Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles
Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we...
Saved in:
Published in | Biomaterials Vol. 35; no. 25; pp. 6918 - 6929 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds. |
---|---|
AbstractList | Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds. Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds. Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds. Abstract Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds. |
Author | Huysmans, Marie C. Yang, Xia Alghamdi, Hamdan S. Hilborn, Jöns van den Beucken, Jeroen J.J.P. Ossipov, Dmitri Leeuwenburgh, Sander C.G. Jansen, John A. Nejadnik, M. Reza Bongio, Matilde |
Author_xml | – sequence: 1 givenname: M. Reza surname: Nejadnik fullname: Nejadnik, M. Reza organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands – sequence: 2 givenname: Xia surname: Yang fullname: Yang, Xia organization: Department of Materials Chemistry, Angstrom Laboratory, A Science for Life Laboratory, Uppsala University, SE 75121 Uppsala, Sweden – sequence: 3 givenname: Matilde surname: Bongio fullname: Bongio, Matilde organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands – sequence: 4 givenname: Hamdan S. surname: Alghamdi fullname: Alghamdi, Hamdan S. organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands – sequence: 5 givenname: Jeroen J.J.P. surname: van den Beucken fullname: van den Beucken, Jeroen J.J.P. organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands – sequence: 6 givenname: Marie C. surname: Huysmans fullname: Huysmans, Marie C. organization: Department of Preventive and Restorative Dentistry, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands – sequence: 7 givenname: John A. surname: Jansen fullname: Jansen, John A. organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands – sequence: 8 givenname: Jöns surname: Hilborn fullname: Hilborn, Jöns organization: Department of Materials Chemistry, Angstrom Laboratory, A Science for Life Laboratory, Uppsala University, SE 75121 Uppsala, Sweden – sequence: 9 givenname: Dmitri surname: Ossipov fullname: Ossipov, Dmitri email: dmitri.ossipov@kemi.uu.se organization: Department of Materials Chemistry, Angstrom Laboratory, A Science for Life Laboratory, Uppsala University, SE 75121 Uppsala, Sweden – sequence: 10 givenname: Sander C.G. surname: Leeuwenburgh fullname: Leeuwenburgh, Sander C.G. email: sander.leeuwenburgh@radboudumc.nl organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24862440$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224369$$DView record from Swedish Publication Index |
BookMark | eNqNkk1v1DAQhiNURLeFv4AiThzIMnYcx-aAKC1fUiUOBa6W40y6XhI72Alo_z0O2yJUCXUPlmXlmdfjzHOSHTnvMMueEVgTIPzldt1YP-gJg9V9XFMgbA3VGqB8kK2IqEVRSaiOslX6QAvJCT3OTmLcQjoDo4-yY8oEp4zBKvNX2HfFBnVv3XW-2TXBtrnTzhs_jD7aCWNuvIs2Tgvgu7yxcdz4ZbnUQptqdD-HdHC5dm1udG_sPOR7JhF_0kYdJmt6jI-zh11qGp_c7KfZ1_fvvpx_LC4_f_h0fnZZGC75VOha1oJK4LJroCMlQ2QChICuaWpJOHRCdl1jKg3CMC05cNSkbluUoiy1LE-zF_vc-AvHuVFjsIMOO-W1VRf225ny4VrNs6KUlXzBn-_xMfgfM8ZJDTYa7Hvt0M9R0fTjS1JzKu5FCWcpNPH0AJSmd9Kq4vejVclYQiUk9OkNOjcDtn-fdjvUBLzZAyb4GAN2ythJT9a7KWjbKwJq8Uht1b8eqcUjBZVKHqWIV3cibm85qPhiX4xpwD8tBhWNRWewtQHNpFpvD4t5fSfGJEltEuw77jBu_RzcUkNUpArU1WL7InuSHCrGl0m9_X_AoV38BjxNGF8 |
CitedBy_id | crossref_primary_10_1002_admi_201800118 crossref_primary_10_1016_j_radphyschem_2018_08_011 crossref_primary_10_1021_acsomega_8b01103 crossref_primary_10_1016_j_cclet_2017_05_007 crossref_primary_10_1016_j_pmatsci_2020_100686 crossref_primary_10_1021_acs_chemrev_0c01088 crossref_primary_10_1039_C6TB00583G crossref_primary_10_1016_j_biomaterials_2017_11_018 crossref_primary_10_1039_D1TB00502B crossref_primary_10_1088_2399_7532_ab80d6 crossref_primary_10_1016_j_msec_2020_111758 crossref_primary_10_1016_j_bbrc_2018_11_097 crossref_primary_10_1021_acsapm_2c01494 crossref_primary_10_1016_j_jconrel_2015_10_002 crossref_primary_10_1021_acs_biomac_8b01767 crossref_primary_10_1016_j_ocarto_2021_100159 crossref_primary_10_1021_acs_biomac_1c01063 crossref_primary_10_3390_ma14174982 crossref_primary_10_1016_j_actbio_2017_09_039 crossref_primary_10_1016_j_jcis_2022_08_024 crossref_primary_10_1002_jbm_a_36077 crossref_primary_10_1016_j_jallcom_2019_152834 crossref_primary_10_1016_j_electacta_2020_137243 crossref_primary_10_3390_ma17246162 crossref_primary_10_1002_slct_202404061 crossref_primary_10_3390_polym13132106 crossref_primary_10_1002_adma_201603612 crossref_primary_10_1016_j_ijbiomac_2022_05_034 crossref_primary_10_1021_acs_chemrev_2c00179 crossref_primary_10_3390_polym11020275 crossref_primary_10_1002_adfm_201700591 crossref_primary_10_1016_j_apsusc_2018_12_139 crossref_primary_10_3390_jfb6030708 crossref_primary_10_3390_polym13050798 crossref_primary_10_1016_j_actbio_2016_05_037 crossref_primary_10_3390_jcs8060218 crossref_primary_10_1016_S1452_3981_23_16154_2 crossref_primary_10_1002_adhm_202203004 crossref_primary_10_3390_polym14153126 crossref_primary_10_1016_j_polymer_2023_125808 crossref_primary_10_1002_adfm_202102355 crossref_primary_10_1021_acscentsci_0c00768 crossref_primary_10_1021_acs_biomac_1c01647 crossref_primary_10_1080_13543776_2016_1212840 crossref_primary_10_1021_acsami_5b06896 crossref_primary_10_1002_pi_5051 crossref_primary_10_1016_j_ccr_2024_215790 crossref_primary_10_1016_j_eurpolymj_2021_110732 crossref_primary_10_1021_acsami_7b09176 crossref_primary_10_1021_acs_chemrev_0c00015 crossref_primary_10_1155_2016_8301624 crossref_primary_10_3390_gels1020162 crossref_primary_10_1002_bip_23090 crossref_primary_10_1002_JPER_18_0348 crossref_primary_10_1002_marc_201800837 crossref_primary_10_1021_acs_chemmater_7b00128 crossref_primary_10_1016_j_mehy_2016_04_026 crossref_primary_10_1002_advs_201801664 crossref_primary_10_1016_j_addr_2014_09_005 crossref_primary_10_1016_j_cej_2020_127512 crossref_primary_10_1016_j_carbpol_2019_115652 crossref_primary_10_1016_j_cis_2019_102044 crossref_primary_10_1016_j_polymer_2020_122248 crossref_primary_10_1002_term_2151 crossref_primary_10_1016_j_bioactmat_2020_06_002 crossref_primary_10_1016_j_eurpolymj_2021_110644 crossref_primary_10_3389_fbioe_2020_00654 crossref_primary_10_1039_D0QM01099E crossref_primary_10_1002_adma_201403354 crossref_primary_10_1002_smll_202401870 crossref_primary_10_1016_j_ijpharm_2015_04_019 crossref_primary_10_1016_j_reactfunctpolym_2021_105151 crossref_primary_10_1038_s41467_020_15152_9 crossref_primary_10_1002_mabi_201800460 crossref_primary_10_1002_polb_24728 crossref_primary_10_1016_j_measurement_2020_107608 crossref_primary_10_1007_s10856_016_5665_x crossref_primary_10_1186_s12929_023_00939_x crossref_primary_10_2174_0113816128283466231219071151 crossref_primary_10_1016_j_cclet_2020_12_001 crossref_primary_10_1186_s40902_022_00337_7 crossref_primary_10_1002_adtp_202300128 crossref_primary_10_1021_acs_biomac_9b00104 crossref_primary_10_3389_fchem_2022_830671 crossref_primary_10_1039_C5BM00163C crossref_primary_10_1016_j_copbio_2016_02_008 crossref_primary_10_1002_marc_201600353 crossref_primary_10_3390_polym14153211 crossref_primary_10_1002_pc_27603 crossref_primary_10_1002_mabi_202100088 crossref_primary_10_1021_acs_biomac_5b01557 crossref_primary_10_1016_j_polymer_2022_124769 crossref_primary_10_3390_ma16031215 crossref_primary_10_3390_polym13234199 crossref_primary_10_1002_term_2094 crossref_primary_10_1007_s10544_024_00716_z crossref_primary_10_1021_acsapm_1c00243 crossref_primary_10_1016_j_jdent_2017_12_009 crossref_primary_10_1021_am506926w crossref_primary_10_1016_j_actbio_2016_04_041 crossref_primary_10_1002_mabi_202100257 crossref_primary_10_1088_1748_605X_ab7388 crossref_primary_10_1016_j_msec_2021_112347 crossref_primary_10_1016_j_eurpolymj_2019_109448 crossref_primary_10_1002_term_2365 crossref_primary_10_1039_C5BM00355E crossref_primary_10_1039_C5BM00096C crossref_primary_10_1002_mabi_201500414 crossref_primary_10_1039_C5RA05206H crossref_primary_10_1021_acs_biomac_7b01243 crossref_primary_10_1007_s00253_016_7382_2 crossref_primary_10_1016_j_eng_2024_01_031 crossref_primary_10_1021_acsami_1c01343 crossref_primary_10_1002_adfm_201701642 crossref_primary_10_1517_17425247_2015_1021679 |
Cites_doi | 10.1126/science.1173793 10.1039/c2cc34701f 10.1073/pnas.0701980104 10.1021/nn2025397 10.1002/jbm.a.34071 10.1038/nmat1418 10.1016/j.biomaterials.2006.01.017 10.1039/c1sm05785e 10.1038/nnano.2010.246 10.1038/nature06669 10.1002/anie.201004748 10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H 10.1039/b605365c 10.1021/cm300298n 10.1021/la049304f 10.1073/pnas.1201122109 10.1021/la3046548 10.1002/adma.201003908 10.4012/dmj.2012-074 10.1002/anie.201104069 10.1016/S0142-9612(03)00067-X 10.1016/j.jconrel.2011.04.007 10.1021/ma034072x 10.1002/adhm.201200293 10.1016/j.actbio.2012.07.002 10.1021/ma201653t 10.1021/ma060249m 10.1016/j.actbio.2011.04.026 10.1038/nnano.2010.274 10.1021/bm1007986 10.1039/c0sm01218a 10.1038/nature08693 10.1021/cr2004212 10.1021/ja208349x 10.1038/nmat1428 10.1021/ja3044568 10.1016/j.bone.2011.04.022 10.1016/j.actbio.2013.03.005 10.1007/BF03261884 10.1038/nmat1039 10.1073/pnas.1015862108 10.1073/pnas.1003600107 10.1002/adma.200602497 10.1038/nnano.2011.28 10.1002/adma.201205321 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 ADTPV AOWAS DF2 |
DOI | 10.1016/j.biomaterials.2014.05.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 6929 |
ExternalDocumentID | oai_DiVA_org_uu_224369 24862440 10_1016_j_biomaterials_2014_05_003 S0142961214005468 1_s2_0_S0142961214005468 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c696t-a797829069fb0f134ee480880fbb79160f89ffbc5a08c4a9606ea17dde9833a93 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Aug 21 06:43:15 EDT 2025 Fri Jul 11 02:33:50 EDT 2025 Fri Jul 11 16:55:05 EDT 2025 Fri Jul 11 15:16:14 EDT 2025 Fri Jul 11 00:50:09 EDT 2025 Thu Apr 03 07:02:26 EDT 2025 Tue Jul 01 03:47:45 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Fri Feb 23 02:31:34 EST 2024 Sun Feb 23 10:18:53 EST 2025 Tue Aug 26 17:19:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Organic-inorganic nanocomposites Hydrogels Bone regeneration Reversible bonds Self-healing materials |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c696t-a797829069fb0f134ee480880fbb79160f89ffbc5a08c4a9606ea17dde9833a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24862440 |
PQID | 1534472590 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_224369 proquest_miscellaneous_2101317628 proquest_miscellaneous_1642241012 proquest_miscellaneous_1627972556 proquest_miscellaneous_1534472590 pubmed_primary_24862440 crossref_citationtrail_10_1016_j_biomaterials_2014_05_003 crossref_primary_10_1016_j_biomaterials_2014_05_003 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2014_05_003 elsevier_clinicalkeyesjournals_1_s2_0_S0142961214005468 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cramer, Davies, O'Brien, Bowman (bib40) 2003; 36 Imato, Nishihara, Kanehara, Amamoto, Takahara, Otsuka (bib10) 2012; 51 Chai, Carlier, Bolander, Roberts, Geris, Schrooten (bib33) 2012; 8 Schmuck (bib7) 2011; 6 Phadke, Zhang, Arman, Hsu, Mashelkar, Lele (bib14) 2012; 109 Kokubo, Takadama (bib29) 2006; 27 Pascaud, Gras, Coppel, Rey, Sarda (bib39) 2013; 29 Zhou, Sharma, Deshmukh, Lakhman, Jain, Kasi (bib16) 2012; 134 Fakhari, Berkland (bib30) 2013; 9 Parisi-Amon, Mulyasasmita, Chung, Heilshorn (bib21) 2013; 2 Yang, Akhtar, Rubino, Leifer, Hilborn, Ossipov (bib41) 2012; 24 Wang, Mynar, Yoshida, Lee, Lee, Okuro (bib17) 2010; 463 Cordier, Tournilhac, Soulie-Ziakovic, Leibler (bib5) 2008; 451 Haque, Kurokawa, Kamita, Gong (bib9) 2011; 44 Kakuta, Takashima, Nakahata, Otsubo, Yamaguchi, Harada (bib20) 2013; 25 Colen, van den Bekerom, Mulier, Haverkamp (bib31) 2012; 26 Suzuki, Saruwatari, Kogure, Yamamoto, Nishimura, Kato (bib3) 2009; 325 Yoshihara, Yoshida, Hayakawa, Nagaoka, Irie, Ogawa (bib28) 2011; 7 Wang, Hansen, Lowik, van Hest, Li, Jansen (bib12) 2011; 23 Yao, Tan, Fang, Yu (bib19) 2010; 49 Nejadnik, Mikos, Jansen, Leeuwenburgh (bib24) 2012; 100A Russell (bib37) 2011; 49 Queffelec, Petit, Janvier, Knight, Bujoli (bib38) 2012; 112 Wolke, van der Waerden, Schaeken, Jansen (bib25) 2003; 24 Haines-Butterick, Rajagopal, Branco, Salick, Rughani, Pilarz (bib45) 2007; 104 Yang, Kootala, Hilborn, Ossipov (bib42) 2011; 7 Prestwich (bib32) 2011; 155 Troczynski (bib34) 2004; 3 Yuan, Fernandes, Habibovic, de Boer, Barradas, de Ruiter (bib35) 2010; 107 Cui, del Campo (bib13) 2012; 48 Dvir, Timko, Kohane, Langer (bib4) 2011; 6 Rybtchinski (bib1) 2011; 5 Appel, Loh, Jones, Biedermann, Dreiss, Scherman (bib8) 2012; 134 Wang, Zhang, Yang, Xu (bib23) 2006; 26 Boanini, Gazzano, Rubini, Bigi (bib36) 2007; 19 Yoshida, Yoshihara, Nagaoka, Hanabusa, Matsumoto, Momoi (bib27) 2012; 31 Krieg, Weissman, Shirman, Shimoni, Rybtchinski (bib11) 2011; 6 Kumar, Prakash, Cheang, Khor (bib44) 2004; 20 Yoshinari, Hayakawa, Wolke, Nemoto, Jansen (bib26) 1997; 37 Ossipov, Piskounova, Varghese, Hilborn (bib22) 2010; 11 Dankers, Harmsen, Brouwer, Van Luyn, Meijer (bib6) 2005; 4 Hamley (bib18) 2011; 7 Reddy, Okay, Bowman (bib43) 2006; 39 Fantner, Hassenkam, Kindt, Weaver, Birkedal, Pechenik (bib2) 2005; 4 Holten-Andersen, Harrington, Birkedal, Lee, Messersmith, Lee (bib15) 2011; 108 Chai (10.1016/j.biomaterials.2014.05.003_bib33) 2012; 8 Imato (10.1016/j.biomaterials.2014.05.003_bib10) 2012; 51 Wolke (10.1016/j.biomaterials.2014.05.003_bib25) 2003; 24 Cui (10.1016/j.biomaterials.2014.05.003_bib13) 2012; 48 Yang (10.1016/j.biomaterials.2014.05.003_bib41) 2012; 24 Fantner (10.1016/j.biomaterials.2014.05.003_bib2) 2005; 4 Boanini (10.1016/j.biomaterials.2014.05.003_bib36) 2007; 19 Schmuck (10.1016/j.biomaterials.2014.05.003_bib7) 2011; 6 Hamley (10.1016/j.biomaterials.2014.05.003_bib18) 2011; 7 Yoshihara (10.1016/j.biomaterials.2014.05.003_bib28) 2011; 7 Haque (10.1016/j.biomaterials.2014.05.003_bib9) 2011; 44 Nejadnik (10.1016/j.biomaterials.2014.05.003_bib24) 2012; 100A Colen (10.1016/j.biomaterials.2014.05.003_bib31) 2012; 26 Pascaud (10.1016/j.biomaterials.2014.05.003_bib39) 2013; 29 Wang (10.1016/j.biomaterials.2014.05.003_bib17) 2010; 463 Parisi-Amon (10.1016/j.biomaterials.2014.05.003_bib21) 2013; 2 Krieg (10.1016/j.biomaterials.2014.05.003_bib11) 2011; 6 Rybtchinski (10.1016/j.biomaterials.2014.05.003_bib1) 2011; 5 Appel (10.1016/j.biomaterials.2014.05.003_bib8) 2012; 134 Kumar (10.1016/j.biomaterials.2014.05.003_bib44) 2004; 20 Phadke (10.1016/j.biomaterials.2014.05.003_bib14) 2012; 109 Zhou (10.1016/j.biomaterials.2014.05.003_bib16) 2012; 134 Haines-Butterick (10.1016/j.biomaterials.2014.05.003_bib45) 2007; 104 Queffelec (10.1016/j.biomaterials.2014.05.003_bib38) 2012; 112 Cordier (10.1016/j.biomaterials.2014.05.003_bib5) 2008; 451 Yuan (10.1016/j.biomaterials.2014.05.003_bib35) 2010; 107 Russell (10.1016/j.biomaterials.2014.05.003_bib37) 2011; 49 Yoshida (10.1016/j.biomaterials.2014.05.003_bib27) 2012; 31 Troczynski (10.1016/j.biomaterials.2014.05.003_bib34) 2004; 3 Reddy (10.1016/j.biomaterials.2014.05.003_bib43) 2006; 39 Ossipov (10.1016/j.biomaterials.2014.05.003_bib22) 2010; 11 Wang (10.1016/j.biomaterials.2014.05.003_bib12) 2011; 23 Yang (10.1016/j.biomaterials.2014.05.003_bib42) 2011; 7 Suzuki (10.1016/j.biomaterials.2014.05.003_bib3) 2009; 325 Holten-Andersen (10.1016/j.biomaterials.2014.05.003_bib15) 2011; 108 Kakuta (10.1016/j.biomaterials.2014.05.003_bib20) 2013; 25 Yoshinari (10.1016/j.biomaterials.2014.05.003_bib26) 1997; 37 Prestwich (10.1016/j.biomaterials.2014.05.003_bib32) 2011; 155 Fakhari (10.1016/j.biomaterials.2014.05.003_bib30) 2013; 9 Yao (10.1016/j.biomaterials.2014.05.003_bib19) 2010; 49 Dankers (10.1016/j.biomaterials.2014.05.003_bib6) 2005; 4 Wang (10.1016/j.biomaterials.2014.05.003_bib23) 2006; 26 Dvir (10.1016/j.biomaterials.2014.05.003_bib4) 2011; 6 Kokubo (10.1016/j.biomaterials.2014.05.003_bib29) 2006; 27 Cramer (10.1016/j.biomaterials.2014.05.003_bib40) 2003; 36 |
References_xml | – volume: 108 start-page: 2651 year: 2011 end-page: 2655 ident: bib15 article-title: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli publication-title: P Natl Acad Sci USA – volume: 109 start-page: 4383 year: 2012 end-page: 4388 ident: bib14 article-title: Rapid self-healing hydrogels publication-title: P Natl Acad Sci USA – volume: 3 start-page: 13 year: 2004 end-page: 14 ident: bib34 article-title: Bioceramics – a concrete solution publication-title: Nat Mater – volume: 48 start-page: 9302 year: 2012 end-page: 9304 ident: bib13 article-title: Multivalent H-bonds for self-healing hydrogels publication-title: Chem Commun – volume: 4 start-page: 568 year: 2005 end-page: 574 ident: bib6 article-title: A modular and supramolecular approach to bioactive scaffolds for tissue engineering publication-title: Nat Mater – volume: 11 start-page: 2247 year: 2010 end-page: 2254 ident: bib22 article-title: Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels publication-title: Biomacromolecules – volume: 26 start-page: 257 year: 2012 end-page: 268 ident: bib31 article-title: Hyaluronic acid in the treatment of knee osteoarthritis a systematic review and meta-analysis with emphasis on the efficacy of different products publication-title: Biodrugs – volume: 8 start-page: 3876 year: 2012 end-page: 3887 ident: bib33 article-title: Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies publication-title: Acta Biomater – volume: 37 start-page: 60 year: 1997 end-page: 67 ident: bib26 article-title: Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings publication-title: J Biomed Mater Res – volume: 29 start-page: 2224 year: 2013 end-page: 2232 ident: bib39 article-title: Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites publication-title: Langmuir – volume: 112 start-page: 3777 year: 2012 end-page: 3807 ident: bib38 article-title: Surface modification using phosphonic acids and esters publication-title: Chem Rev – volume: 4 start-page: 612 year: 2005 end-page: 616 ident: bib2 article-title: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture publication-title: Nat Mater – volume: 7 start-page: 3187 year: 2011 end-page: 3195 ident: bib28 article-title: Nanolayering of phosphoric acid ester monomer on enamel and dentin publication-title: Acta Biomater – volume: 9 start-page: 7081 year: 2013 end-page: 7092 ident: bib30 article-title: Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment publication-title: Acta Biomater – volume: 463 start-page: 339 year: 2010 end-page: 343 ident: bib17 article-title: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder publication-title: Nature – volume: 27 start-page: 2907 year: 2006 end-page: 2915 ident: bib29 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials – volume: 24 start-page: 2623 year: 2003 end-page: 2629 ident: bib25 article-title: In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants publication-title: Biomaterials – volume: 31 start-page: 697 year: 2012 end-page: 702 ident: bib27 article-title: X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite publication-title: Dent Mater J – volume: 7 start-page: 7517 year: 2011 end-page: 7525 ident: bib42 article-title: Preparation of hyaluronic acid nanoparticles via hydrophobic association assisted chemical cross-linking-an orthogonal modular approach publication-title: Soft Matter – volume: 451 start-page: 977 year: 2008 end-page: 980 ident: bib5 article-title: Self-healing and thermoreversible rubber from supramolecular assembly publication-title: Nature – volume: 100A start-page: 1316 year: 2012 end-page: 1323 ident: bib24 article-title: Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles publication-title: J Biomed Mater Res A – volume: 6 start-page: 136 year: 2011 end-page: 137 ident: bib7 article-title: Supramolecular structures robust materials from weak forces publication-title: Nat Nanotechnol – volume: 49 start-page: 10127 year: 2010 end-page: 10131 ident: bib19 article-title: Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks publication-title: Angew Chem Int Ed – volume: 5 start-page: 6791 year: 2011 end-page: 6818 ident: bib1 article-title: Adaptive supramolecular nanomaterials based on strong noncovalent interactions publication-title: Acs Nano – volume: 51 start-page: 1138 year: 2012 end-page: 1142 ident: bib10 article-title: Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature publication-title: Angew Chem Int Ed – volume: 7 start-page: 4122 year: 2011 end-page: 4138 ident: bib18 article-title: Self-assembly of amphiphilic peptides publication-title: Soft Matter – volume: 25 start-page: 2849 year: 2013 end-page: 2853 ident: bib20 article-title: Preorganized Hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest monomers that contain cyclodextrins and hydrophobic guest groups publication-title: Adv Mater – volume: 20 start-page: 5196 year: 2004 end-page: 5200 ident: bib44 article-title: Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles publication-title: Langmuir – volume: 6 start-page: 13 year: 2011 end-page: 22 ident: bib4 article-title: Nanotechnological strategies for engineering complex tissues publication-title: Nat Nanotechnol – volume: 325 start-page: 1388 year: 2009 end-page: 1390 ident: bib3 article-title: An acidic matrix protein, Pif, is a key macromolecule for nacre formation publication-title: Science – volume: 49 start-page: 2 year: 2011 end-page: 19 ident: bib37 article-title: Bisphosphonates: the first 40 years publication-title: Bone – volume: 36 start-page: 4631 year: 2003 end-page: 4636 ident: bib40 article-title: Mechanism and modeling of a thiol-ene photopolymerization publication-title: Macromolecules – volume: 19 start-page: 2499 year: 2007 ident: bib36 article-title: Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure publication-title: Adv Mater – volume: 155 start-page: 193 year: 2011 end-page: 199 ident: bib32 article-title: Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine publication-title: J Control Release – volume: 104 start-page: 7791 year: 2007 end-page: 7796 ident: bib45 article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells publication-title: P Natl Acad Sci USA – volume: 24 start-page: 1690 year: 2012 end-page: 1697 ident: bib41 article-title: Direct "click" synthesis of hybrid bisphosphonate-hyaluronic acid hydrogel in aqueous solution for biomineralization publication-title: Chem Mater – volume: 6 start-page: 141 year: 2011 end-page: 146 ident: bib11 article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles publication-title: Nat Nanotechnol – volume: 2 start-page: 428 year: 2013 end-page: 432 ident: bib21 article-title: Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells publication-title: Adv Healthc Mater – volume: 26 start-page: 2795 year: 2006 end-page: 2797 ident: bib23 article-title: The first pamidronate containing polymer and copolymer publication-title: Chem Commun – volume: 44 start-page: 8916 year: 2011 end-page: 8924 ident: bib9 article-title: Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting publication-title: Macromolecules – volume: 134 start-page: 1630 year: 2012 end-page: 1641 ident: bib16 article-title: Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers publication-title: J Am Chem Soc – volume: 39 start-page: 8832 year: 2006 end-page: 8843 ident: bib43 article-title: Network development in mixed step-chain growth thiol-vinyl photopolymerizations publication-title: Macromolecules – volume: 134 start-page: 11767 year: 2012 end-page: 11773 ident: bib8 article-title: Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness publication-title: J Am Chem Soc – volume: 23 start-page: H119 year: 2011 end-page: H124 ident: bib12 article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels publication-title: Adv Mater – volume: 107 start-page: 13614 year: 2010 end-page: 13619 ident: bib35 article-title: Osteoinductive ceramics as a synthetic alternative to autologous bone grafting publication-title: P Natl Acad Sci USA – volume: 325 start-page: 1388 issue: 5946 year: 2009 ident: 10.1016/j.biomaterials.2014.05.003_bib3 article-title: An acidic matrix protein, Pif, is a key macromolecule for nacre formation publication-title: Science doi: 10.1126/science.1173793 – volume: 48 start-page: 9302 issue: 74 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib13 article-title: Multivalent H-bonds for self-healing hydrogels publication-title: Chem Commun doi: 10.1039/c2cc34701f – volume: 104 start-page: 7791 issue: 19 year: 2007 ident: 10.1016/j.biomaterials.2014.05.003_bib45 article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.0701980104 – volume: 5 start-page: 6791 issue: 9 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib1 article-title: Adaptive supramolecular nanomaterials based on strong noncovalent interactions publication-title: Acs Nano doi: 10.1021/nn2025397 – volume: 100A start-page: 1316 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib24 article-title: Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.34071 – volume: 4 start-page: 568 issue: 7 year: 2005 ident: 10.1016/j.biomaterials.2014.05.003_bib6 article-title: A modular and supramolecular approach to bioactive scaffolds for tissue engineering publication-title: Nat Mater doi: 10.1038/nmat1418 – volume: 27 start-page: 2907 issue: 15 year: 2006 ident: 10.1016/j.biomaterials.2014.05.003_bib29 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 7 start-page: 7517 issue: 16 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib42 article-title: Preparation of hyaluronic acid nanoparticles via hydrophobic association assisted chemical cross-linking-an orthogonal modular approach publication-title: Soft Matter doi: 10.1039/c1sm05785e – volume: 6 start-page: 13 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib4 article-title: Nanotechnological strategies for engineering complex tissues publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.246 – volume: 451 start-page: 977 issue: 7181 year: 2008 ident: 10.1016/j.biomaterials.2014.05.003_bib5 article-title: Self-healing and thermoreversible rubber from supramolecular assembly publication-title: Nature doi: 10.1038/nature06669 – volume: 49 start-page: 10127 issue: 52 year: 2010 ident: 10.1016/j.biomaterials.2014.05.003_bib19 article-title: Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks publication-title: Angew Chem Int Ed doi: 10.1002/anie.201004748 – volume: 37 start-page: 60 issue: 1 year: 1997 ident: 10.1016/j.biomaterials.2014.05.003_bib26 article-title: Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H – volume: 26 start-page: 2795 year: 2006 ident: 10.1016/j.biomaterials.2014.05.003_bib23 article-title: The first pamidronate containing polymer and copolymer publication-title: Chem Commun doi: 10.1039/b605365c – volume: 24 start-page: 1690 issue: 9 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib41 article-title: Direct "click" synthesis of hybrid bisphosphonate-hyaluronic acid hydrogel in aqueous solution for biomineralization publication-title: Chem Mater doi: 10.1021/cm300298n – volume: 20 start-page: 5196 issue: 13 year: 2004 ident: 10.1016/j.biomaterials.2014.05.003_bib44 article-title: Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles publication-title: Langmuir doi: 10.1021/la049304f – volume: 109 start-page: 4383 issue: 12 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib14 article-title: Rapid self-healing hydrogels publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1201122109 – volume: 29 start-page: 2224 issue: 7 year: 2013 ident: 10.1016/j.biomaterials.2014.05.003_bib39 article-title: Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites publication-title: Langmuir doi: 10.1021/la3046548 – volume: 23 start-page: H119 issue: 12 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib12 article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels publication-title: Adv Mater doi: 10.1002/adma.201003908 – volume: 31 start-page: 697 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib27 article-title: X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite publication-title: Dent Mater J doi: 10.4012/dmj.2012-074 – volume: 51 start-page: 1138 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib10 article-title: Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature publication-title: Angew Chem Int Ed doi: 10.1002/anie.201104069 – volume: 24 start-page: 2623 issue: 15 year: 2003 ident: 10.1016/j.biomaterials.2014.05.003_bib25 article-title: In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00067-X – volume: 155 start-page: 193 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib32 article-title: Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine publication-title: J Control Release doi: 10.1016/j.jconrel.2011.04.007 – volume: 36 start-page: 4631 issue: 12 year: 2003 ident: 10.1016/j.biomaterials.2014.05.003_bib40 article-title: Mechanism and modeling of a thiol-ene photopolymerization publication-title: Macromolecules doi: 10.1021/ma034072x – volume: 2 start-page: 428 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2014.05.003_bib21 article-title: Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells publication-title: Adv Healthc Mater doi: 10.1002/adhm.201200293 – volume: 8 start-page: 3876 issue: 11 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib33 article-title: Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.07.002 – volume: 44 start-page: 8916 issue: 22 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib9 article-title: Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting publication-title: Macromolecules doi: 10.1021/ma201653t – volume: 39 start-page: 8832 issue: 25 year: 2006 ident: 10.1016/j.biomaterials.2014.05.003_bib43 article-title: Network development in mixed step-chain growth thiol-vinyl photopolymerizations publication-title: Macromolecules doi: 10.1021/ma060249m – volume: 7 start-page: 3187 issue: 8 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib28 article-title: Nanolayering of phosphoric acid ester monomer on enamel and dentin publication-title: Acta Biomater doi: 10.1016/j.actbio.2011.04.026 – volume: 6 start-page: 141 issue: 3 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib11 article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.274 – volume: 11 start-page: 2247 issue: 9 year: 2010 ident: 10.1016/j.biomaterials.2014.05.003_bib22 article-title: Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels publication-title: Biomacromolecules doi: 10.1021/bm1007986 – volume: 7 start-page: 4122 issue: 9 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib18 article-title: Self-assembly of amphiphilic peptides publication-title: Soft Matter doi: 10.1039/c0sm01218a – volume: 463 start-page: 339 issue: 7279 year: 2010 ident: 10.1016/j.biomaterials.2014.05.003_bib17 article-title: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder publication-title: Nature doi: 10.1038/nature08693 – volume: 112 start-page: 3777 issue: 7 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib38 article-title: Surface modification using phosphonic acids and esters publication-title: Chem Rev doi: 10.1021/cr2004212 – volume: 134 start-page: 1630 issue: 3 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib16 article-title: Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers publication-title: J Am Chem Soc doi: 10.1021/ja208349x – volume: 4 start-page: 612 issue: 8 year: 2005 ident: 10.1016/j.biomaterials.2014.05.003_bib2 article-title: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture publication-title: Nat Mater doi: 10.1038/nmat1428 – volume: 134 start-page: 11767 issue: 28 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib8 article-title: Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness publication-title: J Am Chem Soc doi: 10.1021/ja3044568 – volume: 49 start-page: 2 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib37 article-title: Bisphosphonates: the first 40 years publication-title: Bone doi: 10.1016/j.bone.2011.04.022 – volume: 9 start-page: 7081 issue: 7 year: 2013 ident: 10.1016/j.biomaterials.2014.05.003_bib30 article-title: Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.03.005 – volume: 26 start-page: 257 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2014.05.003_bib31 article-title: Hyaluronic acid in the treatment of knee osteoarthritis a systematic review and meta-analysis with emphasis on the efficacy of different products publication-title: Biodrugs doi: 10.1007/BF03261884 – volume: 3 start-page: 13 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2014.05.003_bib34 article-title: Bioceramics – a concrete solution publication-title: Nat Mater doi: 10.1038/nmat1039 – volume: 108 start-page: 2651 issue: 7 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib15 article-title: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1015862108 – volume: 107 start-page: 13614 issue: 31 year: 2010 ident: 10.1016/j.biomaterials.2014.05.003_bib35 article-title: Osteoinductive ceramics as a synthetic alternative to autologous bone grafting publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1003600107 – volume: 19 start-page: 2499 issue: 18 year: 2007 ident: 10.1016/j.biomaterials.2014.05.003_bib36 article-title: Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure publication-title: Adv Mater doi: 10.1002/adma.200602497 – volume: 6 start-page: 136 issue: 3 year: 2011 ident: 10.1016/j.biomaterials.2014.05.003_bib7 article-title: Supramolecular structures robust materials from weak forces publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.28 – volume: 25 start-page: 2849 issue: 20 year: 2013 ident: 10.1016/j.biomaterials.2014.05.003_bib20 article-title: Preorganized Hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest monomers that contain cyclodextrins and hydrophobic guest groups publication-title: Adv Mater doi: 10.1002/adma.201205321 |
SSID | ssj0014042 |
Score | 2.4874609 |
Snippet | Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding... Abstract Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6918 |
SubjectTerms | Advanced Basic Science Animals Biocompatible Materials - chemistry biodegradability Biomedical materials Bone and Bones - drug effects Bone and Bones - metabolism Bone Development - drug effects Bone regeneration Bones Calcium phosphate Calcium Phosphates - chemistry Cohesion crosslinking Dentistry Diphosphonates - chemistry Durapatite - chemistry enamel energy hyaluronic acid Hyaluronic Acid - chemistry Hydrogels Hydrogels - chemistry hydroxyapatite in vivo studies Integrity Male Materials Testing Nanocomposites Nanocomposites - chemistry Nanoparticles Nanoparticles - chemistry Organic-inorganic nanocomposites Rats Rats, Wistar Reversible bonds Self-healing materials Surface Properties Surgical implants |
Title | Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214005468 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214005468 https://dx.doi.org/10.1016/j.biomaterials.2014.05.003 https://www.ncbi.nlm.nih.gov/pubmed/24862440 https://www.proquest.com/docview/1534472590 https://www.proquest.com/docview/1627972556 https://www.proquest.com/docview/1642241012 https://www.proquest.com/docview/2101317628 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224369 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE4ICiv5VEZCY5hY8dJbFUcVi3VAmovUNSb5ThOG7Qkq83mwIXf3pk4iUoXqpU47CGbmTjx2DPj5JvPhLzlIreMZTywkJ0HIpdRIKXBF_A8McxAkOgoNk5Ok_mZ-Hwen--Qw6EWBmGVve_3Pr3z1v0_0743p8uynCIsiSskwBKYdyRY8CtEiqP8_e8R5oHsMdzDGHmA0gPxaIfxwhJ3s_amRpiX6Fg8hw20NoPUZhJ6g2G0i0rHD8mDPp2kM3_Hj8iOq_bI_Wskg3vk7kn_-fwxqb-6RRFgbghn6OUvrNailalqBJYjess11CJitkEwNK0LmpXN8rLGXwVPkIOOWbQrOKioqXIKBrZl-5N6GZDorrYc0HZPyNnxx2-H86DfcQFMpZJ1YFJYVCIBvCqysGCRcE5I8ENhkWUpJJJhIVVRZDY2obTC4OrHGZaCi1QyioyKnpLdqq7cc0K5BFUlpMsLK5jlmYx5Zk3CEstMFLMJUUMXa9vTkeOuGAs94M5-6Ovm0WgeHcZIZjoh0ai79KQcW2kdDJbUQ9kpOEoNsWMr7fRv2q7p53yjmW64DvXGuJyQD6PmH0N765bfDMNOw9zHDzqmcnULLcbI1wgL2PAWmYSDUZFo7jYZgZkc5Cr_luEMmZkgdMLzPPNjf-x7LrDMSMBdvPOTYTyD5OVH5feZrlcXum01NBMl6sV_9shLcg-PPA7zFdldr1r3GnLDdbbfTf59cmf26cv89Ap-BGdF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjAcFgUD6NBI9RY8dJHSEeqsHUsbUvbGhvluM4LKgkVdM88N9zl49qUJgq8dCH1Hdx4rPvzvHPPwO8FTK1nCfCs5idezJVgaeUoQ_wIjLcYJBoKDZm82h6IT9fhpd7cNTvhSFYZef7W5_eeOvun1HXmqNlno8IliRiIsCSlHdE6hbsEztVOID9ycnpdL5ZTJB-c4YOyXuk0HOPNjAv2uVu1q21CeklGyLP_gyt7Ti1nYf-QTLaBKbjB3C_yyjZpH3oh7DnigO4d41n8ABuz7oV9EdQfnGLzKP0EEvY1U_asMUKU5SELScAl6uYJdBsRXhoVmYsyavlVUm_At8gRR2zqFd4UTBTpAxtbPP6B2tlUKK527IH3D2Gi-NP50dTrzt0Aa0VR2vPjHFeSRzwcZb4GQ-kc1KhK_KzJBljLulnKs6yxIbGV1YamgA5w8foJWMVBCYODmFQlIV7CkwoVI2lcmlmJbciUaFIrIl4ZLkJQj6EuG9ibTtGcjoYY6F76Nl3fd08msyj_ZD4TIcQbHSXLS_HTlrve0vqfucp-kqN4WMn7fHftF3VDftKc10J7eutrjmEDxvN33r3zjW_6budxuFPazqmcGWNNYZE2YhzWP8GmUigUYlr7iYZSckcpiv_lhGcyJkweuL7PGn7_qbthaSdRhKf4l07GDYlxF_-Mf860eXqm65rjdUEUfzsP1vkNdyZns_O9NnJ_PQ53KWSFpb5AgbrVe1eYqq4Tl51ruAXjTJp9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-healing+hybrid+nanocomposites+consisting+of+bisphosphonated+hyaluronan+and+calcium+phosphate+nanoparticles&rft.jtitle=Biomaterials&rft.au=Nejadnik%2C+M.+Reza&rft.au=Yang%2C+Xia&rft.au=Bongio%2C+Matilde&rft.au=Alghamdi%2C+Hamdan+S&rft.date=2014-08-01&rft.issn=0142-9612&rft.volume=35&rft.issue=25&rft.spage=6918&rft.epage=6929&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.05.003&rft.externalDBID=ECK1-s2.0-S0142961214005468&rft.externalDocID=1_s2_0_S0142961214005468 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00189%2Fcov150h.gif |