Shape analysis of the human association pathways
Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractogra...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 223; p. 117329 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2020
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation.
[Display omitted] |
---|---|
AbstractList | Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation.Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation. Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation. Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation. [Display omitted] |
ArticleNumber | 117329 |
Author | Yeh, Fang-Cheng |
AuthorAffiliation | b Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States a Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States |
AuthorAffiliation_xml | – name: a Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States – name: b Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States |
Author_xml | – sequence: 1 givenname: Fang-Cheng orcidid: 0000-0002-7946-2173 surname: Yeh fullname: Yeh, Fang-Cheng email: frank.yeh@pitt.edu organization: Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32882375$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF1AkNmxm8COO4w2CVjwqVWIBrK0b-2bikLEHOymaf4-nU6a0q1k5uj7-dE_OOS9OfPBYFCUlS0po_W5YepxjcGtY4ZIRlsdUcqaeFWeUKLFQQrKT3bfgi4ZSdVqcpzQQQhStmhfFKWdNw7gUZwX53sMGS_AwbpNLZejKqceyn9fgS0gpGAeTC77cwNT_gW16WTzvYEz46v68KH5-_vTj6uvi5tuX66uPNwtTq3pa1FzUFA0jrVAAwtZUYkuJIUrmhSyxBFjLbEeEaCzkqVCmE4pSoBZljfyiuN5zbYBBb2L2Grc6gNN3gxBXGuLkzIgaWmJ5ZzqwHasEQTCs6SS00tacUcsy6_2etZnbNVqDfoowPoI-vvGu16twq6WU2UaTAW_vATH8njFNeu2SwXEEj2FOmlUVqWRFCc_SN0-kQ5hj_r07leCKEC53wNf_b3RY5V8wWdDsBSaGlCJ2BwkletcBPeiHDuhdB_S-Aw9uD0-Nm-5CzN7ceAzgcg_AnO-tw6iTcegNWhfRTDkAdwzkwxOIGZ13BsZfuD0O8RfmE-mQ |
CitedBy_id | crossref_primary_10_1007_s00429_022_02464_3 crossref_primary_10_1093_cercor_bhaf041 crossref_primary_10_1002_jmri_29258 crossref_primary_10_1007_s11682_024_00889_4 crossref_primary_10_1051_m2an_2023095 crossref_primary_10_1016_j_ejrad_2024_111477 crossref_primary_10_1016_j_nicl_2023_103521 crossref_primary_10_5798_dicletip_1657276 crossref_primary_10_1523_JNEUROSCI_2201_22_2023 crossref_primary_10_1016_j_cortex_2023_07_005 crossref_primary_10_1073_pnas_2220200120 crossref_primary_10_3390_diagnostics12123216 crossref_primary_10_1523_JNEUROSCI_0628_23_2023 crossref_primary_10_3389_fnhum_2024_1484431 crossref_primary_10_1523_ENEURO_0345_23_2023 crossref_primary_10_1093_cercor_bhad394 crossref_primary_10_1002_hbm_26630 crossref_primary_10_1038_s41598_024_67013_w crossref_primary_10_1177_20552173231208271 crossref_primary_10_1007_s00429_022_02551_5 crossref_primary_10_3390_brainsci12010022 crossref_primary_10_1002_jmri_29244 crossref_primary_10_1155_2024_5595912 crossref_primary_10_1109_TMI_2023_3274351 crossref_primary_10_1111_ane_13573 crossref_primary_10_1016_j_hest_2024_07_005 crossref_primary_10_1002_jmri_27813 crossref_primary_10_3389_fnins_2020_616348 crossref_primary_10_1007_s10548_023_01020_4 crossref_primary_10_3390_brainsci11040506 crossref_primary_10_3390_brainsci14121232 crossref_primary_10_1371_journal_pcbi_1011007 crossref_primary_10_1016_j_nicl_2025_103734 crossref_primary_10_1186_s12883_024_03741_w crossref_primary_10_1016_j_neuroimage_2021_118651 crossref_primary_10_1002_mrm_28926 crossref_primary_10_1007_s11060_023_04539_5 crossref_primary_10_1002_hbm_26771 crossref_primary_10_3174_ajnr_A8270 crossref_primary_10_1016_j_jns_2021_120091 crossref_primary_10_1007_s00702_023_02622_9 crossref_primary_10_1016_j_jpsychires_2023_11_032 crossref_primary_10_1002_mrm_30429 crossref_primary_10_3390_brainsci11070943 crossref_primary_10_1016_j_ejrad_2022_110194 crossref_primary_10_3389_fnhum_2024_1324710 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1371_journal_pone_0286280 crossref_primary_10_1126_sciadv_adr3530 crossref_primary_10_1007_s00429_022_02571_1 crossref_primary_10_1002_mrm_30502 crossref_primary_10_1007_s11060_024_04848_3 crossref_primary_10_1111_ejn_16369 crossref_primary_10_1002_jmri_29616 crossref_primary_10_1371_journal_pbio_3001575 crossref_primary_10_1016_j_jneumeth_2023_109883 crossref_primary_10_1002_mrm_29911 crossref_primary_10_1038_s41592_024_02237_2 crossref_primary_10_1186_s12974_024_03146_z crossref_primary_10_1016_j_mri_2021_10_017 crossref_primary_10_1007_s00415_022_11399_y crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1093_cercor_bhae435 crossref_primary_10_3389_fnins_2022_951508 crossref_primary_10_1016_j_resuscitation_2022_10_026 crossref_primary_10_1111_cns_14458 crossref_primary_10_1162_imag_a_00050 crossref_primary_10_1016_j_pneurobio_2021_102211 crossref_primary_10_1093_braincomms_fcae313 crossref_primary_10_1016_j_wneu_2023_02_145 crossref_primary_10_3389_fnins_2024_1283518 crossref_primary_10_3389_fnins_2024_1396518 crossref_primary_10_1007_s00429_022_02505_x crossref_primary_10_1016_j_neuroscience_2021_07_021 crossref_primary_10_1159_000542902 crossref_primary_10_1155_2024_9294268 crossref_primary_10_1002_hbm_26580 crossref_primary_10_1016_j_media_2024_103120 crossref_primary_10_3389_fnins_2023_1223950 crossref_primary_10_1007_s11682_021_00457_0 crossref_primary_10_1016_j_parkreldis_2022_105277 crossref_primary_10_1523_JNEUROSCI_0166_24_2024 crossref_primary_10_3389_fnins_2022_835964 crossref_primary_10_1016_j_neuroimage_2021_118451 crossref_primary_10_3171_2021_7_JNS21990 crossref_primary_10_1007_s11682_023_00814_1 crossref_primary_10_1093_cercor_bhaa377 crossref_primary_10_1016_j_parkreldis_2024_107089 crossref_primary_10_3389_fnana_2022_1025866 crossref_primary_10_3389_fnins_2023_1248266 crossref_primary_10_1016_j_neuroimage_2023_119916 crossref_primary_10_1016_j_neuroimage_2021_118739 crossref_primary_10_1109_TMI_2023_3306049 crossref_primary_10_3389_fneur_2023_1229681 crossref_primary_10_1016_j_ejrad_2022_110314 crossref_primary_10_1016_j_ynirp_2023_100174 crossref_primary_10_1038_s41467_022_32595_4 crossref_primary_10_1016_j_sleep_2021_12_013 |
Cites_doi | 10.1016/j.neuroimage.2005.01.019 10.1038/nrn2575 10.1016/j.pscychresns.2012.10.012 10.1016/j.bbadis.2014.08.002 10.1038/nn.4361 10.1016/j.neuroimage.2017.11.052 10.1371/journal.pone.0049790 10.1109/MCSE.2014.80 10.1016/j.neuroimage.2006.12.041 10.1007/s13311-018-0663-y 10.1371/journal.pone.0080713 10.1038/nrn3901 10.1109/TMI.2010.2045126 10.3389/fnana.2018.00047 10.1016/j.neuroimage.2017.07.015 10.1093/brain/awv118 10.1002/hbm.24917 10.1126/science.1193378 10.1016/j.mri.2019.01.018 10.1002/hbm.20779 10.1016/j.neuroimage.2018.07.070 10.1371/journal.pcbi.0010042 10.1109/TSMC.1979.4310076 10.1371/journal.pone.0177459 10.1016/j.neuroimage.2008.06.047 10.2147/NDT.S164058 10.1016/j.neuroimage.2020.116923 10.1016/j.neuroimage.2018.05.027 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. Copyright Elsevier Limited Dec 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2020.117329 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Biological Science Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 117329 |
ExternalDocumentID | oai_doaj_org_article_ab0d3fcfadf2450eac28f7ab7d6321d2 PMC7775618 32882375 10_1016_j_neuroimage_2020_117329 S1053811920308156 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIMH NIH HHS grantid: R56 MH113634 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c696t-63561ec20b59aa5d617eb10c097811d0d0a2b2df0558da09759cf5911a1de76e3 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:23:05 EDT 2025 Thu Aug 21 14:07:43 EDT 2025 Fri Jul 11 07:55:30 EDT 2025 Wed Aug 13 09:26:52 EDT 2025 Thu Apr 03 06:59:51 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Tue Jul 01 03:02:15 EDT 2025 Fri Feb 23 02:46:25 EST 2024 Tue Aug 26 20:02:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffusion MRI Automatic fiber tracking Shape analysis Shape descriptor Tractography |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c696t-63561ec20b59aa5d617eb10c097811d0d0a2b2df0558da09759cf5911a1de76e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Credict author statement FY conducted the analysis and wrote the manuscript. |
ORCID | 0000-0002-7946-2173 |
OpenAccessLink | https://doaj.org/article/ab0d3fcfadf2450eac28f7ab7d6321d2 |
PMID | 32882375 |
PQID | 2453900378 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab0d3fcfadf2450eac28f7ab7d6321d2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775618 proquest_miscellaneous_2440474103 proquest_journals_2453900378 pubmed_primary_32882375 crossref_primary_10_1016_j_neuroimage_2020_117329 crossref_citationtrail_10_1016_j_neuroimage_2020_117329 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117329 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117329 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Wolff, Gerig, Lewis, Soda, Styner, Vachet, Botteron, Elison, Dager, Estes, Hazlett, Schultz, Zwaigenbaum, Piven, Network (bib0027) 2015; 138 Otsu (bib0016) 1979; 9 Yeh, Wedeen, Tseng (bib0032) 2010; 29 Wasserthal, Neher, Maier-Hein (bib0025) 2018; 183 Garyfallidis, Cote, Rheault, Sidhu, Hau, Petit, Fortin, Cunanne, Descoteaux (bib0008) 2018; 170 Russ (bib0019) 2002 Vernooij, Smits, Wielopolski, Houston, Krestin, van der Lugt (bib0023) 2007; 35 Kitchell, Bullock, Hayashi, Pestilli (bib0012) 2018 Towns, Cockerill, Dahan, Foster, Gaither, Grimshaw, Hazlewood, Lathrop, Lifka, Peterson (bib0022) 2014; 16 Abhinav, Yeh, Pathak, Suski, Lacomis, Friedlander, Fernandez-Miranda (bib0001) 2014; 1842 Glozman, Bruckert, Pestilli, Yecies, Guibas, Yeom (bib0010) 2018; 167 Yeh, Panesar, Barrios, Fernandes, Abhinav, Meola, Fernandez-Miranda (bib0029) 2019; 16 Yeatman, Dougherty, Myall, Wandell, Feldman (bib0028) 2012; 7 Kurtzer, Sochat, Bauer (bib0013) 2017; 12 Lopez, Lalonde, Mattai, Wade, Clasen, Rapoport, Giedd (bib0015) 2013; 212 Corouge, Gouttard, Gerig (bib0004) 2004 Fornito, Zalesky, Breakspear (bib0007) 2015; 16 Schilling, Yeh, Nath, Hansen, Williams, Resnick, Anderson, Landman (bib0020) 2019; 58 Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller, Robinson, Sotiropoulos, Xu, Yacoub, Ugurbil, Van Essen (bib0009) 2016; 19 Huang, Zhang, Jiang, Wakana, Poetscher, Miller, van Zijl, Hillis, Wytik, Mori (bib0011) 2005; 26 Panesar, Yeh, Jacquesson, Hula, Fernandez-Miranda (bib0017) 2018; 12 Costa, Cesar Jr (bib0005) 2000 DeFelipe (bib0006) 2010; 330 Sporns, Tononi, Kotter (bib0021) 2005; 1 Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda, Vettel, Verstynen (bib0030) 2018; 178 Lebel, Beaulieu (bib0014) 2009; 30 Yeh, Verstynen, Wang, Fernandez-Miranda, Tseng (bib0031) 2013; 8 Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud, Jbabdi, Mars, Sotiropoulos (bib0024) 2020; 217 Bullmore, Sporns (bib0003) 2009; 10 Watanabe, Nakamae, Sakai, Nishida, Abe, Yamada, Yokota, Narumoto (bib0026) 2018; 14 Bastin, Piatkowski, Storkey, Brown, Maclullich, Clayden (bib0002) 2008; 43 Rheault, De Benedictis, Daducci, Maffei, Tax, Romascano, Caverzasi, Morency, Corrivetti, Pestilli, Girard, Theaud, Zemmoura, Hau, Glavin, Jordan, Pomiecko, Chamberland, Barakovic, Goyette, Poulin, Chenot, Panesar, Sarubbo, Petit, Descoteaux (bib0018) 2020; 41 Sporns (10.1016/j.neuroimage.2020.117329_bib0021) 2005; 1 DeFelipe (10.1016/j.neuroimage.2020.117329_bib0006) 2010; 330 Corouge (10.1016/j.neuroimage.2020.117329_bib0004) 2004 Garyfallidis (10.1016/j.neuroimage.2020.117329_bib0008) 2018; 170 Vernooij (10.1016/j.neuroimage.2020.117329_bib0023) 2007; 35 Yeh (10.1016/j.neuroimage.2020.117329_bib0031) 2013; 8 Bastin (10.1016/j.neuroimage.2020.117329_bib0002) 2008; 43 Schilling (10.1016/j.neuroimage.2020.117329_bib0020) 2019; 58 Russ (10.1016/j.neuroimage.2020.117329_bib0019) 2002 Towns (10.1016/j.neuroimage.2020.117329_bib0022) 2014; 16 Wolff (10.1016/j.neuroimage.2020.117329_bib0027) 2015; 138 Bullmore (10.1016/j.neuroimage.2020.117329_bib0003) 2009; 10 Yeatman (10.1016/j.neuroimage.2020.117329_bib0028) 2012; 7 Panesar (10.1016/j.neuroimage.2020.117329_bib0017) 2018; 12 Abhinav (10.1016/j.neuroimage.2020.117329_bib0001) 2014; 1842 Watanabe (10.1016/j.neuroimage.2020.117329_bib0026) 2018; 14 Otsu (10.1016/j.neuroimage.2020.117329_bib0016) 1979; 9 Fornito (10.1016/j.neuroimage.2020.117329_bib0007) 2015; 16 Rheault (10.1016/j.neuroimage.2020.117329_bib0018) 2020; 41 Yeh (10.1016/j.neuroimage.2020.117329_bib0029) 2019; 16 Huang (10.1016/j.neuroimage.2020.117329_bib0011) 2005; 26 Glozman (10.1016/j.neuroimage.2020.117329_bib0010) 2018; 167 Lopez (10.1016/j.neuroimage.2020.117329_bib0015) 2013; 212 Costa (10.1016/j.neuroimage.2020.117329_bib0005) 2000 Glasser (10.1016/j.neuroimage.2020.117329_bib0009) 2016; 19 Kitchell (10.1016/j.neuroimage.2020.117329_bib0012) 2018 Lebel (10.1016/j.neuroimage.2020.117329_bib0014) 2009; 30 Wasserthal (10.1016/j.neuroimage.2020.117329_bib0025) 2018; 183 Yeh (10.1016/j.neuroimage.2020.117329_bib0030) 2018; 178 Yeh (10.1016/j.neuroimage.2020.117329_bib0032) 2010; 29 Kurtzer (10.1016/j.neuroimage.2020.117329_bib0013) 2017; 12 Warrington (10.1016/j.neuroimage.2020.117329_bib0024) 2020; 217 |
References_xml | – volume: 16 start-page: 52 year: 2019 end-page: 58 ident: bib0029 article-title: Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP) publication-title: Neurotherapeutics – volume: 170 start-page: 283 year: 2018 end-page: 295 ident: bib0008 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage – volume: 167 start-page: 466 year: 2018 end-page: 477 ident: bib0010 article-title: Framework for shape analysis of white matter fiber bundles publication-title: Neuroimage – volume: 183 start-page: 239 year: 2018 end-page: 253 ident: bib0025 article-title: TractSeg - Fast and accurate white matter tract segmentation publication-title: Neuroimage – volume: 212 start-page: 1 year: 2013 end-page: 6 ident: bib0015 article-title: Quantitative morphology of the corpus callosum in obsessive-compulsive disorder publication-title: Psychiatry Res. – volume: 14 start-page: 1635 year: 2018 end-page: 1643 ident: bib0026 article-title: The detection of white matter alterations in obsessive-compulsive disorder revealed by TRActs Constrained by UnderLying Anatomy (TRACULA) publication-title: Neuropsychiatr. Dis. Treat. – volume: 16 start-page: 159 year: 2015 end-page: 172 ident: bib0007 article-title: The connectomics of brain disorders publication-title: Nat. Rev. Neurosci. – volume: 217 year: 2020 ident: bib0024 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 12 year: 2017 ident: bib0013 article-title: Singularity: scientific containers for mobility of compute publication-title: PLoS ONE – volume: 8 start-page: e80713 year: 2013 ident: bib0031 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS ONE – volume: 12 start-page: 47 year: 2018 ident: bib0017 article-title: A quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus publication-title: Front. Neuroanat. – volume: 29 start-page: 1626 year: 2010 end-page: 1635 ident: bib0032 article-title: Generalized q-sampling imaging publication-title: IEEE Trans. Med. Imaging. – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: bib0003 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 1175 year: 2016 end-page: 1187 ident: bib0009 article-title: The Human Connectome Project's neuroimaging approach publication-title: Nat. Neurosci. – volume: 138 start-page: 2046 year: 2015 end-page: 2058 ident: bib0027 article-title: Altered corpus callosum morphology associated with autism over the first 2 years of life publication-title: Brain – volume: 16 start-page: 62 year: 2014 end-page: 74 ident: bib0022 article-title: XSEDE: accelerating scientific discovery publication-title: Comput. Sci. Eng. – volume: 330 start-page: 1198 year: 2010 end-page: 1201 ident: bib0006 article-title: From the connectome to the synaptome: an epic love story publication-title: Science – volume: 30 start-page: 3563 year: 2009 end-page: 3573 ident: bib0014 article-title: Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children publication-title: Hum. Brain Mapp. – start-page: 195 year: 2018 end-page: 206 ident: bib0012 article-title: Shape analysis of white matter tracts via the Laplace-Beltrami spectrum publication-title: International Workshop on Shape in Medical Imaging – year: 2000 ident: bib0005 article-title: Shape Analysis and classification: Theory and Practice – volume: 26 start-page: 195 year: 2005 end-page: 205 ident: bib0011 article-title: DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum publication-title: Neuroimage – volume: 1842 start-page: 2286 year: 2014 end-page: 2297 ident: bib0001 article-title: Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: a review publication-title: Biochim. Biophys. Acta – start-page: 344 year: 2004 end-page: 347 ident: bib0004 article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI publication-title: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821) – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib0016 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Sys., Man., Cyber – year: 2002 ident: bib0019 article-title: The Image Processing Handbook – volume: 43 start-page: 20 year: 2008 end-page: 28 ident: bib0002 article-title: Tract shape modelling provides evidence of topological change in corpus callosum genu during normal ageing publication-title: Neuroimage – volume: 41 start-page: 1859 year: 2020 end-page: 1874 ident: bib0018 article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility publication-title: Hum. Brain. Mapp. – volume: 1 start-page: e42 year: 2005 ident: bib0021 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – volume: 178 start-page: 57 year: 2018 end-page: 68 ident: bib0030 article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage – volume: 35 start-page: 1064 year: 2007 end-page: 1076 ident: bib0023 article-title: Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right-and left-handed healthy subjects: a combined fMRI and DTI study publication-title: Neuroimage – volume: 58 start-page: 82 year: 2019 end-page: 89 ident: bib0020 article-title: A fiber coherence index for quality control of B-table orientation in diffusion MRI scans publication-title: Magn. Reson. Imaging – volume: 7 start-page: e49790 year: 2012 ident: bib0028 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS ONE – volume: 26 start-page: 195 year: 2005 ident: 10.1016/j.neuroimage.2020.117329_bib0011 article-title: DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.01.019 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.neuroimage.2020.117329_bib0003 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 212 start-page: 1 year: 2013 ident: 10.1016/j.neuroimage.2020.117329_bib0015 article-title: Quantitative morphology of the corpus callosum in obsessive-compulsive disorder publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.10.012 – volume: 1842 start-page: 2286 year: 2014 ident: 10.1016/j.neuroimage.2020.117329_bib0001 article-title: Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: a review publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2014.08.002 – start-page: 195 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0012 article-title: Shape analysis of white matter tracts via the Laplace-Beltrami spectrum – volume: 19 start-page: 1175 year: 2016 ident: 10.1016/j.neuroimage.2020.117329_bib0009 article-title: The Human Connectome Project's neuroimaging approach publication-title: Nat. Neurosci. doi: 10.1038/nn.4361 – volume: 167 start-page: 466 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0010 article-title: Framework for shape analysis of white matter fiber bundles publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.11.052 – volume: 7 start-page: e49790 year: 2012 ident: 10.1016/j.neuroimage.2020.117329_bib0028 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS ONE doi: 10.1371/journal.pone.0049790 – start-page: 344 year: 2004 ident: 10.1016/j.neuroimage.2020.117329_bib0004 article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI – volume: 16 start-page: 62 year: 2014 ident: 10.1016/j.neuroimage.2020.117329_bib0022 article-title: XSEDE: accelerating scientific discovery publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2014.80 – volume: 35 start-page: 1064 year: 2007 ident: 10.1016/j.neuroimage.2020.117329_bib0023 article-title: Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right-and left-handed healthy subjects: a combined fMRI and DTI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.12.041 – volume: 16 start-page: 52 year: 2019 ident: 10.1016/j.neuroimage.2020.117329_bib0029 article-title: Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP) publication-title: Neurotherapeutics doi: 10.1007/s13311-018-0663-y – volume: 8 start-page: e80713 year: 2013 ident: 10.1016/j.neuroimage.2020.117329_bib0031 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS ONE doi: 10.1371/journal.pone.0080713 – volume: 16 start-page: 159 year: 2015 ident: 10.1016/j.neuroimage.2020.117329_bib0007 article-title: The connectomics of brain disorders publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3901 – year: 2000 ident: 10.1016/j.neuroimage.2020.117329_bib0005 – volume: 29 start-page: 1626 year: 2010 ident: 10.1016/j.neuroimage.2020.117329_bib0032 article-title: Generalized q-sampling imaging publication-title: IEEE Trans. Med. Imaging. doi: 10.1109/TMI.2010.2045126 – volume: 12 start-page: 47 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0017 article-title: A quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus publication-title: Front. Neuroanat. doi: 10.3389/fnana.2018.00047 – volume: 170 start-page: 283 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0008 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.015 – volume: 138 start-page: 2046 year: 2015 ident: 10.1016/j.neuroimage.2020.117329_bib0027 article-title: Altered corpus callosum morphology associated with autism over the first 2 years of life publication-title: Brain doi: 10.1093/brain/awv118 – volume: 41 start-page: 1859 year: 2020 ident: 10.1016/j.neuroimage.2020.117329_bib0018 article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility publication-title: Hum. Brain. Mapp. doi: 10.1002/hbm.24917 – volume: 330 start-page: 1198 year: 2010 ident: 10.1016/j.neuroimage.2020.117329_bib0006 article-title: From the connectome to the synaptome: an epic love story publication-title: Science doi: 10.1126/science.1193378 – volume: 58 start-page: 82 year: 2019 ident: 10.1016/j.neuroimage.2020.117329_bib0020 article-title: A fiber coherence index for quality control of B-table orientation in diffusion MRI scans publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.01.018 – volume: 30 start-page: 3563 year: 2009 ident: 10.1016/j.neuroimage.2020.117329_bib0014 article-title: Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20779 – volume: 183 start-page: 239 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0025 article-title: TractSeg - Fast and accurate white matter tract segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.070 – volume: 1 start-page: e42 year: 2005 ident: 10.1016/j.neuroimage.2020.117329_bib0021 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.neuroimage.2020.117329_bib0016 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Sys., Man., Cyber doi: 10.1109/TSMC.1979.4310076 – volume: 12 year: 2017 ident: 10.1016/j.neuroimage.2020.117329_bib0013 article-title: Singularity: scientific containers for mobility of compute publication-title: PLoS ONE doi: 10.1371/journal.pone.0177459 – volume: 43 start-page: 20 year: 2008 ident: 10.1016/j.neuroimage.2020.117329_bib0002 article-title: Tract shape modelling provides evidence of topological change in corpus callosum genu during normal ageing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.06.047 – volume: 14 start-page: 1635 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0026 article-title: The detection of white matter alterations in obsessive-compulsive disorder revealed by TRActs Constrained by UnderLying Anatomy (TRACULA) publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S164058 – year: 2002 ident: 10.1016/j.neuroimage.2020.117329_bib0019 – volume: 217 year: 2020 ident: 10.1016/j.neuroimage.2020.117329_bib0024 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 178 start-page: 57 year: 2018 ident: 10.1016/j.neuroimage.2020.117329_bib0030 article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.027 |
SSID | ssj0009148 |
Score | 2.630711 |
Snippet | Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117329 |
SubjectTerms | Adult Anisotropy Automatic fiber tracking Brain Brain - anatomy & histology Brain - diagnostic imaging Brain Mapping - methods Cingulum Computer vision Consortia Diffusion MRI Diffusion Tensor Imaging Dominance Female Humans Image processing Image Processing, Computer-Assisted - methods Innervation Investigations Magnetic resonance imaging Male Morphology Neural Pathways - anatomy & histology Neural Pathways - diagnostic imaging Shape analysis Shape descriptor Structure-function relationships Tractography Variation White Matter - anatomy & histology White Matter - diagnostic imaging Young Adult |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHiouiJZXSkFB4hrWju04UU-loqqQyqVU6s1y_KBBkF21W6Fe-O3MOE6WwGUljvEjcsbjmc_xzGdC3nHvVVCKFo1TTSE8E4WRygGQ46wFF1NTi8nJF5-r8yvx6Vpe75DTMRcGwyqT7R9serTWqWSRpLlYdd3iEpABuBtAKEi5AtsQzGAXCrX8_a9NmEfDxJAOJ3mBrVM0zxDjFTkjux-wcmGnWMYTTB7B5sZFRSb_maf6F4n-HVD5h4c6e0IeJ2iZnwyj3yc7vj8gexfp8PwpoZc3ZuVzk2hI8mXIAf3l8Za-3GymKcdbin-ah7tn5Ors45fT8yJdmFDYqqnWBXLNMW9L2srGGOkAnYApphZzNRhz1FFTtqULVMraGSiVjQ0SzJ1hzqvK8-dkt1_2_iXJQaoOFn_lalvBHkqaquW-Md4JIyznISNqlJG2iU0cL7X4rsewsW96I12N0tWDdDPCpp6rgVFjiz4fcBqm9siJHQuWt191UgptWup4sMG4UApJwaOUdVCmVa7iJXNlRppxEvWYdgqGEl7UbTGA46nvTD237H006oxOJuJOwxg5_kZWdUbeTtWwuPHExvR-eY9tBBWA-SjPyItBxSYZ8LJGoiEJMzFTvpmQ5jV9dxMJxJVSoCj14X991CvyCJ-G0J4jsru-vfevAaCt2zdxBf4GfLA5_g priority: 102 providerName: Elsevier – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLojwDLQoS1wjHjzgRB0QRVYVULlBpb5bjB11UkqW7VdV_3xnHSViQ0F4dO0rG8_hsj78h5C33XgWlaNE41RTCl6IwUjkAcrxsIcTU1OLl5NOv1cmZ-LKQi7Thtk5plaNPjI7a9Rb3yN8xITnuuqn6w-p3gVWj8HQ1ldC4S-4hdRlqtVqomXS3FMNVOMmLGjqkTJ4hvyvyRS5_gdXCKpHF00segeYcniKL_1aU-heF_p1M-Ud0On5EHiZYmX8c9GCf3PHdY3L_NB2cPyH027lZ-dwkCpK8DzkgvzxW6MvNPEU5Vii-Njfrp-Ts-PP3TydFKpZQ2KqpNgXyzJXeMtrKxhjpAJmAG6YW72mUpaOOGtYyF6iUtTPQKhsbJLg6UzqvKs-fkb2u7_wLkjeMOjD8ytW2gvWTNFXLfWO8E0ZYzkNG1CgjbROTOBa0uNBjythPPUtXo3T1IN2MlNPI1cCmscOYI5yGqT_yYceG_vKHTualTUsdDzYYF0BRKEQTVgdlWuUqzkrHMtKMk6jHK6fgJOFFyx0-4P00NsGSAW7sOPpg1Bmd3MNaz8qckTfTYzBsPK0xne-vsI-gAvAe5Rl5PqjYJAPOaiQZkjATW8q3JaTtJ93yPJKHK6VAUeqX__-sV-QB_sOQt3NA9jaXV_4Q0NemfR1N7BZmpi7I priority: 102 providerName: ProQuest |
Title | Shape analysis of the human association pathways |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920308156 https://dx.doi.org/10.1016/j.neuroimage.2020.117329 https://www.ncbi.nlm.nih.gov/pubmed/32882375 https://www.proquest.com/docview/2453900378 https://www.proquest.com/docview/2440474103 https://pubmed.ncbi.nlm.nih.gov/PMC7775618 https://doaj.org/article/ab0d3fcfadf2450eac28f7ab7d6321d2 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BkRAXxJtAuwoS14Adx3EiTm3VagF1hYBKe7McP9RFkK3oVqiX_nbGj2S7cGAPXBIptiNnPJ75HI-_AXjNrBVOCFK0RrRFZWlVKC4MAjlGO3QxDdH-cPLJrJ6eVh_mfH4j1ZePCYv0wFFwb1VHDHPaKePKihO0E2XjhOqEqVlJTbC-6POGxdRAt4soP8XtxGiuwA65-IFzFNeEZdirZAFWrp1R4Ozf8El_Y84_Qydv-KLjB3A_gch8P3b-Idyy_SO4e5K2yR8D-XKmzm2uEuFIvnQ54rw85OPL1XpAcp-P-Je6ungCp8dHXw-nRUqNUOi6rVeFZ5WjVpek461S3CAOQaNLtD-VQakhhqiyK40jnDdG4VPeasfRsClqrKgtewo7_bK3zyFvS2Jwmtem0TWulriqO2ZbZU2lKs2Yy0AMMpI68Yb79BXf5RAg9k2upSu9dGWUbgZ0bHkeuTO2aHPgh2Gs79mvwwPUCZl0Qv5LJzJoh0GUwwFTNIn4osUWHXg3tk0gJIKLLVvvDjojkzG4kNhH5n8YiyaDV2MxTmO_N6N6u7z0dSpSIbojLINnUcVGGbCy8ZRCHEdiQ_k2hLRZ0i_OAlW4EAIVpXnxP6T6Eu75L42xPLuws_p5afcQka26Cdx-c03xKuZiAnf233-czvB-cDT79HkSJuZvuBY8TQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVF4ltECQ4Bjh2HEcC6GKV7Wl3V5opb0Zx3boojZZultV_VP9jYzzZEFCe-k1sS1nPP7mczwPgNfMOVEIQSJphYwSFyeR5sIikWNxjiYmI8YHJ48P09Fx8nXCJ2tw3cXCeLfKDhNroLaV8f_I39KEM__XTWQ7s1-Rrxrlb1e7EhqNWuy7q0s8ss3f733G9X1D6e6Xo0-jqK0qEJlUpovIJ2SLnaEk51JrbtGEI14R4wMa4tgSSzTNqS0I55nV-JRLU3DEBB1bJ1LHcNxbcBsNL_GHPTERQ5LfOGlC7ziLcCzZeg41_mR1fsrpGaIEnkppfVvKamI7mMO6asCSVfyX9f7tvPmHNdzdgPstjQ0_NHr3ANZc-RDujNuL-kdAvp3omQt1m_IkrIoQmWZYVwQM9aASoa-IfKmv5o_h-EbE-ATWy6p0TyGUlFgEmtRmJsXzGtdpzpzUziY6MYwVAYhORsq0mct9AY1T1bmo_VSDdJWXrmqkG0Dc95w12TtW6PPRL0Pf3uffrh9U5z9Uu52VzollhSm0LVAxCVovmhVC58KmjMaWBiC7RVRdiCuCMg40XWEC7_q-LQ1q6M2Kvbc7nVEtHM3VsHkCeNW_RiDxt0O6dNWFb5OQBPklYQFsNirWy4DRzCc14rgSS8q3JKTlN-X0pE5WLoRARcme_X9aL-Hu6Gh8oA72Dve34J7_nsZnaBvWF-cX7jkyv0X-ot5uIXy_6f39G0DSavE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwbKBAkOEZ17DhOhBCitKuW0lUFVOrNOLZDF0GydLeq-tf4dYwTJ2FBQnvpNYmtZDzzzed4HgAvmLWiFIJEuRF5lNg4iRQXBokciwt0MRnRLjn5aJLunyTvT_npGvzqcmFcWGWHiQ1Qm1q7f-TbNOHM_XUT2XbpwyKOd8dvZj8j10HKnbR27TRaFTm0V5e4fZu_PtjFtX5J6Xjv87v9yHcYiHSap4vIFWeLraak4LlS3KA7R-wi2iU3xLEhhihaUFMSzjOj8CrPdckRH1RsrEgtw3lvwLpwu6IRrO_sTY4_DiV_46RNxOMswtlyH0fURpc11SqnPxAzcI9Km7NT1tDcwTk2PQSWfOS_HPjvUM4_fOP4NtzypDZ822rhHViz1V3YOPLH9veAfDpTMxsqXwAlrMsQeWfY9AcM1aAgoeuPfKmu5vfh5FoE-QBGVV3ZTQhzSgzCTmoyneLujau0YDZX1iQq0YyVAYhORlL7OuauncZ32QWsfZODdKWTrmylG0Dcj5y1tTxWGLPjlqF_3lXjbi7U51-lN26pCmJYqUtlSlRTgr6MZqVQhTApo7GhAeTdIsou4RUhGiearvACr_qxnhS1ZGfF0VudzkgPTnM5mFIAz_vbCCvurEhVtr5wzyQkQbZJWAAPWxXrZcBo5koccVyJJeVbEtLynWp61pQuF0KgomSP_v9az2ADbVt-OJgcPoab7nPaAKItGC3OL-wTpIGL4qm3txC-XLeJ_wZj43CM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+analysis+of+the+human+association+pathways&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yeh%2C+Fang-Cheng&rft.date=2020-12-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=223&rft.spage=117329&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117329&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |