Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles

Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 35; no. 25; pp. 6918 - 6929
Main Authors Nejadnik, M. Reza, Yang, Xia, Bongio, Matilde, Alghamdi, Hamdan S., van den Beucken, Jeroen J.J.P., Huysmans, Marie C., Jansen, John A., Hilborn, Jöns, Ossipov, Dmitri, Leeuwenburgh, Sander C.G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.
AbstractList Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.
Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.
Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.
Abstract Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.
Author Huysmans, Marie C.
Yang, Xia
Alghamdi, Hamdan S.
Hilborn, Jöns
van den Beucken, Jeroen J.J.P.
Ossipov, Dmitri
Leeuwenburgh, Sander C.G.
Jansen, John A.
Nejadnik, M. Reza
Bongio, Matilde
Author_xml – sequence: 1
  givenname: M. Reza
  surname: Nejadnik
  fullname: Nejadnik, M. Reza
  organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
– sequence: 2
  givenname: Xia
  surname: Yang
  fullname: Yang, Xia
  organization: Department of Materials Chemistry, Angstrom Laboratory, A Science for Life Laboratory, Uppsala University, SE 75121 Uppsala, Sweden
– sequence: 3
  givenname: Matilde
  surname: Bongio
  fullname: Bongio, Matilde
  organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
– sequence: 4
  givenname: Hamdan S.
  surname: Alghamdi
  fullname: Alghamdi, Hamdan S.
  organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
– sequence: 5
  givenname: Jeroen J.J.P.
  surname: van den Beucken
  fullname: van den Beucken, Jeroen J.J.P.
  organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
– sequence: 6
  givenname: Marie C.
  surname: Huysmans
  fullname: Huysmans, Marie C.
  organization: Department of Preventive and Restorative Dentistry, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
– sequence: 7
  givenname: John A.
  surname: Jansen
  fullname: Jansen, John A.
  organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
– sequence: 8
  givenname: Jöns
  surname: Hilborn
  fullname: Hilborn, Jöns
  organization: Department of Materials Chemistry, Angstrom Laboratory, A Science for Life Laboratory, Uppsala University, SE 75121 Uppsala, Sweden
– sequence: 9
  givenname: Dmitri
  surname: Ossipov
  fullname: Ossipov, Dmitri
  email: dmitri.ossipov@kemi.uu.se
  organization: Department of Materials Chemistry, Angstrom Laboratory, A Science for Life Laboratory, Uppsala University, SE 75121 Uppsala, Sweden
– sequence: 10
  givenname: Sander C.G.
  surname: Leeuwenburgh
  fullname: Leeuwenburgh, Sander C.G.
  email: sander.leeuwenburgh@radboudumc.nl
  organization: Department of Biomaterials, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24862440$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224369$$DView record from Swedish Publication Index
BookMark eNqNkk1v1DAQhiNURLeFv4AiThzIMnYcx-aAKC1fUiUOBa6W40y6XhI72Alo_z0O2yJUCXUPlmXlmdfjzHOSHTnvMMueEVgTIPzldt1YP-gJg9V9XFMgbA3VGqB8kK2IqEVRSaiOslX6QAvJCT3OTmLcQjoDo4-yY8oEp4zBKvNX2HfFBnVv3XW-2TXBtrnTzhs_jD7aCWNuvIs2Tgvgu7yxcdz4ZbnUQptqdD-HdHC5dm1udG_sPOR7JhF_0kYdJmt6jI-zh11qGp_c7KfZ1_fvvpx_LC4_f_h0fnZZGC75VOha1oJK4LJroCMlQ2QChICuaWpJOHRCdl1jKg3CMC05cNSkbluUoiy1LE-zF_vc-AvHuVFjsIMOO-W1VRf225ny4VrNs6KUlXzBn-_xMfgfM8ZJDTYa7Hvt0M9R0fTjS1JzKu5FCWcpNPH0AJSmd9Kq4vejVclYQiUk9OkNOjcDtn-fdjvUBLzZAyb4GAN2ythJT9a7KWjbKwJq8Uht1b8eqcUjBZVKHqWIV3cibm85qPhiX4xpwD8tBhWNRWewtQHNpFpvD4t5fSfGJEltEuw77jBu_RzcUkNUpArU1WL7InuSHCrGl0m9_X_AoV38BjxNGF8
CitedBy_id crossref_primary_10_1002_admi_201800118
crossref_primary_10_1016_j_radphyschem_2018_08_011
crossref_primary_10_1021_acsomega_8b01103
crossref_primary_10_1016_j_cclet_2017_05_007
crossref_primary_10_1016_j_pmatsci_2020_100686
crossref_primary_10_1021_acs_chemrev_0c01088
crossref_primary_10_1039_C6TB00583G
crossref_primary_10_1016_j_biomaterials_2017_11_018
crossref_primary_10_1039_D1TB00502B
crossref_primary_10_1088_2399_7532_ab80d6
crossref_primary_10_1016_j_msec_2020_111758
crossref_primary_10_1016_j_bbrc_2018_11_097
crossref_primary_10_1021_acsapm_2c01494
crossref_primary_10_1016_j_jconrel_2015_10_002
crossref_primary_10_1021_acs_biomac_8b01767
crossref_primary_10_1016_j_ocarto_2021_100159
crossref_primary_10_1021_acs_biomac_1c01063
crossref_primary_10_3390_ma14174982
crossref_primary_10_1016_j_actbio_2017_09_039
crossref_primary_10_1016_j_jcis_2022_08_024
crossref_primary_10_1002_jbm_a_36077
crossref_primary_10_1016_j_jallcom_2019_152834
crossref_primary_10_1016_j_electacta_2020_137243
crossref_primary_10_3390_ma17246162
crossref_primary_10_1002_slct_202404061
crossref_primary_10_3390_polym13132106
crossref_primary_10_1002_adma_201603612
crossref_primary_10_1016_j_ijbiomac_2022_05_034
crossref_primary_10_1021_acs_chemrev_2c00179
crossref_primary_10_3390_polym11020275
crossref_primary_10_1002_adfm_201700591
crossref_primary_10_1016_j_apsusc_2018_12_139
crossref_primary_10_3390_jfb6030708
crossref_primary_10_3390_polym13050798
crossref_primary_10_1016_j_actbio_2016_05_037
crossref_primary_10_3390_jcs8060218
crossref_primary_10_1016_S1452_3981_23_16154_2
crossref_primary_10_1002_adhm_202203004
crossref_primary_10_3390_polym14153126
crossref_primary_10_1016_j_polymer_2023_125808
crossref_primary_10_1002_adfm_202102355
crossref_primary_10_1021_acscentsci_0c00768
crossref_primary_10_1021_acs_biomac_1c01647
crossref_primary_10_1080_13543776_2016_1212840
crossref_primary_10_1021_acsami_5b06896
crossref_primary_10_1002_pi_5051
crossref_primary_10_1016_j_ccr_2024_215790
crossref_primary_10_1016_j_eurpolymj_2021_110732
crossref_primary_10_1021_acsami_7b09176
crossref_primary_10_1021_acs_chemrev_0c00015
crossref_primary_10_1155_2016_8301624
crossref_primary_10_3390_gels1020162
crossref_primary_10_1002_bip_23090
crossref_primary_10_1002_JPER_18_0348
crossref_primary_10_1002_marc_201800837
crossref_primary_10_1021_acs_chemmater_7b00128
crossref_primary_10_1016_j_mehy_2016_04_026
crossref_primary_10_1002_advs_201801664
crossref_primary_10_1016_j_addr_2014_09_005
crossref_primary_10_1016_j_cej_2020_127512
crossref_primary_10_1016_j_carbpol_2019_115652
crossref_primary_10_1016_j_cis_2019_102044
crossref_primary_10_1016_j_polymer_2020_122248
crossref_primary_10_1002_term_2151
crossref_primary_10_1016_j_bioactmat_2020_06_002
crossref_primary_10_1016_j_eurpolymj_2021_110644
crossref_primary_10_3389_fbioe_2020_00654
crossref_primary_10_1039_D0QM01099E
crossref_primary_10_1002_adma_201403354
crossref_primary_10_1002_smll_202401870
crossref_primary_10_1016_j_ijpharm_2015_04_019
crossref_primary_10_1016_j_reactfunctpolym_2021_105151
crossref_primary_10_1038_s41467_020_15152_9
crossref_primary_10_1002_mabi_201800460
crossref_primary_10_1002_polb_24728
crossref_primary_10_1016_j_measurement_2020_107608
crossref_primary_10_1007_s10856_016_5665_x
crossref_primary_10_1186_s12929_023_00939_x
crossref_primary_10_2174_0113816128283466231219071151
crossref_primary_10_1016_j_cclet_2020_12_001
crossref_primary_10_1186_s40902_022_00337_7
crossref_primary_10_1002_adtp_202300128
crossref_primary_10_1021_acs_biomac_9b00104
crossref_primary_10_3389_fchem_2022_830671
crossref_primary_10_1039_C5BM00163C
crossref_primary_10_1016_j_copbio_2016_02_008
crossref_primary_10_1002_marc_201600353
crossref_primary_10_3390_polym14153211
crossref_primary_10_1002_pc_27603
crossref_primary_10_1002_mabi_202100088
crossref_primary_10_1021_acs_biomac_5b01557
crossref_primary_10_1016_j_polymer_2022_124769
crossref_primary_10_3390_ma16031215
crossref_primary_10_3390_polym13234199
crossref_primary_10_1002_term_2094
crossref_primary_10_1007_s10544_024_00716_z
crossref_primary_10_1021_acsapm_1c00243
crossref_primary_10_1016_j_jdent_2017_12_009
crossref_primary_10_1021_am506926w
crossref_primary_10_1016_j_actbio_2016_04_041
crossref_primary_10_1002_mabi_202100257
crossref_primary_10_1088_1748_605X_ab7388
crossref_primary_10_1016_j_msec_2021_112347
crossref_primary_10_1016_j_eurpolymj_2019_109448
crossref_primary_10_1002_term_2365
crossref_primary_10_1039_C5BM00355E
crossref_primary_10_1039_C5BM00096C
crossref_primary_10_1002_mabi_201500414
crossref_primary_10_1039_C5RA05206H
crossref_primary_10_1021_acs_biomac_7b01243
crossref_primary_10_1007_s00253_016_7382_2
crossref_primary_10_1016_j_eng_2024_01_031
crossref_primary_10_1021_acsami_1c01343
crossref_primary_10_1002_adfm_201701642
crossref_primary_10_1517_17425247_2015_1021679
Cites_doi 10.1126/science.1173793
10.1039/c2cc34701f
10.1073/pnas.0701980104
10.1021/nn2025397
10.1002/jbm.a.34071
10.1038/nmat1418
10.1016/j.biomaterials.2006.01.017
10.1039/c1sm05785e
10.1038/nnano.2010.246
10.1038/nature06669
10.1002/anie.201004748
10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H
10.1039/b605365c
10.1021/cm300298n
10.1021/la049304f
10.1073/pnas.1201122109
10.1021/la3046548
10.1002/adma.201003908
10.4012/dmj.2012-074
10.1002/anie.201104069
10.1016/S0142-9612(03)00067-X
10.1016/j.jconrel.2011.04.007
10.1021/ma034072x
10.1002/adhm.201200293
10.1016/j.actbio.2012.07.002
10.1021/ma201653t
10.1021/ma060249m
10.1016/j.actbio.2011.04.026
10.1038/nnano.2010.274
10.1021/bm1007986
10.1039/c0sm01218a
10.1038/nature08693
10.1021/cr2004212
10.1021/ja208349x
10.1038/nmat1428
10.1021/ja3044568
10.1016/j.bone.2011.04.022
10.1016/j.actbio.2013.03.005
10.1007/BF03261884
10.1038/nmat1039
10.1073/pnas.1015862108
10.1073/pnas.1003600107
10.1002/adma.200602497
10.1038/nnano.2011.28
10.1002/adma.201205321
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
ADTPV
AOWAS
DF2
DOI 10.1016/j.biomaterials.2014.05.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
Materials Research Database
MEDLINE
Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 6929
ExternalDocumentID oai_DiVA_org_uu_224369
24862440
10_1016_j_biomaterials_2014_05_003
S0142961214005468
1_s2_0_S0142961214005468
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c696t-a797829069fb0f134ee480880fbb79160f89ffbc5a08c4a9606ea17dde9833a93
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Aug 21 06:43:15 EDT 2025
Fri Jul 11 02:33:50 EDT 2025
Fri Jul 11 16:55:05 EDT 2025
Fri Jul 11 15:16:14 EDT 2025
Fri Jul 11 00:50:09 EDT 2025
Thu Apr 03 07:02:26 EDT 2025
Tue Jul 01 03:47:45 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Fri Feb 23 02:31:34 EST 2024
Sun Feb 23 10:18:53 EST 2025
Tue Aug 26 17:19:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Organic-inorganic nanocomposites
Hydrogels
Bone regeneration
Reversible bonds
Self-healing materials
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c696t-a797829069fb0f134ee480880fbb79160f89ffbc5a08c4a9606ea17dde9833a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24862440
PQID 1534472590
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_uu_224369
proquest_miscellaneous_2101317628
proquest_miscellaneous_1642241012
proquest_miscellaneous_1627972556
proquest_miscellaneous_1534472590
pubmed_primary_24862440
crossref_citationtrail_10_1016_j_biomaterials_2014_05_003
crossref_primary_10_1016_j_biomaterials_2014_05_003
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2014_05_003
elsevier_clinicalkeyesjournals_1_s2_0_S0142961214005468
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cramer, Davies, O'Brien, Bowman (bib40) 2003; 36
Imato, Nishihara, Kanehara, Amamoto, Takahara, Otsuka (bib10) 2012; 51
Chai, Carlier, Bolander, Roberts, Geris, Schrooten (bib33) 2012; 8
Schmuck (bib7) 2011; 6
Phadke, Zhang, Arman, Hsu, Mashelkar, Lele (bib14) 2012; 109
Kokubo, Takadama (bib29) 2006; 27
Pascaud, Gras, Coppel, Rey, Sarda (bib39) 2013; 29
Zhou, Sharma, Deshmukh, Lakhman, Jain, Kasi (bib16) 2012; 134
Fakhari, Berkland (bib30) 2013; 9
Parisi-Amon, Mulyasasmita, Chung, Heilshorn (bib21) 2013; 2
Yang, Akhtar, Rubino, Leifer, Hilborn, Ossipov (bib41) 2012; 24
Wang, Mynar, Yoshida, Lee, Lee, Okuro (bib17) 2010; 463
Cordier, Tournilhac, Soulie-Ziakovic, Leibler (bib5) 2008; 451
Haque, Kurokawa, Kamita, Gong (bib9) 2011; 44
Kakuta, Takashima, Nakahata, Otsubo, Yamaguchi, Harada (bib20) 2013; 25
Colen, van den Bekerom, Mulier, Haverkamp (bib31) 2012; 26
Suzuki, Saruwatari, Kogure, Yamamoto, Nishimura, Kato (bib3) 2009; 325
Yoshihara, Yoshida, Hayakawa, Nagaoka, Irie, Ogawa (bib28) 2011; 7
Wang, Hansen, Lowik, van Hest, Li, Jansen (bib12) 2011; 23
Yao, Tan, Fang, Yu (bib19) 2010; 49
Nejadnik, Mikos, Jansen, Leeuwenburgh (bib24) 2012; 100A
Russell (bib37) 2011; 49
Queffelec, Petit, Janvier, Knight, Bujoli (bib38) 2012; 112
Wolke, van der Waerden, Schaeken, Jansen (bib25) 2003; 24
Haines-Butterick, Rajagopal, Branco, Salick, Rughani, Pilarz (bib45) 2007; 104
Yang, Kootala, Hilborn, Ossipov (bib42) 2011; 7
Prestwich (bib32) 2011; 155
Troczynski (bib34) 2004; 3
Yuan, Fernandes, Habibovic, de Boer, Barradas, de Ruiter (bib35) 2010; 107
Cui, del Campo (bib13) 2012; 48
Dvir, Timko, Kohane, Langer (bib4) 2011; 6
Rybtchinski (bib1) 2011; 5
Appel, Loh, Jones, Biedermann, Dreiss, Scherman (bib8) 2012; 134
Wang, Zhang, Yang, Xu (bib23) 2006; 26
Boanini, Gazzano, Rubini, Bigi (bib36) 2007; 19
Yoshida, Yoshihara, Nagaoka, Hanabusa, Matsumoto, Momoi (bib27) 2012; 31
Krieg, Weissman, Shirman, Shimoni, Rybtchinski (bib11) 2011; 6
Kumar, Prakash, Cheang, Khor (bib44) 2004; 20
Yoshinari, Hayakawa, Wolke, Nemoto, Jansen (bib26) 1997; 37
Ossipov, Piskounova, Varghese, Hilborn (bib22) 2010; 11
Dankers, Harmsen, Brouwer, Van Luyn, Meijer (bib6) 2005; 4
Hamley (bib18) 2011; 7
Reddy, Okay, Bowman (bib43) 2006; 39
Fantner, Hassenkam, Kindt, Weaver, Birkedal, Pechenik (bib2) 2005; 4
Holten-Andersen, Harrington, Birkedal, Lee, Messersmith, Lee (bib15) 2011; 108
Chai (10.1016/j.biomaterials.2014.05.003_bib33) 2012; 8
Imato (10.1016/j.biomaterials.2014.05.003_bib10) 2012; 51
Wolke (10.1016/j.biomaterials.2014.05.003_bib25) 2003; 24
Cui (10.1016/j.biomaterials.2014.05.003_bib13) 2012; 48
Yang (10.1016/j.biomaterials.2014.05.003_bib41) 2012; 24
Fantner (10.1016/j.biomaterials.2014.05.003_bib2) 2005; 4
Boanini (10.1016/j.biomaterials.2014.05.003_bib36) 2007; 19
Schmuck (10.1016/j.biomaterials.2014.05.003_bib7) 2011; 6
Hamley (10.1016/j.biomaterials.2014.05.003_bib18) 2011; 7
Yoshihara (10.1016/j.biomaterials.2014.05.003_bib28) 2011; 7
Haque (10.1016/j.biomaterials.2014.05.003_bib9) 2011; 44
Nejadnik (10.1016/j.biomaterials.2014.05.003_bib24) 2012; 100A
Colen (10.1016/j.biomaterials.2014.05.003_bib31) 2012; 26
Pascaud (10.1016/j.biomaterials.2014.05.003_bib39) 2013; 29
Wang (10.1016/j.biomaterials.2014.05.003_bib17) 2010; 463
Parisi-Amon (10.1016/j.biomaterials.2014.05.003_bib21) 2013; 2
Krieg (10.1016/j.biomaterials.2014.05.003_bib11) 2011; 6
Rybtchinski (10.1016/j.biomaterials.2014.05.003_bib1) 2011; 5
Appel (10.1016/j.biomaterials.2014.05.003_bib8) 2012; 134
Kumar (10.1016/j.biomaterials.2014.05.003_bib44) 2004; 20
Phadke (10.1016/j.biomaterials.2014.05.003_bib14) 2012; 109
Zhou (10.1016/j.biomaterials.2014.05.003_bib16) 2012; 134
Haines-Butterick (10.1016/j.biomaterials.2014.05.003_bib45) 2007; 104
Queffelec (10.1016/j.biomaterials.2014.05.003_bib38) 2012; 112
Cordier (10.1016/j.biomaterials.2014.05.003_bib5) 2008; 451
Yuan (10.1016/j.biomaterials.2014.05.003_bib35) 2010; 107
Russell (10.1016/j.biomaterials.2014.05.003_bib37) 2011; 49
Yoshida (10.1016/j.biomaterials.2014.05.003_bib27) 2012; 31
Troczynski (10.1016/j.biomaterials.2014.05.003_bib34) 2004; 3
Reddy (10.1016/j.biomaterials.2014.05.003_bib43) 2006; 39
Ossipov (10.1016/j.biomaterials.2014.05.003_bib22) 2010; 11
Wang (10.1016/j.biomaterials.2014.05.003_bib12) 2011; 23
Yang (10.1016/j.biomaterials.2014.05.003_bib42) 2011; 7
Suzuki (10.1016/j.biomaterials.2014.05.003_bib3) 2009; 325
Holten-Andersen (10.1016/j.biomaterials.2014.05.003_bib15) 2011; 108
Kakuta (10.1016/j.biomaterials.2014.05.003_bib20) 2013; 25
Yoshinari (10.1016/j.biomaterials.2014.05.003_bib26) 1997; 37
Prestwich (10.1016/j.biomaterials.2014.05.003_bib32) 2011; 155
Fakhari (10.1016/j.biomaterials.2014.05.003_bib30) 2013; 9
Yao (10.1016/j.biomaterials.2014.05.003_bib19) 2010; 49
Dankers (10.1016/j.biomaterials.2014.05.003_bib6) 2005; 4
Wang (10.1016/j.biomaterials.2014.05.003_bib23) 2006; 26
Dvir (10.1016/j.biomaterials.2014.05.003_bib4) 2011; 6
Kokubo (10.1016/j.biomaterials.2014.05.003_bib29) 2006; 27
Cramer (10.1016/j.biomaterials.2014.05.003_bib40) 2003; 36
References_xml – volume: 108
  start-page: 2651
  year: 2011
  end-page: 2655
  ident: bib15
  article-title: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli
  publication-title: P Natl Acad Sci USA
– volume: 109
  start-page: 4383
  year: 2012
  end-page: 4388
  ident: bib14
  article-title: Rapid self-healing hydrogels
  publication-title: P Natl Acad Sci USA
– volume: 3
  start-page: 13
  year: 2004
  end-page: 14
  ident: bib34
  article-title: Bioceramics – a concrete solution
  publication-title: Nat Mater
– volume: 48
  start-page: 9302
  year: 2012
  end-page: 9304
  ident: bib13
  article-title: Multivalent H-bonds for self-healing hydrogels
  publication-title: Chem Commun
– volume: 4
  start-page: 568
  year: 2005
  end-page: 574
  ident: bib6
  article-title: A modular and supramolecular approach to bioactive scaffolds for tissue engineering
  publication-title: Nat Mater
– volume: 11
  start-page: 2247
  year: 2010
  end-page: 2254
  ident: bib22
  article-title: Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels
  publication-title: Biomacromolecules
– volume: 26
  start-page: 257
  year: 2012
  end-page: 268
  ident: bib31
  article-title: Hyaluronic acid in the treatment of knee osteoarthritis a systematic review and meta-analysis with emphasis on the efficacy of different products
  publication-title: Biodrugs
– volume: 8
  start-page: 3876
  year: 2012
  end-page: 3887
  ident: bib33
  article-title: Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies
  publication-title: Acta Biomater
– volume: 37
  start-page: 60
  year: 1997
  end-page: 67
  ident: bib26
  article-title: Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings
  publication-title: J Biomed Mater Res
– volume: 29
  start-page: 2224
  year: 2013
  end-page: 2232
  ident: bib39
  article-title: Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites
  publication-title: Langmuir
– volume: 112
  start-page: 3777
  year: 2012
  end-page: 3807
  ident: bib38
  article-title: Surface modification using phosphonic acids and esters
  publication-title: Chem Rev
– volume: 4
  start-page: 612
  year: 2005
  end-page: 616
  ident: bib2
  article-title: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture
  publication-title: Nat Mater
– volume: 7
  start-page: 3187
  year: 2011
  end-page: 3195
  ident: bib28
  article-title: Nanolayering of phosphoric acid ester monomer on enamel and dentin
  publication-title: Acta Biomater
– volume: 9
  start-page: 7081
  year: 2013
  end-page: 7092
  ident: bib30
  article-title: Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment
  publication-title: Acta Biomater
– volume: 463
  start-page: 339
  year: 2010
  end-page: 343
  ident: bib17
  article-title: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder
  publication-title: Nature
– volume: 27
  start-page: 2907
  year: 2006
  end-page: 2915
  ident: bib29
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
– volume: 24
  start-page: 2623
  year: 2003
  end-page: 2629
  ident: bib25
  article-title: In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants
  publication-title: Biomaterials
– volume: 31
  start-page: 697
  year: 2012
  end-page: 702
  ident: bib27
  article-title: X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite
  publication-title: Dent Mater J
– volume: 7
  start-page: 7517
  year: 2011
  end-page: 7525
  ident: bib42
  article-title: Preparation of hyaluronic acid nanoparticles via hydrophobic association assisted chemical cross-linking-an orthogonal modular approach
  publication-title: Soft Matter
– volume: 451
  start-page: 977
  year: 2008
  end-page: 980
  ident: bib5
  article-title: Self-healing and thermoreversible rubber from supramolecular assembly
  publication-title: Nature
– volume: 100A
  start-page: 1316
  year: 2012
  end-page: 1323
  ident: bib24
  article-title: Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles
  publication-title: J Biomed Mater Res A
– volume: 6
  start-page: 136
  year: 2011
  end-page: 137
  ident: bib7
  article-title: Supramolecular structures robust materials from weak forces
  publication-title: Nat Nanotechnol
– volume: 49
  start-page: 10127
  year: 2010
  end-page: 10131
  ident: bib19
  article-title: Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks
  publication-title: Angew Chem Int Ed
– volume: 5
  start-page: 6791
  year: 2011
  end-page: 6818
  ident: bib1
  article-title: Adaptive supramolecular nanomaterials based on strong noncovalent interactions
  publication-title: Acs Nano
– volume: 51
  start-page: 1138
  year: 2012
  end-page: 1142
  ident: bib10
  article-title: Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 4122
  year: 2011
  end-page: 4138
  ident: bib18
  article-title: Self-assembly of amphiphilic peptides
  publication-title: Soft Matter
– volume: 25
  start-page: 2849
  year: 2013
  end-page: 2853
  ident: bib20
  article-title: Preorganized Hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest monomers that contain cyclodextrins and hydrophobic guest groups
  publication-title: Adv Mater
– volume: 20
  start-page: 5196
  year: 2004
  end-page: 5200
  ident: bib44
  article-title: Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles
  publication-title: Langmuir
– volume: 6
  start-page: 13
  year: 2011
  end-page: 22
  ident: bib4
  article-title: Nanotechnological strategies for engineering complex tissues
  publication-title: Nat Nanotechnol
– volume: 325
  start-page: 1388
  year: 2009
  end-page: 1390
  ident: bib3
  article-title: An acidic matrix protein, Pif, is a key macromolecule for nacre formation
  publication-title: Science
– volume: 49
  start-page: 2
  year: 2011
  end-page: 19
  ident: bib37
  article-title: Bisphosphonates: the first 40 years
  publication-title: Bone
– volume: 36
  start-page: 4631
  year: 2003
  end-page: 4636
  ident: bib40
  article-title: Mechanism and modeling of a thiol-ene photopolymerization
  publication-title: Macromolecules
– volume: 19
  start-page: 2499
  year: 2007
  ident: bib36
  article-title: Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure
  publication-title: Adv Mater
– volume: 155
  start-page: 193
  year: 2011
  end-page: 199
  ident: bib32
  article-title: Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine
  publication-title: J Control Release
– volume: 104
  start-page: 7791
  year: 2007
  end-page: 7796
  ident: bib45
  article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
  publication-title: P Natl Acad Sci USA
– volume: 24
  start-page: 1690
  year: 2012
  end-page: 1697
  ident: bib41
  article-title: Direct "click" synthesis of hybrid bisphosphonate-hyaluronic acid hydrogel in aqueous solution for biomineralization
  publication-title: Chem Mater
– volume: 6
  start-page: 141
  year: 2011
  end-page: 146
  ident: bib11
  article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles
  publication-title: Nat Nanotechnol
– volume: 2
  start-page: 428
  year: 2013
  end-page: 432
  ident: bib21
  article-title: Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells
  publication-title: Adv Healthc Mater
– volume: 26
  start-page: 2795
  year: 2006
  end-page: 2797
  ident: bib23
  article-title: The first pamidronate containing polymer and copolymer
  publication-title: Chem Commun
– volume: 44
  start-page: 8916
  year: 2011
  end-page: 8924
  ident: bib9
  article-title: Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting
  publication-title: Macromolecules
– volume: 134
  start-page: 1630
  year: 2012
  end-page: 1641
  ident: bib16
  article-title: Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers
  publication-title: J Am Chem Soc
– volume: 39
  start-page: 8832
  year: 2006
  end-page: 8843
  ident: bib43
  article-title: Network development in mixed step-chain growth thiol-vinyl photopolymerizations
  publication-title: Macromolecules
– volume: 134
  start-page: 11767
  year: 2012
  end-page: 11773
  ident: bib8
  article-title: Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness
  publication-title: J Am Chem Soc
– volume: 23
  start-page: H119
  year: 2011
  end-page: H124
  ident: bib12
  article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
  publication-title: Adv Mater
– volume: 107
  start-page: 13614
  year: 2010
  end-page: 13619
  ident: bib35
  article-title: Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
  publication-title: P Natl Acad Sci USA
– volume: 325
  start-page: 1388
  issue: 5946
  year: 2009
  ident: 10.1016/j.biomaterials.2014.05.003_bib3
  article-title: An acidic matrix protein, Pif, is a key macromolecule for nacre formation
  publication-title: Science
  doi: 10.1126/science.1173793
– volume: 48
  start-page: 9302
  issue: 74
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib13
  article-title: Multivalent H-bonds for self-healing hydrogels
  publication-title: Chem Commun
  doi: 10.1039/c2cc34701f
– volume: 104
  start-page: 7791
  issue: 19
  year: 2007
  ident: 10.1016/j.biomaterials.2014.05.003_bib45
  article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.0701980104
– volume: 5
  start-page: 6791
  issue: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib1
  article-title: Adaptive supramolecular nanomaterials based on strong noncovalent interactions
  publication-title: Acs Nano
  doi: 10.1021/nn2025397
– volume: 100A
  start-page: 1316
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib24
  article-title: Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.34071
– volume: 4
  start-page: 568
  issue: 7
  year: 2005
  ident: 10.1016/j.biomaterials.2014.05.003_bib6
  article-title: A modular and supramolecular approach to bioactive scaffolds for tissue engineering
  publication-title: Nat Mater
  doi: 10.1038/nmat1418
– volume: 27
  start-page: 2907
  issue: 15
  year: 2006
  ident: 10.1016/j.biomaterials.2014.05.003_bib29
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 7
  start-page: 7517
  issue: 16
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib42
  article-title: Preparation of hyaluronic acid nanoparticles via hydrophobic association assisted chemical cross-linking-an orthogonal modular approach
  publication-title: Soft Matter
  doi: 10.1039/c1sm05785e
– volume: 6
  start-page: 13
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib4
  article-title: Nanotechnological strategies for engineering complex tissues
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.246
– volume: 451
  start-page: 977
  issue: 7181
  year: 2008
  ident: 10.1016/j.biomaterials.2014.05.003_bib5
  article-title: Self-healing and thermoreversible rubber from supramolecular assembly
  publication-title: Nature
  doi: 10.1038/nature06669
– volume: 49
  start-page: 10127
  issue: 52
  year: 2010
  ident: 10.1016/j.biomaterials.2014.05.003_bib19
  article-title: Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201004748
– volume: 37
  start-page: 60
  issue: 1
  year: 1997
  ident: 10.1016/j.biomaterials.2014.05.003_bib26
  article-title: Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H
– volume: 26
  start-page: 2795
  year: 2006
  ident: 10.1016/j.biomaterials.2014.05.003_bib23
  article-title: The first pamidronate containing polymer and copolymer
  publication-title: Chem Commun
  doi: 10.1039/b605365c
– volume: 24
  start-page: 1690
  issue: 9
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib41
  article-title: Direct "click" synthesis of hybrid bisphosphonate-hyaluronic acid hydrogel in aqueous solution for biomineralization
  publication-title: Chem Mater
  doi: 10.1021/cm300298n
– volume: 20
  start-page: 5196
  issue: 13
  year: 2004
  ident: 10.1016/j.biomaterials.2014.05.003_bib44
  article-title: Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la049304f
– volume: 109
  start-page: 4383
  issue: 12
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib14
  article-title: Rapid self-healing hydrogels
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1201122109
– volume: 29
  start-page: 2224
  issue: 7
  year: 2013
  ident: 10.1016/j.biomaterials.2014.05.003_bib39
  article-title: Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites
  publication-title: Langmuir
  doi: 10.1021/la3046548
– volume: 23
  start-page: H119
  issue: 12
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib12
  article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
  publication-title: Adv Mater
  doi: 10.1002/adma.201003908
– volume: 31
  start-page: 697
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib27
  article-title: X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite
  publication-title: Dent Mater J
  doi: 10.4012/dmj.2012-074
– volume: 51
  start-page: 1138
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib10
  article-title: Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201104069
– volume: 24
  start-page: 2623
  issue: 15
  year: 2003
  ident: 10.1016/j.biomaterials.2014.05.003_bib25
  article-title: In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00067-X
– volume: 155
  start-page: 193
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib32
  article-title: Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2011.04.007
– volume: 36
  start-page: 4631
  issue: 12
  year: 2003
  ident: 10.1016/j.biomaterials.2014.05.003_bib40
  article-title: Mechanism and modeling of a thiol-ene photopolymerization
  publication-title: Macromolecules
  doi: 10.1021/ma034072x
– volume: 2
  start-page: 428
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2014.05.003_bib21
  article-title: Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201200293
– volume: 8
  start-page: 3876
  issue: 11
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib33
  article-title: Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.07.002
– volume: 44
  start-page: 8916
  issue: 22
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib9
  article-title: Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting
  publication-title: Macromolecules
  doi: 10.1021/ma201653t
– volume: 39
  start-page: 8832
  issue: 25
  year: 2006
  ident: 10.1016/j.biomaterials.2014.05.003_bib43
  article-title: Network development in mixed step-chain growth thiol-vinyl photopolymerizations
  publication-title: Macromolecules
  doi: 10.1021/ma060249m
– volume: 7
  start-page: 3187
  issue: 8
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib28
  article-title: Nanolayering of phosphoric acid ester monomer on enamel and dentin
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2011.04.026
– volume: 6
  start-page: 141
  issue: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib11
  article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.274
– volume: 11
  start-page: 2247
  issue: 9
  year: 2010
  ident: 10.1016/j.biomaterials.2014.05.003_bib22
  article-title: Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm1007986
– volume: 7
  start-page: 4122
  issue: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib18
  article-title: Self-assembly of amphiphilic peptides
  publication-title: Soft Matter
  doi: 10.1039/c0sm01218a
– volume: 463
  start-page: 339
  issue: 7279
  year: 2010
  ident: 10.1016/j.biomaterials.2014.05.003_bib17
  article-title: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder
  publication-title: Nature
  doi: 10.1038/nature08693
– volume: 112
  start-page: 3777
  issue: 7
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib38
  article-title: Surface modification using phosphonic acids and esters
  publication-title: Chem Rev
  doi: 10.1021/cr2004212
– volume: 134
  start-page: 1630
  issue: 3
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib16
  article-title: Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers
  publication-title: J Am Chem Soc
  doi: 10.1021/ja208349x
– volume: 4
  start-page: 612
  issue: 8
  year: 2005
  ident: 10.1016/j.biomaterials.2014.05.003_bib2
  article-title: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture
  publication-title: Nat Mater
  doi: 10.1038/nmat1428
– volume: 134
  start-page: 11767
  issue: 28
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib8
  article-title: Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3044568
– volume: 49
  start-page: 2
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib37
  article-title: Bisphosphonates: the first 40 years
  publication-title: Bone
  doi: 10.1016/j.bone.2011.04.022
– volume: 9
  start-page: 7081
  issue: 7
  year: 2013
  ident: 10.1016/j.biomaterials.2014.05.003_bib30
  article-title: Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2013.03.005
– volume: 26
  start-page: 257
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2014.05.003_bib31
  article-title: Hyaluronic acid in the treatment of knee osteoarthritis a systematic review and meta-analysis with emphasis on the efficacy of different products
  publication-title: Biodrugs
  doi: 10.1007/BF03261884
– volume: 3
  start-page: 13
  issue: 1
  year: 2004
  ident: 10.1016/j.biomaterials.2014.05.003_bib34
  article-title: Bioceramics – a concrete solution
  publication-title: Nat Mater
  doi: 10.1038/nmat1039
– volume: 108
  start-page: 2651
  issue: 7
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib15
  article-title: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1015862108
– volume: 107
  start-page: 13614
  issue: 31
  year: 2010
  ident: 10.1016/j.biomaterials.2014.05.003_bib35
  article-title: Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1003600107
– volume: 19
  start-page: 2499
  issue: 18
  year: 2007
  ident: 10.1016/j.biomaterials.2014.05.003_bib36
  article-title: Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure
  publication-title: Adv Mater
  doi: 10.1002/adma.200602497
– volume: 6
  start-page: 136
  issue: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2014.05.003_bib7
  article-title: Supramolecular structures robust materials from weak forces
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.28
– volume: 25
  start-page: 2849
  issue: 20
  year: 2013
  ident: 10.1016/j.biomaterials.2014.05.003_bib20
  article-title: Preorganized Hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest monomers that contain cyclodextrins and hydrophobic guest groups
  publication-title: Adv Mater
  doi: 10.1002/adma.201205321
SSID ssj0014042
Score 2.4874609
Snippet Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding...
Abstract Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6918
SubjectTerms Advanced Basic Science
Animals
Biocompatible Materials - chemistry
biodegradability
Biomedical materials
Bone and Bones - drug effects
Bone and Bones - metabolism
Bone Development - drug effects
Bone regeneration
Bones
Calcium phosphate
Calcium Phosphates - chemistry
Cohesion
crosslinking
Dentistry
Diphosphonates - chemistry
Durapatite - chemistry
enamel
energy
hyaluronic acid
Hyaluronic Acid - chemistry
Hydrogels
Hydrogels - chemistry
hydroxyapatite
in vivo studies
Integrity
Male
Materials Testing
Nanocomposites
Nanocomposites - chemistry
Nanoparticles
Nanoparticles - chemistry
Organic-inorganic nanocomposites
Rats
Rats, Wistar
Reversible bonds
Self-healing materials
Surface Properties
Surgical implants
Title Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214005468
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214005468
https://dx.doi.org/10.1016/j.biomaterials.2014.05.003
https://www.ncbi.nlm.nih.gov/pubmed/24862440
https://www.proquest.com/docview/1534472590
https://www.proquest.com/docview/1627972556
https://www.proquest.com/docview/1642241012
https://www.proquest.com/docview/2101317628
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224369
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE4ICiv5VEZCY5hY8dJbFUcVi3VAmovUNSb5ThOG7Qkq83mwIXf3pk4iUoXqpU47CGbmTjx2DPj5JvPhLzlIreMZTywkJ0HIpdRIKXBF_A8McxAkOgoNk5Ok_mZ-Hwen--Qw6EWBmGVve_3Pr3z1v0_0743p8uynCIsiSskwBKYdyRY8CtEiqP8_e8R5oHsMdzDGHmA0gPxaIfxwhJ3s_amRpiX6Fg8hw20NoPUZhJ6g2G0i0rHD8mDPp2kM3_Hj8iOq_bI_Wskg3vk7kn_-fwxqb-6RRFgbghn6OUvrNailalqBJYjess11CJitkEwNK0LmpXN8rLGXwVPkIOOWbQrOKioqXIKBrZl-5N6GZDorrYc0HZPyNnxx2-H86DfcQFMpZJ1YFJYVCIBvCqysGCRcE5I8ENhkWUpJJJhIVVRZDY2obTC4OrHGZaCi1QyioyKnpLdqq7cc0K5BFUlpMsLK5jlmYx5Zk3CEstMFLMJUUMXa9vTkeOuGAs94M5-6Ovm0WgeHcZIZjoh0ai79KQcW2kdDJbUQ9kpOEoNsWMr7fRv2q7p53yjmW64DvXGuJyQD6PmH0N765bfDMNOw9zHDzqmcnULLcbI1wgL2PAWmYSDUZFo7jYZgZkc5Cr_luEMmZkgdMLzPPNjf-x7LrDMSMBdvPOTYTyD5OVH5feZrlcXum01NBMl6sV_9shLcg-PPA7zFdldr1r3GnLDdbbfTf59cmf26cv89Ap-BGdF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjAcFgUD6NBI9RY8dJHSEeqsHUsbUvbGhvluM4LKgkVdM88N9zl49qUJgq8dCH1Hdx4rPvzvHPPwO8FTK1nCfCs5idezJVgaeUoQ_wIjLcYJBoKDZm82h6IT9fhpd7cNTvhSFYZef7W5_eeOvun1HXmqNlno8IliRiIsCSlHdE6hbsEztVOID9ycnpdL5ZTJB-c4YOyXuk0HOPNjAv2uVu1q21CeklGyLP_gyt7Ti1nYf-QTLaBKbjB3C_yyjZpH3oh7DnigO4d41n8ABuz7oV9EdQfnGLzKP0EEvY1U_asMUKU5SELScAl6uYJdBsRXhoVmYsyavlVUm_At8gRR2zqFd4UTBTpAxtbPP6B2tlUKK527IH3D2Gi-NP50dTrzt0Aa0VR2vPjHFeSRzwcZb4GQ-kc1KhK_KzJBljLulnKs6yxIbGV1YamgA5w8foJWMVBCYODmFQlIV7CkwoVI2lcmlmJbciUaFIrIl4ZLkJQj6EuG9ibTtGcjoYY6F76Nl3fd08msyj_ZD4TIcQbHSXLS_HTlrve0vqfucp-kqN4WMn7fHftF3VDftKc10J7eutrjmEDxvN33r3zjW_6budxuFPazqmcGWNNYZE2YhzWP8GmUigUYlr7iYZSckcpiv_lhGcyJkweuL7PGn7_qbthaSdRhKf4l07GDYlxF_-Mf860eXqm65rjdUEUfzsP1vkNdyZns_O9NnJ_PQ53KWSFpb5AgbrVe1eYqq4Tl51ruAXjTJp9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-healing+hybrid+nanocomposites+consisting+of+bisphosphonated+hyaluronan+and+calcium+phosphate+nanoparticles&rft.jtitle=Biomaterials&rft.au=Nejadnik%2C+M.+Reza&rft.au=Yang%2C+Xia&rft.au=Bongio%2C+Matilde&rft.au=Alghamdi%2C+Hamdan+S&rft.date=2014-08-01&rft.issn=0142-9612&rft.volume=35&rft.issue=25&rft.spage=6918&rft.epage=6929&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.05.003&rft.externalDBID=ECK1-s2.0-S0142961214005468&rft.externalDocID=1_s2_0_S0142961214005468
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00189%2Fcov150h.gif