Shape analysis of the human association pathways

Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractogra...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 223; p. 117329
Main Author Yeh, Fang-Cheng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation. [Display omitted]
AbstractList Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation.Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation.
Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation.
Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation. [Display omitted]
ArticleNumber 117329
Author Yeh, Fang-Cheng
AuthorAffiliation b Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
a Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
AuthorAffiliation_xml – name: a Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
– name: b Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
Author_xml – sequence: 1
  givenname: Fang-Cheng
  orcidid: 0000-0002-7946-2173
  surname: Yeh
  fullname: Yeh, Fang-Cheng
  email: frank.yeh@pitt.edu
  organization: Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32882375$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF1AkNmxm8COO4w2CVjwqVWIBrK0b-2bikLEHOymaf4-nU6a0q1k5uj7-dE_OOS9OfPBYFCUlS0po_W5YepxjcGtY4ZIRlsdUcqaeFWeUKLFQQrKT3bfgi4ZSdVqcpzQQQhStmhfFKWdNw7gUZwX53sMGS_AwbpNLZejKqceyn9fgS0gpGAeTC77cwNT_gW16WTzvYEz46v68KH5-_vTj6uvi5tuX66uPNwtTq3pa1FzUFA0jrVAAwtZUYkuJIUrmhSyxBFjLbEeEaCzkqVCmE4pSoBZljfyiuN5zbYBBb2L2Grc6gNN3gxBXGuLkzIgaWmJ5ZzqwHasEQTCs6SS00tacUcsy6_2etZnbNVqDfoowPoI-vvGu16twq6WU2UaTAW_vATH8njFNeu2SwXEEj2FOmlUVqWRFCc_SN0-kQ5hj_r07leCKEC53wNf_b3RY5V8wWdDsBSaGlCJ2BwkletcBPeiHDuhdB_S-Aw9uD0-Nm-5CzN7ceAzgcg_AnO-tw6iTcegNWhfRTDkAdwzkwxOIGZ13BsZfuD0O8RfmE-mQ
CitedBy_id crossref_primary_10_1007_s00429_022_02464_3
crossref_primary_10_1093_cercor_bhaf041
crossref_primary_10_1002_jmri_29258
crossref_primary_10_1007_s11682_024_00889_4
crossref_primary_10_1051_m2an_2023095
crossref_primary_10_1016_j_ejrad_2024_111477
crossref_primary_10_1016_j_nicl_2023_103521
crossref_primary_10_5798_dicletip_1657276
crossref_primary_10_1523_JNEUROSCI_2201_22_2023
crossref_primary_10_1016_j_cortex_2023_07_005
crossref_primary_10_1073_pnas_2220200120
crossref_primary_10_3390_diagnostics12123216
crossref_primary_10_1523_JNEUROSCI_0628_23_2023
crossref_primary_10_3389_fnhum_2024_1484431
crossref_primary_10_1523_ENEURO_0345_23_2023
crossref_primary_10_1093_cercor_bhad394
crossref_primary_10_1002_hbm_26630
crossref_primary_10_1038_s41598_024_67013_w
crossref_primary_10_1177_20552173231208271
crossref_primary_10_1007_s00429_022_02551_5
crossref_primary_10_3390_brainsci12010022
crossref_primary_10_1002_jmri_29244
crossref_primary_10_1155_2024_5595912
crossref_primary_10_1109_TMI_2023_3274351
crossref_primary_10_1111_ane_13573
crossref_primary_10_1016_j_hest_2024_07_005
crossref_primary_10_1002_jmri_27813
crossref_primary_10_3389_fnins_2020_616348
crossref_primary_10_1007_s10548_023_01020_4
crossref_primary_10_3390_brainsci11040506
crossref_primary_10_3390_brainsci14121232
crossref_primary_10_1371_journal_pcbi_1011007
crossref_primary_10_1016_j_nicl_2025_103734
crossref_primary_10_1186_s12883_024_03741_w
crossref_primary_10_1016_j_neuroimage_2021_118651
crossref_primary_10_1002_mrm_28926
crossref_primary_10_1007_s11060_023_04539_5
crossref_primary_10_1002_hbm_26771
crossref_primary_10_3174_ajnr_A8270
crossref_primary_10_1016_j_jns_2021_120091
crossref_primary_10_1007_s00702_023_02622_9
crossref_primary_10_1016_j_jpsychires_2023_11_032
crossref_primary_10_1002_mrm_30429
crossref_primary_10_3390_brainsci11070943
crossref_primary_10_1016_j_ejrad_2022_110194
crossref_primary_10_3389_fnhum_2024_1324710
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1371_journal_pone_0286280
crossref_primary_10_1126_sciadv_adr3530
crossref_primary_10_1007_s00429_022_02571_1
crossref_primary_10_1002_mrm_30502
crossref_primary_10_1007_s11060_024_04848_3
crossref_primary_10_1111_ejn_16369
crossref_primary_10_1002_jmri_29616
crossref_primary_10_1371_journal_pbio_3001575
crossref_primary_10_1016_j_jneumeth_2023_109883
crossref_primary_10_1002_mrm_29911
crossref_primary_10_1038_s41592_024_02237_2
crossref_primary_10_1186_s12974_024_03146_z
crossref_primary_10_1016_j_mri_2021_10_017
crossref_primary_10_1007_s00415_022_11399_y
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1093_cercor_bhae435
crossref_primary_10_3389_fnins_2022_951508
crossref_primary_10_1016_j_resuscitation_2022_10_026
crossref_primary_10_1111_cns_14458
crossref_primary_10_1162_imag_a_00050
crossref_primary_10_1016_j_pneurobio_2021_102211
crossref_primary_10_1093_braincomms_fcae313
crossref_primary_10_1016_j_wneu_2023_02_145
crossref_primary_10_3389_fnins_2024_1283518
crossref_primary_10_3389_fnins_2024_1396518
crossref_primary_10_1007_s00429_022_02505_x
crossref_primary_10_1016_j_neuroscience_2021_07_021
crossref_primary_10_1159_000542902
crossref_primary_10_1155_2024_9294268
crossref_primary_10_1002_hbm_26580
crossref_primary_10_1016_j_media_2024_103120
crossref_primary_10_3389_fnins_2023_1223950
crossref_primary_10_1007_s11682_021_00457_0
crossref_primary_10_1016_j_parkreldis_2022_105277
crossref_primary_10_1523_JNEUROSCI_0166_24_2024
crossref_primary_10_3389_fnins_2022_835964
crossref_primary_10_1016_j_neuroimage_2021_118451
crossref_primary_10_3171_2021_7_JNS21990
crossref_primary_10_1007_s11682_023_00814_1
crossref_primary_10_1093_cercor_bhaa377
crossref_primary_10_1016_j_parkreldis_2024_107089
crossref_primary_10_3389_fnana_2022_1025866
crossref_primary_10_3389_fnins_2023_1248266
crossref_primary_10_1016_j_neuroimage_2023_119916
crossref_primary_10_1016_j_neuroimage_2021_118739
crossref_primary_10_1109_TMI_2023_3306049
crossref_primary_10_3389_fneur_2023_1229681
crossref_primary_10_1016_j_ejrad_2022_110314
crossref_primary_10_1016_j_ynirp_2023_100174
crossref_primary_10_1038_s41467_022_32595_4
crossref_primary_10_1016_j_sleep_2021_12_013
Cites_doi 10.1016/j.neuroimage.2005.01.019
10.1038/nrn2575
10.1016/j.pscychresns.2012.10.012
10.1016/j.bbadis.2014.08.002
10.1038/nn.4361
10.1016/j.neuroimage.2017.11.052
10.1371/journal.pone.0049790
10.1109/MCSE.2014.80
10.1016/j.neuroimage.2006.12.041
10.1007/s13311-018-0663-y
10.1371/journal.pone.0080713
10.1038/nrn3901
10.1109/TMI.2010.2045126
10.3389/fnana.2018.00047
10.1016/j.neuroimage.2017.07.015
10.1093/brain/awv118
10.1002/hbm.24917
10.1126/science.1193378
10.1016/j.mri.2019.01.018
10.1002/hbm.20779
10.1016/j.neuroimage.2018.07.070
10.1371/journal.pcbi.0010042
10.1109/TSMC.1979.4310076
10.1371/journal.pone.0177459
10.1016/j.neuroimage.2008.06.047
10.2147/NDT.S164058
10.1016/j.neuroimage.2020.116923
10.1016/j.neuroimage.2018.05.027
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 2020
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2020.117329
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Biological Science Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest One Psychology

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117329
ExternalDocumentID oai_doaj_org_article_ab0d3fcfadf2450eac28f7ab7d6321d2
PMC7775618
32882375
10_1016_j_neuroimage_2020_117329
S1053811920308156
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIMH NIH HHS
  grantid: R56 MH113634
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c696t-63561ec20b59aa5d617eb10c097811d0d0a2b2df0558da09759cf5911a1de76e3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:23:05 EDT 2025
Thu Aug 21 14:07:43 EDT 2025
Fri Jul 11 07:55:30 EDT 2025
Wed Aug 13 09:26:52 EDT 2025
Thu Apr 03 06:59:51 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Tue Jul 01 03:02:15 EDT 2025
Fri Feb 23 02:46:25 EST 2024
Tue Aug 26 20:02:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Diffusion MRI
Automatic fiber tracking
Shape analysis
Shape descriptor
Tractography
Language English
License This is an open access article under the CC BY license.
Copyright © 2020. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c696t-63561ec20b59aa5d617eb10c097811d0d0a2b2df0558da09759cf5911a1de76e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Credict author statement
FY conducted the analysis and wrote the manuscript.
ORCID 0000-0002-7946-2173
OpenAccessLink https://doaj.org/article/ab0d3fcfadf2450eac28f7ab7d6321d2
PMID 32882375
PQID 2453900378
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ab0d3fcfadf2450eac28f7ab7d6321d2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775618
proquest_miscellaneous_2440474103
proquest_journals_2453900378
pubmed_primary_32882375
crossref_primary_10_1016_j_neuroimage_2020_117329
crossref_citationtrail_10_1016_j_neuroimage_2020_117329
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117329
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117329
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Wolff, Gerig, Lewis, Soda, Styner, Vachet, Botteron, Elison, Dager, Estes, Hazlett, Schultz, Zwaigenbaum, Piven, Network (bib0027) 2015; 138
Otsu (bib0016) 1979; 9
Yeh, Wedeen, Tseng (bib0032) 2010; 29
Wasserthal, Neher, Maier-Hein (bib0025) 2018; 183
Garyfallidis, Cote, Rheault, Sidhu, Hau, Petit, Fortin, Cunanne, Descoteaux (bib0008) 2018; 170
Russ (bib0019) 2002
Vernooij, Smits, Wielopolski, Houston, Krestin, van der Lugt (bib0023) 2007; 35
Kitchell, Bullock, Hayashi, Pestilli (bib0012) 2018
Towns, Cockerill, Dahan, Foster, Gaither, Grimshaw, Hazlewood, Lathrop, Lifka, Peterson (bib0022) 2014; 16
Abhinav, Yeh, Pathak, Suski, Lacomis, Friedlander, Fernandez-Miranda (bib0001) 2014; 1842
Glozman, Bruckert, Pestilli, Yecies, Guibas, Yeom (bib0010) 2018; 167
Yeh, Panesar, Barrios, Fernandes, Abhinav, Meola, Fernandez-Miranda (bib0029) 2019; 16
Yeatman, Dougherty, Myall, Wandell, Feldman (bib0028) 2012; 7
Kurtzer, Sochat, Bauer (bib0013) 2017; 12
Lopez, Lalonde, Mattai, Wade, Clasen, Rapoport, Giedd (bib0015) 2013; 212
Corouge, Gouttard, Gerig (bib0004) 2004
Fornito, Zalesky, Breakspear (bib0007) 2015; 16
Schilling, Yeh, Nath, Hansen, Williams, Resnick, Anderson, Landman (bib0020) 2019; 58
Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller, Robinson, Sotiropoulos, Xu, Yacoub, Ugurbil, Van Essen (bib0009) 2016; 19
Huang, Zhang, Jiang, Wakana, Poetscher, Miller, van Zijl, Hillis, Wytik, Mori (bib0011) 2005; 26
Panesar, Yeh, Jacquesson, Hula, Fernandez-Miranda (bib0017) 2018; 12
Costa, Cesar Jr (bib0005) 2000
DeFelipe (bib0006) 2010; 330
Sporns, Tononi, Kotter (bib0021) 2005; 1
Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda, Vettel, Verstynen (bib0030) 2018; 178
Lebel, Beaulieu (bib0014) 2009; 30
Yeh, Verstynen, Wang, Fernandez-Miranda, Tseng (bib0031) 2013; 8
Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud, Jbabdi, Mars, Sotiropoulos (bib0024) 2020; 217
Bullmore, Sporns (bib0003) 2009; 10
Watanabe, Nakamae, Sakai, Nishida, Abe, Yamada, Yokota, Narumoto (bib0026) 2018; 14
Bastin, Piatkowski, Storkey, Brown, Maclullich, Clayden (bib0002) 2008; 43
Rheault, De Benedictis, Daducci, Maffei, Tax, Romascano, Caverzasi, Morency, Corrivetti, Pestilli, Girard, Theaud, Zemmoura, Hau, Glavin, Jordan, Pomiecko, Chamberland, Barakovic, Goyette, Poulin, Chenot, Panesar, Sarubbo, Petit, Descoteaux (bib0018) 2020; 41
Sporns (10.1016/j.neuroimage.2020.117329_bib0021) 2005; 1
DeFelipe (10.1016/j.neuroimage.2020.117329_bib0006) 2010; 330
Corouge (10.1016/j.neuroimage.2020.117329_bib0004) 2004
Garyfallidis (10.1016/j.neuroimage.2020.117329_bib0008) 2018; 170
Vernooij (10.1016/j.neuroimage.2020.117329_bib0023) 2007; 35
Yeh (10.1016/j.neuroimage.2020.117329_bib0031) 2013; 8
Bastin (10.1016/j.neuroimage.2020.117329_bib0002) 2008; 43
Schilling (10.1016/j.neuroimage.2020.117329_bib0020) 2019; 58
Russ (10.1016/j.neuroimage.2020.117329_bib0019) 2002
Towns (10.1016/j.neuroimage.2020.117329_bib0022) 2014; 16
Wolff (10.1016/j.neuroimage.2020.117329_bib0027) 2015; 138
Bullmore (10.1016/j.neuroimage.2020.117329_bib0003) 2009; 10
Yeatman (10.1016/j.neuroimage.2020.117329_bib0028) 2012; 7
Panesar (10.1016/j.neuroimage.2020.117329_bib0017) 2018; 12
Abhinav (10.1016/j.neuroimage.2020.117329_bib0001) 2014; 1842
Watanabe (10.1016/j.neuroimage.2020.117329_bib0026) 2018; 14
Otsu (10.1016/j.neuroimage.2020.117329_bib0016) 1979; 9
Fornito (10.1016/j.neuroimage.2020.117329_bib0007) 2015; 16
Rheault (10.1016/j.neuroimage.2020.117329_bib0018) 2020; 41
Yeh (10.1016/j.neuroimage.2020.117329_bib0029) 2019; 16
Huang (10.1016/j.neuroimage.2020.117329_bib0011) 2005; 26
Glozman (10.1016/j.neuroimage.2020.117329_bib0010) 2018; 167
Lopez (10.1016/j.neuroimage.2020.117329_bib0015) 2013; 212
Costa (10.1016/j.neuroimage.2020.117329_bib0005) 2000
Glasser (10.1016/j.neuroimage.2020.117329_bib0009) 2016; 19
Kitchell (10.1016/j.neuroimage.2020.117329_bib0012) 2018
Lebel (10.1016/j.neuroimage.2020.117329_bib0014) 2009; 30
Wasserthal (10.1016/j.neuroimage.2020.117329_bib0025) 2018; 183
Yeh (10.1016/j.neuroimage.2020.117329_bib0030) 2018; 178
Yeh (10.1016/j.neuroimage.2020.117329_bib0032) 2010; 29
Kurtzer (10.1016/j.neuroimage.2020.117329_bib0013) 2017; 12
Warrington (10.1016/j.neuroimage.2020.117329_bib0024) 2020; 217
References_xml – volume: 16
  start-page: 52
  year: 2019
  end-page: 58
  ident: bib0029
  article-title: Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP)
  publication-title: Neurotherapeutics
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  ident: bib0008
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
– volume: 167
  start-page: 466
  year: 2018
  end-page: 477
  ident: bib0010
  article-title: Framework for shape analysis of white matter fiber bundles
  publication-title: Neuroimage
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  ident: bib0025
  article-title: TractSeg - Fast and accurate white matter tract segmentation
  publication-title: Neuroimage
– volume: 212
  start-page: 1
  year: 2013
  end-page: 6
  ident: bib0015
  article-title: Quantitative morphology of the corpus callosum in obsessive-compulsive disorder
  publication-title: Psychiatry Res.
– volume: 14
  start-page: 1635
  year: 2018
  end-page: 1643
  ident: bib0026
  article-title: The detection of white matter alterations in obsessive-compulsive disorder revealed by TRActs Constrained by UnderLying Anatomy (TRACULA)
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 16
  start-page: 159
  year: 2015
  end-page: 172
  ident: bib0007
  article-title: The connectomics of brain disorders
  publication-title: Nat. Rev. Neurosci.
– volume: 217
  year: 2020
  ident: bib0024
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 12
  year: 2017
  ident: bib0013
  article-title: Singularity: scientific containers for mobility of compute
  publication-title: PLoS ONE
– volume: 8
  start-page: e80713
  year: 2013
  ident: bib0031
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS ONE
– volume: 12
  start-page: 47
  year: 2018
  ident: bib0017
  article-title: A quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus
  publication-title: Front. Neuroanat.
– volume: 29
  start-page: 1626
  year: 2010
  end-page: 1635
  ident: bib0032
  article-title: Generalized q-sampling imaging
  publication-title: IEEE Trans. Med. Imaging.
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bib0003
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
– volume: 19
  start-page: 1175
  year: 2016
  end-page: 1187
  ident: bib0009
  article-title: The Human Connectome Project's neuroimaging approach
  publication-title: Nat. Neurosci.
– volume: 138
  start-page: 2046
  year: 2015
  end-page: 2058
  ident: bib0027
  article-title: Altered corpus callosum morphology associated with autism over the first 2 years of life
  publication-title: Brain
– volume: 16
  start-page: 62
  year: 2014
  end-page: 74
  ident: bib0022
  article-title: XSEDE: accelerating scientific discovery
  publication-title: Comput. Sci. Eng.
– volume: 330
  start-page: 1198
  year: 2010
  end-page: 1201
  ident: bib0006
  article-title: From the connectome to the synaptome: an epic love story
  publication-title: Science
– volume: 30
  start-page: 3563
  year: 2009
  end-page: 3573
  ident: bib0014
  article-title: Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children
  publication-title: Hum. Brain Mapp.
– start-page: 195
  year: 2018
  end-page: 206
  ident: bib0012
  article-title: Shape analysis of white matter tracts via the Laplace-Beltrami spectrum
  publication-title: International Workshop on Shape in Medical Imaging
– year: 2000
  ident: bib0005
  article-title: Shape Analysis and classification: Theory and Practice
– volume: 26
  start-page: 195
  year: 2005
  end-page: 205
  ident: bib0011
  article-title: DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum
  publication-title: Neuroimage
– volume: 1842
  start-page: 2286
  year: 2014
  end-page: 2297
  ident: bib0001
  article-title: Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: a review
  publication-title: Biochim. Biophys. Acta
– start-page: 344
  year: 2004
  end-page: 347
  ident: bib0004
  article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI
  publication-title: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib0016
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Sys., Man., Cyber
– year: 2002
  ident: bib0019
  article-title: The Image Processing Handbook
– volume: 43
  start-page: 20
  year: 2008
  end-page: 28
  ident: bib0002
  article-title: Tract shape modelling provides evidence of topological change in corpus callosum genu during normal ageing
  publication-title: Neuroimage
– volume: 41
  start-page: 1859
  year: 2020
  end-page: 1874
  ident: bib0018
  article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility
  publication-title: Hum. Brain. Mapp.
– volume: 1
  start-page: e42
  year: 2005
  ident: bib0021
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  ident: bib0030
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
– volume: 35
  start-page: 1064
  year: 2007
  end-page: 1076
  ident: bib0023
  article-title: Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right-and left-handed healthy subjects: a combined fMRI and DTI study
  publication-title: Neuroimage
– volume: 58
  start-page: 82
  year: 2019
  end-page: 89
  ident: bib0020
  article-title: A fiber coherence index for quality control of B-table orientation in diffusion MRI scans
  publication-title: Magn. Reson. Imaging
– volume: 7
  start-page: e49790
  year: 2012
  ident: bib0028
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS ONE
– volume: 26
  start-page: 195
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117329_bib0011
  article-title: DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.01.019
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117329_bib0003
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 212
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117329_bib0015
  article-title: Quantitative morphology of the corpus callosum in obsessive-compulsive disorder
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2012.10.012
– volume: 1842
  start-page: 2286
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117329_bib0001
  article-title: Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: a review
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2014.08.002
– start-page: 195
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0012
  article-title: Shape analysis of white matter tracts via the Laplace-Beltrami spectrum
– volume: 19
  start-page: 1175
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117329_bib0009
  article-title: The Human Connectome Project's neuroimaging approach
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4361
– volume: 167
  start-page: 466
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0010
  article-title: Framework for shape analysis of white matter fiber bundles
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.052
– volume: 7
  start-page: e49790
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117329_bib0028
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049790
– start-page: 344
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117329_bib0004
  article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI
– volume: 16
  start-page: 62
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117329_bib0022
  article-title: XSEDE: accelerating scientific discovery
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2014.80
– volume: 35
  start-page: 1064
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117329_bib0023
  article-title: Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right-and left-handed healthy subjects: a combined fMRI and DTI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.12.041
– volume: 16
  start-page: 52
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117329_bib0029
  article-title: Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP)
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-018-0663-y
– volume: 8
  start-page: e80713
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117329_bib0031
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0080713
– volume: 16
  start-page: 159
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117329_bib0007
  article-title: The connectomics of brain disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3901
– year: 2000
  ident: 10.1016/j.neuroimage.2020.117329_bib0005
– volume: 29
  start-page: 1626
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117329_bib0032
  article-title: Generalized q-sampling imaging
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2010.2045126
– volume: 12
  start-page: 47
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0017
  article-title: A quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2018.00047
– volume: 170
  start-page: 283
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0008
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.015
– volume: 138
  start-page: 2046
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117329_bib0027
  article-title: Altered corpus callosum morphology associated with autism over the first 2 years of life
  publication-title: Brain
  doi: 10.1093/brain/awv118
– volume: 41
  start-page: 1859
  year: 2020
  ident: 10.1016/j.neuroimage.2020.117329_bib0018
  article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility
  publication-title: Hum. Brain. Mapp.
  doi: 10.1002/hbm.24917
– volume: 330
  start-page: 1198
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117329_bib0006
  article-title: From the connectome to the synaptome: an epic love story
  publication-title: Science
  doi: 10.1126/science.1193378
– volume: 58
  start-page: 82
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117329_bib0020
  article-title: A fiber coherence index for quality control of B-table orientation in diffusion MRI scans
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.01.018
– volume: 30
  start-page: 3563
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117329_bib0014
  article-title: Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20779
– volume: 183
  start-page: 239
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0025
  article-title: TractSeg - Fast and accurate white matter tract segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.070
– volume: 1
  start-page: e42
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117329_bib0021
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.neuroimage.2020.117329_bib0016
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Sys., Man., Cyber
  doi: 10.1109/TSMC.1979.4310076
– volume: 12
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117329_bib0013
  article-title: Singularity: scientific containers for mobility of compute
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177459
– volume: 43
  start-page: 20
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117329_bib0002
  article-title: Tract shape modelling provides evidence of topological change in corpus callosum genu during normal ageing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.047
– volume: 14
  start-page: 1635
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0026
  article-title: The detection of white matter alterations in obsessive-compulsive disorder revealed by TRActs Constrained by UnderLying Anatomy (TRACULA)
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S164058
– year: 2002
  ident: 10.1016/j.neuroimage.2020.117329_bib0019
– volume: 217
  year: 2020
  ident: 10.1016/j.neuroimage.2020.117329_bib0024
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 178
  start-page: 57
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117329_bib0030
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.027
SSID ssj0009148
Score 2.630711
Snippet Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117329
SubjectTerms Adult
Anisotropy
Automatic fiber tracking
Brain
Brain - anatomy & histology
Brain - diagnostic imaging
Brain Mapping - methods
Cingulum
Computer vision
Consortia
Diffusion MRI
Diffusion Tensor Imaging
Dominance
Female
Humans
Image processing
Image Processing, Computer-Assisted - methods
Innervation
Investigations
Magnetic resonance imaging
Male
Morphology
Neural Pathways - anatomy & histology
Neural Pathways - diagnostic imaging
Shape analysis
Shape descriptor
Structure-function relationships
Tractography
Variation
White Matter - anatomy & histology
White Matter - diagnostic imaging
Young Adult
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHiouiJZXSkFB4hrWju04UU-loqqQyqVU6s1y_KBBkF21W6Fe-O3MOE6WwGUljvEjcsbjmc_xzGdC3nHvVVCKFo1TTSE8E4WRygGQ46wFF1NTi8nJF5-r8yvx6Vpe75DTMRcGwyqT7R9serTWqWSRpLlYdd3iEpABuBtAKEi5AtsQzGAXCrX8_a9NmEfDxJAOJ3mBrVM0zxDjFTkjux-wcmGnWMYTTB7B5sZFRSb_maf6F4n-HVD5h4c6e0IeJ2iZnwyj3yc7vj8gexfp8PwpoZc3ZuVzk2hI8mXIAf3l8Za-3GymKcdbin-ah7tn5Ors45fT8yJdmFDYqqnWBXLNMW9L2srGGOkAnYApphZzNRhz1FFTtqULVMraGSiVjQ0SzJ1hzqvK8-dkt1_2_iXJQaoOFn_lalvBHkqaquW-Md4JIyznISNqlJG2iU0cL7X4rsewsW96I12N0tWDdDPCpp6rgVFjiz4fcBqm9siJHQuWt191UgptWup4sMG4UApJwaOUdVCmVa7iJXNlRppxEvWYdgqGEl7UbTGA46nvTD237H006oxOJuJOwxg5_kZWdUbeTtWwuPHExvR-eY9tBBWA-SjPyItBxSYZ8LJGoiEJMzFTvpmQ5jV9dxMJxJVSoCj14X991CvyCJ-G0J4jsru-vfevAaCt2zdxBf4GfLA5_g
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLojwDLQoS1wjHjzgRB0QRVYVULlBpb5bjB11UkqW7VdV_3xnHSViQ0F4dO0rG8_hsj78h5C33XgWlaNE41RTCl6IwUjkAcrxsIcTU1OLl5NOv1cmZ-LKQi7Thtk5plaNPjI7a9Rb3yN8xITnuuqn6w-p3gVWj8HQ1ldC4S-4hdRlqtVqomXS3FMNVOMmLGjqkTJ4hvyvyRS5_gdXCKpHF00segeYcniKL_1aU-heF_p1M-Ud0On5EHiZYmX8c9GCf3PHdY3L_NB2cPyH027lZ-dwkCpK8DzkgvzxW6MvNPEU5Vii-Njfrp-Ts-PP3TydFKpZQ2KqpNgXyzJXeMtrKxhjpAJmAG6YW72mUpaOOGtYyF6iUtTPQKhsbJLg6UzqvKs-fkb2u7_wLkjeMOjD8ytW2gvWTNFXLfWO8E0ZYzkNG1CgjbROTOBa0uNBjythPPUtXo3T1IN2MlNPI1cCmscOYI5yGqT_yYceG_vKHTualTUsdDzYYF0BRKEQTVgdlWuUqzkrHMtKMk6jHK6fgJOFFyx0-4P00NsGSAW7sOPpg1Bmd3MNaz8qckTfTYzBsPK0xne-vsI-gAvAe5Rl5PqjYJAPOaiQZkjATW8q3JaTtJ93yPJKHK6VAUeqX__-sV-QB_sOQt3NA9jaXV_4Q0NemfR1N7BZmpi7I
  priority: 102
  providerName: ProQuest
Title Shape analysis of the human association pathways
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920308156
https://dx.doi.org/10.1016/j.neuroimage.2020.117329
https://www.ncbi.nlm.nih.gov/pubmed/32882375
https://www.proquest.com/docview/2453900378
https://www.proquest.com/docview/2440474103
https://pubmed.ncbi.nlm.nih.gov/PMC7775618
https://doaj.org/article/ab0d3fcfadf2450eac28f7ab7d6321d2
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BkRAXxJtAuwoS14Adx3EiTm3VagF1hYBKe7McP9RFkK3oVqiX_nbGj2S7cGAPXBIptiNnPJ75HI-_AXjNrBVOCFK0RrRFZWlVKC4MAjlGO3QxDdH-cPLJrJ6eVh_mfH4j1ZePCYv0wFFwb1VHDHPaKePKihO0E2XjhOqEqVlJTbC-6POGxdRAt4soP8XtxGiuwA65-IFzFNeEZdirZAFWrp1R4Ozf8El_Y84_Qydv-KLjB3A_gch8P3b-Idyy_SO4e5K2yR8D-XKmzm2uEuFIvnQ54rw85OPL1XpAcp-P-Je6ungCp8dHXw-nRUqNUOi6rVeFZ5WjVpek461S3CAOQaNLtD-VQakhhqiyK40jnDdG4VPeasfRsClqrKgtewo7_bK3zyFvS2Jwmtem0TWulriqO2ZbZU2lKs2Yy0AMMpI68Yb79BXf5RAg9k2upSu9dGWUbgZ0bHkeuTO2aHPgh2Gs79mvwwPUCZl0Qv5LJzJoh0GUwwFTNIn4osUWHXg3tk0gJIKLLVvvDjojkzG4kNhH5n8YiyaDV2MxTmO_N6N6u7z0dSpSIbojLINnUcVGGbCy8ZRCHEdiQ_k2hLRZ0i_OAlW4EAIVpXnxP6T6Eu75L42xPLuws_p5afcQka26Cdx-c03xKuZiAnf233-czvB-cDT79HkSJuZvuBY8TQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVF4ltECQ4Bjh2HEcC6GKV7Wl3V5opb0Zx3boojZZultV_VP9jYzzZEFCe-k1sS1nPP7mczwPgNfMOVEIQSJphYwSFyeR5sIikWNxjiYmI8YHJ48P09Fx8nXCJ2tw3cXCeLfKDhNroLaV8f_I39KEM__XTWQ7s1-Rrxrlb1e7EhqNWuy7q0s8ss3f733G9X1D6e6Xo0-jqK0qEJlUpovIJ2SLnaEk51JrbtGEI14R4wMa4tgSSzTNqS0I55nV-JRLU3DEBB1bJ1LHcNxbcBsNL_GHPTERQ5LfOGlC7ziLcCzZeg41_mR1fsrpGaIEnkppfVvKamI7mMO6asCSVfyX9f7tvPmHNdzdgPstjQ0_NHr3ANZc-RDujNuL-kdAvp3omQt1m_IkrIoQmWZYVwQM9aASoa-IfKmv5o_h-EbE-ATWy6p0TyGUlFgEmtRmJsXzGtdpzpzUziY6MYwVAYhORsq0mct9AY1T1bmo_VSDdJWXrmqkG0Dc95w12TtW6PPRL0Pf3uffrh9U5z9Uu52VzollhSm0LVAxCVovmhVC58KmjMaWBiC7RVRdiCuCMg40XWEC7_q-LQ1q6M2Kvbc7nVEtHM3VsHkCeNW_RiDxt0O6dNWFb5OQBPklYQFsNirWy4DRzCc14rgSS8q3JKTlN-X0pE5WLoRARcme_X9aL-Hu6Gh8oA72Dve34J7_nsZnaBvWF-cX7jkyv0X-ot5uIXy_6f39G0DSavE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwbKBAkOEZ17DhOhBCitKuW0lUFVOrNOLZDF0GydLeq-tf4dYwTJ2FBQnvpNYmtZDzzzed4HgAvmLWiFIJEuRF5lNg4iRQXBokciwt0MRnRLjn5aJLunyTvT_npGvzqcmFcWGWHiQ1Qm1q7f-TbNOHM_XUT2XbpwyKOd8dvZj8j10HKnbR27TRaFTm0V5e4fZu_PtjFtX5J6Xjv87v9yHcYiHSap4vIFWeLraak4LlS3KA7R-wi2iU3xLEhhihaUFMSzjOj8CrPdckRH1RsrEgtw3lvwLpwu6IRrO_sTY4_DiV_46RNxOMswtlyH0fURpc11SqnPxAzcI9Km7NT1tDcwTk2PQSWfOS_HPjvUM4_fOP4NtzypDZ822rhHViz1V3YOPLH9veAfDpTMxsqXwAlrMsQeWfY9AcM1aAgoeuPfKmu5vfh5FoE-QBGVV3ZTQhzSgzCTmoyneLujau0YDZX1iQq0YyVAYhORlL7OuauncZ32QWsfZODdKWTrmylG0Dcj5y1tTxWGLPjlqF_3lXjbi7U51-lN26pCmJYqUtlSlRTgr6MZqVQhTApo7GhAeTdIsou4RUhGiearvACr_qxnhS1ZGfF0VudzkgPTnM5mFIAz_vbCCvurEhVtr5wzyQkQbZJWAAPWxXrZcBo5koccVyJJeVbEtLynWp61pQuF0KgomSP_v9az2ADbVt-OJgcPoab7nPaAKItGC3OL-wTpIGL4qm3txC-XLeJ_wZj43CM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+analysis+of+the+human+association+pathways&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yeh%2C+Fang-Cheng&rft.date=2020-12-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=223&rft.spage=117329&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117329&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon