Dual lysine and N‐terminal acetyltransferases reveal the complexity underpinning protein acetylation

Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility t...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 16; no. 7; pp. e9464 - n/a
Main Authors Bienvenut, Willy V, Brünje, Annika, Boyer, Jean‐Baptiste, Mühlenbeck, Jens S, Bernal, Gautier, Lassowskat, Ines, Dian, Cyril, Linster, Eric, Dinh, Trinh V, Koskela, Minna M, Jung, Vincent, Seidel, Julian, Schyrba, Laura K, Ivanauskaite, Aiste, Eirich, Jürgen, Hell, Rüdiger, Schwarzer, Dirk, Mulo, Paula, Wirtz, Markus, Meinnel, Thierry, Giglione, Carmela, Finkemeier, Iris
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2020
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N ‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo . In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Synopsis A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N ‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities. An in silico search for putative plastidial N‐terminal and lysine acetyltransferases reveals 10 putative GNAT candidates, showing unique features both at the level of the conserved motifs and key residues. Localization to chloroplasts is confirmed for seven of them, while another one is either associated to chloroplasts or localized within the nucleus. All plastid‐associated GNATs display distinct lysine acetyltransferase and relaxed N‐ terminal acetyltransferase substrate specificities. Inactivation of GNAT2, the plastid GNAT involved in photosynthetic state transitions, results in NTA decreases confined to chloroplast proteins, next to the known decreases on photosynthetic KA target proteins. Graphical Abstract A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N ‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities.
AbstractList Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N ‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo . In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Synopsis A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N ‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities. An in silico search for putative plastidial N‐terminal and lysine acetyltransferases reveals 10 putative GNAT candidates, showing unique features both at the level of the conserved motifs and key residues. Localization to chloroplasts is confirmed for seven of them, while another one is either associated to chloroplasts or localized within the nucleus. All plastid‐associated GNATs display distinct lysine acetyltransferase and relaxed N‐ terminal acetyltransferase substrate specificities. Inactivation of GNAT2, the plastid GNAT involved in photosynthetic state transitions, results in NTA decreases confined to chloroplast proteins, next to the known decreases on photosynthetic KA target proteins. Graphical Abstract A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N ‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities.
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-a-acetylation (NTA) and e-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA speci-ficities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzy-matic activities.
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation ( NTA ) and ε‐lysine acetylation ( KA ) are known to be catalyzed by distinct families of enzymes ( NAT s and KAT s, respectively), although the possibility that the same GCN 5‐related N ‐acetyltransferase ( GNAT ) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNAT s, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT 2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo . In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNAT s may also possess these previously underappreciated broader enzymatic activities. A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN 5‐related N ‐acetyltransferases ( GNAT s) have unique amino acid sequence characteristics and unambiguously possess dual N ‐α‐ and ε‐lysine acetylation activities.
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities. Synopsis A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N‐α‐ and ε‐lysine acetylation activities. An in silico search for putative plastidial N‐terminal and lysine acetyltransferases reveals 10 putative GNAT candidates, showing unique features both at the level of the conserved motifs and key residues. Localization to chloroplasts is confirmed for seven of them, while another one is either associated to chloroplasts or localized within the nucleus. All plastid‐associated GNATs display distinct lysine acetyltransferase and relaxed N‐ terminal acetyltransferase substrate specificities. Inactivation of GNAT2, the plastid GNAT involved in photosynthetic state transitions, results in NTA decreases confined to chloroplast proteins, next to the known decreases on photosynthetic KA target proteins. A novel protein acetyltransferase family localized or associated to plant plastids is identified and characterised. These GCN5‐related N‐acetyltransferases (GNATs) have unique amino acid sequence characteristics and unambiguously possess dual N‐α‐ and ε‐lysine acetylation activities.
Abstract Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and ε‐lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5‐related N‐acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid‐localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Author Koskela, Minna M
Jung, Vincent
Schyrba, Laura K
Linster, Eric
Ivanauskaite, Aiste
Mulo, Paula
Wirtz, Markus
Finkemeier, Iris
Bernal, Gautier
Schwarzer, Dirk
Hell, Rüdiger
Lassowskat, Ines
Brünje, Annika
Dinh, Trinh V
Mühlenbeck, Jens S
Seidel, Julian
Bienvenut, Willy V
Eirich, Jürgen
Dian, Cyril
Meinnel, Thierry
Boyer, Jean‐Baptiste
Giglione, Carmela
AuthorAffiliation 6 Present address: Génétique Quantitative et Évolution Gif‐sur‐Yvette France
2 Plant Physiology Institute of Plant Biology and Biotechnology University of Muenster Muenster Germany
7 Present address: Institute of Plant Sciences Paris‐Saclay Gif‐sur‐Yvette France
3 Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany
5 Interfaculty Institute of Biochemistry University of Tübingen Tübingen Germany
9 Present address: Institute IMAGINE Paris France
4 Department of Biochemistry Molecular Plant Biology University of Turku Turku Finland
8 Present address: Institute of Microbiology Třeboň Czech Republic
1 Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
AuthorAffiliation_xml – name: 1 Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
– name: 9 Present address: Institute IMAGINE Paris France
– name: 5 Interfaculty Institute of Biochemistry University of Tübingen Tübingen Germany
– name: 6 Present address: Génétique Quantitative et Évolution Gif‐sur‐Yvette France
– name: 8 Present address: Institute of Microbiology Třeboň Czech Republic
– name: 2 Plant Physiology Institute of Plant Biology and Biotechnology University of Muenster Muenster Germany
– name: 4 Department of Biochemistry Molecular Plant Biology University of Turku Turku Finland
– name: 7 Present address: Institute of Plant Sciences Paris‐Saclay Gif‐sur‐Yvette France
– name: 3 Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany
Author_xml – sequence: 1
  givenname: Willy V
  orcidid: 0000-0003-4192-3920
  surname: Bienvenut
  fullname: Bienvenut, Willy V
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay, Génétique Quantitative et Évolution
– sequence: 2
  givenname: Annika
  orcidid: 0000-0002-8979-4606
  surname: Brünje
  fullname: Brünje, Annika
  organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster
– sequence: 3
  givenname: Jean‐Baptiste
  orcidid: 0000-0001-5265-3917
  surname: Boyer
  fullname: Boyer, Jean‐Baptiste
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay
– sequence: 4
  givenname: Jens S
  orcidid: 0000-0003-0204-9580
  surname: Mühlenbeck
  fullname: Mühlenbeck, Jens S
  organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster
– sequence: 5
  givenname: Gautier
  orcidid: 0000-0002-2253-6397
  surname: Bernal
  fullname: Bernal, Gautier
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay, Institute of Plant Sciences Paris‐Saclay
– sequence: 6
  givenname: Ines
  orcidid: 0000-0002-3832-4006
  surname: Lassowskat
  fullname: Lassowskat, Ines
  organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster
– sequence: 7
  givenname: Cyril
  orcidid: 0000-0002-6349-3901
  surname: Dian
  fullname: Dian, Cyril
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay
– sequence: 8
  givenname: Eric
  orcidid: 0000-0001-7963-1400
  surname: Linster
  fullname: Linster, Eric
  organization: Centre for Organismal Studies Heidelberg, University of Heidelberg
– sequence: 9
  givenname: Trinh V
  orcidid: 0000-0003-2808-3541
  surname: Dinh
  fullname: Dinh, Trinh V
  organization: Centre for Organismal Studies Heidelberg, University of Heidelberg
– sequence: 10
  givenname: Minna M
  orcidid: 0000-0002-6363-1470
  surname: Koskela
  fullname: Koskela, Minna M
  organization: Department of Biochemistry, Molecular Plant Biology, University of Turku, Institute of Microbiology
– sequence: 11
  givenname: Vincent
  orcidid: 0000-0003-0530-1737
  surname: Jung
  fullname: Jung, Vincent
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay, Institute IMAGINE
– sequence: 12
  givenname: Julian
  orcidid: 0000-0002-0435-3845
  surname: Seidel
  fullname: Seidel, Julian
  organization: Interfaculty Institute of Biochemistry, University of Tübingen
– sequence: 13
  givenname: Laura K
  orcidid: 0000-0002-0291-9745
  surname: Schyrba
  fullname: Schyrba, Laura K
  organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster
– sequence: 14
  givenname: Aiste
  orcidid: 0000-0002-1149-5243
  surname: Ivanauskaite
  fullname: Ivanauskaite, Aiste
  organization: Department of Biochemistry, Molecular Plant Biology, University of Turku
– sequence: 15
  givenname: Jürgen
  orcidid: 0000-0003-0963-1872
  surname: Eirich
  fullname: Eirich, Jürgen
  organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster
– sequence: 16
  givenname: Rüdiger
  orcidid: 0000-0002-6238-4818
  surname: Hell
  fullname: Hell, Rüdiger
  organization: Centre for Organismal Studies Heidelberg, University of Heidelberg
– sequence: 17
  givenname: Dirk
  orcidid: 0000-0002-7477-3319
  surname: Schwarzer
  fullname: Schwarzer, Dirk
  organization: Interfaculty Institute of Biochemistry, University of Tübingen
– sequence: 18
  givenname: Paula
  orcidid: 0000-0002-8728-3204
  surname: Mulo
  fullname: Mulo, Paula
  organization: Department of Biochemistry, Molecular Plant Biology, University of Turku
– sequence: 19
  givenname: Markus
  orcidid: 0000-0001-7790-4022
  surname: Wirtz
  fullname: Wirtz, Markus
  organization: Centre for Organismal Studies Heidelberg, University of Heidelberg
– sequence: 20
  givenname: Thierry
  orcidid: 0000-0001-5642-8637
  surname: Meinnel
  fullname: Meinnel, Thierry
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay
– sequence: 21
  givenname: Carmela
  orcidid: 0000-0002-7475-1558
  surname: Giglione
  fullname: Giglione, Carmela
  email: carmela.giglione@i2bc.paris-saclay.fr
  organization: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris‐Saclay
– sequence: 22
  givenname: Iris
  orcidid: 0000-0002-8972-4026
  surname: Finkemeier
  fullname: Finkemeier, Iris
  email: iris.finkemeier@uni-muenster.de
  organization: Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster
BackLink https://hal.science/hal-02900691$$DView record in HAL
BookMark eNp9ks-O0zAQxiO0iP0DR-6RuMChxXYcO74gLcvCrlTgAJwtO560rhK72EnZ3ngEnpEnwW26wFawF9ua-X3faDxzmh057yDLnmI0xSUpycsu6ilBBAnK6IPsBHNKJ5QIcvTX-zg7jXGJUFHhijzKjgvCioKy8iRr3gyqzdtNtA5y5Uz-4ef3Hz2EzroUVzX0m7YPysUGgooQ8wBrSJl-AXntu1ULN7bf5IMzEFbWOevm-Sr4Hqzbq1VvvXucPWxUG-HJ_j7Lvry9_HxxNZl9fHd9cT6b1ExUdFIozBBCQnFBGkG5KEqmuUYGjGGKCoYx1xgM1xUqaUIajbgxTVUTTCuhirPsevQ1Xi3lKthOhY30yspdwIe5VKG3dQvSEKYp1iodlJa6qbbeNW20EgZpQpPXq9FrNegOTA0ufUR7x_RuxtmFnPu15EUh0kSSwYvRYHEguzqfyW0MEYEQE3iNE_t8Xyz4rwPEXnY21tC2yoEfoiSUYIwJFiihzw7QpR9CGteWopwgXmFyP0UqQRjiPFHFSNXBxxigkbXtdxNLHdlWYiR3WybTlsnbLUuqyYHqtrv_8XTkv9kWNvfD8v2n179l01EWk8LNIfxp4d91fgFlxfQH
CitedBy_id crossref_primary_10_1093_pcp_pcab076
crossref_primary_10_1111_tpj_16240
crossref_primary_10_1093_plphys_kiae200
crossref_primary_10_1093_pcp_pcad017
crossref_primary_10_1093_jxb_erac290
crossref_primary_10_26508_lsa_202402795
crossref_primary_10_1093_plcell_koae193
crossref_primary_10_3389_fpls_2022_832144
crossref_primary_10_1093_pcp_pcad097
crossref_primary_10_1016_j_mcpro_2024_100845
crossref_primary_10_3390_ijms22158126
crossref_primary_10_1038_s41467_024_48269_2
crossref_primary_10_1093_nar_gkaa1192
crossref_primary_10_1016_j_envexpbot_2022_105003
crossref_primary_10_1016_j_celrep_2024_113768
crossref_primary_10_1093_plphys_kiac096
crossref_primary_10_1093_plphys_kiac173
crossref_primary_10_1016_j_xplc_2021_100266
crossref_primary_10_1093_pcp_pcac096
crossref_primary_10_1093_plphys_kiad509
crossref_primary_10_1016_j_mcpro_2024_100850
crossref_primary_10_1042_BSR20220369
crossref_primary_10_3389_fpls_2022_1040392
crossref_primary_10_3390_ijms232214492
crossref_primary_10_1016_j_tcb_2022_02_004
crossref_primary_10_1093_plcell_koae178
crossref_primary_10_1126_sciadv_abn6153
crossref_primary_10_1093_plphys_kiad572
crossref_primary_10_1111_jipb_13756
crossref_primary_10_1242_jcs_259811
crossref_primary_10_3389_fmolb_2022_840412
crossref_primary_10_1016_j_biochi_2024_07_007
crossref_primary_10_1042_BST20241037
crossref_primary_10_1016_j_tibs_2024_12_012
crossref_primary_10_1021_acs_jproteome_3c00536
crossref_primary_10_3389_fpls_2021_778804
crossref_primary_10_1515_hsz_2021_0139
crossref_primary_10_3390_ijms222111805
crossref_primary_10_1038_s41467_025_55960_5
crossref_primary_10_1016_j_mcpro_2023_100584
crossref_primary_10_1016_j_bbagrm_2023_194977
crossref_primary_10_1016_j_jbc_2022_102824
crossref_primary_10_1016_j_tplants_2020_11_012
crossref_primary_10_1038_s41467_024_53903_0
crossref_primary_10_3389_fmicb_2021_757179
crossref_primary_10_1016_j_ijbiomac_2021_10_192
crossref_primary_10_1111_omi_12452
crossref_primary_10_1038_s41477_022_01253_4
crossref_primary_10_1093_plphys_kiad406
crossref_primary_10_1111_nph_16747
crossref_primary_10_3389_fpls_2021_799954
Cites_doi 10.1111/nph.16747
10.1007/s11120-020-00711-4
10.1101/021295
10.1104/pp.20.00222
10.1038/nsmb.2636
10.1038/nbt.3418
10.1016/j.tibs.2020.03.007
10.1105/tpc.15.00173
10.1271/bbb.120945
10.1016/j.abb.2004.09.003
10.1038/srep21304
10.1111/tpj.14315
10.1371/journal.pone.0001994
10.1093/bioinformatics/btm404
10.1038/35046121
10.1073/pnas.1718336115
10.1042/BJ20041071
10.15252/msb.20177819
10.1016/j.biochi.2014.11.008
10.1016/j.molcel.2019.02.007
10.1074/mcp.M111.015131
10.3390/ijms17071018
10.1111/j.1365-2958.1991.tb00770.x
10.1016/j.molcel.2011.07.032
10.1002/pmic.201000634
10.1093/nar/gks1067
10.1104/pp.107.106989
10.1073/pnas.1310365110
10.1093/nar/gkw936
10.1038/s41467-020-15184-1
10.1016/S0969-2126(99)80066-5
10.1093/nar/gkw978
10.1371/journal.pone.0058681
10.1074/jbc.M109.001347
10.1091/mbc.E10-03-0203
10.1007/978-1-4939-2639-8_7
10.1007/978-1-4939-6850-3_3
10.1002/pmic.201500027
10.1128/mBio.01905-18
10.1093/jxb/ery241
10.1016/j.molbiopara.2008.04.011
10.1038/s41467-020-14847-3
10.1111/tra.12506
10.1016/j.molp.2016.03.012
10.1111/j.1365-313X.2010.04145.x
10.1155/2008/420747
10.1093/nar/gkl863
10.3389/fpls.2016.00218
10.1104/pp.108.127027
10.1016/j.bbapap.2015.11.002
10.1038/nprot.2007.131
10.1074/jbc.M115.709428
10.1016/j.febslet.2006.02.012
10.1186/1471-2091-10-15
10.1105/tpc.18.00155
10.1016/j.tibs.2016.07.005
10.1016/S0092-8674(00)81063-6
10.1093/molbev/msy096
10.1186/1746-4811-5-16
10.1093/nar/gkv385
10.1038/s41467-020-14893-x
10.1038/nature19949
10.1038/nprot.2016.136
10.1016/j.bbabio.2015.09.005
10.1007/s10969-008-9041-z
10.1104/pp.110.165852
10.1038/nmeth.2834
10.1371/journal.pone.0102348
10.1038/s41589-018-0077-5
10.1104/pp.19.00792
10.1073/pnas.1815511116
10.1128/mBio.02708-18
10.1046/j.1365-313x.1998.00343.x
10.1104/pp.110.171595
10.1002/pmic.201400619
10.3389/fmicb.2019.01604
10.1111/jpi.12181
10.1111/febs.12373
10.1016/j.mito.2014.03.004
10.1371/journal.pone.0204687
10.1002/cbic.201500611
10.1016/j.tplants.2019.06.013
10.1016/j.redox.2018.09.002
10.1186/s12859-017-1595-y
10.1016/S0092-8674(02)01085-1
10.1038/ncomms8640
10.1073/pnas.0901931106
10.1002/pmic.200701191
10.1038/nmeth1109-786
10.1038/nbt.1511
10.1093/nar/gkv332
10.1105/tpc.111.092882
10.1016/j.str.2016.04.020
10.1371/journal.pone.0074483
10.18632/oncotarget.11216
10.1016/j.bbapap.2016.06.007
10.1038/ncomms6176
10.1371/journal.pone.0007451
10.1074/jbc.M111.282863
10.1007/978-1-4939-7225-8_5
10.1016/j.biocel.2009.08.009
10.1021/cb500853p
10.1038/nmeth.3901
10.1002/pmic.201500025
10.1093/nar/gkj149
10.1371/journal.pone.0024713
10.1093/nar/gkm977
10.1007/BF00330935
10.1371/journal.pgen.1002169
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors. Published under the terms of the CC BY 4.0 license
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Published under the terms of the CC BY 4.0 license.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
24P
AAYXX
CITATION
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.15252/msb.20209464
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Willy V Bienvenut et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d26b41bab41445bf8117bc4fba9d0b24
PMC7339202
oai_HAL_hal_02900691v1
10_15252_msb_20209464
MSB209464
Genre article
GrantInformation_xml – fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐13‐BSV6‐0004; ANR‐17‐CAPS‐0001‐01; ANR‐10‐LABX‐0040‐SPS
  funderid: 10.13039/501100001665
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: FI 1655/4‐1; INST 211/744‐1 FUGG; SFB 1036 TP13
  funderid: 10.13039/501100001659
– fundername: Academy of Finland (Suomen Akatemia)
  grantid: 330083; 307335; 321616
– fundername: Academy of Finland (Suomen Akatemia)
  funderid: 330083; 307335; 321616
– fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐13‐BSV6‐0004; ANR‐17‐CAPS‐0001‐01; ANR‐10‐LABX‐0040‐SPS
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: FI 1655/4‐1; INST 211/744‐1 FUGG; SFB 1036 TP13
– fundername: ;
  grantid: ANR‐13‐BSV6‐0004; ANR‐17‐CAPS‐0001‐01; ANR‐10‐LABX‐0040‐SPS
– fundername: ;
  grantid: FI 1655/4‐1; INST 211/744‐1 FUGG; SFB 1036 TP13
GroupedDBID ---
0R~
123
1OC
24P
29M
2WC
39C
3V.
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAHHS
AAJSJ
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IHR
INH
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
O5R
O5S
O9-
OK1
P2P
PADUT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
-Q-
4.4
88A
ADRAZ
COF
EBLON
EJD
GODZA
H13
IGS
ITC
M0L
AASML
AAYXX
CITATION
NAO
OVT
PHGZM
PHGZT
7QL
7TM
7U9
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c6984-3a160009a792f9479356b7b0dedd6a496117b1ed7b80542f9fb07ddf8c21489a3
IEDL.DBID M48
ISSN 1744-4292
IngestDate Wed Aug 27 01:28:57 EDT 2025
Thu Aug 21 13:45:33 EDT 2025
Fri May 09 12:22:01 EDT 2025
Fri Jul 11 05:21:20 EDT 2025
Wed Aug 13 09:09:23 EDT 2025
Wed Aug 13 07:20:46 EDT 2025
Tue Jul 01 04:10:34 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Jan 22 16:33:47 EST 2025
Fri Feb 21 02:40:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords co‐ and post‐translational modifications
plastid
acetylome
acetyltransferase
quantitative proteomics
Post-translational Modifications & Proteolysis
co-and post-translational modifications
Proteomics
quantitative proteomics Subject Categories Plant Biology
Language English
License Attribution
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6984-3a160009a792f9479356b7b0dedd6a496117b1ed7b80542f9fb07ddf8c21489a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0003-0204-9580
0000-0003-0530-1737
0000-0002-3832-4006
0000-0002-6363-1470
0000-0001-5642-8637
0000-0001-7963-1400
0000-0002-0291-9745
0000-0002-6238-4818
0000-0003-0963-1872
0000-0002-8979-4606
0000-0001-5265-3917
0000-0001-7790-4022
0000-0002-0435-3845
0000-0003-2808-3541
0000-0002-8972-4026
0000-0002-2253-6397
0000-0002-8728-3204
0000-0003-4192-3920
0000-0002-7475-1558
0000-0002-6349-3901
0000-0002-7477-3319
0000-0002-1149-5243
0000-0003-3838-2211
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/msb.20209464
PMID 32633465
PQID 2428926077
PQPubID 29031
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_d26b41bab41445bf8117bc4fba9d0b24
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7339202
hal_primary_oai_HAL_hal_02900691v1
proquest_miscellaneous_2421112190
proquest_journals_2447207812
proquest_journals_2428926077
crossref_citationtrail_10_15252_msb_20209464
crossref_primary_10_15252_msb_20209464
wiley_primary_10_15252_msb_20209464_MSB209464
springer_journals_10_15252_msb_20209464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationYear 2020
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References Hohner, Aboukila, Kunz, Venema (CR53) 2016; 7
Salah Ud‐Din, Tikhomirova, Roujeinikova (CR94) 2016; 17
Tyanova, Temu, Cox (CR101) 2016; 11
Kang, Chun, Huh, Park (CR61) 2018; 19
Linster, Layer, Bienvenut, Dinh, Weyer, Leemhuis, Brünje, Hoffrichter, Miklankova, Sindlinger (CR75) 2020
Schmidt, Kochanowski, Vedelaar, Ahrné, Volkmer, Callipo, Knoops, Bauer, Aebersold, Heinemann (CR95) 2016; 34
Liu, Liu, Wang, Ge, Jan, Ding, Hu, Zhou, Chen, Ge (CR79) 2009; 41
Karimi, Depicker, Hilson (CR62) 2007; 145
Finkemeier, Laxa, Miguet, Howden, Sweetlove (CR42) 2011; 155
Kosciuk, Price, Zhang, Zhu, Johnson, Zhang, Halaby, Komaniecki, Yang, DeHart (CR64) 2020; 11
Liu, Zhu, Dong, Ning, Wang, Li, Yang, Wang (CR80) 2013; 8
Christensen, Meyer, Baumgartner, D'Souza, Nelson, Payne, Kuhn, Schilling, Wolfe (CR22) 2018; 9
Carabetta, Greco, Cristea, Dubnau (CR19) 2019; 116
Dian, Perez‐Dorado, Riviere, Asensio, Legrand, Ritzefeld, Shen, Cota, Meinnel, Tate (CR34) 2020; 11
Huber, Bienvenut, Linster, Stephan, Armbruster, Sticht, Layer, Lapouge, Meinnel, Sinning (CR57) 2020; 182
Dinh, Bienvenut, Linster, Feldman‐Salit, Jung, Meinnel, Hell, Giglione, Wirtz (CR35) 2015; 15
Bienvenut, Scarpelli, Dumestier, Meinnel, Giglione (CR14) 2017; 18
Drazic, Aksnes, Marie, Boczkowska, Varland, Timmerman, Foyn, Glomnes, Rebowski, Impens (CR37) 2018; 115
Yoon, Kim, Chun, Shin, Lee, Shin, Lee, Kim, Lee, Ryoo (CR112) 2014; 5
Albanese, Tamara, Saracco, Scheltema, Pagliano (CR5) 2020; 11
Damm, Schmidt, Willmitzer (CR32) 1989; 217
Clough, Bent (CR26) 1998; 16
Evjenth, Hole, Karlsen, Ziegler, Arnesen, Lillehaug (CR41) 2009; 284
Montgomery, Sorum, Meier (CR87) 2015; 10
Frottin, Bienvenut, Bignon, Jacquet, Vaca Jacome, Van Dorsselaer, Cianferani, Carapito, Meinnel, Giglione (CR47) 2016; 7
Kozlowski (CR67) 2016; 45
Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (CR102) 2016; 13
Hartl, Konig, Finkemeier (CR50) 2015; 1305
Yang, Yu, Shi, Sun, Liang, Yi, Li, Zhang, Yang, Han (CR111) 2011; 44
Giglione, Fieulaine, Meinnel (CR49) 2015; 114
Arnesen, Van Damme, Polevoda, Helsens, Evjenth, Colaert, Varhaug, Vandekerckhove, Lillehaug, Sherman (CR9) 2009; 106
Linster, Stephan, Bienvenut, Maple‐Grodem, Myklebust, Huber, Reichelt, Sticht, Geir Moller, Meinnel (CR73) 2015; 6
Rozhon, Mayerhofer, Petutschnig, Fujioka, Jonak (CR93) 2010; 62
Bienvenut, Giglione, Meinnel (CR13) 2017; 1574
Sigrist, de Castro, Cerutti, Cuche, Hulo, Bridge, Bougueleret, Xenarios (CR98) 2013; 41
Rips, Frank, Elting, Offenborn, von Schaewen (CR91) 2017; 18
Lee, Byeon, Lee, Lee, Back (CR72) 2014; 57
Srivastava, Khandokar, Swarbrick, Roman, Himiari, Sarker, Raidal, Forwood (CR99) 2014; 9
Lassowskat, Hartl, Hosp, Boersema, Mann, Finkemeier (CR71) 2017; 1653
Xu, Huang, Li, Gannon, Linster, Huber, Kapos, Bienvenut, Polevoda, Meinnel (CR110) 2015; 27
Magin, March, Marmorstein (CR84) 2016; 291
Kulak, Pichler, Paron, Nagaraj, Mann (CR68) 2014; 11
Arnesen, Gromyko, Kagabo, Betts, Starheim, Varhaug, Anderson, Lillehaug (CR8) 2009; 10
Martinez, Traverso, Valot, Ferro, Espagne, Ephritikhine, Zivy, Giglione, Meinnel (CR85) 2008; 8
Bouchnak, van Wijk (CR16) 2019; 24
Maddelein, Colaert, Buchanan, Hulstaert, Gevaert, Martens (CR83) 2015; 43
Agoni (CR2) 2015
Liszczak, Goldberg, Foyn, Petersson, Arnesen, Marmorstein (CR77) 2013; 20
Rowland, Kim, Bhuiyan, van Wijk (CR92) 2015; 169
Bienvenut, Sumpton, Martinez, Lilla, Espagne, Meinnel, Giglione (CR11) 2012; 11
(CR500) 2016
Aksnes, Drazic, Marie, Arnesen (CR3) 2016; 41
Hruz, Laule, Szabo, Wessendorp, Bleuler, Oertle, Widmayer, Gruissem, Zimmermann (CR56) 2008; 2008
Zybailov, Rutschow, Friso, Rudella, Emanuelsson, Sun, van Wijk (CR113) 2008; 3
Chang, Falick, Carlton, Sedat, DeRisi, Marletta (CR21) 2008; 160
Heazlewood, Verboom, Tonti‐Filippini, Small, Millar (CR52) 2007; 35
Longoni, Douchi, Cariti, Fucile, Goldschmidt‐Clermont (CR81) 2015; 169
Colaert, Helsens, Martens, Vandekerckhove, Gevaert (CR27) 2009; 6
Reverdy, Chen, Hunter, Gozzi, Chai (CR90) 2018; 13
Rathore, Faustino, Prudencio, Van Damme, Cox, Martinho (CR89) 2016; 6
Wu, Shen, Lee, Lee, Chan, Lin (CR107) 2009; 5
Liszczak, Marmorstein (CR78) 2013; 110
Murray‐Rust, Oldham, Hewitson, Schofield (CR88) 2006; 580
Bischof, Baerenfaller, Wildhaber, Troesch, Vidi, Roschitzki, Hirsch‐Hoffmann, Hennig, Kessler, Gruissem (CR15) 2011; 23
Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling, Wolfe (CR24) 2019; 10
Liszczak, Arnesen, Marmorstein (CR76) 2011; 286
Brownell, Zhou, Ranalli, Kobayashi, Edmondson, Roth, Allis (CR18) 1996; 84
Arnesen, Anderson, Baldersheim, Lanotte, Varhaug, Lillehaug (CR7) 2005; 386
Vetting, SdC, Yu, Hegde, Magnet, Roderick, Blanchard (CR106) 2005; 433
Drazic, Myklebust, Ree, Arnesen (CR36) 2016; 1864
Drozdetskiy, Cole, Procter, Barton (CR38) 2015; 43
Stove, Magin, Foyn, Haug, Marmorstein, Arnesen (CR100) 2016; 24
Emanuelsson, Brunak, von Heijne, Nielsen (CR40) 2007; 2
Varland, Osberg, Arnesen (CR105) 2015; 15
Bienvenut, Espagne, Martinez, Majeran, Valot, Zivy, Vallon, Adam, Meinnel, Giglione (CR10) 2011; 11
Crepin, Caffarri (CR30) 2015; 1847
Cox, Mann (CR29) 2008; 26
Chu, Hou, Zhang, Phu, Loktev, Kirkpatrick, Jackson, Zhao, Zou (CR25) 2011; 22
Deutsch, Csordas, Sun, Jarnuczak, Perez‐Riverol, Ternent, Campbell, Bernal‐Llinares, Okuda, Kawano (CR33) 2017; 45
Seidel, Klockenbusch, Schwarzer (CR96) 2016; 17
Christensen, Baumgartner, Xie, Jew, Basisty, Schilling, Kuhn, Wolfe (CR23) 2019; 10
Friso, van Wijk (CR46) 2015; 169
Hole, Van Damme, Dalva, Aksnes, Glomnes, Varhaug, Lillehaug, Gevaert, Arnesen (CR54) 2011; 6
Jeong, Bae, Ahn, Kim, Sohn, Bae, Yoo, Song, Lee, Kim (CR60) 2002; 111
Wybenga‐Groot, Draker, Wright, Berghuis (CR109) 1999; 7
Hartl, Fussl, Boersema, Jost, Kramer, Bakirbas, Sindlinger, Plochinger, Leister, Uhrig (CR51) 2017; 13
Frank, Kaulfurst‐Soboll, Rips, Koiwa, von Schaewen (CR44) 2008; 148
König, Hartl, Boersema, Mann, Finkemeier (CR63) 2014; 19
Wu, Oh, Schwarz, Larue, Sivaguru, Imai, Yau, Ort, Huber (CR108) 2011; 155
Cort, Ramelot, Murray, Acton, Ma, Xiao, Montelione, Kennedy (CR28) 2008; 9
Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez (CR70) 2007; 23
Huesgen, Alami, Lange, Foster, Schroder, Overall, Green (CR58) 2013; 8
Dyda, Klein, Hickman (CR39) 2000; 29
Van Damme, Hole, Pimenta‐Marques, Helsens, Vandekerckhove, Martinho, Gevaert, Arnesen (CR104) 2011; 7
Koskela, Brünje, Ivanauskaite, Lopez, Schneider, DeTar, Kunz, Finkemeier, Mulo (CR66) 2020
Aebersold, Mann (CR1) 2016; 537
Lunde, Jensen, Haldrup, Knoetzel, Scheller (CR82) 2000; 408
Kumar, Stecher, Li, Knyaz, Tamura (CR69) 2018; 35
Meinnel, Dian, Giglione (CR86) 2020; 45
Hulo, Bairoch, Bulliard, Cerutti, Cuche, de Castro, Lachaize, Langendijk‐Genevaux, Sigrist (CR59) 2008; 36
Friedmann, Marmorstein (CR45) 2013; 280
Breiman, Fieulaine, Meinnel, Giglione (CR17) 2016; 1864
Hoshiyasu, Kohzuma, Yoshida, Fujiwara, Fukao, Yokota, Akashi (CR55) 2013; 77
Koskela, Brünje, Ivanauskaite, Grabsztunowicz, Lassowskat, Neumann, Dinh, Sindlinger, Schwarzer, Wirtz (CR65) 2018; 30
Shin, Chun, Lee, Shin, Park (CR97) 2009; 4
Bienvenut, Giglione, Meinnel (CR12) 2015; 15
Gao, Hong, Li, Yang, Huang, Xiao, Chen, Chen (CR48) 2016; 9
Uhrig, Schlapfer, Roschitzki, Hirsch‐Hoffmann, Gruissem (CR103) 2019; 99
Castrec, Dian, Ciccone, Ebert, Bienvenut, Le Caer, Steyaert, Giglione, Meinnel (CR20) 2018; 14
Armbruster, Linster, Boyer, Brunje, Eirich, Stephan, Bienvenut, Weidenhausen, Meinnel, Hell (CR6) 2020
Aksnes, Ree, Arnesen (CR4) 2019; 73
Linster, Wirtz (CR74) 2018; 69
Finn, Mistry, Schuster‐Bockler, Griffiths‐Jones, Hollich, Lassmann, Moxon, Marshall, Khanna, Durbin (CR43) 2006; 34
2006; 34
2019; 99
2019b; 10
2008; 36
2020; 11
2013; 8
2012; 11
2016; 34
1998; 16
2000; 408
2018; 9
2017b; 18
2019; 24
2008; 26
2016; 41
2018; 30
2014; 19
2007; 2
2013; 110
2016a; 11
2014; 11
2016; 45
2018; 35
2016; 17
2011; 6
2011; 7
2018; 19
2016; 6
2016; 7
2013; 77
2015; 1847
2017; 1653
2015; 114
2018; 115
2006; 580
1996; 84
2016; 291
2016; 9
2016; 24
2018; 14
2018; 13
2019a; 10
2007; 145
2009; 41
2002; 111
2013; 20
2017; 45
2008; 9
2011; 11
2008; 8
2008; 148
2008; 3
2013; 280
2008; 2008
2007; 35
2011; 155
2010; 62
2014; 5
2005; 386
2017a; 1574
2015; 43
2019; 116
2011; 22
2014; 57
2011; 23
2020; 45
2009; 284
2015; 1305
2014; 9
2007; 23
2011; 286
2015; 15
2000; 29
2015; 6
2009b; 106
2019; 73
1989; 217
2015; 169
2016b; 13
2005; 433
2020; 182
2015; 10
2013; 41
2016; 1864
1999; 7
2018; 69
2008; 160
2015; 27
2009a; 10
2016; 537
2020
2017; 13
2011; 44
2016
2015
2009; 6
2017; 18
2009; 5
2009; 4
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
Friso G (e_1_2_9_46_1) 2015; 169
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
Longoni P (e_1_2_9_81_1) 2015; 169
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
R Core Team (e_1_2_9_89_1) 2016
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
Rowland E (e_1_2_9_93_1) 2015; 169
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 580
  start-page: 1911
  year: 2006
  end-page: 1918
  ident: CR88
  article-title: Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF‐1alpha fragments
  publication-title: FEBS Lett
– volume: 36
  start-page: D245
  year: 2008
  end-page: D249
  ident: CR59
  article-title: The 20 years of PROSITE
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 448
  year: 2011
  end-page: 456
  ident: CR25
  article-title: A novel acetylation of beta‐tubulin by San modulates microtubule polymerization via down‐regulating tubulin incorporation
  publication-title: Mol Biol Cell
– volume: 5
  start-page: 16
  year: 2009
  ident: CR107
  article-title: Tape‐ Sandwich ‐ a simpler protoplast isolation method
  publication-title: Plant Methods
– volume: 1864
  start-page: 531
  year: 2016
  end-page: 550
  ident: CR17
  article-title: The intriguing realm of protein biogenesis: facing the green co‐translational protein maturation networks
  publication-title: Biochim Biophys Acta
– volume: 110
  start-page: 14652
  year: 2013
  end-page: 14657
  ident: CR78
  article-title: Implications for the evolution of eukaryotic amino‐terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: CR70
  article-title: Clustal W and clustal X version 2.0
  publication-title: Bioinformatics
– volume: 433
  start-page: 212
  year: 2005
  end-page: 226
  ident: CR106
  article-title: Structure and functions of the GNAT superfamily of acetyltransferases
  publication-title: Arch Biochem Biophys
– volume: 148
  start-page: 1354
  year: 2008
  end-page: 1367
  ident: CR44
  article-title: Comparative analyses of complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a
  publication-title: Plant Physiol
– volume: 10
  start-page: 1604
  year: 2019
  ident: CR24
  article-title: Post‐translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions
  publication-title: Front Microbiol
– volume: 408
  start-page: 613
  year: 2000
  end-page: 615
  ident: CR82
  article-title: The PSI‐H subunit of photosystem I is essential for state transitions in plant photosynthesis
  publication-title: Nature
– volume: 24
  start-page: 1044
  year: 2016
  end-page: 1056
  ident: CR100
  article-title: Crystal structure of the golgi‐associated human N alpha‐acetyltransferase 60 reveals the molecular determinants for substrate‐specific acetylation
  publication-title: Structure
– volume: 10
  start-page: e02708
  year: 2019
  end-page: 18
  ident: CR23
  article-title: Mechanisms, detection, and relevance of protein acetylation in prokaryotes
  publication-title: mBio
– volume: 182
  start-page: 792
  year: 2020
  end-page: 806
  ident: CR57
  article-title: NatB‐mediated N‐terminal acetylation affects growth and abiotic stress responses
  publication-title: Plant Physiol
– year: 2020
  ident: CR75
  article-title: Plants evolved a plasma membrane anchored N‐acetyltransferase required for the adaption to high salt stress and post‐translational acetylation of plasmodesmata‐localized proteins
  publication-title: New Phytol
  doi: 10.1111/nph.16747
– volume: 10
  start-page: 85
  year: 2015
  end-page: 94
  ident: CR87
  article-title: Defining the orphan functions of lysine acetyltransferases
  publication-title: ACS Chem Biol
– volume: 11
  start-page: 2301
  year: 2016
  end-page: 2319
  ident: CR101
  article-title: The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics
  publication-title: Nat Protoc
– volume: 19
  start-page: 364
  year: 2018
  end-page: 374
  ident: CR61
  article-title: FIH permits NAA10 to catalyze the oxygen‐dependent lysyl‐acetylation of HIF‐1alpha
  publication-title: Redox Biol
– volume: 17
  start-page: E1018
  year: 2016
  ident: CR94
  article-title: Structure and functional diversity of GCN5‐related N‐acetyltransferases (GNAT)
  publication-title: Int J Mol Sci
– volume: 11
  start-page: 319
  year: 2014
  end-page: 324
  ident: CR68
  article-title: Minimal, encapsulated proteomic‐sample processing applied to copy‐number estimation in eukaryotic cells
  publication-title: Nat Methods
– volume: 45
  start-page: 619
  year: 2020
  end-page: 632
  ident: CR86
  article-title: Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution
  publication-title: Trends Biochem Sci
– volume: 44
  start-page: 39
  year: 2011
  end-page: 50
  ident: CR111
  article-title: HAT4, a golgi apparatus‐anchored B‐type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly
  publication-title: Mol Cell
– volume: 10
  start-page: 15
  year: 2009
  ident: CR8
  article-title: A novel human NatA Nalpha‐terminal acetyltransferase complex: hNaa16p‐hNaa10p (hNat2‐hArd1)
  publication-title: BMC Biochem
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  ident: CR26
  article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of
  publication-title: Plant J
– volume: 155
  start-page: 1769
  year: 2011
  end-page: 1778
  ident: CR108
  article-title: Lysine acetylation is a widespread protein modification for diverse proteins in
  publication-title: Plant Physiol
– volume: 291
  start-page: 5270
  year: 2016
  end-page: 5277
  ident: CR84
  article-title: The N‐terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues
  publication-title: J Biol Chem
– volume: 8
  start-page: 2809
  year: 2008
  end-page: 2831
  ident: CR85
  article-title: Extent of N‐terminal modifications in cytosolic proteins from eukaryotes
  publication-title: Proteomics
– volume: 13
  start-page: 949
  year: 2017
  ident: CR51
  article-title: Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in
  publication-title: Mol Syst Biol
– volume: 18
  start-page: 646
  year: 2017
  end-page: 657
  ident: CR91
  article-title: Golgi 1,4‐fucosyltransferase of partially localizes at the nuclear envelope
  publication-title: Traffic
– volume: 41
  start-page: 2528
  year: 2009
  end-page: 2537
  ident: CR79
  article-title: Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells
  publication-title: Int J Biochem Cell B
– volume: 15
  start-page: 2426
  year: 2015
  end-page: 2435
  ident: CR35
  article-title: Molecular identification and functional characterization of the first Nalpha‐acetyltransferase in plastids by global acetylome profiling
  publication-title: Proteomics
– volume: 286
  start-page: 37002
  year: 2011
  end-page: 37010
  ident: CR76
  article-title: Structure of a ternary Naa50p (NAT5/SAN) N‐terminal acetyltransferase complex reveals the molecular basis for substrate‐specific acetylation
  publication-title: J Biol Chem
– volume: 1847
  start-page: 1539
  year: 2015
  end-page: 1548
  ident: CR30
  article-title: The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI‐LHCII supercomplex in during state transitions
  publication-title: Biochim Biophys Acta
– volume: 11
  start-page: 1132
  year: 2020
  ident: CR34
  article-title: High‐resolution snapshots of human N‐myristoyltransferase in action illuminate a mechanism promoting N‐terminal Lys and Gly myristoylation
  publication-title: Nat Commun
– volume: 145
  start-page: 1144
  year: 2007
  end-page: 1154
  ident: CR62
  article-title: Recombinational cloning with plant gateway vectors
  publication-title: Plant Physiol
– volume: 23
  start-page: 3911
  year: 2011
  end-page: 3928
  ident: CR15
  article-title: Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N‐acetylated plastid precursor proteins
  publication-title: Plant Cell
– volume: 111
  start-page: 709
  year: 2002
  end-page: 720
  ident: CR60
  article-title: Regulation and destabilization of HIF‐1alpha by ARD1‐mediated acetylation
  publication-title: Cell
– year: 2020
  ident: CR66
  article-title: Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII
  publication-title: Photosynth Res
  doi: 10.1007/s11120-020-00711-4
– volume: 106
  start-page: 8157
  year: 2009
  end-page: 8162
  ident: CR9
  article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N‐terminal acetyltransferases from yeast and humans
  publication-title: Proc Natl Acad Sci USA
– volume: 114
  start-page: 134
  year: 2015
  end-page: 146
  ident: CR49
  article-title: N‐terminal protein modifications: bringing back into play the ribosome
  publication-title: Biochimie
– volume: 73
  start-page: 1097
  year: 2019
  end-page: 1114
  ident: CR4
  article-title: Co‐translational, post‐translational, and non‐catalytic roles of N‐terminal acetyltransferases
  publication-title: Mol Cell
– volume: 386
  start-page: 433
  year: 2005
  end-page: 443
  ident: CR7
  article-title: Identification and characterization of the human ARD1‐NATH protein acetyltransferase complex
  publication-title: Biochem J
– volume: 99
  start-page: 176
  year: 2019
  end-page: 194
  ident: CR103
  article-title: Diurnal changes in concerted plant protein phosphorylation and acetylation in organs and seedlings
  publication-title: Plant J
– volume: 45
  start-page: D1112
  year: 2016
  end-page: D1116
  ident: CR67
  article-title: Proteome‐pI: proteome isoelectric point database
  publication-title: Nucleic Acids Res
– volume: 69
  start-page: 4555
  year: 2018
  end-page: 4568
  ident: CR74
  article-title: N‐terminal acetylation: an essential protein modification emerges as an important regulator of stress responses
  publication-title: J Exp Bot
– volume: 62
  start-page: 215
  year: 2010
  end-page: 223
  ident: CR93
  article-title: ASKtheta, a group‐III GSK3, functions in the brassinosteroid signalling pathway
  publication-title: Plant J
– volume: 1305
  start-page: 107
  year: 2015
  end-page: 121
  ident: CR50
  article-title: Identification of lysine‐acetylated mitochondrial proteins and their acetylation sites
  publication-title: Methods Mol Biol
– volume: 15
  start-page: 2503
  year: 2015
  end-page: 2518
  ident: CR12
  article-title: Proteome‐wide analysis of the amino terminal status of proteins at the steady‐state and upon deformylation inhibition
  publication-title: Proteomics
– volume: 27
  start-page: 1547
  year: 2015
  end-page: 1562
  ident: CR110
  article-title: Two N‐terminal acetyltransferases antagonistically regulate the stability of a nod‐like receptor in
  publication-title: Plant Cell
– volume: 30
  start-page: 1695
  year: 2018
  end-page: 1709
  ident: CR65
  article-title: Chloroplast acetyltransferase NSI is required for state transitions in
  publication-title: Plant Cell
– volume: 9
  start-page: e01905
  year: 2018
  end-page: e01918
  ident: CR22
  article-title: Identification of novel protein lysine acetyltransferases in
  publication-title: mBio
– volume: 57
  start-page: 418
  year: 2014
  end-page: 426
  ident: CR72
  article-title: Cloning of serotonin N‐acetyltransferase and its role with caffeic acid O‐methyltransferase in the biosynthesis of melatonin despite their different subcellular localizations
  publication-title: J Pineal Res
– volume: 1864
  start-page: 1372
  year: 2016
  end-page: 1401
  ident: CR36
  article-title: The world of protein acetylation
  publication-title: Biochim Biophys Acta
– volume: 43
  start-page: W543
  year: 2015
  end-page: W546
  ident: CR83
  article-title: The iceLogo web server and SOAP service for determining protein consensus sequences
  publication-title: Nucleic Acids Res
– volume: 34
  start-page: D247
  year: 2006
  end-page: D251
  ident: CR43
  article-title: Pfam: clans, web tools and services
  publication-title: Nucleic Acids Res
– volume: 217
  start-page: 6
  year: 1989
  end-page: 12
  ident: CR32
  article-title: Efficient transformation of using direct gene transfer to protoplasts
  publication-title: Mol Gen Genet
– volume: 7
  start-page: 218
  year: 2016
  ident: CR53
  article-title: Proton gradients and proton‐dependent transport processes in the chloroplast
  publication-title: Front Plant Sci
– volume: 20
  start-page: 1098
  year: 2013
  end-page: 1105
  ident: CR77
  article-title: Molecular basis for N‐terminal acetylation by the heterodimeric NatA complex
  publication-title: Nat Struct Mol Biol
– volume: 2
  start-page: 953
  year: 2007
  end-page: 971
  ident: CR40
  article-title: Locating proteins in the cell using TargetP, SignalP and related tools
  publication-title: Nat Protoc
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: CR29
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 24
  start-page: 917
  year: 2019
  end-page: 926
  ident: CR16
  article-title: N‐degron pathways in plastids
  publication-title: Trends Plant Sci
– volume: 9
  start-page: 7
  year: 2008
  end-page: 20
  ident: CR28
  article-title: Structure of an acetyl‐CoA binding protein from representing a novel subfamily of GCN5‐related N‐acetyltransferase‐like proteins
  publication-title: J Struct Funct Genomics
– volume: 6
  start-page: e24713
  year: 2011
  ident: CR54
  article-title: The human N‐alpha‐acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N‐terminally acetylates histones H2A and H4
  publication-title: PLoS ONE
– year: 2016
  ident: CR500
  publication-title: R: A language and environment for statistical computing
– volume: 11
  start-page: M111.015131
  year: 2012
  ident: CR11
  article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N‐alpha‐acetylation features
  publication-title: Mol Cell Proteomics
– volume: 284
  start-page: 31122
  year: 2009
  end-page: 31129
  ident: CR41
  article-title: Human Naa50p (Nat5/San) displays both protein Nα‐ and Nϵ‐acetyltransferase activity
  publication-title: J Biol Chem
– volume: 6
  start-page: 786
  year: 2009
  end-page: 787
  ident: CR27
  article-title: Improved visualization of protein consensus sequences by iceLogo
  publication-title: Nat Methods
– volume: 1653
  start-page: 65
  year: 2017
  end-page: 81
  ident: CR71
  article-title: Dimethyl‐labeling‐based quantification of the lysine acetylome and proteome of plants
  publication-title: Methods Mol Biol
– volume: 45
  start-page: D1100
  year: 2017
  end-page: D1106
  ident: CR33
  article-title: The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition
  publication-title: Nucleic Acids Res
– volume: 35
  start-page: D213
  year: 2007
  end-page: D218
  ident: CR52
  article-title: SUBA: the subcellular database
  publication-title: Nucleic Acids Res
– volume: 43
  start-page: W389
  year: 2015
  end-page: W394
  ident: CR38
  article-title: JPred4: a protein secondary structure prediction server
  publication-title: Nucleic Acids Res
– volume: 84
  start-page: 843
  year: 1996
  end-page: 851
  ident: CR18
  article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
  publication-title: Cell
– volume: 4
  start-page: e7451
  year: 2009
  ident: CR97
  article-title: Arrest defective‐1 controls tumor cell behavior by acetylating myosin light chain kinase
  publication-title: PLoS ONE
– volume: 18
  start-page: 182
  year: 2017
  ident: CR14
  article-title: EnCOUNTer: a parsing tool to uncover the mature N‐terminus of organelle‐targeted proteins in complex samples
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: 81
  year: 2000
  end-page: 103
  ident: CR39
  article-title: GCN5‐related N‐acetyltransferases: a structural overview
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 155
  start-page: 1779
  year: 2011
  end-page: 1790
  ident: CR42
  article-title: Proteins of diverse function and subcellular location are lysine acetylated in
  publication-title: Plant Physiol
– volume: 8
  start-page: e58681
  year: 2013
  ident: CR80
  article-title: Identification and analysis of the acetylated status of poplar proteins reveals analogous N‐terminal protein processing mechanisms with other eukaryotes
  publication-title: PLoS ONE
– volume: 15
  start-page: 2385
  year: 2015
  end-page: 2401
  ident: CR105
  article-title: N‐terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects
  publication-title: Proteomics
– volume: 13
  start-page: e0204687
  year: 2018
  ident: CR90
  article-title: Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity
  publication-title: PLoS ONE
– volume: 11
  start-page: 1734
  year: 2011
  end-page: 1750
  ident: CR10
  article-title: Dynamics of post‐translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts
  publication-title: Proteomics
– volume: 41
  start-page: D344
  year: 2013
  end-page: D347
  ident: CR98
  article-title: New and continuing developments at PROSITE
  publication-title: Nucleic Acids Res
– volume: 2008
  start-page: 420747
  year: 2008
  ident: CR56
  article-title: Genevestigator v3: a reference expression database for the meta‐analysis of transcriptomes
  publication-title: Adv Bioinformatics
– volume: 11
  start-page: 1067
  year: 2020
  ident: CR64
  article-title: NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle
  publication-title: Nat Commun
– volume: 115
  start-page: 4399
  year: 2018
  end-page: 4404
  ident: CR37
  article-title: NAA80 is actin's N‐terminal acetyltransferase and regulates cytoskeleton assembly and cell motility
  publication-title: Proc Natl Acad Sci USA
– volume: 169
  start-page: 2874
  year: 2015
  end-page: 2883
  ident: CR81
  article-title: Phosphorylation of the light‐harvesting complex II isoform Lhcb2 is central to state transitions
  publication-title: Plant Physiol
– volume: 280
  start-page: 5570
  year: 2013
  end-page: 5581
  ident: CR45
  article-title: Structure and mechanism of non‐histone protein acetyltransferase enzymes
  publication-title: FEBS J
– volume: 34
  start-page: 104
  year: 2016
  end-page: 110
  ident: CR95
  article-title: The quantitative and condition‐dependent proteome
  publication-title: Nat Biotechnol
– volume: 5
  start-page: 5176
  year: 2014
  ident: CR112
  article-title: NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2
  publication-title: Nat Commun
– volume: 7
  start-page: 63306
  year: 2016
  end-page: 63323
  ident: CR47
  article-title: MetAP1 and MetAP2 drive cell selectivity for a potent anti‐cancer agent in synergy, by controlling glutathione redox state
  publication-title: Oncotarget
– volume: 3
  start-page: e1994
  year: 2008
  ident: CR113
  article-title: Sorting signals, N‐terminal modifications and abundance of the chloroplast proteome
  publication-title: PLoS ONE
– volume: 6
  start-page: 7640
  year: 2015
  ident: CR73
  article-title: Downregulation of N‐terminal acetylation triggers ABA‐mediated drought responses in
  publication-title: Nat Commun
– volume: 19
  start-page: 252
  year: 2014
  end-page: 260
  ident: CR63
  article-title: The mitochondrial lysine acetylome of
  publication-title: Mitochondrion
– volume: 6
  start-page: 21304
  year: 2016
  ident: CR89
  article-title: Absence of N‐terminal acetyltransferase diversification during evolution of eukaryotic organisms
  publication-title: Sci Rep
– volume: 160
  start-page: 107
  year: 2008
  end-page: 115
  ident: CR21
  article-title: N‐terminal processing of proteins exported by malaria parasites
  publication-title: Mol Biochem Parasitol
– volume: 8
  start-page: e74483
  year: 2013
  ident: CR58
  article-title: Proteomic amino‐termini profiling reveals targeting information for protein import into complex plastids
  publication-title: PLoS ONE
– volume: 116
  start-page: 3752
  year: 2019
  end-page: 3757
  ident: CR19
  article-title: YfmK is an N(epsilon)‐lysine acetyltransferase that directly acetylates the histone‐like protein HBsu in
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 398
  year: 2016
  end-page: 402
  ident: CR96
  article-title: Investigating deformylase and deacylase activity of mammalian and bacterial sirtuins
  publication-title: ChemBioChem
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: CR102
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat Methods
– volume: 35
  start-page: 1547
  year: 2018
  end-page: 1549
  ident: CR69
  article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms
  publication-title: Mol Biol Evol
– volume: 41
  start-page: 746
  year: 2016
  end-page: 760
  ident: CR3
  article-title: First things first: vital protein marks by N‐terminal acetyltransferases
  publication-title: Trends Biochem Sci
– volume: 9
  start-page: 1018
  year: 2016
  end-page: 1027
  ident: CR48
  article-title: Downregulation of rubisco activity by non‐enzymatic acetylation of RbcL
  publication-title: Mol Plant
– volume: 169
  start-page: 1881
  year: 2015
  end-page: 1896
  ident: CR92
  article-title: The chloroplast stromal N‐terminome: complexities of amino‐terminal protein maturation and stability
  publication-title: Plant Physiol
– volume: 77
  start-page: 998
  year: 2013
  end-page: 1007
  ident: CR55
  article-title: Potential involvement of N‐terminal acetylation in the quantitative regulation of the epsilon subunit of chloroplast ATP synthase under drought stress
  publication-title: Biosci Biotechnol Biochem
– volume: 537
  start-page: 347
  year: 2016
  end-page: 355
  ident: CR1
  article-title: Mass‐spectrometric exploration of proteome structure and function
  publication-title: Nature
– year: 2015
  ident: CR2
  article-title: Could rare amino acids regulate enzymes abundance?
  publication-title: bioRxiv
  doi: 10.1101/021295
– volume: 1574
  start-page: 17
  year: 2017
  end-page: 34
  ident: CR13
  article-title: SILProNAQ: a convenient approach for proteome‐wide analysis of protein N‐termini and N‐terminal acetylation quantitation
  publication-title: Methods Mol Biol
– year: 2020
  ident: CR6
  article-title: NAA50 is an enzymatically active Nα‐acetyltransferase that is crucial for the development and regulation of stress responses
  publication-title: Plant Physiol
  doi: 10.1104/pp.20.00222
– volume: 11
  start-page: 1361
  year: 2020
  ident: CR5
  article-title: How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass‐spectrometry
  publication-title: Nat Commun
– volume: 9
  start-page: e102348
  year: 2014
  ident: CR99
  article-title: Structural characterization of a Gcn5‐related N‐acetyltransferase from
  publication-title: PLoS ONE
– volume: 14
  start-page: 671
  year: 2018
  ident: CR20
  article-title: Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern
  publication-title: Nat Chem Biol
– volume: 169
  start-page: 1469
  year: 2015
  end-page: 1487
  ident: CR46
  article-title: Posttranslational protein modifications in plant metabolism
  publication-title: Plant Physiol
– volume: 7
  start-page: e1002169
  year: 2011
  ident: CR104
  article-title: NatF contributes to an evolutionary shift in protein N‐terminal acetylation and is important for normal chromosome segregation
  publication-title: PLoS Genet
– volume: 7
  start-page: 497
  year: 1999
  end-page: 507
  ident: CR109
  article-title: Crystal structure of an aminoglycoside 6′‐N‐acetyltransferase: defining the GCN5‐related N‐acetyltransferase superfamily fold
  publication-title: Structure
– volume: 169
  start-page: 2874
  year: 2015
  end-page: 2883
  article-title: Phosphorylation of the light‐harvesting complex II isoform Lhcb2 is central to state transitions
  publication-title: Plant Physiol
– volume: 19
  start-page: 252
  year: 2014
  end-page: 260
  article-title: The mitochondrial lysine acetylome of
  publication-title: Mitochondrion
– volume: 41
  start-page: D344
  year: 2013
  end-page: D347
  article-title: New and continuing developments at PROSITE
  publication-title: Nucleic Acids Res
– volume: 291
  start-page: 5270
  year: 2016
  end-page: 5277
  article-title: The N‐terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues
  publication-title: J Biol Chem
– volume: 2
  start-page: 953
  year: 2007
  end-page: 971
  article-title: Locating proteins in the cell using TargetP, SignalP and related tools
  publication-title: Nat Protoc
– volume: 9
  start-page: 1018
  year: 2016
  end-page: 1027
  article-title: Downregulation of rubisco activity by non‐enzymatic acetylation of RbcL
  publication-title: Mol Plant
– volume: 45
  start-page: D1112
  year: 2016
  end-page: D1116
  article-title: Proteome‐pI: proteome isoelectric point database
  publication-title: Nucleic Acids Res
– volume: 1574
  start-page: 17
  year: 2017a
  end-page: 34
  article-title: SILProNAQ: a convenient approach for proteome‐wide analysis of protein N‐termini and N‐terminal acetylation quantitation
  publication-title: Methods Mol Biol
– volume: 155
  start-page: 1779
  year: 2011
  end-page: 1790
  article-title: Proteins of diverse function and subcellular location are lysine acetylated in
  publication-title: Plant Physiol
– volume: 23
  start-page: 3911
  year: 2011
  end-page: 3928
  article-title: Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N‐acetylated plastid precursor proteins
  publication-title: Plant Cell
– volume: 10
  start-page: 85
  year: 2015
  end-page: 94
  article-title: Defining the orphan functions of lysine acetyltransferases
  publication-title: ACS Chem Biol
– year: 2015
  article-title: Could rare amino acids regulate enzymes abundance?
  publication-title: bioRxiv
– volume: 160
  start-page: 107
  year: 2008
  end-page: 115
  article-title: N‐terminal processing of proteins exported by malaria parasites
  publication-title: Mol Biochem Parasitol
– year: 2020
  article-title: Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII
  publication-title: Photosynth Res
– volume: 2008
  start-page: 420747
  year: 2008
  article-title: Genevestigator v3: a reference expression database for the meta‐analysis of transcriptomes
  publication-title: Adv Bioinformatics
– volume: 11
  start-page: 2301
  year: 2016a
  end-page: 2319
  article-title: The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics
  publication-title: Nat Protoc
– volume: 580
  start-page: 1911
  year: 2006
  end-page: 1918
  article-title: Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF‐1alpha fragments
  publication-title: FEBS Lett
– volume: 169
  start-page: 1469
  year: 2015
  end-page: 1487
  article-title: Posttranslational protein modifications in plant metabolism
  publication-title: Plant Physiol
– volume: 73
  start-page: 1097
  year: 2019
  end-page: 1114
  article-title: Co‐translational, post‐translational, and non‐catalytic roles of N‐terminal acetyltransferases
  publication-title: Mol Cell
– volume: 145
  start-page: 1144
  year: 2007
  end-page: 1154
  article-title: Recombinational cloning with plant gateway vectors
  publication-title: Plant Physiol
– volume: 11
  start-page: 319
  year: 2014
  end-page: 324
  article-title: Minimal, encapsulated proteomic‐sample processing applied to copy‐number estimation in eukaryotic cells
  publication-title: Nat Methods
– volume: 11
  start-page: 1132
  year: 2020
  article-title: High‐resolution snapshots of human N‐myristoyltransferase in action illuminate a mechanism promoting N‐terminal Lys and Gly myristoylation
  publication-title: Nat Commun
– volume: 6
  start-page: 786
  year: 2009
  end-page: 787
  article-title: Improved visualization of protein consensus sequences by iceLogo
  publication-title: Nat Methods
– volume: 41
  start-page: 2528
  year: 2009
  end-page: 2537
  article-title: Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells
  publication-title: Int J Biochem Cell B
– volume: 6
  start-page: 7640
  year: 2015
  article-title: Downregulation of N‐terminal acetylation triggers ABA‐mediated drought responses in
  publication-title: Nat Commun
– volume: 13
  start-page: 731
  year: 2016b
  end-page: 740
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat Methods
– volume: 114
  start-page: 134
  year: 2015
  end-page: 146
  article-title: N‐terminal protein modifications: bringing back into play the ribosome
  publication-title: Biochimie
– volume: 11
  start-page: 1067
  year: 2020
  article-title: NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle
  publication-title: Nat Commun
– volume: 155
  start-page: 1769
  year: 2011
  end-page: 1778
  article-title: Lysine acetylation is a widespread protein modification for diverse proteins in
  publication-title: Plant Physiol
– volume: 148
  start-page: 1354
  year: 2008
  end-page: 1367
  article-title: Comparative analyses of complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a
  publication-title: Plant Physiol
– volume: 15
  start-page: 2426
  year: 2015
  end-page: 2435
  article-title: Molecular identification and functional characterization of the first Nalpha‐acetyltransferase in plastids by global acetylome profiling
  publication-title: Proteomics
– volume: 1847
  start-page: 1539
  year: 2015
  end-page: 1548
  article-title: The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI‐LHCII supercomplex in during state transitions
  publication-title: Biochim Biophys Acta
– year: 2016
– volume: 116
  start-page: 3752
  year: 2019
  end-page: 3757
  article-title: YfmK is an N(epsilon)‐lysine acetyltransferase that directly acetylates the histone‐like protein HBsu in
  publication-title: Proc Natl Acad Sci USA
– volume: 43
  start-page: W543
  year: 2015
  end-page: W546
  article-title: The iceLogo web server and SOAP service for determining protein consensus sequences
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 497
  year: 1999
  end-page: 507
  article-title: Crystal structure of an aminoglycoside 6′‐N‐acetyltransferase: defining the GCN5‐related N‐acetyltransferase superfamily fold
  publication-title: Structure
– volume: 1653
  start-page: 65
  year: 2017
  end-page: 81
  article-title: Dimethyl‐labeling‐based quantification of the lysine acetylome and proteome of plants
  publication-title: Methods Mol Biol
– volume: 41
  start-page: 746
  year: 2016
  end-page: 760
  article-title: First things first: vital protein marks by N‐terminal acetyltransferases
  publication-title: Trends Biochem Sci
– volume: 7
  start-page: 218
  year: 2016
  article-title: Proton gradients and proton‐dependent transport processes in the chloroplast
  publication-title: Front Plant Sci
– volume: 20
  start-page: 1098
  year: 2013
  end-page: 1105
  article-title: Molecular basis for N‐terminal acetylation by the heterodimeric NatA complex
  publication-title: Nat Struct Mol Biol
– volume: 84
  start-page: 843
  year: 1996
  end-page: 851
  article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
  publication-title: Cell
– volume: 8
  start-page: e58681
  year: 2013
  article-title: Identification and analysis of the acetylated status of poplar proteins reveals analogous N‐terminal protein processing mechanisms with other eukaryotes
  publication-title: PLoS ONE
– volume: 386
  start-page: 433
  year: 2005
  end-page: 443
  article-title: Identification and characterization of the human ARD1‐NATH protein acetyltransferase complex
  publication-title: Biochem J
– year: 2020
  article-title: NAA50 is an enzymatically active Nα‐acetyltransferase that is crucial for the development and regulation of stress responses
  publication-title: Plant Physiol
– volume: 111
  start-page: 709
  year: 2002
  end-page: 720
  article-title: Regulation and destabilization of HIF‐1alpha by ARD1‐mediated acetylation
  publication-title: Cell
– volume: 11
  start-page: 1361
  year: 2020
  article-title: How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass‐spectrometry
  publication-title: Nat Commun
– volume: 99
  start-page: 176
  year: 2019
  end-page: 194
  article-title: Diurnal changes in concerted plant protein phosphorylation and acetylation in organs and seedlings
  publication-title: Plant J
– volume: 537
  start-page: 347
  year: 2016
  end-page: 355
  article-title: Mass‐spectrometric exploration of proteome structure and function
  publication-title: Nature
– volume: 17
  start-page: E1018
  year: 2016
  article-title: Structure and functional diversity of GCN5‐related N‐acetyltransferases (GNAT)
  publication-title: Int J Mol Sci
– volume: 433
  start-page: 212
  year: 2005
  end-page: 226
  article-title: Structure and functions of the GNAT superfamily of acetyltransferases
  publication-title: Arch Biochem Biophys
– volume: 110
  start-page: 14652
  year: 2013
  end-page: 14657
  article-title: Implications for the evolution of eukaryotic amino‐terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: e02708
  year: 2019a
  end-page: 18
  article-title: Mechanisms, detection, and relevance of protein acetylation in prokaryotes
  publication-title: mBio
– volume: 43
  start-page: W389
  year: 2015
  end-page: W394
  article-title: JPred4: a protein secondary structure prediction server
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 2385
  year: 2015
  end-page: 2401
  article-title: N‐terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects
  publication-title: Proteomics
– volume: 1864
  start-page: 531
  year: 2016
  end-page: 550
  article-title: The intriguing realm of protein biogenesis: facing the green co‐translational protein maturation networks
  publication-title: Biochim Biophys Acta
– volume: 14
  start-page: 671
  year: 2018
  article-title: Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern
  publication-title: Nat Chem Biol
– volume: 8
  start-page: 2809
  year: 2008
  end-page: 2831
  article-title: Extent of N‐terminal modifications in cytosolic proteins from eukaryotes
  publication-title: Proteomics
– volume: 17
  start-page: 398
  year: 2016
  end-page: 402
  article-title: Investigating deformylase and deacylase activity of mammalian and bacterial sirtuins
  publication-title: ChemBioChem
– volume: 24
  start-page: 917
  year: 2019
  end-page: 926
  article-title: N‐degron pathways in plastids
  publication-title: Trends Plant Sci
– volume: 5
  start-page: 16
  year: 2009
  article-title: Tape‐ Sandwich ‐ a simpler protoplast isolation method
  publication-title: Plant Methods
– volume: 57
  start-page: 418
  year: 2014
  end-page: 426
  article-title: Cloning of serotonin N‐acetyltransferase and its role with caffeic acid O‐methyltransferase in the biosynthesis of melatonin despite their different subcellular localizations
  publication-title: J Pineal Res
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of
  publication-title: Plant J
– volume: 5
  start-page: 5176
  year: 2014
  article-title: NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2
  publication-title: Nat Commun
– volume: 45
  start-page: 619
  year: 2020
  end-page: 632
  article-title: Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution
  publication-title: Trends Biochem Sci
– volume: 13
  start-page: e0204687
  year: 2018
  article-title: Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity
  publication-title: PLoS ONE
– volume: 115
  start-page: 4399
  year: 2018
  end-page: 4404
  article-title: NAA80 is actin's N‐terminal acetyltransferase and regulates cytoskeleton assembly and cell motility
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 15
  year: 2009a
  article-title: A novel human NatA Nalpha‐terminal acetyltransferase complex: hNaa16p‐hNaa10p (hNat2‐hArd1)
  publication-title: BMC Biochem
– volume: 9
  start-page: e102348
  year: 2014
  article-title: Structural characterization of a Gcn5‐related N‐acetyltransferase from
  publication-title: PLoS ONE
– volume: 106
  start-page: 8157
  year: 2009b
  end-page: 8162
  article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N‐terminal acetyltransferases from yeast and humans
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 1547
  year: 2015
  end-page: 1562
  article-title: Two N‐terminal acetyltransferases antagonistically regulate the stability of a nod‐like receptor in
  publication-title: Plant Cell
– volume: 13
  start-page: 949
  year: 2017
  article-title: Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in
  publication-title: Mol Syst Biol
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 408
  start-page: 613
  year: 2000
  end-page: 615
  article-title: The PSI‐H subunit of photosystem I is essential for state transitions in plant photosynthesis
  publication-title: Nature
– volume: 3
  start-page: e1994
  year: 2008
  article-title: Sorting signals, N‐terminal modifications and abundance of the chloroplast proteome
  publication-title: PLoS ONE
– volume: 69
  start-page: 4555
  year: 2018
  end-page: 4568
  article-title: N‐terminal acetylation: an essential protein modification emerges as an important regulator of stress responses
  publication-title: J Exp Bot
– volume: 29
  start-page: 81
  year: 2000
  end-page: 103
  article-title: GCN5‐related N‐acetyltransferases: a structural overview
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 15
  start-page: 2503
  year: 2015
  end-page: 2518
  article-title: Proteome‐wide analysis of the amino terminal status of proteins at the steady‐state and upon deformylation inhibition
  publication-title: Proteomics
– volume: 45
  start-page: D1100
  year: 2017
  end-page: D1106
  article-title: The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition
  publication-title: Nucleic Acids Res
– volume: 280
  start-page: 5570
  year: 2013
  end-page: 5581
  article-title: Structure and mechanism of non‐histone protein acetyltransferase enzymes
  publication-title: FEBS J
– volume: 62
  start-page: 215
  year: 2010
  end-page: 223
  article-title: ASKtheta, a group‐III GSK3, functions in the brassinosteroid signalling pathway
  publication-title: Plant J
– volume: 1305
  start-page: 107
  year: 2015
  end-page: 121
  article-title: Identification of lysine‐acetylated mitochondrial proteins and their acetylation sites
  publication-title: Methods Mol Biol
– volume: 35
  start-page: D213
  year: 2007
  end-page: D218
  article-title: SUBA: the subcellular database
  publication-title: Nucleic Acids Res
– volume: 6
  start-page: 21304
  year: 2016
  article-title: Absence of N‐terminal acetyltransferase diversification during evolution of eukaryotic organisms
  publication-title: Sci Rep
– volume: 18
  start-page: 646
  year: 2017
  end-page: 657
  article-title: Golgi 1,4‐fucosyltransferase of partially localizes at the nuclear envelope
  publication-title: Traffic
– volume: 7
  start-page: 63306
  year: 2016
  end-page: 63323
  article-title: MetAP1 and MetAP2 drive cell selectivity for a potent anti‐cancer agent in synergy, by controlling glutathione redox state
  publication-title: Oncotarget
– volume: 9
  start-page: 7
  year: 2008
  end-page: 20
  article-title: Structure of an acetyl‐CoA binding protein from representing a novel subfamily of GCN5‐related N‐acetyltransferase‐like proteins
  publication-title: J Struct Funct Genomics
– volume: 24
  start-page: 1044
  year: 2016
  end-page: 1056
  article-title: Crystal structure of the golgi‐associated human N alpha‐acetyltransferase 60 reveals the molecular determinants for substrate‐specific acetylation
  publication-title: Structure
– volume: 169
  start-page: 1881
  year: 2015
  end-page: 1896
  article-title: The chloroplast stromal N‐terminome: complexities of amino‐terminal protein maturation and stability
  publication-title: Plant Physiol
– volume: 36
  start-page: D245
  year: 2008
  end-page: D249
  article-title: The 20 years of PROSITE
  publication-title: Nucleic Acids Res
– volume: 286
  start-page: 37002
  year: 2011
  end-page: 37010
  article-title: Structure of a ternary Naa50p (NAT5/SAN) N‐terminal acetyltransferase complex reveals the molecular basis for substrate‐specific acetylation
  publication-title: J Biol Chem
– volume: 7
  start-page: e1002169
  year: 2011
  article-title: NatF contributes to an evolutionary shift in protein N‐terminal acetylation and is important for normal chromosome segregation
  publication-title: PLoS Genet
– volume: 30
  start-page: 1695
  year: 2018
  end-page: 1709
  article-title: Chloroplast acetyltransferase NSI is required for state transitions in
  publication-title: Plant Cell
– volume: 44
  start-page: 39
  year: 2011
  end-page: 50
  article-title: HAT4, a golgi apparatus‐anchored B‐type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly
  publication-title: Mol Cell
– volume: 11
  start-page: 1734
  year: 2011
  end-page: 1750
  article-title: Dynamics of post‐translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts
  publication-title: Proteomics
– volume: 9
  start-page: e01905
  year: 2018
  end-page: e01918
  article-title: Identification of novel protein lysine acetyltransferases in
  publication-title: mBio
– volume: 22
  start-page: 448
  year: 2011
  end-page: 456
  article-title: A novel acetylation of beta‐tubulin by San modulates microtubule polymerization via down‐regulating tubulin incorporation
  publication-title: Mol Biol Cell
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  article-title: Clustal W and clustal X version 2.0
  publication-title: Bioinformatics
– volume: 4
  start-page: e7451
  year: 2009
  article-title: Arrest defective‐1 controls tumor cell behavior by acetylating myosin light chain kinase
  publication-title: PLoS ONE
– volume: 284
  start-page: 31122
  year: 2009
  end-page: 31129
  article-title: Human Naa50p (Nat5/San) displays both protein Nα‐ and Nϵ‐acetyltransferase activity
  publication-title: J Biol Chem
– volume: 182
  start-page: 792
  year: 2020
  end-page: 806
  article-title: NatB‐mediated N‐terminal acetylation affects growth and abiotic stress responses
  publication-title: Plant Physiol
– volume: 34
  start-page: D247
  year: 2006
  end-page: D251
  article-title: Pfam: clans, web tools and services
  publication-title: Nucleic Acids Res
– volume: 34
  start-page: 104
  year: 2016
  end-page: 110
  article-title: The quantitative and condition‐dependent proteome
  publication-title: Nat Biotechnol
– year: 2020
  article-title: Plants evolved a plasma membrane anchored N‐acetyltransferase required for the adaption to high salt stress and post‐translational acetylation of plasmodesmata‐localized proteins
  publication-title: New Phytol
– volume: 19
  start-page: 364
  year: 2018
  end-page: 374
  article-title: FIH permits NAA10 to catalyze the oxygen‐dependent lysyl‐acetylation of HIF‐1alpha
  publication-title: Redox Biol
– volume: 35
  start-page: 1547
  year: 2018
  end-page: 1549
  article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms
  publication-title: Mol Biol Evol
– volume: 11
  start-page: M111.015131
  year: 2012
  article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N‐alpha‐acetylation features
  publication-title: Mol Cell Proteomics
– volume: 10
  start-page: 1604
  year: 2019b
  article-title: Post‐translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions
  publication-title: Front Microbiol
– volume: 217
  start-page: 6
  year: 1989
  end-page: 12
  article-title: Efficient transformation of using direct gene transfer to protoplasts
  publication-title: Mol Gen Genet
– volume: 6
  start-page: e24713
  year: 2011
  article-title: The human N‐alpha‐acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N‐terminally acetylates histones H2A and H4
  publication-title: PLoS ONE
– volume: 77
  start-page: 998
  year: 2013
  end-page: 1007
  article-title: Potential involvement of N‐terminal acetylation in the quantitative regulation of the epsilon subunit of chloroplast ATP synthase under drought stress
  publication-title: Biosci Biotechnol Biochem
– volume: 8
  start-page: e74483
  year: 2013
  article-title: Proteomic amino‐termini profiling reveals targeting information for protein import into complex plastids
  publication-title: PLoS ONE
– volume: 18
  start-page: 182
  year: 2017b
  article-title: EnCOUNTer: a parsing tool to uncover the mature N‐terminus of organelle‐targeted proteins in complex samples
  publication-title: BMC Bioinformatics
– volume: 1864
  start-page: 1372
  year: 2016
  end-page: 1401
  article-title: The world of protein acetylation
  publication-title: Biochim Biophys Acta
– ident: e_1_2_9_77_1
  doi: 10.1038/nsmb.2636
– ident: e_1_2_9_96_1
  doi: 10.1038/nbt.3418
– ident: e_1_2_9_86_1
  doi: 10.1016/j.tibs.2020.03.007
– ident: e_1_2_9_111_1
  doi: 10.1105/tpc.15.00173
– ident: e_1_2_9_55_1
  doi: 10.1271/bbb.120945
– ident: e_1_2_9_107_1
  doi: 10.1016/j.abb.2004.09.003
– ident: e_1_2_9_90_1
  doi: 10.1038/srep21304
– ident: e_1_2_9_104_1
  doi: 10.1111/tpj.14315
– ident: e_1_2_9_114_1
  doi: 10.1371/journal.pone.0001994
– ident: e_1_2_9_70_1
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_2_9_82_1
  doi: 10.1038/35046121
– ident: e_1_2_9_37_1
  doi: 10.1073/pnas.1718336115
– ident: e_1_2_9_66_1
  doi: 10.1007/s11120-020-00711-4
– ident: e_1_2_9_8_1
  doi: 10.1042/BJ20041071
– ident: e_1_2_9_51_1
  doi: 10.15252/msb.20177819
– ident: e_1_2_9_49_1
  doi: 10.1016/j.biochi.2014.11.008
– ident: e_1_2_9_5_1
  doi: 10.1016/j.molcel.2019.02.007
– ident: e_1_2_9_12_1
  doi: 10.1074/mcp.M111.015131
– ident: e_1_2_9_95_1
  doi: 10.3390/ijms17071018
– ident: e_1_2_9_39_1
  doi: 10.1111/j.1365-2958.1991.tb00770.x
– ident: e_1_2_9_112_1
  doi: 10.1016/j.molcel.2011.07.032
– ident: e_1_2_9_11_1
  doi: 10.1002/pmic.201000634
– ident: e_1_2_9_99_1
  doi: 10.1093/nar/gks1067
– ident: e_1_2_9_62_1
  doi: 10.1104/pp.107.106989
– ident: e_1_2_9_78_1
  doi: 10.1073/pnas.1310365110
– ident: e_1_2_9_33_1
  doi: 10.1093/nar/gkw936
– volume: 169
  start-page: 1469
  year: 2015
  ident: e_1_2_9_46_1
  article-title: Posttranslational protein modifications in plant metabolism
  publication-title: Plant Physiol
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-020-15184-1
– ident: e_1_2_9_110_1
  doi: 10.1016/S0969-2126(99)80066-5
– ident: e_1_2_9_67_1
  doi: 10.1093/nar/gkw978
– ident: e_1_2_9_80_1
  doi: 10.1371/journal.pone.0058681
– ident: e_1_2_9_41_1
  doi: 10.1074/jbc.M109.001347
– ident: e_1_2_9_26_1
  doi: 10.1091/mbc.E10-03-0203
– ident: e_1_2_9_7_1
  doi: 10.1104/pp.20.00222
– ident: e_1_2_9_50_1
  doi: 10.1007/978-1-4939-2639-8_7
– ident: e_1_2_9_14_1
  doi: 10.1007/978-1-4939-6850-3_3
– ident: e_1_2_9_13_1
  doi: 10.1002/pmic.201500027
– volume: 169
  start-page: 2874
  year: 2015
  ident: e_1_2_9_81_1
  article-title: Phosphorylation of the light‐harvesting complex II isoform Lhcb2 is central to state transitions
  publication-title: Plant Physiol
– ident: e_1_2_9_23_1
  doi: 10.1128/mBio.01905-18
– ident: e_1_2_9_74_1
  doi: 10.1093/jxb/ery241
– ident: e_1_2_9_22_1
  doi: 10.1016/j.molbiopara.2008.04.011
– ident: e_1_2_9_34_1
  doi: 10.1038/s41467-020-14847-3
– ident: e_1_2_9_92_1
  doi: 10.1111/tra.12506
– ident: e_1_2_9_48_1
  doi: 10.1016/j.molp.2016.03.012
– ident: e_1_2_9_94_1
  doi: 10.1111/j.1365-313X.2010.04145.x
– ident: e_1_2_9_3_1
  doi: 10.1101/021295
– ident: e_1_2_9_56_1
  doi: 10.1155/2008/420747
– ident: e_1_2_9_52_1
  doi: 10.1093/nar/gkl863
– ident: e_1_2_9_53_1
  doi: 10.3389/fpls.2016.00218
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.108.127027
– ident: e_1_2_9_18_1
  doi: 10.1016/j.bbapap.2015.11.002
– ident: e_1_2_9_40_1
  doi: 10.1038/nprot.2007.131
– ident: e_1_2_9_84_1
  doi: 10.1074/jbc.M115.709428
– ident: e_1_2_9_88_1
  doi: 10.1016/j.febslet.2006.02.012
– ident: e_1_2_9_9_1
  doi: 10.1186/1471-2091-10-15
– ident: e_1_2_9_65_1
  doi: 10.1105/tpc.18.00155
– ident: e_1_2_9_4_1
  doi: 10.1016/j.tibs.2016.07.005
– ident: e_1_2_9_19_1
  doi: 10.1016/S0092-8674(00)81063-6
– ident: e_1_2_9_69_1
  doi: 10.1093/molbev/msy096
– ident: e_1_2_9_108_1
  doi: 10.1186/1746-4811-5-16
– ident: e_1_2_9_83_1
  doi: 10.1093/nar/gkv385
– ident: e_1_2_9_64_1
  doi: 10.1038/s41467-020-14893-x
– ident: e_1_2_9_2_1
  doi: 10.1038/nature19949
– ident: e_1_2_9_102_1
  doi: 10.1038/nprot.2016.136
– ident: e_1_2_9_31_1
  doi: 10.1016/j.bbabio.2015.09.005
– ident: e_1_2_9_29_1
  doi: 10.1007/s10969-008-9041-z
– ident: e_1_2_9_109_1
  doi: 10.1104/pp.110.165852
– ident: e_1_2_9_68_1
  doi: 10.1038/nmeth.2834
– ident: e_1_2_9_100_1
  doi: 10.1371/journal.pone.0102348
– ident: e_1_2_9_21_1
  doi: 10.1038/s41589-018-0077-5
– ident: e_1_2_9_57_1
  doi: 10.1104/pp.19.00792
– ident: e_1_2_9_20_1
  doi: 10.1073/pnas.1815511116
– ident: e_1_2_9_24_1
  doi: 10.1128/mBio.02708-18
– ident: e_1_2_9_27_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.110.171595
– volume: 169
  start-page: 1881
  year: 2015
  ident: e_1_2_9_93_1
  article-title: The Arabidopsis chloroplast stromal N‐terminome: complexities of amino‐terminal protein maturation and stability
  publication-title: Plant Physiol
– ident: e_1_2_9_106_1
  doi: 10.1002/pmic.201400619
– ident: e_1_2_9_25_1
  doi: 10.3389/fmicb.2019.01604
– ident: e_1_2_9_72_1
  doi: 10.1111/jpi.12181
– ident: e_1_2_9_45_1
  doi: 10.1111/febs.12373
– ident: e_1_2_9_63_1
  doi: 10.1016/j.mito.2014.03.004
– ident: e_1_2_9_91_1
  doi: 10.1371/journal.pone.0204687
– ident: e_1_2_9_97_1
  doi: 10.1002/cbic.201500611
– ident: e_1_2_9_17_1
  doi: 10.1016/j.tplants.2019.06.013
– ident: e_1_2_9_61_1
  doi: 10.1016/j.redox.2018.09.002
– ident: e_1_2_9_15_1
  doi: 10.1186/s12859-017-1595-y
– ident: e_1_2_9_60_1
  doi: 10.1016/S0092-8674(02)01085-1
– ident: e_1_2_9_73_1
  doi: 10.1038/ncomms8640
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.0901931106
– ident: e_1_2_9_85_1
  doi: 10.1002/pmic.200701191
– ident: e_1_2_9_28_1
  doi: 10.1038/nmeth1109-786
– ident: e_1_2_9_30_1
  doi: 10.1038/nbt.1511
– ident: e_1_2_9_38_1
  doi: 10.1093/nar/gkv332
– ident: e_1_2_9_16_1
  doi: 10.1105/tpc.111.092882
– ident: e_1_2_9_101_1
  doi: 10.1016/j.str.2016.04.020
– ident: e_1_2_9_58_1
  doi: 10.1371/journal.pone.0074483
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_9_89_1
– ident: e_1_2_9_47_1
  doi: 10.18632/oncotarget.11216
– ident: e_1_2_9_36_1
  doi: 10.1016/j.bbapap.2016.06.007
– ident: e_1_2_9_113_1
  doi: 10.1038/ncomms6176
– ident: e_1_2_9_98_1
  doi: 10.1371/journal.pone.0007451
– ident: e_1_2_9_76_1
  doi: 10.1074/jbc.M111.282863
– ident: e_1_2_9_71_1
  doi: 10.1007/978-1-4939-7225-8_5
– ident: e_1_2_9_79_1
  doi: 10.1016/j.biocel.2009.08.009
– ident: e_1_2_9_87_1
  doi: 10.1021/cb500853p
– ident: e_1_2_9_103_1
  doi: 10.1038/nmeth.3901
– ident: e_1_2_9_35_1
  doi: 10.1002/pmic.201500025
– ident: e_1_2_9_75_1
  doi: 10.1111/nph.16747
– ident: e_1_2_9_43_1
  doi: 10.1093/nar/gkj149
– ident: e_1_2_9_54_1
  doi: 10.1371/journal.pone.0024713
– ident: e_1_2_9_59_1
  doi: 10.1093/nar/gkm977
– ident: e_1_2_9_32_1
  doi: 10.1007/BF00330935
– ident: e_1_2_9_105_1
  doi: 10.1371/journal.pgen.1002169
SSID ssj0038182
Score 2.5263464
Snippet Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation (NTA) and...
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and...
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-a-acetylation (NTA) and...
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation ( NTA )...
Abstract Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N‐α‐acetylation...
SourceID doaj
pubmedcentral
hal
proquest
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e9464
SubjectTerms Acetylation
acetylome
Acetyltransferase
Biochemistry, Molecular Biology
Cellular Biology
Chloroplasts
Complexity
co‐ and post‐translational modifications
Deactivation
EMBO30
EMBO31
EMBO56
Enzymatic activity
Enzymes
Genomes
Genomics
In vivo methods and tests
Inactivation
Life Sciences
Localization
Lysine
Mass spectrometry
Mass spectroscopy
Peptides
Phylogenetics
plastid
Plastids
Prokaryotes
Proteins
Quantitative Methods
quantitative proteomics
Selectivity
Structural Biology
Subcellular Processes
Vegetal Biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCAqIQKkMQnAhauL4ER9boFoh2gtU6s3yK-pKS1rtA7W3_gR-Y39JZ5xkaZAWLlyiVWbijWbGmc_J-BtC3lahDoI7keOuyJzHOuRaBojlCPkc81kT8NXA0bGcnPAvp-L0TqsvrAnr6IE7w-0FJh0vnYUD58I1uDHSed44q0PhWGIChZw3LKa6ZzCmIdYzagom2N6PhYO1IChyyUcZKBH1Q145wzLIOxjzzwrJ9WfSMYhNWejwEXnYw0e63932Y3IvttvkftdQ8uoJaT6tQIosI22ktg30-Ob6V1_vMqPWx-XVbJmgapxD-lpQJHACCaBAmorL4yWgcooby-YX09TNiCYmh2nbX50c-ZScHH7-_nGS950Uci91zfPKlhLRlFWaNRpfpgnplCtCDEFariUatYxBuRogHKg0rlAhNLVnsFzStnpGttrzNj4ntIiqUlr5wsOFZe2dCDwIV1feQzgokZEPg3WN72nGsdvFzOByA51hwBlmcEZG3q3VLzp-jU2KB-iqtRLSYqcTECymDxbzr2DJyBtw9GiMyf5Xg-cKppG1ufxZZmRniAPTT-iFASRTa1j7KbVBzBVD3iSWkddrMcxU_Pxi23i-SkNAYoEMUWREjcJrdENjSTs9S5zfqgIgW8Do74dA_P3nG-yVpzj9u1XN0beD7teL_2Hfl-QBjtyVM--QreV8FV8BaFu63TQ_bwH5zj-2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmE4ELUxLHj-IRaoFoh2gtU2psVP0JXWrLLPhC98RP4jfwSZhwnJUjbSxTFj-x6xplv7PE3hLwsXOUENyLFU5Ep95VLVelAlz3Yc7RnjcOlgZPTcnLGP07FNC64rWNYZf9NDB9qt7C4Rn4ApqRSAL6lfLv8nmLWKNxdjSk0rpMbSF2GIV1yOjhcaIxY5NUUTLCDb2sDHiEDj6bkIzsU6PrBupxjMOQ_SPP_OMlhs3QMZYMtOr5DbkcQSQ87qd8l13x7j9zs0kpe3CfN-y2UItdI62ndOnr659fvGPUyp7X1m4v5JgBWvwIjtqZI4wQlgAVpCDH3PwGbUzxetlrOQk4jGvgcZm1sHcT5gJwdf_jybpLGfAqpLVXF06LOS8RUtVSsUbikJkojTea8c2XNVZnn0uTeSVMBkIMqjcmkc01lGThNqi4ekr120fpHhGZeFlJJm1lomFfWCMedMFVhLSiFFAl504-utpFsHHNezDU6HSgMDcLQvTAS8mqovuxYNnZVPEJRDZWQHDs8WKy-6jjXtGOl4bmp4cK5MA2epTWWN6ZWLjMMOnkBgh71MTn8pPFZxhRyN-c_8oTs93qg47Re60sl3FHMJUP2JJaQ50MxzFfchKlbv9iGLsC8gJ3IEiJH6jX6QeOSdnYemL9lAXA2g95f94p4-fId45UGPb16VPXJ56Pu7vHV__oJuYVtunDlfbK3WW39UwBlG_MszLy_h_w2mw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCIkL4ilCCzIIwYWIxPEjPrYL1QrRXqBSb5ZfUVda0mofqL3xE_iN_BJmnGRpQIu4RFHGnl15xplv4vFnQl5VoQ6CO5HjrsicxzrkWgbw5QjxHONZE_DTwNGxnJ7wj6fitC-iwb0w19fvBRPs3delgyyOQRYi-U1yS5SVROedyMnwwsWYw3r6zL-6jMJNYuWHIHKGNY_XAOWf5ZCbNdExYk0h5_AeudtjRbrfGfc-uRHbB-R2d3rk1UPSvF-DFClF2khtG-jxz-8_-uKWObU-rq7mq4RL4wJi1ZIiWxNIAPLRVEkeLwGCU9xFtriYpaOLaKJtmLV972S1R-Tk8MOXyTTvj03IvdQ1zytbSoROVmnWaPxyJqRTrggxBGm5lmWpXBmDcjXgNWjSuEKF0NSeQW6kbfWY7LTnbXxCaBFVpbTyhYeOZe2dCDwIV1feg-2VyMjbYXSN7znF8WiLucHcAo1hwBhmMEZGXm-aX3RkGtsaHqCpNo2QAzs9ANcw_ZQygUnHS2fhwrlwDW6ZdZ43zupQOAZKXoKhRzqm-58MPiuYRorm8luZkb3BD0w_e5cGYEutIdFTaouYK4YkSSwjLzZimJa41mLbeL5OKiCKQDgoMqJG7jX6Q2NJOztLBN-qAtRagPY3gyP-_vEt45UnP_33qJqjzwfd3dP_1rxL7uBtV6C8R3ZWi3V8BjBs5Z6nSfgLbGst5A
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB60IvgiXjG2ShTRF4PJZDKTeWzVsogtghb6NswtdmHNlr2U9q0_wd_YX9JzJpPYCCv4sixz22XOOTnfmcz5DiFvSle7ipkqw6zIjPnaZZI70GUP_hz9WePwaODgkE-O2Jfj6jjWOcVcmI4fYjhwQ8sIz2s0cG2WfcUeZA39tTQQ31GITzi7Te5gei2S51P2rX8UozeiXUYky7AuUyTZxAU-3Jw-ckqBux9czQnejLwBO_--NDm8OR3j2uCY9h-Q-xFRprudCjwkt3z7iNztakxePCbNpzX0IvFI61PduvTw6vJ3vAIzS7X1q4vZKqBXvwCPtkyR0wl6ABim4b65PwegnmKu2eJ0GgocpYHcYdrG2UG2T8jR_ucfHydZLK6QWS5rlpW64AiwtJC0kXi-VnEjTO68c1wzyYtCmMI7YWpAdTCkMblwrqkthQhK6vIp2WrnrX9G0tyLUkhhcwsTi9qayjFXmbq0FjREVAl53--uspF5HAtgzBRGICgMBcJQvTAS8nYYftpRbmwauIeiGgYhU3ZomC9-qmh4ylFuWGE0fDBWmQYTa41ljdHS5YbCIq9B0KM1JrtfFbblVCKRc3FWJGSn1wMVbXypANzUEsJBITZ0M0GRSokm5NXQDcaLb2R06-frsAT4GnAaeULESL1Gf2jc005PAg24KAHb5rD6u14R__z4hv3Kgp7-e1fVwfe97tvz_xy_Te5hY3eZeYdsrRZr_wIg28q8DGZ5DVDLOmg
  priority: 102
  providerName: Wiley-Blackwell
Title Dual lysine and N‐terminal acetyltransferases reveal the complexity underpinning protein acetylation
URI https://link.springer.com/article/10.15252/msb.20209464
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20209464
https://www.proquest.com/docview/2428926077
https://www.proquest.com/docview/2447207812
https://www.proquest.com/docview/2421112190
https://hal.science/hal-02900691
https://pubmed.ncbi.nlm.nih.gov/PMC7339202
https://doaj.org/article/d26b41bab41445bf8117bc4fba9d0b24
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiRe0PgSgVEFhOCFQOI4dvyA0Fo2VYhWE1Cpb1H8ka1SSbe0Ret_z52TZgQo4iVKcrYT-c663_njd4S8jE1qEqaSAE9FBsymJpDcgC1b8OfozwqDUwOjMR9O2KdpMr2hFGo6cPnX0A7zSU2q-dvrq80HGPDvm-w99N33pYJIj0KkwtkeOQCnJHCMjli7oIB-idZnI1mAGZoaus0_qnfck2PxB6dzgXskfwGgv2-fbNdQuwjXuajTQ3K3wZb-cW0M98gtW94nt-tsk5sHxHxcgxQpSErr56Xxx0GzFWbu59quNvOVQ7G2As-29JHbCSQAEH2379xeA2D38cxZdTlziY58R_IwK5vaTscPyeT05NtgGDRJFgLNZcqCOI84Aq1cSFpInGdLuBIqNNYYnjPJo0ioyBqhUkB3UKRQoTCmSDWFSErm8SOyXy5K-5j4oRWxkEKHGipGqVaJYSZRaaw1WIpIPPJm27eZbhjIMRHGPMNIBFWRgSqyrSo88qotfllTb-wq2EdFtYWQMdu9WFTnWTMAM0O5YpHK4cJYogo8YKs0K1QuTagoNPIC1NxpY3j8OcN3IZVI6Bz9iDxytLWCbGuqGYCcVEJYKMQOMRMUKZWoR563YhjEuDKTl3axdk2AzwHnEXpEdIyr80NdSTm7cHTgIgaMG0Lrr7dmePPxHf0VOCv9d69mo6_9-u7Jf_z3U3IHK9YbmY_I_qpa22cA11aqR_YoO4OrmIoeOeifjM--wNOAD3puAqTnBupPPAxAXg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiKcIFDCIxwWr9nrXax8QamirlCYRglbqbet9mEYKTsgDyI2fwC_hR_FLmFnbKUZKb71EkWd3nOzM7szszn5DyPPIJIYzxX28Fekzmxg_jQ3osgV7jvYsN7g10B_E3WP2_oSfbJDf9V0YTKus10S3UJuxxj3ybTAlSQrOtxBvJ199rBqFp6t1CY1SLQ7t8juEbLM3B7sg3xeU7u8dvev6VVUBX8dpwvwoC2P0LDKR0jzFjSUeK6ECY42JM5bGYShUaI1QCbgz0CRXgTAmTzSF0CHNIuB7hWyyCEKZFtns7A0-fKzXfjR_tELy5JTT7S8zBTEohRgqZg3L5woEgD07w_TLf3zb_zMzV8ezTefZWb_9m-RG5bZ6O6We3SIbtrhNrpaFLJd3SL67ACqimxTWywrjDf78_FXl2Yy8TNv5cjR3LrKdgtmceQgcBRTwPj2X1G5_QDTg4YW26WToqih5DkFiWFS9nQLdJceXMtb3SKsYF_Y-8QIrIpEKHWjoGCZaccMMV0mkNaih4G3yuh5dqSt4c6yyMZIY5qAwJAhD1sJok5er5pMS12Ndww6KatUI4bjdg_H0s6xmtzQ0VixUGXwwxlWOt3eVZrnKUhMoCkyegaAbPLo7PYnPApoiWnT4LWyTrVoPZLWQzOS52q8hM0ERr4m2ydMVGVYIPPbJCjteOBZg0MAyBW0iGurV-EFNSjE8c1jjIgIHOgDur2pFPH_5mvHynZ5ePKqy_6lTfntw8b9-Qq51j_o92TsYHD4k17F_mSy9RVrz6cI-Apdwrh5X89Ajp5c99f8CWM9zig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELfGJhAviL8iMCAgBC9ESxwntsVTx6hK2SqkMWlvVvwnrFJJqzZF7I2PwGfkk3DnJIWAinipKp_tVL5z73fx3c-EPE-tsBnTWYRVkRFzwkYyt2DLDvw5-rPS4quBk0k-OmPj8-x8h7zuamF8tnt3JNnUNCBLU1UfLGzZ3ddDDz6vNMR2FGKTnF0heyKPBURee4PB-HTc_RGjL6ItreZfg3puyLP1g3O5wFzI34Dmn2mSm7PSPpL1rmh4k9xoMWQ4aJR-i-y46ja52twqeXmHlEdrkCLVSOXCorLh5Me3723SyywsjKsvZ7XHq24JPmwVIosTSAAKhj7D3H0FaB5iddlyMfVXGoWezmFataO9Nu-Ss-Hbj29GUXudQmRyKViUFkmOkKrgkpYS36hlueY6ts7avGAyTxKuE2e5FoDjoEupY25tKQyFmEkW6T2yW80rd5-EseMpl9zEBgYmwujMMptpkRoDNsGzgLzqVleZlmscr7yYKYw5UBkKlKE6ZQTkxab7oiHZ2NbxEFW16YTc2L5hvvyk2q2mLM01S3QBH4xlusRSWm1YqQtpY01hkmeg6N4co8GxwraYSqRuTr4kAdnv7EC1u3qlAM4ICQEg51vEjFMkT6IBeboRw3bFM5iicvO1nwK8C7iJOCC8Z169H9SXVNMLT_zNU0CzMcz-sjPEXw_fsl6Rt9N_r6o6OT1svj3475mfkGsfjobq-N3k_UNyHVubHOZ9slsv1-4RILVaP2535E-7ljp_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+lysine+and+N-terminal+acetyltransferases+reveal+the+complexity+underpinning+protein+acetylation&rft.jtitle=Molecular+systems+biology&rft.au=Bienvenut%2C+Willy+V&rft.au=Br%C3%BCnje%2C+Annika&rft.au=Boyer%2C+Jean-Baptiste&rft.au=M%C3%BChlenbeck%2C+Jens+S&rft.date=2020-07-01&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=16&rft.issue=7&rft.spage=e9464&rft_id=info:doi/10.15252%2Fmsb.20209464&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon