJtMF_pWF48-iKY_4Mgm8kuc6IWpi5BMFTO_Uq1_ddPJcCJzy__x_aOwFuQcEVcSCy30y2_7ehZdAArf2Vfe-_wGAxVSS
  priority: 102
  providerName: Directory of Open Access Journals
Title Regulation of Mutagenic DNA Polymerase V Activation in Space and Time
URI https://www.ncbi.nlm.nih.gov/pubmed/26317348
https://www.proquest.com/docview/1708900290
https://pubmed.ncbi.nlm.nih.gov/PMC4552617
https://doaj.org/article/ea9635490d514b92b48a12302328ccb9
http://dx.doi.org/10.1371/journal.pgen.1005482
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF6VVEi8IO4aSlgQEk-uHO_lfUAohVQFqaFKSdW3lb1el0iRHeJEIv-eGV_CqBV9jWckZ3aOb7xzEPI-FUEmgyz1eZown2ue-kkyCn2p0jRKnICgU1X5TuXpnH-7Eld7pN3Z2giwvDG1w31S8_Xy6Pev3Scw-I_V1gY1apmOViByvPUHEA5OeR9ik0JTPePdvQITkVZNA91tnL0AVc3x77z1YLUsypug6L8VlX-FqJNH5GGDLem4VobHZM_lT8j9etvk7imZzOq983AStMjo2XYDviRfWPplOqbnxXKH36dKRy_p2LZLz-gipxeQVjsa5ynFfpFnZH4y-fH51G-2KPhW6mjja2WFSCwbydDK1AWpgLMIWapEGLkskU6xOLMxACktolhZnVhhM6uV46NIW8mek0Fe5O6A0FA6nC8PEA3yGGzKzTLpQAdYEMQKsJtHWCs6Y5sR47jpYmmqezMFqUYtCYMCN43APeJ3XKt6xMZ_6I_xVDpaHJBd_VCsr01jb8bF4Fkg94W_O-KJDhMexRCkAaGEkbWJ9sgbPFNTd5t2Zm7GnEFSx5QKPPKuosAhGTlW4VzH27I0X79f3oHoYnoXolmP6ENDlBUgMxs37REgeZzQ1aM87FGCP7C9xweopq3oSgMQFdN-wCoeeduqrkEurK_LXbFFmiDSeEML7C9qVe7kG0rAmIxHHlE9Je8dQP9JvvhZTSrnQuDE_5e3v9Ir8gAgqKhLKg_JYLPeutcA8zbJkNxTV2pI9o8n0_PZsPpYMqys-Q_KklKx
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Mutagenic+DNA+Polymerase+V+Activation+in+Space+and+Time&rft.jtitle=PLoS+genetics&rft.au=Robinson%2C+Andrew&rft.au=McDonald%2C+John&rft.au=Caldas%2C+Victor&rft.au=Patel%2C+Meghna&rft.date=2015-08-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pgen.1005482&rft.externalDocID=1720614303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon