The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers
Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is...
Saved in:
Published in | PLoS biology Vol. 21; no. 9; p. e3002278 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.09.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes. |
---|---|
AbstractList | Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes. Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A . flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A . nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A . fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR 34 /L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A . fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes. Aspergillus fumigatus is a saprotrophic fungus that can cause serious life-threatening invasive infections in immunocompromised individuals. By constructing a recombination map, this study shows that A. fumigatus produces the highest number of crossovers per chromosome ever described. Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A . flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A . nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A . fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR 34 /L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A . fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes. Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes. |
Author | Snelders, Eveline Reyes Marquez, Francisca Fisher, Matthew C van den Heuvel, Joost Rhodes, Johanna Dyer, Paul S Nijland, Reindert Debets, Alfons J M Stanford, Felicia Adelina Auxier, Ben Becker, Frank M |
AuthorAffiliation | Duke University Medical Center, UNITED STATES 4 Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands 2 School of Life Sciences, University of Nottingham, Nottingham, United Kingdom 1 Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands 3 MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom |
AuthorAffiliation_xml | – name: 4 Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands – name: Duke University Medical Center, UNITED STATES – name: 3 MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom – name: 1 Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands – name: 2 School of Life Sciences, University of Nottingham, Nottingham, United Kingdom |
Author_xml | – sequence: 1 givenname: Ben surname: Auxier fullname: Auxier, Ben organization: Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands – sequence: 2 givenname: Alfons J M surname: Debets fullname: Debets, Alfons J M organization: Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands – sequence: 3 givenname: Felicia Adelina surname: Stanford fullname: Stanford, Felicia Adelina organization: School of Life Sciences, University of Nottingham, Nottingham, United Kingdom – sequence: 4 givenname: Johanna surname: Rhodes fullname: Rhodes, Johanna organization: MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom – sequence: 5 givenname: Frank M surname: Becker fullname: Becker, Frank M organization: Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands – sequence: 6 givenname: Francisca surname: Reyes Marquez fullname: Reyes Marquez, Francisca organization: Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands – sequence: 7 givenname: Reindert surname: Nijland fullname: Nijland, Reindert organization: Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands – sequence: 8 givenname: Paul S surname: Dyer fullname: Dyer, Paul S organization: School of Life Sciences, University of Nottingham, Nottingham, United Kingdom – sequence: 9 givenname: Matthew C surname: Fisher fullname: Fisher, Matthew C organization: MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom – sequence: 10 givenname: Joost surname: van den Heuvel fullname: van den Heuvel, Joost organization: Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands – sequence: 11 givenname: Eveline orcidid: 0000-0002-7868-7928 surname: Snelders fullname: Snelders, Eveline organization: Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37708139$$D View this record in MEDLINE/PubMed |
BookMark | eNptUk1v1DAUjFAR_YB_gCASl152iT9iOydUVRQqVeJSzpbtvCReHDvYSSv-Pd5uWrWIk5_9Zsbznua0OPLBQ1G8R9UWEY4-78ISvXLbSduwJVWFMRevihNU03rDhaiPntXHxWlKuz2mweJNcUw4rwQizUmxux2gHJZR-bJbfK9cOal5CD348iJNEHvr3JJyb7S9mnNlMnKKoV0MlPOea_sB0lz-8uHel34ZNcQydOUINszWlCaGlMIdxPS2eN0pl-Ddep4VP6--3l5-39z8-HZ9eXGzMaxh80YbRjFDoAG3GmvVEkEwzfeOKKI5MVjQlqK6NYzRmnWIA2pbQbFitBOakbPi40F3ciHJdU1Jkoo1iIlG4Iy4PiDaoHZyinZU8Y8MysqHhxB7qWI270AyypimdUMrw2kFKOt3jQIQNafEMJ61vqy_LXqE1oCfo3IvRF92vB1kH-4kquoq-6mzwvmqEMPvJe9SjjYZcE55CEuSWLCaC4wZzdBP_0D_Px49oB52H6F7coMquc_OI0vusyPX7GTah-eTPJEew0L-AmUAxcU |
CitedBy_id | crossref_primary_10_1093_molbev_msae079 crossref_primary_10_1055_s_0043_1776997 crossref_primary_10_1007_s40588_024_00219_8 crossref_primary_10_1128_aem_01782_23 |
Cites_doi | 10.1073/pnas.1713078114 10.1016/j.fgb.2020.103478 10.1038/nature13442 10.1016/S0092-8674(00)00029-5 10.1128/mBio.00791-17 10.1016/S0074-7696(07)57003-8 10.7554/eLife.01426 10.1186/gb-2006-7-s1-s11 10.1098/rstb.2016.0455 10.1073/pnas.1503159112 10.1111/1755-0998.12549 10.1016/S0378-1119(97)00281-3 10.1371/journal.pone.0050034 10.1016/j.fgb.2017.08.007 10.7554/eLife.67509 10.1093/bioinformatics/btw152 10.1126/science.1212424 10.1371/journal.pbio.3001890 10.1371/journal.ppat.1004834 10.1111/j.1365-2958.1992.tb00891.x 10.1017/S0016672300033140 10.1038/nrg2193 10.1093/bioinformatics/bty191 10.1038/nature07528 10.1101/gr.215087.116 10.1093/bioinformatics/btp352 10.1016/S1473-3099(17)30316-X 10.1146/annurev-genet-040119-093957 10.1101/gr.214270.116 10.1007/BF01245622 10.1073/pnas.2023613118 10.1016/j.fgb.2015.06.001 10.1093/genetics/63.2.317 10.1016/S0065-2660(08)60161-3 10.1098/rstb.2015.0540 10.1126/science.aap7999 10.1534/genetics.118.301595 10.1073/pnas.1713071115 10.1146/annurev-genet-021721-033821 10.1371/journal.pone.0019325 10.1093/genetics/92.1.231 10.1073/pnas.1107272108 10.1016/S0169-5347(97)01260-3 10.1016/S1473-3099(09)70265-8 10.1038/338662a0 10.1016/S0065-2660(08)60408-3 10.1002/cpmc.89 10.1371/journal.ppat.1003633 10.1016/j.cell.2019.02.021 10.1038/s41564-022-01091-2 10.1128/AAC.01092-06 10.1128/mBio.02213-20 10.1038/nature17143 10.1016/j.cub.2005.05.045 10.1111/j.1601-5223.1982.tb00761.x 10.1016/S0926-6593(66)80120-0 10.1128/mBio.00234-11 10.1128/AAC.02748-16 10.1371/journal.pone.0112963 10.3390/pathogens10060701 10.1101/gr.107524.110 10.1006/fgbi.1997.0984 10.1038/nature07135 10.3389/fcimb.2022.841138 10.1073/pnas.0913435107 10.1073/pnas.1416411111 10.1128/AEM.02295-20 10.1038/s41564-021-00993-x |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Auxier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2023 Auxier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Auxier et al 2023 Auxier et al |
Copyright_xml | – notice: Copyright: © 2023 Auxier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2023 Auxier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Auxier et al 2023 Auxier et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.3002278 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals PLoS Biology |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Animal Behavior Abstracts Environmental Science Database Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | High recombination rate in Aspergillus fumigatus meiosis |
EISSN | 1545-7885 |
Editor | Heitman, Joseph |
Editor_xml | – sequence: 1 givenname: Joseph surname: Heitman fullname: Heitman, Joseph |
ExternalDocumentID | 3069168982 oai_doaj_org_article_6466b45940c740e1b63f9aee85743c67 10_1371_journal_pbio_3002278 37708139 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/R015600/1 – fundername: Wellcome Trust grantid: 219551/Z/19/Z – fundername: ; grantid: 3184200058 – fundername: ; grantid: 219551/Z/19/Z – fundername: ; grantid: ALWGR.2017.010 – fundername: ; grantid: Fellow in the Fungal Kingdom |
GroupedDBID | --- .GJ 123 29O 2WC 36B 3V. 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AFXKF AGJBV AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBS ECM EIF EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P M~E NPM O5R O5S OK1 P2P PATMY PIMPY PQQKQ PROAC PSQYO PV9 PYCSY QF4 QN7 RIG RNS RPM RZL SJN SV3 TR2 TUS UKHRP WOQ WOW XSB YZZ ~8M AAYXX CITATION 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM CZG |
ID | FETCH-LOGICAL-c696t-bc64261ebe2db2bad383241ebf3a3b73c284d415dc66456f17e1dd842a64f8b63 |
IEDL.DBID | RPM |
ISSN | 1545-7885 1544-9173 |
IngestDate | Wed Oct 30 03:15:17 EDT 2024 Tue Oct 22 15:16:01 EDT 2024 Tue Sep 17 21:29:35 EDT 2024 Sat Oct 26 02:07:54 EDT 2024 Thu Oct 24 02:25:29 EDT 2024 Fri Aug 23 03:50:52 EDT 2024 Tue Oct 29 09:30:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Copyright: © 2023 Auxier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c696t-bc64261ebe2db2bad383241ebf3a3b73c284d415dc66456f17e1dd842a64f8b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-7868-7928 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501685/ |
PMID | 37708139 |
PQID | 3069168982 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_3069168982 doaj_primary_oai_doaj_org_article_6466b45940c740e1b63f9aee85743c67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10501685 proquest_miscellaneous_2865782264 proquest_journals_3069168982 crossref_primary_10_1371_journal_pbio_3002278 pubmed_primary_37708139 |
PublicationCentury | 2000 |
PublicationDate | 20230914 |
PublicationDateYYYYMMDD | 2023-09-14 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230914 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | PE Verweij (pbio.3002278.ref010) 2009; 9 KW Broman (pbio.3002278.ref076) 2019; 211 JB Fernandes (pbio.3002278.ref023) 2018; 115 L Capilla-Pérez (pbio.3002278.ref033) 2021; 118 H. Li (pbio.3002278.ref067) 2013 BJ Knaus (pbio.3002278.ref075) 2017; 17 LA Lofgren (pbio.3002278.ref011) 2022; 20 S Wang (pbio.3002278.ref039) 2019; 177 JA Sugui (pbio.3002278.ref020) 2011; 2 S Agarwal (pbio.3002278.ref053) 2000; 102 AJ Clutterbuck (pbio.3002278.ref003) 1997; 21 S Rosu (pbio.3002278.ref049) 2011; 334 SP Otto (pbio.3002278.ref056) 1998; 13 R Vaser (pbio.3002278.ref066) 2017; 27 L Zhang (pbio.3002278.ref034) 2014; 511 S Koren (pbio.3002278.ref064) 2017; 27 AE Barber (pbio.3002278.ref017) 2021; 6 H Li (pbio.3002278.ref069) 2009; 25 IR Henderson (pbio.3002278.ref038) 2021; 55 Y Fan (pbio.3002278.ref018) 2021; 10 CM O’Gorman (pbio.3002278.ref006) 2009; 457 MB Tobin (pbio.3002278.ref042) 1997; 200 B Auxier (pbio.3002278.ref031) 2022 L Zhang (pbio.3002278.ref051) 2014; 111 J Stapley (pbio.3002278.ref048) 2017; 372 DJ Cove (pbio.3002278.ref060) 1966; 113 H Serra (pbio.3002278.ref052) 2018; 115 Q Lian (pbio.3002278.ref027) 2022 R Heinzelmann (pbio.3002278.ref041) 2017; 108 E Mellado (pbio.3002278.ref043) 2007; 51 S Paul (pbio.3002278.ref047) 2017; 61 WJ Kent (pbio.3002278.ref072) 2002; 12 JK Christians (pbio.3002278.ref024) 2011; 6 SMT Camps (pbio.3002278.ref013) 2012; 7 J Zhang (pbio.3002278.ref055) 2021 H. Li (pbio.3002278.ref063) 2018; 34 V. Buffalo (pbio.3002278.ref050) 2021; 10 M Stanke (pbio.3002278.ref071) 2006; 7 MC Fisher (pbio.3002278.ref058) 2018; 360 DS Perlin (pbio.3002278.ref009) 2017; 17 M Paoletti (pbio.3002278.ref012) 2005; 15 SP Otto (pbio.3002278.ref026) 2019; 53 MG Fraczek (pbio.3002278.ref077) 2019; 54 E Mellado (pbio.3002278.ref078) 2001 M Egel-Mitani (pbio.3002278.ref025) 1982; 97 JMG Shelton (pbio.3002278.ref062) 2022 L Losada (pbio.3002278.ref015) 2015; 11 YF Bogdanov (pbio.3002278.ref036) 2007; 257 E Snelders (pbio.3002278.ref044) 2015; 82 E Espagne (pbio.3002278.ref037) 2011; 108 AE Barber (pbio.3002278.ref016) 2020; 11 RM Gell (pbio.3002278.ref005) 2020; 144 G Pontecorvo (pbio.3002278.ref007) 1953; 5 WG Hill (pbio.3002278.ref030) 1968; 38 J Zhang (pbio.3002278.ref059) 2021; 87 BPS Nieuwenhuis (pbio.3002278.ref028) 2016; 371 JA Roper (pbio.3002278.ref040) 1957; 16 CE Oakley (pbio.3002278.ref002) 1989; 338 E Mancera (pbio.3002278.ref021) 2008; 454 A Chowdhary (pbio.3002278.ref008) 2013; 9 E Wijnker (pbio.3002278.ref032) 2013; 2 J-M Chen (pbio.3002278.ref022) 2007; 8 J Zhang (pbio.3002278.ref057) 2017; 8 BJ Walker (pbio.3002278.ref068) 2014; 9 M Seppey (pbio.3002278.ref070) 2019 JW Taylor (pbio.3002278.ref029) 2015; 112 R. Snow (pbio.3002278.ref035) 1979; 92 H Li (pbio.3002278.ref065) 2016; 32 Käfer E. An (pbio.3002278.ref004) 1958; 9 NH Barton (pbio.3002278.ref045) 1995; 65 A McKenna (pbio.3002278.ref073) 2010; 20 MJ McDonald (pbio.3002278.ref046) 2016; 531 CM Tang (pbio.3002278.ref061) 1992; 6 A. Clutterbuck (pbio.3002278.ref001) 1969; 63 GD Ashton (pbio.3002278.ref014) 2022; 12 J Rhodes (pbio.3002278.ref019) 2022; 7 L Newnham (pbio.3002278.ref054) 2010; 107 E Garrison (pbio.3002278.ref074) 2012 |
References_xml | – volume: 16 start-page: 660 year: 1957 ident: pbio.3002278.ref040 article-title: Acriflavine-resistant mutants of Aspergillus nidulans publication-title: Microbiology contributor: fullname: JA Roper – volume: 115 start-page: 2431 year: 2018 ident: pbio.3002278.ref023 article-title: Unleashing meiotic crossovers in hybrid plants publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1713078114 contributor: fullname: JB Fernandes – volume: 144 start-page: 103478 year: 2020 ident: pbio.3002278.ref005 article-title: Genetic map and heritability of Aspergillus flavus publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2020.103478 contributor: fullname: RM Gell – start-page: 2022 year: 2022 ident: pbio.3002278.ref027 article-title: Remarkably high rate of meiotic recombination in the fission yeast Schizosaccharomyces pombe publication-title: bioRxiv contributor: fullname: Q Lian – volume: 511 start-page: 551 year: 2014 ident: pbio.3002278.ref034 article-title: Topoisomerase II mediates meiotic crossover interference publication-title: Nature doi: 10.1038/nature13442 contributor: fullname: L Zhang – year: 2001 ident: pbio.3002278.ref078 article-title: Identification of Two Different 14-α Sterol Demethylase-Related Genes (cyp51A and cyp51B) in Aspergillus fumigatus and Other Aspergillus species. publication-title: J Clin Microbiol contributor: fullname: E Mellado – volume: 102 start-page: 245 year: 2000 ident: pbio.3002278.ref053 article-title: Zip3 provides a link between recombination enzymes and synaptonemal complex proteins publication-title: Cell doi: 10.1016/S0092-8674(00)00029-5 contributor: fullname: S Agarwal – volume: 8 start-page: e00791 year: 2017 ident: pbio.3002278.ref057 article-title: A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence publication-title: mBio doi: 10.1128/mBio.00791-17 contributor: fullname: J Zhang – volume: 257 start-page: 83 year: 2007 ident: pbio.3002278.ref036 article-title: Similarity of the domain structure of proteins as a basis for the conservation of meiosis publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(07)57003-8 contributor: fullname: YF Bogdanov – volume: 2 start-page: e01426 year: 2013 ident: pbio.3002278.ref032 article-title: The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana publication-title: eLife. doi: 10.7554/eLife.01426 contributor: fullname: E Wijnker – volume: 7 start-page: S11 year: 2006 ident: pbio.3002278.ref071 article-title: AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome publication-title: Genome Biol doi: 10.1186/gb-2006-7-s1-s11 contributor: fullname: M Stanke – volume: 372 start-page: 20160455 year: 2017 ident: pbio.3002278.ref048 article-title: Variation in recombination frequency and distribution across eukaryotes: patterns and processes publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2016.0455 contributor: fullname: J Stapley – volume: 112 start-page: 8901 year: 2015 ident: pbio.3002278.ref029 article-title: Clonal reproduction in fungi publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1503159112 contributor: fullname: JW Taylor – volume: 17 start-page: 44 year: 2017 ident: pbio.3002278.ref075 article-title: vcfr: a package to manipulate and visualize variant call format data in R. publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.12549 contributor: fullname: BJ Knaus – volume: 200 start-page: 11 year: 1997 ident: pbio.3002278.ref042 article-title: Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus publication-title: Gene doi: 10.1016/S0378-1119(97)00281-3 contributor: fullname: MB Tobin – volume: 7 start-page: e50034 year: 2012 ident: pbio.3002278.ref013 article-title: Discovery of a hapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing publication-title: PLoS ONE doi: 10.1371/journal.pone.0050034 contributor: fullname: SMT Camps – year: 2021 ident: pbio.3002278.ref055 article-title: Flower bulk waste material is a natural niche for the sexual cycle in Aspergillus fumigatus. Frontiers in Cellular and Infection publication-title: Microbiology contributor: fullname: J Zhang – volume: 108 start-page: 44 year: 2017 ident: pbio.3002278.ref041 article-title: High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2017.08.007 contributor: fullname: R Heinzelmann – volume: 10 start-page: e67509 year: 2021 ident: pbio.3002278.ref050 article-title: Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin’s paradox. publication-title: eLife. doi: 10.7554/eLife.67509 contributor: fullname: V. Buffalo – volume: 32 start-page: 2103 year: 2016 ident: pbio.3002278.ref065 article-title: Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw152 contributor: fullname: H Li – volume: 334 start-page: 1286 year: 2011 ident: pbio.3002278.ref049 article-title: Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number publication-title: Science doi: 10.1126/science.1212424 contributor: fullname: S Rosu – volume: 20 start-page: e3001890 year: 2022 ident: pbio.3002278.ref011 article-title: The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination publication-title: PLoS Biol doi: 10.1371/journal.pbio.3001890 contributor: fullname: LA Lofgren – volume: 11 start-page: e1004834 year: 2015 ident: pbio.3002278.ref015 article-title: Genetic Analysis Using an Isogenic Mating Pair of Aspergillus fumigatus Identifies Azole Resistance Genes and Lack of MAT Locus’s Role in Virulence. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004834 contributor: fullname: L Losada – volume: 6 start-page: 1663 year: 1992 ident: pbio.3002278.ref061 article-title: An Aspergillus fumigatus alkaline protease mutant constructed by gene disruption is deficient in extracellular elastase activity publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1992.tb00891.x contributor: fullname: CM Tang – volume: 65 start-page: 123 year: 1995 ident: pbio.3002278.ref045 article-title: A general model for the evolution of recombination publication-title: Genet Res doi: 10.1017/S0016672300033140 contributor: fullname: NH Barton – volume: 8 start-page: 762 year: 2007 ident: pbio.3002278.ref022 article-title: Gene conversion: mechanisms, evolution and human disease publication-title: Nat Rev Genet doi: 10.1038/nrg2193 contributor: fullname: J-M Chen – volume: 34 start-page: 3094 year: 2018 ident: pbio.3002278.ref063 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 contributor: fullname: H. Li – volume: 457 start-page: 471 year: 2009 ident: pbio.3002278.ref006 article-title: Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus publication-title: Nature doi: 10.1038/nature07528 contributor: fullname: CM O’Gorman – volume: 27 start-page: 722 year: 2017 ident: pbio.3002278.ref064 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res doi: 10.1101/gr.215087.116 contributor: fullname: S Koren – volume: 25 start-page: 2078 year: 2009 ident: pbio.3002278.ref069 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 contributor: fullname: H Li – volume: 17 start-page: e383 year: 2017 ident: pbio.3002278.ref009 article-title: The global problem of antifungal resistance: prevalence, mechanisms, and management publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(17)30316-X contributor: fullname: DS Perlin – volume: 53 start-page: 19 year: 2019 ident: pbio.3002278.ref026 article-title: Crossover interference: Shedding light on the evolution of recombination publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-040119-093957 contributor: fullname: SP Otto – volume: 27 start-page: 737 year: 2017 ident: pbio.3002278.ref066 article-title: Fast and accurate de novo genome assembly from long uncorrected reads publication-title: Genome Res doi: 10.1101/gr.214270.116 contributor: fullname: R Vaser – start-page: 2022 year: 2022 ident: pbio.3002278.ref062 article-title: Landscape-scale exposure to multiazole-resistant Aspergillus fumigatus bioaerosols. publication-title: bioRxiv contributor: fullname: JMG Shelton – volume: 38 start-page: 226 year: 1968 ident: pbio.3002278.ref030 article-title: Linkage disequilibrium in finite populations publication-title: Theor Appl Genet doi: 10.1007/BF01245622 contributor: fullname: WG Hill – volume: 118 year: 2021 ident: pbio.3002278.ref033 article-title: The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2023613118 contributor: fullname: L Capilla-Pérez – volume: 82 start-page: 129 year: 2015 ident: pbio.3002278.ref044 article-title: Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2015.06.001 contributor: fullname: E Snelders – volume: 63 start-page: 317 year: 1969 ident: pbio.3002278.ref001 article-title: A mutational analysis of conidial development in Aspergillus nidulans publication-title: Genetics doi: 10.1093/genetics/63.2.317 contributor: fullname: A. Clutterbuck – volume: 9 start-page: 105 year: 1958 ident: pbio.3002278.ref004 article-title: 8-chromosome map of Aspergillus nidulans publication-title: Adv Genet doi: 10.1016/S0065-2660(08)60161-3 contributor: fullname: Käfer E. An – volume: 371 start-page: 20150540 year: 2016 ident: pbio.3002278.ref028 article-title: The frequency of sex in fungi publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2015.0540 contributor: fullname: BPS Nieuwenhuis – volume: 360 start-page: 739 year: 2018 ident: pbio.3002278.ref058 article-title: Worldwide emergence of resistance to antifungal drugs challenges human health and food security publication-title: Science doi: 10.1126/science.aap7999 contributor: fullname: MC Fisher – year: 2013 ident: pbio.3002278.ref067 article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. publication-title: arXiv:13033997 [q-bio]. contributor: fullname: H. Li – volume: 211 start-page: 495 year: 2019 ident: pbio.3002278.ref076 article-title: R/qtl2: Software for mapping quantitative trait loci with high-dimensional data and multiparent populations publication-title: Genetics doi: 10.1534/genetics.118.301595 contributor: fullname: KW Broman – volume: 115 start-page: 2437 year: 2018 ident: pbio.3002278.ref052 article-title: Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1713071115 contributor: fullname: H Serra – volume: 55 year: 2021 ident: pbio.3002278.ref038 article-title: Evolution and Plasticity of Genome-Wide Meiotic Recombination Rates publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-021721-033821 contributor: fullname: IR Henderson – volume: 6 start-page: e19325 year: 2011 ident: pbio.3002278.ref024 article-title: Quantitative trait locus (QTL) mapping reveals a role for unstudied genes in Aspergillus virulence. publication-title: PLoS ONE doi: 10.1371/journal.pone.0019325 contributor: fullname: JK Christians – volume: 92 start-page: 231 year: 1979 ident: pbio.3002278.ref035 article-title: Maximum likelihood estimation of linkage and interference from tetrad data publication-title: Genetics doi: 10.1093/genetics/92.1.231 contributor: fullname: R. Snow – volume: 108 start-page: 10614 year: 2011 ident: pbio.3002278.ref037 article-title: Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107272108 contributor: fullname: E Espagne – volume: 13 start-page: 145 year: 1998 ident: pbio.3002278.ref056 article-title: The evolution of recombination in changing environments publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(97)01260-3 contributor: fullname: SP Otto – volume: 9 start-page: 789 year: 2009 ident: pbio.3002278.ref010 article-title: Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(09)70265-8 contributor: fullname: PE Verweij – volume: 338 start-page: 662 year: 1989 ident: pbio.3002278.ref002 article-title: Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans publication-title: Nature doi: 10.1038/338662a0 contributor: fullname: CE Oakley – volume: 5 start-page: 141 year: 1953 ident: pbio.3002278.ref007 article-title: The genetics of Aspergillus nidulans publication-title: Adv Genet doi: 10.1016/S0065-2660(08)60408-3 contributor: fullname: G Pontecorvo – volume: 54 start-page: e89 year: 2019 ident: pbio.3002278.ref077 article-title: Fast and reliable PCR amplification from Aspergillus fumigatus spore suspension without traditional DNA extraction publication-title: Curr Protoc Microbiol doi: 10.1002/cpmc.89 contributor: fullname: MG Fraczek – volume: 9 start-page: e1003633 year: 2013 ident: pbio.3002278.ref008 article-title: Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003633 contributor: fullname: A Chowdhary – start-page: 2022 year: 2022 ident: pbio.3002278.ref031 article-title: Identification of heterokaryon incompatibility genes in Aspergillus fumigatus highlights a narrow footprint of ancient balancing selection. publication-title: bioRxiv contributor: fullname: B Auxier – volume: 177 start-page: 326 year: 2019 ident: pbio.3002278.ref039 article-title: Per-nucleus crossover covariation and implications for evolution publication-title: Cell doi: 10.1016/j.cell.2019.02.021 contributor: fullname: S Wang – volume: 7 start-page: 663 year: 2022 ident: pbio.3002278.ref019 article-title: Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment publication-title: Nat Microbiol doi: 10.1038/s41564-022-01091-2 contributor: fullname: J Rhodes – year: 2012 ident: pbio.3002278.ref074 article-title: Haplotype-based variant detection from short-read sequencing. publication-title: arXiv:12073907 [q-bio]. contributor: fullname: E Garrison – volume: 51 start-page: 1897 year: 2007 ident: pbio.3002278.ref043 article-title: A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01092-06 contributor: fullname: E Mellado – volume: 11 start-page: e02213 year: 2020 ident: pbio.3002278.ref016 article-title: Effects of agricultural fungicide use on Aspergillus fumigatus abundance, antifungal susceptibility, and population structure. publication-title: mBio doi: 10.1128/mBio.02213-20 contributor: fullname: AE Barber – volume: 531 start-page: 233 year: 2016 ident: pbio.3002278.ref046 article-title: Sex speeds adaptation by altering the dynamics of molecular evolution publication-title: Nature doi: 10.1038/nature17143 contributor: fullname: MJ McDonald – volume: 15 start-page: 1242 year: 2005 ident: pbio.3002278.ref012 article-title: Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus publication-title: Curr Biol doi: 10.1016/j.cub.2005.05.045 contributor: fullname: M Paoletti – volume: 97 start-page: 179 year: 1982 ident: pbio.3002278.ref025 article-title: Meiosis in Aspergillus nidulans: Another example for lacking synaptonemal complexes in the absence of crossover interference publication-title: Hereditas doi: 10.1111/j.1601-5223.1982.tb00761.x contributor: fullname: M Egel-Mitani – volume: 113 start-page: 51 year: 1966 ident: pbio.3002278.ref060 article-title: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans publication-title: Biochim Biophys Acta doi: 10.1016/S0926-6593(66)80120-0 contributor: fullname: DJ Cove – volume: 2 start-page: e00234 year: 2011 ident: pbio.3002278.ref020 article-title: Identification and characterization of an Aspergillus fumigatus “supermater” pair. publication-title: mBio doi: 10.1128/mBio.00234-11 contributor: fullname: JA Sugui – volume: 61 start-page: e02748 year: 2017 ident: pbio.3002278.ref047 article-title: Contributions of both ATP-binding cassette transporter and Cyp51A proteins are essential for azole resistance in Aspergillus fumigatus publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02748-16 contributor: fullname: S Paul – volume: 9 start-page: e112963 year: 2014 ident: pbio.3002278.ref068 article-title: Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement publication-title: PLoS ONE doi: 10.1371/journal.pone.0112963 contributor: fullname: BJ Walker – volume: 10 start-page: 701 year: 2021 ident: pbio.3002278.ref018 article-title: Genome-wide association analysis for triazole resistance in Aspergillus fumigatus. publication-title: Pathogens doi: 10.3390/pathogens10060701 contributor: fullname: Y Fan – volume: 12 start-page: 656 year: 2002 ident: pbio.3002278.ref072 article-title: BLAT—the BLAST-like alignment tool publication-title: Genome Res contributor: fullname: WJ Kent – volume: 20 start-page: 1297 year: 2010 ident: pbio.3002278.ref073 article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 contributor: fullname: A McKenna – volume: 21 start-page: 267 year: 1997 ident: pbio.3002278.ref003 article-title: The validity of the Aspergillus nidulans linkage map publication-title: Fungal Genet Biol doi: 10.1006/fgbi.1997.0984 contributor: fullname: AJ Clutterbuck – volume: 454 start-page: 479 year: 2008 ident: pbio.3002278.ref021 article-title: High-resolution mapping of meiotic crossovers and non-crossovers in yeast publication-title: Nature doi: 10.1038/nature07135 contributor: fullname: E Mancera – volume: 12 start-page: 841138 year: 2022 ident: pbio.3002278.ref014 article-title: Use of bulk segregant analysis for determining the genetic basis of azole resistance in the opportunistic pathogen Aspergillus fumigatus publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2022.841138 contributor: fullname: GD Ashton – volume: 107 start-page: 781 year: 2010 ident: pbio.3002278.ref054 article-title: The synaptonemal complex protein, Zip1, promotes the segregation of nonexchange chromosomes at meiosis I publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0913435107 contributor: fullname: L Newnham – volume: 111 start-page: E5059 year: 2014 ident: pbio.3002278.ref051 article-title: Interference-mediated synaptonemal complex formation with embedded crossover designation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1416411111 contributor: fullname: L Zhang – volume: 87 start-page: e02295 year: 2021 ident: pbio.3002278.ref059 article-title: Dynamics of Aspergillus fumigatus in azole fungicide-containing plant waste in the Netherlands (2016–2017). publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02295-20 contributor: fullname: J Zhang – volume: 6 start-page: 1526 year: 2021 ident: pbio.3002278.ref017 article-title: Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. publication-title: Nat Microbiol doi: 10.1038/s41564-021-00993-x contributor: fullname: AE Barber – start-page: 227 volume-title: BUSCO: Assessing Genome Assembly and Annotation Completeness. year: 2019 ident: pbio.3002278.ref070 article-title: Gene Prediction: Methods and Protocols. contributor: fullname: M Seppey |
SSID | ssj0022928 |
Score | 2.5030513 |
Snippet | Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental... |
SourceID | plos doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e3002278 |
SubjectTerms | Acriflavine Antifungal Agents Aspergillus fumigatus Aspergillus fumigatus - genetics ATP-Binding Cassette Transporters Biological Transport Biology and Life Sciences Cell division Chromosomes Efflux Eukaryota Eukaryotes Fungicides Genetic crosses Genetic diversity Genetic variance Genomes Genotypes Haplotypes Humans Medicine and Health Sciences Meiosis Meiosis - genetics Multidrug resistance Mutation Offspring Parents & parenting Research and Analysis Methods Sexual reproduction Short Reports Yeast |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOgl9DtO06JCrk5sazyyjmlpCIX2lEBuxrLkZMvGXmLvIf--M5J3yZZALj0smJV3bc0bMW_s0Rshjk3jMpeXPgVvuxQsrXT6YFpCW9oCtOkK3jv86zdeXMHP6_L6UasvrgmL8sDRcKcIiBZKA1mrIfO5RdWZxvuqpNjXYtxHnplNMjWnWoUJXVVZaoaWs1bzpjml89MZo5OVXQwnKkjoVTtBKWj3s9bpchif4p3_lk8-ikfnr8X-TCTlWZzAG_HC92_Fy9ha8uGd-EP4y9CAT1LoojAguffwQO4iz1gc_GaxXK5HGrtjjQ06IhPLVZB_9XLi33IByDhJfujWy9g4RA6dvPOLgS4pw0y4_nN8L67Of1x-v0jnvgppiwan1LbIiRPBVzhb2MZRlkqBnMBSjbJatRSyHAV21yISv-py7XPnKigahK4iAD6IvX7o_YGQRUPIIGsAegNdphqPmQftvIauBFUlIt0Ytl5F-Yw6vEPTlHZEQ9UMRD0DkYhvbP3tuSx-Hb4gl6hnl6ifc4lEHDB2mwuM9OdILLii20zE0QbPp4e_bodpmfG7k6b3w3qseQMvkymERHyM8G9vUmlNxEqZRFQ7jrEzi92RfnEbpLyJ3RLnrsrD_zHvT-JVQRSMq1lyOBJ70_3afybKNNkvYXX8BW98FBk priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3aDYVeStOvuEmLCr06sSVZsk4hKQmh0FBKA7kZy5LTLRt7G3sP_fedkbXbbgk5LJiVjWTNyPNGH-8BfDS1y1xe-FR626bS4kjHn0oL2RSWS21aTmeHv1yqiyv5-bq4jhNuQ9xWuf4mhg-16xuaIz9CaItIpjQlP17-Skk1ilZXo4TGY9jhmCnwGeycnl1-_bZJubgJ6qpEOYPDWot4eE7o_Cja6nBp5_2hCFR65VZwChz-xHm66If78Of_2yj_iUvnz-FZBJTsZPKAXXjkuxfwZJKY_P0SfqIfsCDExzCEYThgpEHco9uwEyIJv5kvFqsBy26JawOvsKvZMtDAejbSs7QRZBgZTb51bBIQYX3Lbv28xypZeBPaBzq8gqvzs--fLtKor5A2yqgxtY2iBArNyJ3ltnaYrWJAR6OJWlgtGgxdDgO8a5RCnNXm2ufOlZLXSralVeI1zLq-83vAeF0Y0qLk3BvZZqL2KvNSO69lW0hRJpCuO7ZaTjQaVVhL05h-TB1VkSGqaIgETqn3N_cSCXb4o7-7qeKYqpRUykqsOGu0zHyOLWpN7X1ZICxqlE5gj2y3rmCo_vpQAgdre95f_GFTjMON1lDqzveroaKDvASqlEzgzWT-TSOF1giwhEmg3HKMrbfYLunmPwKlN6JcxN5l8fbhdu3DU5K7p_0quTyA2Xi38u8QFI32ffT8PyWVDe8 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED66lsJeRtd1q9uuaLBXB1uSJfuhlG6slEL7tEDfjGXJXUZqZ7ED67_fnWyHZmR7CIQotuS7E_fJOn0fwOessJGNExdKZ6pQGpzp-FFhIsvEcKmzitPZ4bt7dTOVtw_Jww6Mmq2DAdutSzvSk5ou55Pfv54vccJfeNUGHY8XTRZm1kyEJ8VLX8EeJ2ouKuaT630FzjOvtkoUNDjNtRgO0_3rLhvJynP6EwfqvGm34dG_yypf5KnrA3gzAEx21UfEW9hx9SHs95KTz-_gJ8YF88J8DFMapgdGmsQNhhG7ItLwx9l8vmqx7Ym4N_Abmp4tPC2sYx1dS4UhbcfoZVzNekER1lTsyc0a7JL5J6G60PYIptffvn-9CQe9hbBUmepCUypaUKFbuTXcFBZXr5jg0YmiEEaLElOZxYRvS6UQd1WxdrG1qeSFklVqlHgPu3VTu2NgvEgy0qbk3GWyikThVOSktk7LKpEiDSAcDZsvelqN3O-taVyO9IbKyRH54IgAvpD11_8lUmz_Q7N8zIc5liuplJHYcVRqGbkYR1RlhXNpgjCpVDqAY_Ld2EGLN1eIjlMcZgBnoz-3N39aN-P0oz2VonbNqs3pYC-BLCUD-NC7fz1IoTUCLpEFkG4ExsZTbLbUsx-e4htRL2LxNDn5_7hO4TVH0EX1K7E8g91uuXIfESR15tzH_R86QxJS priority: 102 providerName: Scholars Portal |
Title | The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37708139 https://www.proquest.com/docview/3069168982 https://www.proquest.com/docview/2865782264 https://pubmed.ncbi.nlm.nih.gov/PMC10501685 https://doaj.org/article/6466b45940c740e1b63f9aee85743c67 http://dx.doi.org/10.1371/journal.pbio.3002278 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swED61nSbtZVr3q7Rd5El7JQHb2PDYVq2qTam6aZXyhjCYjimBqJCH_ve9MxAtU5_6ECvCgI3vTvcdnL8D-JZkRVCEkfWlNaUvDVo6_pQfyTwyXOqk5LR3eH6jru_k90W02AM17oVxSfu5qab1cjWtqz8ut3K9ymdjntjsdn6BmACRShzN9mEfNXSM0YcwiyeuoirRzKApazFsmBM6nA3yma5N1UyFo8-LdxyS4-0nntNl0z6HOf9PnfzHF129g7cDiGRn_WQPYc_W7-F1X1by8QP8RdkzV3yPodtCF8Co7nCDqsLOiBj8vlouNy32rYhfA__h8rK1o361rKNrKfmj7Ri9cKtZXzSENSVb2arBIZl7Esr9bD_C3dXl74trf6ip4OcqUZ1vckVBE4qOF4abrMAIFZ04CkpkwmiRo7sq0KkXuVKIrcpQ27AoYskzJcvYKPEJDuqmtkfAeBYlVH-Sc5vIMhCZVYGVurBalpEUsQf-uLDpuqfOSN33M40hR79QKQkiHQThwTmt_vZcIr52B5qH-3QQf6qkUkbiwEGuZWBDnFGZZNbGEUKhXGkPjkh24wAt3lwhAo5xmh6cjvJ8vvvrthtNjL6bZLVtNm1Km3cJSCnpwede_NtJCq0RVInEg3hHMXaeYrcHtdrReI9afPzyS0_gDUfQRfkroTyFg-5hY78gSOrMBC1joSfw6vzy5vbXxL1qwPbHzxjbuaQWbeYJjJMZWw |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,21402,24332,27938,27939,31733,31734,33758,33759,43324,43819,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BEaIXxGcbWsBIXNMmtmM7J9QiqgXanlppb1EcO2XRNtk22UP_PTNOdsuiisNK0TqRHY8n82yP3wP4nJcucWnmY-ltHUuLno4_FWeyyiyXOq85nR0-O1eTS_ljmk3HBbduTKtcfRPDh9q1Fa2RHyK0RSRjcsO_LG5iUo2i3dVRQuMxPCEeLuLO19P7CRfPg7YqEc6gU2sxHp0TOj0cLXWwsLP2QAQiPbMRmgKDPzGeztvuIfT5bxLlX1Hp5AU8H-EkOxrs_xIe-eYVPB0EJu9ew28cBSzI8DEMYBgMGCkQtzho2BFRhF_N5vNlh2XXxLSBV9jRbBFIYD3r6VlKA-l6RktvDRvkQ1hbs2s_a7FKFt6EskC7N3B58u3i6yQe1RXiSuWqj22laPqERuTOcls6nKtiOEeTiVJYLSoMXA7Du6uUQpRVp9qnzhnJSyVrY5V4C1tN2_hdYLzMclKi5Nznsk5E6VXipXZeyzqTwkQQrzq2WAwkGkXYSdM4-Rg6qiBDFKMhIjim3l_fSxTY4Y_29qoYPapQUikrseKk0jLxKbaozkvvTYagqFI6gl2y3aqCrrgfQRHsr-z5cPGndTE6G-2glI1vl11Bx3gJUikZwc5g_nUjhdYIr0QegdkYGBtvsVnSzH4FQm_EuIi8Tfbu_-36CM8mF2enxen38597sE3C95S5ksp92Opvl_49wqPefgg-8Ad42g96 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5BJxAvEz-3jAFG4jVrYzt28oQ2WDV-VRNi0t6iOHZGUZeUJX3gv-fOcQtFEw-VqjqVHd9d7nN8_j6AN3lpJzZJXSydqWNpMNLxo-JUVqnhUuc1p7PDX2bq7EJ-vEwvQ_1TF8oq189E_6C2bUXvyMcIbRHJZHnGx3Uoizh_P327_BmTghTttAY5jbuwoyV61Qh2Tk5n5183yy-ee6VVop_BENciHKQTOhkHux0tzbw9Ep5WL9tKVJ7Pn_hPF213Gxb9t6Tyrxw1fQi7AVyy48EbHsEd1zyGe4Pc5K8n8AN9gnlRPobpDFMDIz3iFl2IHRNh-NV8sVh12HZNvBv4DaedLT0lrGM9_ZeKQrqe0Yu4hg1iIqyt2bWbt9gl83dCNaHdU7iYnn57dxYHrYW4UrnqY1MpWkyhSbk13JQWV66Y3NGAohRGiwrTmMVkbyulEHPViXaJtZnkpZJ1ZpR4BqOmbdw-MF6mOelScu5yWU9E6dTESW2dlnUqRRZBvJ7YYjlQahR-X03jUmSYqIIMUQRDRHBCs7-5lgix_Q_tzVUR4qtQUikjseNJpeXEJTiiOi-dy1KESJXSEeyT7dYddMUff4rgcG3P25tfb5ox9Gg_pWxcu-oKOtRLAEvJCPYG828GKbRGsCXyCLItx9i6i-2WZv7d03sj4kUcnqUH_x_XK7iPAVB8_jD79BwecMReVMaSyEMY9Tcr9wKxUm9ehiD4Ddg_FR0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+human+fungal+pathogen+Aspergillus+fumigatus+can+produce+the+highest+known+number+of+meiotic+crossovers&rft.jtitle=PLoS+biology&rft.au=Auxier%2C+Ben&rft.au=Debets%2C+Alfons+J+M&rft.au=Stanford%2C+Felicia+Adelina&rft.au=Rhodes%2C+Johanna&rft.date=2023-09-14&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=21&rft.issue=9&rft.spage=e3002278&rft_id=info:doi/10.1371%2Fjournal.pbio.3002278&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |