Dual lysine and N‐terminal acetyltransferases reveal the complexity underpinning protein acetylation
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility t...
Saved in:
Published in | Molecular systems biology Vol. 16; no. 7; pp. e9464 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2020
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related
N
‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process
in vivo
. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Synopsis
A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related
N
‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual
N
‐α‐ and ε‐lysine acetylation activities.
An
in silico
search for putative plastidial N‐terminal and lysine acetyltransferases reveals 10 putative GNAT candidates, showing unique features both at the level of the conserved motifs and key residues.
Localization to chloroplasts is confirmed for seven of them, while another one is either associated to chloroplasts or localized within the nucleus.
All plastid‐associated GNATs display distinct lysine acetyltransferase and relaxed N‐ terminal acetyltransferase substrate specificities.
Inactivation of GNAT2, the plastid GNAT involved in photosynthetic state transitions, results in NTA decreases confined to chloroplast proteins, next to the known decreases on photosynthetic KA target proteins.
Graphical Abstract
A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related
N
‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual
N
‐α‐ and ε‐lysine acetylation activities. |
---|---|
AbstractList | Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N ‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo . In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Synopsis A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N ‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities. An in silico search for putative plastidial N‐terminal and lysine acetyltransferases reveals 10 putative GNAT candidates, showing unique features both at the level of the conserved motifs and key residues. Localization to chloroplasts is confirmed for seven of them, while another one is either associated to chloroplasts or localized within the nucleus. All plastid‐associated GNATs display distinct lysine acetyltransferase and relaxed N‐ terminal acetyltransferase substrate specificities. Inactivation of GNAT2, the plastid GNAT involved in photosynthetic state transitions, results in NTA decreases confined to chloroplast proteins, next to the known decreases on photosynthetic KA target proteins. Graphical Abstract A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N ‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities. Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-a-acetylation (NTA) and e-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA speci-ficities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzy-matic activities. Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation ( NTA ) and ε‐lysine acetylation ( KA ) are known to be catalyzed by distinct families of enzymes ( NAT s and KAT s, respectively), although the possibility that the same GCN 5‐related N ‐acetyltransferase ( GNAT ) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNAT s, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT 2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo . In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNAT s may also possess these previously underappreciated broader enzymatic activities. A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN 5‐related N ‐acetyltransferases ( GNAT s) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities. Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Synopsis A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N‐α‐ and ε‐lysine acetylation activities. An in silico search for putative plastidial N‐terminal and lysine acetyltransferases reveals 10 putative GNAT candidates, showing unique features both at the level of the conserved motifs and key residues. Localization to chloroplasts is confirmed for seven of them, while another one is either associated to chloroplasts or localized within the nucleus. All plastid‐associated GNATs display distinct lysine acetyltransferase and relaxed N‐ terminal acetyltransferase substrate specificities. Inactivation of GNAT2, the plastid GNAT involved in photosynthetic state transitions, results in NTA decreases confined to chloroplast proteins, next to the known decreases on photosynthetic KA target proteins. A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N‐α‐ and ε‐lysine acetylation activities. Abstract Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. |
Author | Koskela, Minna M Jung, Vincent Schyrba, Laura K Linster, Eric Ivanauskaite, Aiste Mulo, Paula Wirtz, Markus Finkemeier, Iris Bernal, Gautier Schwarzer, Dirk Hell, Rüdiger Lassowskat, Ines Brünje, Annika Dinh, Trinh V Mühlenbeck, Jens S Seidel, Julian Bienvenut, Willy V Eirich, Jürgen Dian, Cyril Meinnel, Thierry Boyer, Jean‐Baptiste Giglione, Carmela |
AuthorAffiliation | 6 Present address: Génétique Quantitative et Évolution Gif‐sur‐Yvette France 2 Plant Physiology Institute of Plant Biology and Biotechnology University of Muenster Muenster Germany 7 Present address: Institute of Plant Sciences Paris‐Saclay Gif‐sur‐Yvette France 3 Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany 5 Interfaculty Institute of Biochemistry University of Tübingen Tübingen Germany 9 Present address: Institute IMAGINE Paris France 4 Department of Biochemistry Molecular Plant Biology University of Turku Turku Finland 8 Present address: Institute of Microbiology Třeboň Czech Republic 1 Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France |
AuthorAffiliation_xml | – name: 1 Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France – name: 9 Present address: Institute IMAGINE Paris France – name: 5 Interfaculty Institute of Biochemistry University of Tübingen Tübingen Germany – name: 6 Present address: Génétique Quantitative et Évolution Gif‐sur‐Yvette France – name: 8 Present address: Institute of Microbiology Třeboň Czech Republic – name: 2 Plant Physiology Institute of Plant Biology and Biotechnology University of Muenster Muenster Germany – name: 4 Department of Biochemistry Molecular Plant Biology University of Turku Turku Finland – name: 7 Present address: Institute of Plant Sciences Paris‐Saclay Gif‐sur‐Yvette France – name: 3 Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany |
Author_xml | – sequence: 1 givenname: Willy V orcidid: 0000-0003-4192-3920 surname: Bienvenut fullname: Bienvenut, Willy V organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay, Génétique Quantitative et Évolution – sequence: 2 givenname: Annika orcidid: 0000-0002-8979-4606 surname: Brünje fullname: Brünje, Annika organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster – sequence: 3 givenname: Jean‐Baptiste orcidid: 0000-0001-5265-3917 surname: Boyer fullname: Boyer, Jean‐Baptiste organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay – sequence: 4 givenname: Jens S orcidid: 0000-0003-0204-9580 surname: Mühlenbeck fullname: Mühlenbeck, Jens S organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster – sequence: 5 givenname: Gautier orcidid: 0000-0002-2253-6397 surname: Bernal fullname: Bernal, Gautier organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay, Institute of Plant Sciences Paris‐Saclay – sequence: 6 givenname: Ines orcidid: 0000-0002-3832-4006 surname: Lassowskat fullname: Lassowskat, Ines organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster – sequence: 7 givenname: Cyril orcidid: 0000-0002-6349-3901 surname: Dian fullname: Dian, Cyril organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay – sequence: 8 givenname: Eric orcidid: 0000-0001-7963-1400 surname: Linster fullname: Linster, Eric organization: Centre for Organismal Studies Heidelberg, University of Heidelberg – sequence: 9 givenname: Trinh V orcidid: 0000-0003-2808-3541 surname: Dinh fullname: Dinh, Trinh V organization: Centre for Organismal Studies Heidelberg, University of Heidelberg – sequence: 10 givenname: Minna M orcidid: 0000-0002-6363-1470 surname: Koskela fullname: Koskela, Minna M organization: Department of Biochemistry, Molecular Plant Biology, University of Turku, Institute of Microbiology – sequence: 11 givenname: Vincent orcidid: 0000-0003-0530-1737 surname: Jung fullname: Jung, Vincent organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay, Institute IMAGINE – sequence: 12 givenname: Julian orcidid: 0000-0002-0435-3845 surname: Seidel fullname: Seidel, Julian organization: Interfaculty Institute of Biochemistry, University of Tübingen – sequence: 13 givenname: Laura K orcidid: 0000-0002-0291-9745 surname: Schyrba fullname: Schyrba, Laura K organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster – sequence: 14 givenname: Aiste orcidid: 0000-0002-1149-5243 surname: Ivanauskaite fullname: Ivanauskaite, Aiste organization: Department of Biochemistry, Molecular Plant Biology, University of Turku – sequence: 15 givenname: Jürgen orcidid: 0000-0003-0963-1872 surname: Eirich fullname: Eirich, Jürgen organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster – sequence: 16 givenname: Rüdiger orcidid: 0000-0002-6238-4818 surname: Hell fullname: Hell, Rüdiger organization: Centre for Organismal Studies Heidelberg, University of Heidelberg – sequence: 17 givenname: Dirk orcidid: 0000-0002-7477-3319 surname: Schwarzer fullname: Schwarzer, Dirk organization: Interfaculty Institute of Biochemistry, University of Tübingen – sequence: 18 givenname: Paula orcidid: 0000-0002-8728-3204 surname: Mulo fullname: Mulo, Paula organization: Department of Biochemistry, Molecular Plant Biology, University of Turku – sequence: 19 givenname: Markus orcidid: 0000-0001-7790-4022 surname: Wirtz fullname: Wirtz, Markus organization: Centre for Organismal Studies Heidelberg, University of Heidelberg – sequence: 20 givenname: Thierry orcidid: 0000-0001-5642-8637 surname: Meinnel fullname: Meinnel, Thierry organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay – sequence: 21 givenname: Carmela orcidid: 0000-0002-7475-1558 surname: Giglione fullname: Giglione, Carmela email: carmela.giglione@i2bc.paris-saclay.fr organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay – sequence: 22 givenname: Iris orcidid: 0000-0002-8972-4026 surname: Finkemeier fullname: Finkemeier, Iris email: iris.finkemeier@uni-muenster.de organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster |
BackLink | https://hal.science/hal-02900691$$DView record in HAL |
BookMark | eNp9ks-O0zAQxiO0iP0DR-6RuMChxXYcO74gLcvCrlTgAJwtO560rhK72EnZ3ngEnpEnwW26wFawF9ua-X3faDxzmh057yDLnmI0xSUpycsu6ilBBAnK6IPsBHNKJ5QIcvTX-zg7jXGJUFHhijzKjgvCioKy8iRr3gyqzdtNtA5y5Uz-4ef3Hz2EzroUVzX0m7YPysUGgooQ8wBrSJl-AXntu1ULN7bf5IMzEFbWOevm-Sr4Hqzbq1VvvXucPWxUG-HJ_j7Lvry9_HxxNZl9fHd9cT6b1ExUdFIozBBCQnFBGkG5KEqmuUYGjGGKCoYx1xgM1xUqaUIajbgxTVUTTCuhirPsevQ1Xi3lKthOhY30yspdwIe5VKG3dQvSEKYp1iodlJa6qbbeNW20EgZpQpPXq9FrNegOTA0ufUR7x_RuxtmFnPu15EUh0kSSwYvRYHEguzqfyW0MEYEQE3iNE_t8Xyz4rwPEXnY21tC2yoEfoiSUYIwJFiihzw7QpR9CGteWopwgXmFyP0UqQRjiPFHFSNXBxxigkbXtdxNLHdlWYiR3WybTlsnbLUuqyYHqtrv_8XTkv9kWNvfD8v2n179l01EWk8LNIfxp4d91fgFlxfQH |
CitedBy_id | crossref_primary_10_1093_pcp_pcab076 crossref_primary_10_1111_tpj_16240 crossref_primary_10_1093_plphys_kiae200 crossref_primary_10_1093_pcp_pcad017 crossref_primary_10_1093_jxb_erac290 crossref_primary_10_26508_lsa_202402795 crossref_primary_10_1093_plcell_koae193 crossref_primary_10_3389_fpls_2022_832144 crossref_primary_10_1093_pcp_pcad097 crossref_primary_10_1016_j_mcpro_2024_100845 crossref_primary_10_3390_ijms22158126 crossref_primary_10_1038_s41467_024_48269_2 crossref_primary_10_1093_nar_gkaa1192 crossref_primary_10_1016_j_envexpbot_2022_105003 crossref_primary_10_1016_j_celrep_2024_113768 crossref_primary_10_1093_plphys_kiac096 crossref_primary_10_1093_plphys_kiac173 crossref_primary_10_1016_j_xplc_2021_100266 crossref_primary_10_1093_pcp_pcac096 crossref_primary_10_1093_plphys_kiad509 crossref_primary_10_1016_j_mcpro_2024_100850 crossref_primary_10_1042_BSR20220369 crossref_primary_10_3389_fpls_2022_1040392 crossref_primary_10_3390_ijms232214492 crossref_primary_10_1016_j_tcb_2022_02_004 crossref_primary_10_1093_plcell_koae178 crossref_primary_10_1126_sciadv_abn6153 crossref_primary_10_1093_plphys_kiad572 crossref_primary_10_1111_jipb_13756 crossref_primary_10_1242_jcs_259811 crossref_primary_10_3389_fmolb_2022_840412 crossref_primary_10_1016_j_biochi_2024_07_007 crossref_primary_10_1042_BST20241037 crossref_primary_10_1016_j_tibs_2024_12_012 crossref_primary_10_1021_acs_jproteome_3c00536 crossref_primary_10_3389_fpls_2021_778804 crossref_primary_10_1515_hsz_2021_0139 crossref_primary_10_3390_ijms222111805 crossref_primary_10_1038_s41467_025_55960_5 crossref_primary_10_1016_j_mcpro_2023_100584 crossref_primary_10_1016_j_bbagrm_2023_194977 crossref_primary_10_1016_j_jbc_2022_102824 crossref_primary_10_1016_j_tplants_2020_11_012 crossref_primary_10_1038_s41467_024_53903_0 crossref_primary_10_3389_fmicb_2021_757179 crossref_primary_10_1016_j_ijbiomac_2021_10_192 crossref_primary_10_1111_omi_12452 crossref_primary_10_1038_s41477_022_01253_4 crossref_primary_10_1093_plphys_kiad406 crossref_primary_10_1111_nph_16747 crossref_primary_10_3389_fpls_2021_799954 |
Cites_doi | 10.1111/nph.16747 10.1007/s11120-020-00711-4 10.1101/021295 10.1104/pp.20.00222 10.1038/nsmb.2636 10.1038/nbt.3418 10.1016/j.tibs.2020.03.007 10.1105/tpc.15.00173 10.1271/bbb.120945 10.1016/j.abb.2004.09.003 10.1038/srep21304 10.1111/tpj.14315 10.1371/journal.pone.0001994 10.1093/bioinformatics/btm404 10.1038/35046121 10.1073/pnas.1718336115 10.1042/BJ20041071 10.15252/msb.20177819 10.1016/j.biochi.2014.11.008 10.1016/j.molcel.2019.02.007 10.1074/mcp.M111.015131 10.3390/ijms17071018 10.1111/j.1365-2958.1991.tb00770.x 10.1016/j.molcel.2011.07.032 10.1002/pmic.201000634 10.1093/nar/gks1067 10.1104/pp.107.106989 10.1073/pnas.1310365110 10.1093/nar/gkw936 10.1038/s41467-020-15184-1 10.1016/S0969-2126(99)80066-5 10.1093/nar/gkw978 10.1371/journal.pone.0058681 10.1074/jbc.M109.001347 10.1091/mbc.E10-03-0203 10.1007/978-1-4939-2639-8_7 10.1007/978-1-4939-6850-3_3 10.1002/pmic.201500027 10.1128/mBio.01905-18 10.1093/jxb/ery241 10.1016/j.molbiopara.2008.04.011 10.1038/s41467-020-14847-3 10.1111/tra.12506 10.1016/j.molp.2016.03.012 10.1111/j.1365-313X.2010.04145.x 10.1155/2008/420747 10.1093/nar/gkl863 10.3389/fpls.2016.00218 10.1104/pp.108.127027 10.1016/j.bbapap.2015.11.002 10.1038/nprot.2007.131 10.1074/jbc.M115.709428 10.1016/j.febslet.2006.02.012 10.1186/1471-2091-10-15 10.1105/tpc.18.00155 10.1016/j.tibs.2016.07.005 10.1016/S0092-8674(00)81063-6 10.1093/molbev/msy096 10.1186/1746-4811-5-16 10.1093/nar/gkv385 10.1038/s41467-020-14893-x 10.1038/nature19949 10.1038/nprot.2016.136 10.1016/j.bbabio.2015.09.005 10.1007/s10969-008-9041-z 10.1104/pp.110.165852 10.1038/nmeth.2834 10.1371/journal.pone.0102348 10.1038/s41589-018-0077-5 10.1104/pp.19.00792 10.1073/pnas.1815511116 10.1128/mBio.02708-18 10.1046/j.1365-313x.1998.00343.x 10.1104/pp.110.171595 10.1002/pmic.201400619 10.3389/fmicb.2019.01604 10.1111/jpi.12181 10.1111/febs.12373 10.1016/j.mito.2014.03.004 10.1371/journal.pone.0204687 10.1002/cbic.201500611 10.1016/j.tplants.2019.06.013 10.1016/j.redox.2018.09.002 10.1186/s12859-017-1595-y 10.1016/S0092-8674(02)01085-1 10.1038/ncomms8640 10.1073/pnas.0901931106 10.1002/pmic.200701191 10.1038/nmeth1109-786 10.1038/nbt.1511 10.1093/nar/gkv332 10.1105/tpc.111.092882 10.1016/j.str.2016.04.020 10.1371/journal.pone.0074483 10.18632/oncotarget.11216 10.1016/j.bbapap.2016.06.007 10.1038/ncomms6176 10.1371/journal.pone.0007451 10.1074/jbc.M111.282863 10.1007/978-1-4939-7225-8_5 10.1016/j.biocel.2009.08.009 10.1021/cb500853p 10.1038/nmeth.3901 10.1002/pmic.201500025 10.1093/nar/gkj149 10.1371/journal.pone.0024713 10.1093/nar/gkm977 10.1007/BF00330935 10.1371/journal.pgen.1002169 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020 The Authors. Published under the terms of the CC BY 4.0 license 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Published under the terms of the CC BY 4.0 license. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C 24P AAYXX CITATION 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.15252/msb.20209464 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Willy V Bienvenut et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_d26b41bab41445bf8117bc4fba9d0b24 PMC7339202 oai_HAL_hal_02900691v1 10_15252_msb_20209464 MSB209464 |
Genre | article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐13‐BSV6‐0004; ANR‐17‐CAPS‐0001‐01; ANR‐10‐LABX‐0040‐SPS funderid: 10.13039/501100001665 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: FI 1655/4‐1; INST 211/744‐1 FUGG; SFB 1036 TP13 funderid: 10.13039/501100001659 – fundername: Academy of Finland (Suomen Akatemia) grantid: 330083; 307335; 321616 – fundername: Academy of Finland (Suomen Akatemia) funderid: 330083; 307335; 321616 – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐13‐BSV6‐0004; ANR‐17‐CAPS‐0001‐01; ANR‐10‐LABX‐0040‐SPS – fundername: Deutsche Forschungsgemeinschaft (DFG) funderid: FI 1655/4‐1; INST 211/744‐1 FUGG; SFB 1036 TP13 – fundername: ; grantid: ANR‐13‐BSV6‐0004; ANR‐17‐CAPS‐0001‐01; ANR‐10‐LABX‐0040‐SPS – fundername: ; grantid: FI 1655/4‐1; INST 211/744‐1 FUGG; SFB 1036 TP13 |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 2WC 39C 3V. 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAHHS AAJSJ ABDBF ABUWG ACCFJ ACCMX ACGFO ACPRK ACUHS ACXQS ADBBV ADKYN ADZMN AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IHR INH KQ8 LK8 M1P M2O M48 M7P ML0 M~E O5R O5S O9- OK1 P2P PADUT PIMPY PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M -Q- 4.4 88A ADRAZ COF EBLON EJD GODZA H13 IGS ITC M0L AASML AAYXX CITATION NAO OVT PHGZM PHGZT 7QL 7TM 7U9 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c6984-3a160009a792f9479356b7b0dedd6a496117b1ed7b80542f9fb07ddf8c21489a3 |
IEDL.DBID | M48 |
ISSN | 1744-4292 |
IngestDate | Wed Aug 27 01:28:57 EDT 2025 Thu Aug 21 13:45:33 EDT 2025 Fri May 09 12:22:01 EDT 2025 Fri Jul 11 05:21:20 EDT 2025 Wed Aug 13 09:09:23 EDT 2025 Wed Aug 13 07:20:46 EDT 2025 Tue Jul 01 04:10:34 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Wed Jan 22 16:33:47 EST 2025 Fri Feb 21 02:40:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | co‐ and post‐translational modifications plastid acetylome acetyltransferase quantitative proteomics Post-translational Modifications & Proteolysis co-and post-translational modifications Proteomics quantitative proteomics Subject Categories Plant Biology |
Language | English |
License | Attribution Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6984-3a160009a792f9479356b7b0dedd6a496117b1ed7b80542f9fb07ddf8c21489a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
ORCID | 0000-0003-0204-9580 0000-0003-0530-1737 0000-0002-3832-4006 0000-0002-6363-1470 0000-0001-5642-8637 0000-0001-7963-1400 0000-0002-0291-9745 0000-0002-6238-4818 0000-0003-0963-1872 0000-0002-8979-4606 0000-0001-5265-3917 0000-0001-7790-4022 0000-0002-0435-3845 0000-0003-2808-3541 0000-0002-8972-4026 0000-0002-2253-6397 0000-0002-8728-3204 0000-0003-4192-3920 0000-0002-7475-1558 0000-0002-6349-3901 0000-0002-7477-3319 0000-0002-1149-5243 0000-0003-3838-2211 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/msb.20209464 |
PMID | 32633465 |
PQID | 2428926077 |
PQPubID | 29031 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d26b41bab41445bf8117bc4fba9d0b24 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7339202 hal_primary_oai_HAL_hal_02900691v1 proquest_miscellaneous_2421112190 proquest_journals_2447207812 proquest_journals_2428926077 crossref_citationtrail_10_15252_msb_20209464 crossref_primary_10_15252_msb_20209464 wiley_primary_10_15252_msb_20209464_MSB209464 springer_journals_10_15252_msb_20209464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Hohner, Aboukila, Kunz, Venema (CR53) 2016; 7 Salah Ud‐Din, Tikhomirova, Roujeinikova (CR94) 2016; 17 Tyanova, Temu, Cox (CR101) 2016; 11 Kang, Chun, Huh, Park (CR61) 2018; 19 Linster, Layer, Bienvenut, Dinh, Weyer, Leemhuis, Brünje, Hoffrichter, Miklankova, Sindlinger (CR75) 2020 Schmidt, Kochanowski, Vedelaar, Ahrné, Volkmer, Callipo, Knoops, Bauer, Aebersold, Heinemann (CR95) 2016; 34 Liu, Liu, Wang, Ge, Jan, Ding, Hu, Zhou, Chen, Ge (CR79) 2009; 41 Karimi, Depicker, Hilson (CR62) 2007; 145 Finkemeier, Laxa, Miguet, Howden, Sweetlove (CR42) 2011; 155 Kosciuk, Price, Zhang, Zhu, Johnson, Zhang, Halaby, Komaniecki, Yang, DeHart (CR64) 2020; 11 Liu, Zhu, Dong, Ning, Wang, Li, Yang, Wang (CR80) 2013; 8 Christensen, Meyer, Baumgartner, D'Souza, Nelson, Payne, Kuhn, Schilling, Wolfe (CR22) 2018; 9 Carabetta, Greco, Cristea, Dubnau (CR19) 2019; 116 Dian, Perez‐Dorado, Riviere, Asensio, Legrand, Ritzefeld, Shen, Cota, Meinnel, Tate (CR34) 2020; 11 Huber, Bienvenut, Linster, Stephan, Armbruster, Sticht, Layer, Lapouge, Meinnel, Sinning (CR57) 2020; 182 Dinh, Bienvenut, Linster, Feldman‐Salit, Jung, Meinnel, Hell, Giglione, Wirtz (CR35) 2015; 15 Bienvenut, Scarpelli, Dumestier, Meinnel, Giglione (CR14) 2017; 18 Drazic, Aksnes, Marie, Boczkowska, Varland, Timmerman, Foyn, Glomnes, Rebowski, Impens (CR37) 2018; 115 Yoon, Kim, Chun, Shin, Lee, Shin, Lee, Kim, Lee, Ryoo (CR112) 2014; 5 Albanese, Tamara, Saracco, Scheltema, Pagliano (CR5) 2020; 11 Damm, Schmidt, Willmitzer (CR32) 1989; 217 Clough, Bent (CR26) 1998; 16 Evjenth, Hole, Karlsen, Ziegler, Arnesen, Lillehaug (CR41) 2009; 284 Montgomery, Sorum, Meier (CR87) 2015; 10 Frottin, Bienvenut, Bignon, Jacquet, Vaca Jacome, Van Dorsselaer, Cianferani, Carapito, Meinnel, Giglione (CR47) 2016; 7 Kozlowski (CR67) 2016; 45 Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (CR102) 2016; 13 Hartl, Konig, Finkemeier (CR50) 2015; 1305 Yang, Yu, Shi, Sun, Liang, Yi, Li, Zhang, Yang, Han (CR111) 2011; 44 Giglione, Fieulaine, Meinnel (CR49) 2015; 114 Arnesen, Van Damme, Polevoda, Helsens, Evjenth, Colaert, Varhaug, Vandekerckhove, Lillehaug, Sherman (CR9) 2009; 106 Linster, Stephan, Bienvenut, Maple‐Grodem, Myklebust, Huber, Reichelt, Sticht, Geir Moller, Meinnel (CR73) 2015; 6 Rozhon, Mayerhofer, Petutschnig, Fujioka, Jonak (CR93) 2010; 62 Bienvenut, Giglione, Meinnel (CR13) 2017; 1574 Sigrist, de Castro, Cerutti, Cuche, Hulo, Bridge, Bougueleret, Xenarios (CR98) 2013; 41 Rips, Frank, Elting, Offenborn, von Schaewen (CR91) 2017; 18 Lee, Byeon, Lee, Lee, Back (CR72) 2014; 57 Srivastava, Khandokar, Swarbrick, Roman, Himiari, Sarker, Raidal, Forwood (CR99) 2014; 9 Lassowskat, Hartl, Hosp, Boersema, Mann, Finkemeier (CR71) 2017; 1653 Xu, Huang, Li, Gannon, Linster, Huber, Kapos, Bienvenut, Polevoda, Meinnel (CR110) 2015; 27 Magin, March, Marmorstein (CR84) 2016; 291 Kulak, Pichler, Paron, Nagaraj, Mann (CR68) 2014; 11 Arnesen, Gromyko, Kagabo, Betts, Starheim, Varhaug, Anderson, Lillehaug (CR8) 2009; 10 Martinez, Traverso, Valot, Ferro, Espagne, Ephritikhine, Zivy, Giglione, Meinnel (CR85) 2008; 8 Bouchnak, van Wijk (CR16) 2019; 24 Maddelein, Colaert, Buchanan, Hulstaert, Gevaert, Martens (CR83) 2015; 43 Agoni (CR2) 2015 Liszczak, Goldberg, Foyn, Petersson, Arnesen, Marmorstein (CR77) 2013; 20 Rowland, Kim, Bhuiyan, van Wijk (CR92) 2015; 169 Bienvenut, Sumpton, Martinez, Lilla, Espagne, Meinnel, Giglione (CR11) 2012; 11 (CR500) 2016 Aksnes, Drazic, Marie, Arnesen (CR3) 2016; 41 Hruz, Laule, Szabo, Wessendorp, Bleuler, Oertle, Widmayer, Gruissem, Zimmermann (CR56) 2008; 2008 Zybailov, Rutschow, Friso, Rudella, Emanuelsson, Sun, van Wijk (CR113) 2008; 3 Chang, Falick, Carlton, Sedat, DeRisi, Marletta (CR21) 2008; 160 Heazlewood, Verboom, Tonti‐Filippini, Small, Millar (CR52) 2007; 35 Longoni, Douchi, Cariti, Fucile, Goldschmidt‐Clermont (CR81) 2015; 169 Colaert, Helsens, Martens, Vandekerckhove, Gevaert (CR27) 2009; 6 Reverdy, Chen, Hunter, Gozzi, Chai (CR90) 2018; 13 Rathore, Faustino, Prudencio, Van Damme, Cox, Martinho (CR89) 2016; 6 Wu, Shen, Lee, Lee, Chan, Lin (CR107) 2009; 5 Liszczak, Marmorstein (CR78) 2013; 110 Murray‐Rust, Oldham, Hewitson, Schofield (CR88) 2006; 580 Bischof, Baerenfaller, Wildhaber, Troesch, Vidi, Roschitzki, Hirsch‐Hoffmann, Hennig, Kessler, Gruissem (CR15) 2011; 23 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling, Wolfe (CR24) 2019; 10 Liszczak, Arnesen, Marmorstein (CR76) 2011; 286 Brownell, Zhou, Ranalli, Kobayashi, Edmondson, Roth, Allis (CR18) 1996; 84 Arnesen, Anderson, Baldersheim, Lanotte, Varhaug, Lillehaug (CR7) 2005; 386 Vetting, SdC, Yu, Hegde, Magnet, Roderick, Blanchard (CR106) 2005; 433 Drazic, Myklebust, Ree, Arnesen (CR36) 2016; 1864 Drozdetskiy, Cole, Procter, Barton (CR38) 2015; 43 Stove, Magin, Foyn, Haug, Marmorstein, Arnesen (CR100) 2016; 24 Emanuelsson, Brunak, von Heijne, Nielsen (CR40) 2007; 2 Varland, Osberg, Arnesen (CR105) 2015; 15 Bienvenut, Espagne, Martinez, Majeran, Valot, Zivy, Vallon, Adam, Meinnel, Giglione (CR10) 2011; 11 Crepin, Caffarri (CR30) 2015; 1847 Cox, Mann (CR29) 2008; 26 Chu, Hou, Zhang, Phu, Loktev, Kirkpatrick, Jackson, Zhao, Zou (CR25) 2011; 22 Deutsch, Csordas, Sun, Jarnuczak, Perez‐Riverol, Ternent, Campbell, Bernal‐Llinares, Okuda, Kawano (CR33) 2017; 45 Seidel, Klockenbusch, Schwarzer (CR96) 2016; 17 Christensen, Baumgartner, Xie, Jew, Basisty, Schilling, Kuhn, Wolfe (CR23) 2019; 10 Friso, van Wijk (CR46) 2015; 169 Hole, Van Damme, Dalva, Aksnes, Glomnes, Varhaug, Lillehaug, Gevaert, Arnesen (CR54) 2011; 6 Jeong, Bae, Ahn, Kim, Sohn, Bae, Yoo, Song, Lee, Kim (CR60) 2002; 111 Wybenga‐Groot, Draker, Wright, Berghuis (CR109) 1999; 7 Hartl, Fussl, Boersema, Jost, Kramer, Bakirbas, Sindlinger, Plochinger, Leister, Uhrig (CR51) 2017; 13 Frank, Kaulfurst‐Soboll, Rips, Koiwa, von Schaewen (CR44) 2008; 148 König, Hartl, Boersema, Mann, Finkemeier (CR63) 2014; 19 Wu, Oh, Schwarz, Larue, Sivaguru, Imai, Yau, Ort, Huber (CR108) 2011; 155 Cort, Ramelot, Murray, Acton, Ma, Xiao, Montelione, Kennedy (CR28) 2008; 9 Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez (CR70) 2007; 23 Huesgen, Alami, Lange, Foster, Schroder, Overall, Green (CR58) 2013; 8 Dyda, Klein, Hickman (CR39) 2000; 29 Van Damme, Hole, Pimenta‐Marques, Helsens, Vandekerckhove, Martinho, Gevaert, Arnesen (CR104) 2011; 7 Koskela, Brünje, Ivanauskaite, Lopez, Schneider, DeTar, Kunz, Finkemeier, Mulo (CR66) 2020 Aebersold, Mann (CR1) 2016; 537 Lunde, Jensen, Haldrup, Knoetzel, Scheller (CR82) 2000; 408 Kumar, Stecher, Li, Knyaz, Tamura (CR69) 2018; 35 Meinnel, Dian, Giglione (CR86) 2020; 45 Hulo, Bairoch, Bulliard, Cerutti, Cuche, de Castro, Lachaize, Langendijk‐Genevaux, Sigrist (CR59) 2008; 36 Friedmann, Marmorstein (CR45) 2013; 280 Breiman, Fieulaine, Meinnel, Giglione (CR17) 2016; 1864 Hoshiyasu, Kohzuma, Yoshida, Fujiwara, Fukao, Yokota, Akashi (CR55) 2013; 77 Koskela, Brünje, Ivanauskaite, Grabsztunowicz, Lassowskat, Neumann, Dinh, Sindlinger, Schwarzer, Wirtz (CR65) 2018; 30 Shin, Chun, Lee, Shin, Park (CR97) 2009; 4 Bienvenut, Giglione, Meinnel (CR12) 2015; 15 Gao, Hong, Li, Yang, Huang, Xiao, Chen, Chen (CR48) 2016; 9 Uhrig, Schlapfer, Roschitzki, Hirsch‐Hoffmann, Gruissem (CR103) 2019; 99 Castrec, Dian, Ciccone, Ebert, Bienvenut, Le Caer, Steyaert, Giglione, Meinnel (CR20) 2018; 14 Armbruster, Linster, Boyer, Brunje, Eirich, Stephan, Bienvenut, Weidenhausen, Meinnel, Hell (CR6) 2020 Aksnes, Ree, Arnesen (CR4) 2019; 73 Linster, Wirtz (CR74) 2018; 69 Finn, Mistry, Schuster‐Bockler, Griffiths‐Jones, Hollich, Lassmann, Moxon, Marshall, Khanna, Durbin (CR43) 2006; 34 2006; 34 2019; 99 2019b; 10 2008; 36 2020; 11 2013; 8 2012; 11 2016; 34 1998; 16 2000; 408 2018; 9 2017b; 18 2019; 24 2008; 26 2016; 41 2018; 30 2014; 19 2007; 2 2013; 110 2016a; 11 2014; 11 2016; 45 2018; 35 2016; 17 2011; 6 2011; 7 2018; 19 2016; 6 2016; 7 2013; 77 2015; 1847 2017; 1653 2015; 114 2018; 115 2006; 580 1996; 84 2016; 291 2016; 9 2016; 24 2018; 14 2018; 13 2019a; 10 2007; 145 2009; 41 2002; 111 2013; 20 2017; 45 2008; 9 2011; 11 2008; 8 2008; 148 2008; 3 2013; 280 2008; 2008 2007; 35 2011; 155 2010; 62 2014; 5 2005; 386 2017a; 1574 2015; 43 2019; 116 2011; 22 2014; 57 2011; 23 2020; 45 2009; 284 2015; 1305 2014; 9 2007; 23 2011; 286 2015; 15 2000; 29 2015; 6 2009b; 106 2019; 73 1989; 217 2015; 169 2016b; 13 2005; 433 2020; 182 2015; 10 2013; 41 2016; 1864 1999; 7 2018; 69 2008; 160 2015; 27 2009a; 10 2016; 537 2020 2017; 13 2011; 44 2016 2015 2009; 6 2017; 18 2009; 5 2009; 4 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 Friso G (e_1_2_9_46_1) 2015; 169 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 Longoni P (e_1_2_9_81_1) 2015; 169 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 R Core Team (e_1_2_9_89_1) 2016 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 Rowland E (e_1_2_9_93_1) 2015; 169 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 580 start-page: 1911 year: 2006 end-page: 1918 ident: CR88 article-title: Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF‐1alpha fragments publication-title: FEBS Lett – volume: 36 start-page: D245 year: 2008 end-page: D249 ident: CR59 article-title: The 20 years of PROSITE publication-title: Nucleic Acids Res – volume: 22 start-page: 448 year: 2011 end-page: 456 ident: CR25 article-title: A novel acetylation of beta‐tubulin by San modulates microtubule polymerization via down‐regulating tubulin incorporation publication-title: Mol Biol Cell – volume: 5 start-page: 16 year: 2009 ident: CR107 article-title: Tape‐ Sandwich ‐ a simpler protoplast isolation method publication-title: Plant Methods – volume: 1864 start-page: 531 year: 2016 end-page: 550 ident: CR17 article-title: The intriguing realm of protein biogenesis: facing the green co‐translational protein maturation networks publication-title: Biochim Biophys Acta – volume: 110 start-page: 14652 year: 2013 end-page: 14657 ident: CR78 article-title: Implications for the evolution of eukaryotic amino‐terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 2947 year: 2007 end-page: 2948 ident: CR70 article-title: Clustal W and clustal X version 2.0 publication-title: Bioinformatics – volume: 433 start-page: 212 year: 2005 end-page: 226 ident: CR106 article-title: Structure and functions of the GNAT superfamily of acetyltransferases publication-title: Arch Biochem Biophys – volume: 148 start-page: 1354 year: 2008 end-page: 1367 ident: CR44 article-title: Comparative analyses of complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a publication-title: Plant Physiol – volume: 10 start-page: 1604 year: 2019 ident: CR24 article-title: Post‐translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions publication-title: Front Microbiol – volume: 408 start-page: 613 year: 2000 end-page: 615 ident: CR82 article-title: The PSI‐H subunit of photosystem I is essential for state transitions in plant photosynthesis publication-title: Nature – volume: 24 start-page: 1044 year: 2016 end-page: 1056 ident: CR100 article-title: Crystal structure of the golgi‐associated human N alpha‐acetyltransferase 60 reveals the molecular determinants for substrate‐specific acetylation publication-title: Structure – volume: 10 start-page: e02708 year: 2019 end-page: 18 ident: CR23 article-title: Mechanisms, detection, and relevance of protein acetylation in prokaryotes publication-title: mBio – volume: 182 start-page: 792 year: 2020 end-page: 806 ident: CR57 article-title: NatB‐mediated N‐terminal acetylation affects growth and abiotic stress responses publication-title: Plant Physiol – year: 2020 ident: CR75 article-title: Plants evolved a plasma membrane anchored N‐acetyltransferase required for the adaption to high salt stress and post‐translational acetylation of plasmodesmata‐localized proteins publication-title: New Phytol doi: 10.1111/nph.16747 – volume: 10 start-page: 85 year: 2015 end-page: 94 ident: CR87 article-title: Defining the orphan functions of lysine acetyltransferases publication-title: ACS Chem Biol – volume: 11 start-page: 2301 year: 2016 end-page: 2319 ident: CR101 article-title: The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics publication-title: Nat Protoc – volume: 19 start-page: 364 year: 2018 end-page: 374 ident: CR61 article-title: FIH permits NAA10 to catalyze the oxygen‐dependent lysyl‐acetylation of HIF‐1alpha publication-title: Redox Biol – volume: 17 start-page: E1018 year: 2016 ident: CR94 article-title: Structure and functional diversity of GCN5‐related N‐acetyltransferases (GNAT) publication-title: Int J Mol Sci – volume: 11 start-page: 319 year: 2014 end-page: 324 ident: CR68 article-title: Minimal, encapsulated proteomic‐sample processing applied to copy‐number estimation in eukaryotic cells publication-title: Nat Methods – volume: 45 start-page: 619 year: 2020 end-page: 632 ident: CR86 article-title: Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution publication-title: Trends Biochem Sci – volume: 44 start-page: 39 year: 2011 end-page: 50 ident: CR111 article-title: HAT4, a golgi apparatus‐anchored B‐type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly publication-title: Mol Cell – volume: 10 start-page: 15 year: 2009 ident: CR8 article-title: A novel human NatA Nalpha‐terminal acetyltransferase complex: hNaa16p‐hNaa10p (hNat2‐hArd1) publication-title: BMC Biochem – volume: 16 start-page: 735 year: 1998 end-page: 743 ident: CR26 article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of publication-title: Plant J – volume: 155 start-page: 1769 year: 2011 end-page: 1778 ident: CR108 article-title: Lysine acetylation is a widespread protein modification for diverse proteins in publication-title: Plant Physiol – volume: 291 start-page: 5270 year: 2016 end-page: 5277 ident: CR84 article-title: The N‐terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues publication-title: J Biol Chem – volume: 8 start-page: 2809 year: 2008 end-page: 2831 ident: CR85 article-title: Extent of N‐terminal modifications in cytosolic proteins from eukaryotes publication-title: Proteomics – volume: 13 start-page: 949 year: 2017 ident: CR51 article-title: Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in publication-title: Mol Syst Biol – volume: 18 start-page: 646 year: 2017 end-page: 657 ident: CR91 article-title: Golgi 1,4‐fucosyltransferase of partially localizes at the nuclear envelope publication-title: Traffic – volume: 41 start-page: 2528 year: 2009 end-page: 2537 ident: CR79 article-title: Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells publication-title: Int J Biochem Cell B – volume: 15 start-page: 2426 year: 2015 end-page: 2435 ident: CR35 article-title: Molecular identification and functional characterization of the first Nalpha‐acetyltransferase in plastids by global acetylome profiling publication-title: Proteomics – volume: 286 start-page: 37002 year: 2011 end-page: 37010 ident: CR76 article-title: Structure of a ternary Naa50p (NAT5/SAN) N‐terminal acetyltransferase complex reveals the molecular basis for substrate‐specific acetylation publication-title: J Biol Chem – volume: 1847 start-page: 1539 year: 2015 end-page: 1548 ident: CR30 article-title: The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI‐LHCII supercomplex in during state transitions publication-title: Biochim Biophys Acta – volume: 11 start-page: 1132 year: 2020 ident: CR34 article-title: High‐resolution snapshots of human N‐myristoyltransferase in action illuminate a mechanism promoting N‐terminal Lys and Gly myristoylation publication-title: Nat Commun – volume: 145 start-page: 1144 year: 2007 end-page: 1154 ident: CR62 article-title: Recombinational cloning with plant gateway vectors publication-title: Plant Physiol – volume: 23 start-page: 3911 year: 2011 end-page: 3928 ident: CR15 article-title: Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N‐acetylated plastid precursor proteins publication-title: Plant Cell – volume: 111 start-page: 709 year: 2002 end-page: 720 ident: CR60 article-title: Regulation and destabilization of HIF‐1alpha by ARD1‐mediated acetylation publication-title: Cell – year: 2020 ident: CR66 article-title: Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII publication-title: Photosynth Res doi: 10.1007/s11120-020-00711-4 – volume: 106 start-page: 8157 year: 2009 end-page: 8162 ident: CR9 article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N‐terminal acetyltransferases from yeast and humans publication-title: Proc Natl Acad Sci USA – volume: 114 start-page: 134 year: 2015 end-page: 146 ident: CR49 article-title: N‐terminal protein modifications: bringing back into play the ribosome publication-title: Biochimie – volume: 73 start-page: 1097 year: 2019 end-page: 1114 ident: CR4 article-title: Co‐translational, post‐translational, and non‐catalytic roles of N‐terminal acetyltransferases publication-title: Mol Cell – volume: 386 start-page: 433 year: 2005 end-page: 443 ident: CR7 article-title: Identification and characterization of the human ARD1‐NATH protein acetyltransferase complex publication-title: Biochem J – volume: 99 start-page: 176 year: 2019 end-page: 194 ident: CR103 article-title: Diurnal changes in concerted plant protein phosphorylation and acetylation in organs and seedlings publication-title: Plant J – volume: 45 start-page: D1112 year: 2016 end-page: D1116 ident: CR67 article-title: Proteome‐pI: proteome isoelectric point database publication-title: Nucleic Acids Res – volume: 69 start-page: 4555 year: 2018 end-page: 4568 ident: CR74 article-title: N‐terminal acetylation: an essential protein modification emerges as an important regulator of stress responses publication-title: J Exp Bot – volume: 62 start-page: 215 year: 2010 end-page: 223 ident: CR93 article-title: ASKtheta, a group‐III GSK3, functions in the brassinosteroid signalling pathway publication-title: Plant J – volume: 1305 start-page: 107 year: 2015 end-page: 121 ident: CR50 article-title: Identification of lysine‐acetylated mitochondrial proteins and their acetylation sites publication-title: Methods Mol Biol – volume: 15 start-page: 2503 year: 2015 end-page: 2518 ident: CR12 article-title: Proteome‐wide analysis of the amino terminal status of proteins at the steady‐state and upon deformylation inhibition publication-title: Proteomics – volume: 27 start-page: 1547 year: 2015 end-page: 1562 ident: CR110 article-title: Two N‐terminal acetyltransferases antagonistically regulate the stability of a nod‐like receptor in publication-title: Plant Cell – volume: 30 start-page: 1695 year: 2018 end-page: 1709 ident: CR65 article-title: Chloroplast acetyltransferase NSI is required for state transitions in publication-title: Plant Cell – volume: 9 start-page: e01905 year: 2018 end-page: e01918 ident: CR22 article-title: Identification of novel protein lysine acetyltransferases in publication-title: mBio – volume: 57 start-page: 418 year: 2014 end-page: 426 ident: CR72 article-title: Cloning of serotonin N‐acetyltransferase and its role with caffeic acid O‐methyltransferase in the biosynthesis of melatonin despite their different subcellular localizations publication-title: J Pineal Res – volume: 1864 start-page: 1372 year: 2016 end-page: 1401 ident: CR36 article-title: The world of protein acetylation publication-title: Biochim Biophys Acta – volume: 43 start-page: W543 year: 2015 end-page: W546 ident: CR83 article-title: The iceLogo web server and SOAP service for determining protein consensus sequences publication-title: Nucleic Acids Res – volume: 34 start-page: D247 year: 2006 end-page: D251 ident: CR43 article-title: Pfam: clans, web tools and services publication-title: Nucleic Acids Res – volume: 217 start-page: 6 year: 1989 end-page: 12 ident: CR32 article-title: Efficient transformation of using direct gene transfer to protoplasts publication-title: Mol Gen Genet – volume: 7 start-page: 218 year: 2016 ident: CR53 article-title: Proton gradients and proton‐dependent transport processes in the chloroplast publication-title: Front Plant Sci – volume: 20 start-page: 1098 year: 2013 end-page: 1105 ident: CR77 article-title: Molecular basis for N‐terminal acetylation by the heterodimeric NatA complex publication-title: Nat Struct Mol Biol – volume: 2 start-page: 953 year: 2007 end-page: 971 ident: CR40 article-title: Locating proteins in the cell using TargetP, SignalP and related tools publication-title: Nat Protoc – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: CR29 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol – volume: 24 start-page: 917 year: 2019 end-page: 926 ident: CR16 article-title: N‐degron pathways in plastids publication-title: Trends Plant Sci – volume: 9 start-page: 7 year: 2008 end-page: 20 ident: CR28 article-title: Structure of an acetyl‐CoA binding protein from representing a novel subfamily of GCN5‐related N‐acetyltransferase‐like proteins publication-title: J Struct Funct Genomics – volume: 6 start-page: e24713 year: 2011 ident: CR54 article-title: The human N‐alpha‐acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N‐terminally acetylates histones H2A and H4 publication-title: PLoS ONE – year: 2016 ident: CR500 publication-title: R: A language and environment for statistical computing – volume: 11 start-page: M111.015131 year: 2012 ident: CR11 article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N‐alpha‐acetylation features publication-title: Mol Cell Proteomics – volume: 284 start-page: 31122 year: 2009 end-page: 31129 ident: CR41 article-title: Human Naa50p (Nat5/San) displays both protein Nα‐ and Nϵ‐acetyltransferase activity publication-title: J Biol Chem – volume: 6 start-page: 786 year: 2009 end-page: 787 ident: CR27 article-title: Improved visualization of protein consensus sequences by iceLogo publication-title: Nat Methods – volume: 1653 start-page: 65 year: 2017 end-page: 81 ident: CR71 article-title: Dimethyl‐labeling‐based quantification of the lysine acetylome and proteome of plants publication-title: Methods Mol Biol – volume: 45 start-page: D1100 year: 2017 end-page: D1106 ident: CR33 article-title: The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition publication-title: Nucleic Acids Res – volume: 35 start-page: D213 year: 2007 end-page: D218 ident: CR52 article-title: SUBA: the subcellular database publication-title: Nucleic Acids Res – volume: 43 start-page: W389 year: 2015 end-page: W394 ident: CR38 article-title: JPred4: a protein secondary structure prediction server publication-title: Nucleic Acids Res – volume: 84 start-page: 843 year: 1996 end-page: 851 ident: CR18 article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation publication-title: Cell – volume: 4 start-page: e7451 year: 2009 ident: CR97 article-title: Arrest defective‐1 controls tumor cell behavior by acetylating myosin light chain kinase publication-title: PLoS ONE – volume: 18 start-page: 182 year: 2017 ident: CR14 article-title: EnCOUNTer: a parsing tool to uncover the mature N‐terminus of organelle‐targeted proteins in complex samples publication-title: BMC Bioinformatics – volume: 29 start-page: 81 year: 2000 end-page: 103 ident: CR39 article-title: GCN5‐related N‐acetyltransferases: a structural overview publication-title: Annu Rev Biophys Biomol Struct – volume: 155 start-page: 1779 year: 2011 end-page: 1790 ident: CR42 article-title: Proteins of diverse function and subcellular location are lysine acetylated in publication-title: Plant Physiol – volume: 8 start-page: e58681 year: 2013 ident: CR80 article-title: Identification and analysis of the acetylated status of poplar proteins reveals analogous N‐terminal protein processing mechanisms with other eukaryotes publication-title: PLoS ONE – volume: 15 start-page: 2385 year: 2015 end-page: 2401 ident: CR105 article-title: N‐terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects publication-title: Proteomics – volume: 13 start-page: e0204687 year: 2018 ident: CR90 article-title: Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity publication-title: PLoS ONE – volume: 11 start-page: 1734 year: 2011 end-page: 1750 ident: CR10 article-title: Dynamics of post‐translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts publication-title: Proteomics – volume: 41 start-page: D344 year: 2013 end-page: D347 ident: CR98 article-title: New and continuing developments at PROSITE publication-title: Nucleic Acids Res – volume: 2008 start-page: 420747 year: 2008 ident: CR56 article-title: Genevestigator v3: a reference expression database for the meta‐analysis of transcriptomes publication-title: Adv Bioinformatics – volume: 11 start-page: 1067 year: 2020 ident: CR64 article-title: NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle publication-title: Nat Commun – volume: 115 start-page: 4399 year: 2018 end-page: 4404 ident: CR37 article-title: NAA80 is actin's N‐terminal acetyltransferase and regulates cytoskeleton assembly and cell motility publication-title: Proc Natl Acad Sci USA – volume: 169 start-page: 2874 year: 2015 end-page: 2883 ident: CR81 article-title: Phosphorylation of the light‐harvesting complex II isoform Lhcb2 is central to state transitions publication-title: Plant Physiol – volume: 280 start-page: 5570 year: 2013 end-page: 5581 ident: CR45 article-title: Structure and mechanism of non‐histone protein acetyltransferase enzymes publication-title: FEBS J – volume: 34 start-page: 104 year: 2016 end-page: 110 ident: CR95 article-title: The quantitative and condition‐dependent proteome publication-title: Nat Biotechnol – volume: 5 start-page: 5176 year: 2014 ident: CR112 article-title: NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2 publication-title: Nat Commun – volume: 7 start-page: 63306 year: 2016 end-page: 63323 ident: CR47 article-title: MetAP1 and MetAP2 drive cell selectivity for a potent anti‐cancer agent in synergy, by controlling glutathione redox state publication-title: Oncotarget – volume: 3 start-page: e1994 year: 2008 ident: CR113 article-title: Sorting signals, N‐terminal modifications and abundance of the chloroplast proteome publication-title: PLoS ONE – volume: 6 start-page: 7640 year: 2015 ident: CR73 article-title: Downregulation of N‐terminal acetylation triggers ABA‐mediated drought responses in publication-title: Nat Commun – volume: 19 start-page: 252 year: 2014 end-page: 260 ident: CR63 article-title: The mitochondrial lysine acetylome of publication-title: Mitochondrion – volume: 6 start-page: 21304 year: 2016 ident: CR89 article-title: Absence of N‐terminal acetyltransferase diversification during evolution of eukaryotic organisms publication-title: Sci Rep – volume: 160 start-page: 107 year: 2008 end-page: 115 ident: CR21 article-title: N‐terminal processing of proteins exported by malaria parasites publication-title: Mol Biochem Parasitol – volume: 8 start-page: e74483 year: 2013 ident: CR58 article-title: Proteomic amino‐termini profiling reveals targeting information for protein import into complex plastids publication-title: PLoS ONE – volume: 116 start-page: 3752 year: 2019 end-page: 3757 ident: CR19 article-title: YfmK is an N(epsilon)‐lysine acetyltransferase that directly acetylates the histone‐like protein HBsu in publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 398 year: 2016 end-page: 402 ident: CR96 article-title: Investigating deformylase and deacylase activity of mammalian and bacterial sirtuins publication-title: ChemBioChem – volume: 13 start-page: 731 year: 2016 end-page: 740 ident: CR102 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods – volume: 35 start-page: 1547 year: 2018 end-page: 1549 ident: CR69 article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms publication-title: Mol Biol Evol – volume: 41 start-page: 746 year: 2016 end-page: 760 ident: CR3 article-title: First things first: vital protein marks by N‐terminal acetyltransferases publication-title: Trends Biochem Sci – volume: 9 start-page: 1018 year: 2016 end-page: 1027 ident: CR48 article-title: Downregulation of rubisco activity by non‐enzymatic acetylation of RbcL publication-title: Mol Plant – volume: 169 start-page: 1881 year: 2015 end-page: 1896 ident: CR92 article-title: The chloroplast stromal N‐terminome: complexities of amino‐terminal protein maturation and stability publication-title: Plant Physiol – volume: 77 start-page: 998 year: 2013 end-page: 1007 ident: CR55 article-title: Potential involvement of N‐terminal acetylation in the quantitative regulation of the epsilon subunit of chloroplast ATP synthase under drought stress publication-title: Biosci Biotechnol Biochem – volume: 537 start-page: 347 year: 2016 end-page: 355 ident: CR1 article-title: Mass‐spectrometric exploration of proteome structure and function publication-title: Nature – year: 2015 ident: CR2 article-title: Could rare amino acids regulate enzymes abundance? publication-title: bioRxiv doi: 10.1101/021295 – volume: 1574 start-page: 17 year: 2017 end-page: 34 ident: CR13 article-title: SILProNAQ: a convenient approach for proteome‐wide analysis of protein N‐termini and N‐terminal acetylation quantitation publication-title: Methods Mol Biol – year: 2020 ident: CR6 article-title: NAA50 is an enzymatically active Nα‐acetyltransferase that is crucial for the development and regulation of stress responses publication-title: Plant Physiol doi: 10.1104/pp.20.00222 – volume: 11 start-page: 1361 year: 2020 ident: CR5 article-title: How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass‐spectrometry publication-title: Nat Commun – volume: 9 start-page: e102348 year: 2014 ident: CR99 article-title: Structural characterization of a Gcn5‐related N‐acetyltransferase from publication-title: PLoS ONE – volume: 14 start-page: 671 year: 2018 ident: CR20 article-title: Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern publication-title: Nat Chem Biol – volume: 169 start-page: 1469 year: 2015 end-page: 1487 ident: CR46 article-title: Posttranslational protein modifications in plant metabolism publication-title: Plant Physiol – volume: 7 start-page: e1002169 year: 2011 ident: CR104 article-title: NatF contributes to an evolutionary shift in protein N‐terminal acetylation and is important for normal chromosome segregation publication-title: PLoS Genet – volume: 7 start-page: 497 year: 1999 end-page: 507 ident: CR109 article-title: Crystal structure of an aminoglycoside 6′‐N‐acetyltransferase: defining the GCN5‐related N‐acetyltransferase superfamily fold publication-title: Structure – volume: 169 start-page: 2874 year: 2015 end-page: 2883 article-title: Phosphorylation of the light‐harvesting complex II isoform Lhcb2 is central to state transitions publication-title: Plant Physiol – volume: 19 start-page: 252 year: 2014 end-page: 260 article-title: The mitochondrial lysine acetylome of publication-title: Mitochondrion – volume: 41 start-page: D344 year: 2013 end-page: D347 article-title: New and continuing developments at PROSITE publication-title: Nucleic Acids Res – volume: 291 start-page: 5270 year: 2016 end-page: 5277 article-title: The N‐terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues publication-title: J Biol Chem – volume: 2 start-page: 953 year: 2007 end-page: 971 article-title: Locating proteins in the cell using TargetP, SignalP and related tools publication-title: Nat Protoc – volume: 9 start-page: 1018 year: 2016 end-page: 1027 article-title: Downregulation of rubisco activity by non‐enzymatic acetylation of RbcL publication-title: Mol Plant – volume: 45 start-page: D1112 year: 2016 end-page: D1116 article-title: Proteome‐pI: proteome isoelectric point database publication-title: Nucleic Acids Res – volume: 1574 start-page: 17 year: 2017a end-page: 34 article-title: SILProNAQ: a convenient approach for proteome‐wide analysis of protein N‐termini and N‐terminal acetylation quantitation publication-title: Methods Mol Biol – volume: 155 start-page: 1779 year: 2011 end-page: 1790 article-title: Proteins of diverse function and subcellular location are lysine acetylated in publication-title: Plant Physiol – volume: 23 start-page: 3911 year: 2011 end-page: 3928 article-title: Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N‐acetylated plastid precursor proteins publication-title: Plant Cell – volume: 10 start-page: 85 year: 2015 end-page: 94 article-title: Defining the orphan functions of lysine acetyltransferases publication-title: ACS Chem Biol – year: 2015 article-title: Could rare amino acids regulate enzymes abundance? publication-title: bioRxiv – volume: 160 start-page: 107 year: 2008 end-page: 115 article-title: N‐terminal processing of proteins exported by malaria parasites publication-title: Mol Biochem Parasitol – year: 2020 article-title: Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII publication-title: Photosynth Res – volume: 2008 start-page: 420747 year: 2008 article-title: Genevestigator v3: a reference expression database for the meta‐analysis of transcriptomes publication-title: Adv Bioinformatics – volume: 11 start-page: 2301 year: 2016a end-page: 2319 article-title: The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics publication-title: Nat Protoc – volume: 580 start-page: 1911 year: 2006 end-page: 1918 article-title: Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF‐1alpha fragments publication-title: FEBS Lett – volume: 169 start-page: 1469 year: 2015 end-page: 1487 article-title: Posttranslational protein modifications in plant metabolism publication-title: Plant Physiol – volume: 73 start-page: 1097 year: 2019 end-page: 1114 article-title: Co‐translational, post‐translational, and non‐catalytic roles of N‐terminal acetyltransferases publication-title: Mol Cell – volume: 145 start-page: 1144 year: 2007 end-page: 1154 article-title: Recombinational cloning with plant gateway vectors publication-title: Plant Physiol – volume: 11 start-page: 319 year: 2014 end-page: 324 article-title: Minimal, encapsulated proteomic‐sample processing applied to copy‐number estimation in eukaryotic cells publication-title: Nat Methods – volume: 11 start-page: 1132 year: 2020 article-title: High‐resolution snapshots of human N‐myristoyltransferase in action illuminate a mechanism promoting N‐terminal Lys and Gly myristoylation publication-title: Nat Commun – volume: 6 start-page: 786 year: 2009 end-page: 787 article-title: Improved visualization of protein consensus sequences by iceLogo publication-title: Nat Methods – volume: 41 start-page: 2528 year: 2009 end-page: 2537 article-title: Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells publication-title: Int J Biochem Cell B – volume: 6 start-page: 7640 year: 2015 article-title: Downregulation of N‐terminal acetylation triggers ABA‐mediated drought responses in publication-title: Nat Commun – volume: 13 start-page: 731 year: 2016b end-page: 740 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods – volume: 114 start-page: 134 year: 2015 end-page: 146 article-title: N‐terminal protein modifications: bringing back into play the ribosome publication-title: Biochimie – volume: 11 start-page: 1067 year: 2020 article-title: NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle publication-title: Nat Commun – volume: 155 start-page: 1769 year: 2011 end-page: 1778 article-title: Lysine acetylation is a widespread protein modification for diverse proteins in publication-title: Plant Physiol – volume: 148 start-page: 1354 year: 2008 end-page: 1367 article-title: Comparative analyses of complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a publication-title: Plant Physiol – volume: 15 start-page: 2426 year: 2015 end-page: 2435 article-title: Molecular identification and functional characterization of the first Nalpha‐acetyltransferase in plastids by global acetylome profiling publication-title: Proteomics – volume: 1847 start-page: 1539 year: 2015 end-page: 1548 article-title: The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI‐LHCII supercomplex in during state transitions publication-title: Biochim Biophys Acta – year: 2016 – volume: 116 start-page: 3752 year: 2019 end-page: 3757 article-title: YfmK is an N(epsilon)‐lysine acetyltransferase that directly acetylates the histone‐like protein HBsu in publication-title: Proc Natl Acad Sci USA – volume: 43 start-page: W543 year: 2015 end-page: W546 article-title: The iceLogo web server and SOAP service for determining protein consensus sequences publication-title: Nucleic Acids Res – volume: 7 start-page: 497 year: 1999 end-page: 507 article-title: Crystal structure of an aminoglycoside 6′‐N‐acetyltransferase: defining the GCN5‐related N‐acetyltransferase superfamily fold publication-title: Structure – volume: 1653 start-page: 65 year: 2017 end-page: 81 article-title: Dimethyl‐labeling‐based quantification of the lysine acetylome and proteome of plants publication-title: Methods Mol Biol – volume: 41 start-page: 746 year: 2016 end-page: 760 article-title: First things first: vital protein marks by N‐terminal acetyltransferases publication-title: Trends Biochem Sci – volume: 7 start-page: 218 year: 2016 article-title: Proton gradients and proton‐dependent transport processes in the chloroplast publication-title: Front Plant Sci – volume: 20 start-page: 1098 year: 2013 end-page: 1105 article-title: Molecular basis for N‐terminal acetylation by the heterodimeric NatA complex publication-title: Nat Struct Mol Biol – volume: 84 start-page: 843 year: 1996 end-page: 851 article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation publication-title: Cell – volume: 8 start-page: e58681 year: 2013 article-title: Identification and analysis of the acetylated status of poplar proteins reveals analogous N‐terminal protein processing mechanisms with other eukaryotes publication-title: PLoS ONE – volume: 386 start-page: 433 year: 2005 end-page: 443 article-title: Identification and characterization of the human ARD1‐NATH protein acetyltransferase complex publication-title: Biochem J – year: 2020 article-title: NAA50 is an enzymatically active Nα‐acetyltransferase that is crucial for the development and regulation of stress responses publication-title: Plant Physiol – volume: 111 start-page: 709 year: 2002 end-page: 720 article-title: Regulation and destabilization of HIF‐1alpha by ARD1‐mediated acetylation publication-title: Cell – volume: 11 start-page: 1361 year: 2020 article-title: How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass‐spectrometry publication-title: Nat Commun – volume: 99 start-page: 176 year: 2019 end-page: 194 article-title: Diurnal changes in concerted plant protein phosphorylation and acetylation in organs and seedlings publication-title: Plant J – volume: 537 start-page: 347 year: 2016 end-page: 355 article-title: Mass‐spectrometric exploration of proteome structure and function publication-title: Nature – volume: 17 start-page: E1018 year: 2016 article-title: Structure and functional diversity of GCN5‐related N‐acetyltransferases (GNAT) publication-title: Int J Mol Sci – volume: 433 start-page: 212 year: 2005 end-page: 226 article-title: Structure and functions of the GNAT superfamily of acetyltransferases publication-title: Arch Biochem Biophys – volume: 110 start-page: 14652 year: 2013 end-page: 14657 article-title: Implications for the evolution of eukaryotic amino‐terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: e02708 year: 2019a end-page: 18 article-title: Mechanisms, detection, and relevance of protein acetylation in prokaryotes publication-title: mBio – volume: 43 start-page: W389 year: 2015 end-page: W394 article-title: JPred4: a protein secondary structure prediction server publication-title: Nucleic Acids Res – volume: 15 start-page: 2385 year: 2015 end-page: 2401 article-title: N‐terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects publication-title: Proteomics – volume: 1864 start-page: 531 year: 2016 end-page: 550 article-title: The intriguing realm of protein biogenesis: facing the green co‐translational protein maturation networks publication-title: Biochim Biophys Acta – volume: 14 start-page: 671 year: 2018 article-title: Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern publication-title: Nat Chem Biol – volume: 8 start-page: 2809 year: 2008 end-page: 2831 article-title: Extent of N‐terminal modifications in cytosolic proteins from eukaryotes publication-title: Proteomics – volume: 17 start-page: 398 year: 2016 end-page: 402 article-title: Investigating deformylase and deacylase activity of mammalian and bacterial sirtuins publication-title: ChemBioChem – volume: 24 start-page: 917 year: 2019 end-page: 926 article-title: N‐degron pathways in plastids publication-title: Trends Plant Sci – volume: 5 start-page: 16 year: 2009 article-title: Tape‐ Sandwich ‐ a simpler protoplast isolation method publication-title: Plant Methods – volume: 57 start-page: 418 year: 2014 end-page: 426 article-title: Cloning of serotonin N‐acetyltransferase and its role with caffeic acid O‐methyltransferase in the biosynthesis of melatonin despite their different subcellular localizations publication-title: J Pineal Res – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of publication-title: Plant J – volume: 5 start-page: 5176 year: 2014 article-title: NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2 publication-title: Nat Commun – volume: 45 start-page: 619 year: 2020 end-page: 632 article-title: Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution publication-title: Trends Biochem Sci – volume: 13 start-page: e0204687 year: 2018 article-title: Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity publication-title: PLoS ONE – volume: 115 start-page: 4399 year: 2018 end-page: 4404 article-title: NAA80 is actin's N‐terminal acetyltransferase and regulates cytoskeleton assembly and cell motility publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 15 year: 2009a article-title: A novel human NatA Nalpha‐terminal acetyltransferase complex: hNaa16p‐hNaa10p (hNat2‐hArd1) publication-title: BMC Biochem – volume: 9 start-page: e102348 year: 2014 article-title: Structural characterization of a Gcn5‐related N‐acetyltransferase from publication-title: PLoS ONE – volume: 106 start-page: 8157 year: 2009b end-page: 8162 article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N‐terminal acetyltransferases from yeast and humans publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 1547 year: 2015 end-page: 1562 article-title: Two N‐terminal acetyltransferases antagonistically regulate the stability of a nod‐like receptor in publication-title: Plant Cell – volume: 13 start-page: 949 year: 2017 article-title: Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in publication-title: Mol Syst Biol – volume: 26 start-page: 1367 year: 2008 end-page: 1372 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol – volume: 408 start-page: 613 year: 2000 end-page: 615 article-title: The PSI‐H subunit of photosystem I is essential for state transitions in plant photosynthesis publication-title: Nature – volume: 3 start-page: e1994 year: 2008 article-title: Sorting signals, N‐terminal modifications and abundance of the chloroplast proteome publication-title: PLoS ONE – volume: 69 start-page: 4555 year: 2018 end-page: 4568 article-title: N‐terminal acetylation: an essential protein modification emerges as an important regulator of stress responses publication-title: J Exp Bot – volume: 29 start-page: 81 year: 2000 end-page: 103 article-title: GCN5‐related N‐acetyltransferases: a structural overview publication-title: Annu Rev Biophys Biomol Struct – volume: 15 start-page: 2503 year: 2015 end-page: 2518 article-title: Proteome‐wide analysis of the amino terminal status of proteins at the steady‐state and upon deformylation inhibition publication-title: Proteomics – volume: 45 start-page: D1100 year: 2017 end-page: D1106 article-title: The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition publication-title: Nucleic Acids Res – volume: 280 start-page: 5570 year: 2013 end-page: 5581 article-title: Structure and mechanism of non‐histone protein acetyltransferase enzymes publication-title: FEBS J – volume: 62 start-page: 215 year: 2010 end-page: 223 article-title: ASKtheta, a group‐III GSK3, functions in the brassinosteroid signalling pathway publication-title: Plant J – volume: 1305 start-page: 107 year: 2015 end-page: 121 article-title: Identification of lysine‐acetylated mitochondrial proteins and their acetylation sites publication-title: Methods Mol Biol – volume: 35 start-page: D213 year: 2007 end-page: D218 article-title: SUBA: the subcellular database publication-title: Nucleic Acids Res – volume: 6 start-page: 21304 year: 2016 article-title: Absence of N‐terminal acetyltransferase diversification during evolution of eukaryotic organisms publication-title: Sci Rep – volume: 18 start-page: 646 year: 2017 end-page: 657 article-title: Golgi 1,4‐fucosyltransferase of partially localizes at the nuclear envelope publication-title: Traffic – volume: 7 start-page: 63306 year: 2016 end-page: 63323 article-title: MetAP1 and MetAP2 drive cell selectivity for a potent anti‐cancer agent in synergy, by controlling glutathione redox state publication-title: Oncotarget – volume: 9 start-page: 7 year: 2008 end-page: 20 article-title: Structure of an acetyl‐CoA binding protein from representing a novel subfamily of GCN5‐related N‐acetyltransferase‐like proteins publication-title: J Struct Funct Genomics – volume: 24 start-page: 1044 year: 2016 end-page: 1056 article-title: Crystal structure of the golgi‐associated human N alpha‐acetyltransferase 60 reveals the molecular determinants for substrate‐specific acetylation publication-title: Structure – volume: 169 start-page: 1881 year: 2015 end-page: 1896 article-title: The chloroplast stromal N‐terminome: complexities of amino‐terminal protein maturation and stability publication-title: Plant Physiol – volume: 36 start-page: D245 year: 2008 end-page: D249 article-title: The 20 years of PROSITE publication-title: Nucleic Acids Res – volume: 286 start-page: 37002 year: 2011 end-page: 37010 article-title: Structure of a ternary Naa50p (NAT5/SAN) N‐terminal acetyltransferase complex reveals the molecular basis for substrate‐specific acetylation publication-title: J Biol Chem – volume: 7 start-page: e1002169 year: 2011 article-title: NatF contributes to an evolutionary shift in protein N‐terminal acetylation and is important for normal chromosome segregation publication-title: PLoS Genet – volume: 30 start-page: 1695 year: 2018 end-page: 1709 article-title: Chloroplast acetyltransferase NSI is required for state transitions in publication-title: Plant Cell – volume: 44 start-page: 39 year: 2011 end-page: 50 article-title: HAT4, a golgi apparatus‐anchored B‐type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly publication-title: Mol Cell – volume: 11 start-page: 1734 year: 2011 end-page: 1750 article-title: Dynamics of post‐translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts publication-title: Proteomics – volume: 9 start-page: e01905 year: 2018 end-page: e01918 article-title: Identification of novel protein lysine acetyltransferases in publication-title: mBio – volume: 22 start-page: 448 year: 2011 end-page: 456 article-title: A novel acetylation of beta‐tubulin by San modulates microtubule polymerization via down‐regulating tubulin incorporation publication-title: Mol Biol Cell – volume: 23 start-page: 2947 year: 2007 end-page: 2948 article-title: Clustal W and clustal X version 2.0 publication-title: Bioinformatics – volume: 4 start-page: e7451 year: 2009 article-title: Arrest defective‐1 controls tumor cell behavior by acetylating myosin light chain kinase publication-title: PLoS ONE – volume: 284 start-page: 31122 year: 2009 end-page: 31129 article-title: Human Naa50p (Nat5/San) displays both protein Nα‐ and Nϵ‐acetyltransferase activity publication-title: J Biol Chem – volume: 182 start-page: 792 year: 2020 end-page: 806 article-title: NatB‐mediated N‐terminal acetylation affects growth and abiotic stress responses publication-title: Plant Physiol – volume: 34 start-page: D247 year: 2006 end-page: D251 article-title: Pfam: clans, web tools and services publication-title: Nucleic Acids Res – volume: 34 start-page: 104 year: 2016 end-page: 110 article-title: The quantitative and condition‐dependent proteome publication-title: Nat Biotechnol – year: 2020 article-title: Plants evolved a plasma membrane anchored N‐acetyltransferase required for the adaption to high salt stress and post‐translational acetylation of plasmodesmata‐localized proteins publication-title: New Phytol – volume: 19 start-page: 364 year: 2018 end-page: 374 article-title: FIH permits NAA10 to catalyze the oxygen‐dependent lysyl‐acetylation of HIF‐1alpha publication-title: Redox Biol – volume: 35 start-page: 1547 year: 2018 end-page: 1549 article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms publication-title: Mol Biol Evol – volume: 11 start-page: M111.015131 year: 2012 article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N‐alpha‐acetylation features publication-title: Mol Cell Proteomics – volume: 10 start-page: 1604 year: 2019b article-title: Post‐translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions publication-title: Front Microbiol – volume: 217 start-page: 6 year: 1989 end-page: 12 article-title: Efficient transformation of using direct gene transfer to protoplasts publication-title: Mol Gen Genet – volume: 6 start-page: e24713 year: 2011 article-title: The human N‐alpha‐acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N‐terminally acetylates histones H2A and H4 publication-title: PLoS ONE – volume: 77 start-page: 998 year: 2013 end-page: 1007 article-title: Potential involvement of N‐terminal acetylation in the quantitative regulation of the epsilon subunit of chloroplast ATP synthase under drought stress publication-title: Biosci Biotechnol Biochem – volume: 8 start-page: e74483 year: 2013 article-title: Proteomic amino‐termini profiling reveals targeting information for protein import into complex plastids publication-title: PLoS ONE – volume: 18 start-page: 182 year: 2017b article-title: EnCOUNTer: a parsing tool to uncover the mature N‐terminus of organelle‐targeted proteins in complex samples publication-title: BMC Bioinformatics – volume: 1864 start-page: 1372 year: 2016 end-page: 1401 article-title: The world of protein acetylation publication-title: Biochim Biophys Acta – ident: e_1_2_9_77_1 doi: 10.1038/nsmb.2636 – ident: e_1_2_9_96_1 doi: 10.1038/nbt.3418 – ident: e_1_2_9_86_1 doi: 10.1016/j.tibs.2020.03.007 – ident: e_1_2_9_111_1 doi: 10.1105/tpc.15.00173 – ident: e_1_2_9_55_1 doi: 10.1271/bbb.120945 – ident: e_1_2_9_107_1 doi: 10.1016/j.abb.2004.09.003 – ident: e_1_2_9_90_1 doi: 10.1038/srep21304 – ident: e_1_2_9_104_1 doi: 10.1111/tpj.14315 – ident: e_1_2_9_114_1 doi: 10.1371/journal.pone.0001994 – ident: e_1_2_9_70_1 doi: 10.1093/bioinformatics/btm404 – ident: e_1_2_9_82_1 doi: 10.1038/35046121 – ident: e_1_2_9_37_1 doi: 10.1073/pnas.1718336115 – ident: e_1_2_9_66_1 doi: 10.1007/s11120-020-00711-4 – ident: e_1_2_9_8_1 doi: 10.1042/BJ20041071 – ident: e_1_2_9_51_1 doi: 10.15252/msb.20177819 – ident: e_1_2_9_49_1 doi: 10.1016/j.biochi.2014.11.008 – ident: e_1_2_9_5_1 doi: 10.1016/j.molcel.2019.02.007 – ident: e_1_2_9_12_1 doi: 10.1074/mcp.M111.015131 – ident: e_1_2_9_95_1 doi: 10.3390/ijms17071018 – ident: e_1_2_9_39_1 doi: 10.1111/j.1365-2958.1991.tb00770.x – ident: e_1_2_9_112_1 doi: 10.1016/j.molcel.2011.07.032 – ident: e_1_2_9_11_1 doi: 10.1002/pmic.201000634 – ident: e_1_2_9_99_1 doi: 10.1093/nar/gks1067 – ident: e_1_2_9_62_1 doi: 10.1104/pp.107.106989 – ident: e_1_2_9_78_1 doi: 10.1073/pnas.1310365110 – ident: e_1_2_9_33_1 doi: 10.1093/nar/gkw936 – volume: 169 start-page: 1469 year: 2015 ident: e_1_2_9_46_1 article-title: Posttranslational protein modifications in plant metabolism publication-title: Plant Physiol – ident: e_1_2_9_6_1 doi: 10.1038/s41467-020-15184-1 – ident: e_1_2_9_110_1 doi: 10.1016/S0969-2126(99)80066-5 – ident: e_1_2_9_67_1 doi: 10.1093/nar/gkw978 – ident: e_1_2_9_80_1 doi: 10.1371/journal.pone.0058681 – ident: e_1_2_9_41_1 doi: 10.1074/jbc.M109.001347 – ident: e_1_2_9_26_1 doi: 10.1091/mbc.E10-03-0203 – ident: e_1_2_9_7_1 doi: 10.1104/pp.20.00222 – ident: e_1_2_9_50_1 doi: 10.1007/978-1-4939-2639-8_7 – ident: e_1_2_9_14_1 doi: 10.1007/978-1-4939-6850-3_3 – ident: e_1_2_9_13_1 doi: 10.1002/pmic.201500027 – volume: 169 start-page: 2874 year: 2015 ident: e_1_2_9_81_1 article-title: Phosphorylation of the light‐harvesting complex II isoform Lhcb2 is central to state transitions publication-title: Plant Physiol – ident: e_1_2_9_23_1 doi: 10.1128/mBio.01905-18 – ident: e_1_2_9_74_1 doi: 10.1093/jxb/ery241 – ident: e_1_2_9_22_1 doi: 10.1016/j.molbiopara.2008.04.011 – ident: e_1_2_9_34_1 doi: 10.1038/s41467-020-14847-3 – ident: e_1_2_9_92_1 doi: 10.1111/tra.12506 – ident: e_1_2_9_48_1 doi: 10.1016/j.molp.2016.03.012 – ident: e_1_2_9_94_1 doi: 10.1111/j.1365-313X.2010.04145.x – ident: e_1_2_9_3_1 doi: 10.1101/021295 – ident: e_1_2_9_56_1 doi: 10.1155/2008/420747 – ident: e_1_2_9_52_1 doi: 10.1093/nar/gkl863 – ident: e_1_2_9_53_1 doi: 10.3389/fpls.2016.00218 – ident: e_1_2_9_44_1 doi: 10.1104/pp.108.127027 – ident: e_1_2_9_18_1 doi: 10.1016/j.bbapap.2015.11.002 – ident: e_1_2_9_40_1 doi: 10.1038/nprot.2007.131 – ident: e_1_2_9_84_1 doi: 10.1074/jbc.M115.709428 – ident: e_1_2_9_88_1 doi: 10.1016/j.febslet.2006.02.012 – ident: e_1_2_9_9_1 doi: 10.1186/1471-2091-10-15 – ident: e_1_2_9_65_1 doi: 10.1105/tpc.18.00155 – ident: e_1_2_9_4_1 doi: 10.1016/j.tibs.2016.07.005 – ident: e_1_2_9_19_1 doi: 10.1016/S0092-8674(00)81063-6 – ident: e_1_2_9_69_1 doi: 10.1093/molbev/msy096 – ident: e_1_2_9_108_1 doi: 10.1186/1746-4811-5-16 – ident: e_1_2_9_83_1 doi: 10.1093/nar/gkv385 – ident: e_1_2_9_64_1 doi: 10.1038/s41467-020-14893-x – ident: e_1_2_9_2_1 doi: 10.1038/nature19949 – ident: e_1_2_9_102_1 doi: 10.1038/nprot.2016.136 – ident: e_1_2_9_31_1 doi: 10.1016/j.bbabio.2015.09.005 – ident: e_1_2_9_29_1 doi: 10.1007/s10969-008-9041-z – ident: e_1_2_9_109_1 doi: 10.1104/pp.110.165852 – ident: e_1_2_9_68_1 doi: 10.1038/nmeth.2834 – ident: e_1_2_9_100_1 doi: 10.1371/journal.pone.0102348 – ident: e_1_2_9_21_1 doi: 10.1038/s41589-018-0077-5 – ident: e_1_2_9_57_1 doi: 10.1104/pp.19.00792 – ident: e_1_2_9_20_1 doi: 10.1073/pnas.1815511116 – ident: e_1_2_9_24_1 doi: 10.1128/mBio.02708-18 – ident: e_1_2_9_27_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_9_42_1 doi: 10.1104/pp.110.171595 – volume: 169 start-page: 1881 year: 2015 ident: e_1_2_9_93_1 article-title: The Arabidopsis chloroplast stromal N‐terminome: complexities of amino‐terminal protein maturation and stability publication-title: Plant Physiol – ident: e_1_2_9_106_1 doi: 10.1002/pmic.201400619 – ident: e_1_2_9_25_1 doi: 10.3389/fmicb.2019.01604 – ident: e_1_2_9_72_1 doi: 10.1111/jpi.12181 – ident: e_1_2_9_45_1 doi: 10.1111/febs.12373 – ident: e_1_2_9_63_1 doi: 10.1016/j.mito.2014.03.004 – ident: e_1_2_9_91_1 doi: 10.1371/journal.pone.0204687 – ident: e_1_2_9_97_1 doi: 10.1002/cbic.201500611 – ident: e_1_2_9_17_1 doi: 10.1016/j.tplants.2019.06.013 – ident: e_1_2_9_61_1 doi: 10.1016/j.redox.2018.09.002 – ident: e_1_2_9_15_1 doi: 10.1186/s12859-017-1595-y – ident: e_1_2_9_60_1 doi: 10.1016/S0092-8674(02)01085-1 – ident: e_1_2_9_73_1 doi: 10.1038/ncomms8640 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.0901931106 – ident: e_1_2_9_85_1 doi: 10.1002/pmic.200701191 – ident: e_1_2_9_28_1 doi: 10.1038/nmeth1109-786 – ident: e_1_2_9_30_1 doi: 10.1038/nbt.1511 – ident: e_1_2_9_38_1 doi: 10.1093/nar/gkv332 – ident: e_1_2_9_16_1 doi: 10.1105/tpc.111.092882 – ident: e_1_2_9_101_1 doi: 10.1016/j.str.2016.04.020 – ident: e_1_2_9_58_1 doi: 10.1371/journal.pone.0074483 – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_9_89_1 – ident: e_1_2_9_47_1 doi: 10.18632/oncotarget.11216 – ident: e_1_2_9_36_1 doi: 10.1016/j.bbapap.2016.06.007 – ident: e_1_2_9_113_1 doi: 10.1038/ncomms6176 – ident: e_1_2_9_98_1 doi: 10.1371/journal.pone.0007451 – ident: e_1_2_9_76_1 doi: 10.1074/jbc.M111.282863 – ident: e_1_2_9_71_1 doi: 10.1007/978-1-4939-7225-8_5 – ident: e_1_2_9_79_1 doi: 10.1016/j.biocel.2009.08.009 – ident: e_1_2_9_87_1 doi: 10.1021/cb500853p – ident: e_1_2_9_103_1 doi: 10.1038/nmeth.3901 – ident: e_1_2_9_35_1 doi: 10.1002/pmic.201500025 – ident: e_1_2_9_75_1 doi: 10.1111/nph.16747 – ident: e_1_2_9_43_1 doi: 10.1093/nar/gkj149 – ident: e_1_2_9_54_1 doi: 10.1371/journal.pone.0024713 – ident: e_1_2_9_59_1 doi: 10.1093/nar/gkm977 – ident: e_1_2_9_32_1 doi: 10.1007/BF00330935 – ident: e_1_2_9_105_1 doi: 10.1371/journal.pgen.1002169 |
SSID | ssj0038182 |
Score | 2.5263464 |
Snippet | Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and... Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and... Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-a-acetylation (NTA) and... Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation ( NTA )... Abstract Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation... |
SourceID | doaj pubmedcentral hal proquest crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e9464 |
SubjectTerms | Acetylation acetylome Acetyltransferase Biochemistry, Molecular Biology Cellular Biology Chloroplasts Complexity co‐ and post‐translational modifications Deactivation EMBO30 EMBO31 EMBO56 Enzymatic activity Enzymes Genomes Genomics In vivo methods and tests Inactivation Life Sciences Localization Lysine Mass spectrometry Mass spectroscopy Peptides Phylogenetics plastid Plastids Prokaryotes Proteins Quantitative Methods quantitative proteomics Selectivity Structural Biology Subcellular Processes Vegetal Biology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCAqIQKkMQnAhauL4ER9boFoh2gtU6s3yK-pKS1rtA7W3_gR-Y39JZ5xkaZAWLlyiVWbijWbGmc_J-BtC3lahDoI7keOuyJzHOuRaBojlCPkc81kT8NXA0bGcnPAvp-L0TqsvrAnr6IE7w-0FJh0vnYUD58I1uDHSed44q0PhWGIChZw3LKa6ZzCmIdYzagom2N6PhYO1IChyyUcZKBH1Q145wzLIOxjzzwrJ9WfSMYhNWejwEXnYw0e63932Y3IvttvkftdQ8uoJaT6tQIosI22ktg30-Ob6V1_vMqPWx-XVbJmgapxD-lpQJHACCaBAmorL4yWgcooby-YX09TNiCYmh2nbX50c-ZScHH7-_nGS950Uci91zfPKlhLRlFWaNRpfpgnplCtCDEFariUatYxBuRogHKg0rlAhNLVnsFzStnpGttrzNj4ntIiqUlr5wsOFZe2dCDwIV1feQzgokZEPg3WN72nGsdvFzOByA51hwBlmcEZG3q3VLzp-jU2KB-iqtRLSYqcTECymDxbzr2DJyBtw9GiMyf5Xg-cKppG1ufxZZmRniAPTT-iFASRTa1j7KbVBzBVD3iSWkddrMcxU_Pxi23i-SkNAYoEMUWREjcJrdENjSTs9S5zfqgIgW8Do74dA_P3nG-yVpzj9u1XN0beD7teL_2Hfl-QBjtyVM--QreV8FV8BaFu63TQ_bwH5zj-2 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmE4ELUxLHj-IRaoFoh2gtU2psVP0JXWrLLPhC98RP4jfwSZhwnJUjbSxTFj-x6xplv7PE3hLwsXOUENyLFU5Ep95VLVelAlz3Yc7RnjcOlgZPTcnLGP07FNC64rWNYZf9NDB9qt7C4Rn4ApqRSAL6lfLv8nmLWKNxdjSk0rpMbSF2GIV1yOjhcaIxY5NUUTLCDb2sDHiEDj6bkIzsU6PrBupxjMOQ_SPP_OMlhs3QMZYMtOr5DbkcQSQ87qd8l13x7j9zs0kpe3CfN-y2UItdI62ndOnr659fvGPUyp7X1m4v5JgBWvwIjtqZI4wQlgAVpCDH3PwGbUzxetlrOQk4jGvgcZm1sHcT5gJwdf_jybpLGfAqpLVXF06LOS8RUtVSsUbikJkojTea8c2XNVZnn0uTeSVMBkIMqjcmkc01lGThNqi4ekr120fpHhGZeFlJJm1lomFfWCMedMFVhLSiFFAl504-utpFsHHNezDU6HSgMDcLQvTAS8mqovuxYNnZVPEJRDZWQHDs8WKy-6jjXtGOl4bmp4cK5MA2epTWWN6ZWLjMMOnkBgh71MTn8pPFZxhRyN-c_8oTs93qg47Re60sl3FHMJUP2JJaQ50MxzFfchKlbv9iGLsC8gJ3IEiJH6jX6QeOSdnYemL9lAXA2g95f94p4-fId45UGPb16VPXJ56Pu7vHV__oJuYVtunDlfbK3WW39UwBlG_MszLy_h_w2mw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCIkL4ilCCzIIwYWIxPEjPrYL1QrRXqBSb5ZfUVda0mofqL3xE_iN_BJmnGRpQIu4RFHGnl15xplv4vFnQl5VoQ6CO5HjrsicxzrkWgbw5QjxHONZE_DTwNGxnJ7wj6fitC-iwb0w19fvBRPs3delgyyOQRYi-U1yS5SVROedyMnwwsWYw3r6zL-6jMJNYuWHIHKGNY_XAOWf5ZCbNdExYk0h5_AeudtjRbrfGfc-uRHbB-R2d3rk1UPSvF-DFClF2khtG-jxz-8_-uKWObU-rq7mq4RL4wJi1ZIiWxNIAPLRVEkeLwGCU9xFtriYpaOLaKJtmLV972S1R-Tk8MOXyTTvj03IvdQ1zytbSoROVmnWaPxyJqRTrggxBGm5lmWpXBmDcjXgNWjSuEKF0NSeQW6kbfWY7LTnbXxCaBFVpbTyhYeOZe2dCDwIV1feg-2VyMjbYXSN7znF8WiLucHcAo1hwBhmMEZGXm-aX3RkGtsaHqCpNo2QAzs9ANcw_ZQygUnHS2fhwrlwDW6ZdZ43zupQOAZKXoKhRzqm-58MPiuYRorm8luZkb3BD0w_e5cGYEutIdFTaouYK4YkSSwjLzZimJa41mLbeL5OKiCKQDgoMqJG7jX6Q2NJOztLBN-qAtRagPY3gyP-_vEt45UnP_33qJqjzwfd3dP_1rxL7uBtV6C8R3ZWi3V8BjBs5Z6nSfgLbGst5A priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB60IvgiXjG2ShTRF4PJZDKTeWzVsogtghb6NswtdmHNlr2U9q0_wd_YX9JzJpPYCCv4sixz22XOOTnfmcz5DiFvSle7ipkqw6zIjPnaZZI70GUP_hz9WePwaODgkE-O2Jfj6jjWOcVcmI4fYjhwQ8sIz2s0cG2WfcUeZA39tTQQ31GITzi7Te5gei2S51P2rX8UozeiXUYky7AuUyTZxAU-3Jw-ckqBux9czQnejLwBO_--NDm8OR3j2uCY9h-Q-xFRprudCjwkt3z7iNztakxePCbNpzX0IvFI61PduvTw6vJ3vAIzS7X1q4vZKqBXvwCPtkyR0wl6ABim4b65PwegnmKu2eJ0GgocpYHcYdrG2UG2T8jR_ucfHydZLK6QWS5rlpW64AiwtJC0kXi-VnEjTO68c1wzyYtCmMI7YWpAdTCkMblwrqkthQhK6vIp2WrnrX9G0tyLUkhhcwsTi9qayjFXmbq0FjREVAl53--uspF5HAtgzBRGICgMBcJQvTAS8nYYftpRbmwauIeiGgYhU3ZomC9-qmh4ylFuWGE0fDBWmQYTa41ljdHS5YbCIq9B0KM1JrtfFbblVCKRc3FWJGSn1wMVbXypANzUEsJBITZ0M0GRSokm5NXQDcaLb2R06-frsAT4GnAaeULESL1Gf2jc005PAg24KAHb5rD6u14R__z4hv3Kgp7-e1fVwfe97tvz_xy_Te5hY3eZeYdsrRZr_wIg28q8DGZ5DVDLOmg priority: 102 providerName: Wiley-Blackwell |
Title | Dual lysine and N‐terminal acetyltransferases reveal the complexity underpinning protein acetylation |
URI | https://link.springer.com/article/10.15252/msb.20209464 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20209464 https://www.proquest.com/docview/2428926077 https://www.proquest.com/docview/2447207812 https://www.proquest.com/docview/2421112190 https://hal.science/hal-02900691 https://pubmed.ncbi.nlm.nih.gov/PMC7339202 https://doaj.org/article/d26b41bab41445bf8117bc4fba9d0b24 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiRe0PgSgVEFhOCFQOI4dvyA0Fo2VYhWE1Cpb1H8ka1SSbe0Ret_z52TZgQo4iVKcrYT-c663_njd4S8jE1qEqaSAE9FBsymJpDcgC1b8OfozwqDUwOjMR9O2KdpMr2hFGo6cPnX0A7zSU2q-dvrq80HGPDvm-w99N33pYJIj0KkwtkeOQCnJHCMjli7oIB-idZnI1mAGZoaus0_qnfck2PxB6dzgXskfwGgv2-fbNdQuwjXuajTQ3K3wZb-cW0M98gtW94nt-tsk5sHxHxcgxQpSErr56Xxx0GzFWbu59quNvOVQ7G2As-29JHbCSQAEH2379xeA2D38cxZdTlziY58R_IwK5vaTscPyeT05NtgGDRJFgLNZcqCOI84Aq1cSFpInGdLuBIqNNYYnjPJo0ioyBqhUkB3UKRQoTCmSDWFSErm8SOyXy5K-5j4oRWxkEKHGipGqVaJYSZRaaw1WIpIPPJm27eZbhjIMRHGPMNIBFWRgSqyrSo88qotfllTb-wq2EdFtYWQMdu9WFTnWTMAM0O5YpHK4cJYogo8YKs0K1QuTagoNPIC1NxpY3j8OcN3IZVI6Bz9iDxytLWCbGuqGYCcVEJYKMQOMRMUKZWoR563YhjEuDKTl3axdk2AzwHnEXpEdIyr80NdSTm7cHTgIgaMG0Lrr7dmePPxHf0VOCv9d69mo6_9-u7Jf_z3U3IHK9YbmY_I_qpa22cA11aqR_YoO4OrmIoeOeifjM--wNOAD3puAqTnBupPPAxAXg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiKcIFDCIxwWr9nrXax8QamirlCYRglbqbet9mEYKTsgDyI2fwC_hR_FLmFnbKUZKb71EkWd3nOzM7szszn5DyPPIJIYzxX28Fekzmxg_jQ3osgV7jvYsN7g10B_E3WP2_oSfbJDf9V0YTKus10S3UJuxxj3ybTAlSQrOtxBvJ199rBqFp6t1CY1SLQ7t8juEbLM3B7sg3xeU7u8dvev6VVUBX8dpwvwoC2P0LDKR0jzFjSUeK6ECY42JM5bGYShUaI1QCbgz0CRXgTAmTzSF0CHNIuB7hWyyCEKZFtns7A0-fKzXfjR_tELy5JTT7S8zBTEohRgqZg3L5woEgD07w_TLf3zb_zMzV8ezTefZWb_9m-RG5bZ6O6We3SIbtrhNrpaFLJd3SL67ACqimxTWywrjDf78_FXl2Yy8TNv5cjR3LrKdgtmceQgcBRTwPj2X1G5_QDTg4YW26WToqih5DkFiWFS9nQLdJceXMtb3SKsYF_Y-8QIrIpEKHWjoGCZaccMMV0mkNaih4G3yuh5dqSt4c6yyMZIY5qAwJAhD1sJok5er5pMS12Ndww6KatUI4bjdg_H0s6xmtzQ0VixUGXwwxlWOt3eVZrnKUhMoCkyegaAbPLo7PYnPApoiWnT4LWyTrVoPZLWQzOS52q8hM0ERr4m2ydMVGVYIPPbJCjteOBZg0MAyBW0iGurV-EFNSjE8c1jjIgIHOgDur2pFPH_5mvHynZ5ePKqy_6lTfntw8b9-Qq51j_o92TsYHD4k17F_mSy9RVrz6cI-Apdwrh5X89Ajp5c99f8CWM9zig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELfGJhAviL8iMCAgBC9ESxwntsVTx6hK2SqkMWlvVvwnrFJJqzZF7I2PwGfkk3DnJIWAinipKp_tVL5z73fx3c-EPE-tsBnTWYRVkRFzwkYyt2DLDvw5-rPS4quBk0k-OmPj8-x8h7zuamF8tnt3JNnUNCBLU1UfLGzZ3ddDDz6vNMR2FGKTnF0heyKPBURee4PB-HTc_RGjL6ItreZfg3puyLP1g3O5wFzI34Dmn2mSm7PSPpL1rmh4k9xoMWQ4aJR-i-y46ja52twqeXmHlEdrkCLVSOXCorLh5Me3723SyywsjKsvZ7XHq24JPmwVIosTSAAKhj7D3H0FaB5iddlyMfVXGoWezmFataO9Nu-Ss-Hbj29GUXudQmRyKViUFkmOkKrgkpYS36hlueY6ts7avGAyTxKuE2e5FoDjoEupY25tKQyFmEkW6T2yW80rd5-EseMpl9zEBgYmwujMMptpkRoDNsGzgLzqVleZlmscr7yYKYw5UBkKlKE6ZQTkxab7oiHZ2NbxEFW16YTc2L5hvvyk2q2mLM01S3QBH4xlusRSWm1YqQtpY01hkmeg6N4co8GxwraYSqRuTr4kAdnv7EC1u3qlAM4ICQEg51vEjFMkT6IBeboRw3bFM5iicvO1nwK8C7iJOCC8Z169H9SXVNMLT_zNU0CzMcz-sjPEXw_fsl6Rt9N_r6o6OT1svj3475mfkGsfjobq-N3k_UNyHVubHOZ9slsv1-4RILVaP2535E-7ljp_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+lysine+and+N-terminal+acetyltransferases+reveal+the+complexity+underpinning+protein+acetylation&rft.jtitle=Molecular+systems+biology&rft.au=Bienvenut%2C+Willy+V&rft.au=Br%C3%BCnje%2C+Annika&rft.au=Boyer%2C+Jean-Baptiste&rft.au=M%C3%BChlenbeck%2C+Jens+S&rft.date=2020-07-01&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=16&rft.issue=7&rft.spage=e9464&rft_id=info:doi/10.15252%2Fmsb.20209464&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |