The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D
RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the deta...
Saved in:
Published in | PLoS biology Vol. 21; no. 1; p. e3001693 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
23.01.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses. |
---|---|
AbstractList | RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses. RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses. RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses. This study of enterovirus presents evidence for a cap-independent strategy of translation initiation that functions when eIF2α has been inactivated, identifying an RNA element upstream of the initiation codon that enables translation initiation using the non-canonical initiation factors eIF2A or eIF2D. |
Audience | Academic |
Author | Arnold, Jamie J. Cameron, Craig E. Sotoudegan, Mohamad S. Kim, Hyejeong Aponte-Diaz, David Shengjuler, Djoshkun |
AuthorAffiliation | 2 Batavia Biosciences, Leiden, the Netherlands 1 Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America University of Wisconsin-Madison, UNITED STATES |
AuthorAffiliation_xml | – name: 1 Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America – name: University of Wisconsin-Madison, UNITED STATES – name: 2 Batavia Biosciences, Leiden, the Netherlands |
Author_xml | – sequence: 1 givenname: Hyejeong surname: Kim fullname: Kim, Hyejeong – sequence: 2 givenname: David surname: Aponte-Diaz fullname: Aponte-Diaz, David – sequence: 3 givenname: Mohamad S. surname: Sotoudegan fullname: Sotoudegan, Mohamad S. – sequence: 4 givenname: Djoshkun surname: Shengjuler fullname: Shengjuler, Djoshkun – sequence: 5 givenname: Jamie J. surname: Arnold fullname: Arnold, Jamie J. – sequence: 6 givenname: Craig E. orcidid: 0000-0002-7564-5642 surname: Cameron fullname: Cameron, Craig E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36689548$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk9tu1DAQhiNURA_wBggscQMXu00cH2IukFalhZUqKrWFW8txJruuEntrOwXeHqe7rbpVhUCRHGfyzT_2r5n9bMc6C1n2usinRcmLwys3eKu66ao2blrmecFE-SzbKyihE15VdOfBfjfbD-EqzzEWuHqR7ZaMVYKSai_7ebkEBDaCdzfGDwEtwLoekFYW1YCiVzZ0KkKDjEUpNj8_vpgY28AK0mIj6pW14FFcqog8XA_GQ0hfkHgTjYrGWdQqHZ0PCOYneHY4rp9fZs9b1QV4tXkfZN9Pji-Pvk5Oz77Mj2anE80EjRNaEKZFwRTRjFHRiJZjaAWvAZNCUUV5QxrQdaNBY8IJgToXmhKSE8xJnZcH2du17qpzQW48CxJzzkmZlyVNxHxNNE5dyZU3vfK_pVNG3gacX0jlo9EdyCRIMcOE1aQinKpUC6cTcl5oBkCqpPVpU22oe0iHssnAbkt0-481S7lwN1JUglA6CrzfCHh3PUCIsjdBQ9cpC24Yz82qqsAYs4S-e4Q-fbsNtVDpAsa2LtXVo6ic8ZKVFWW5SNT0CSo9DfRGp75rTYpvJXzYSkhMhF9xoYYQ5Pzi_D_Yb__Onv3YZt88NPve5bvmTgBZA9q7EDy090iRy3GG7hyT4wzJzQyltI-P0rSJt42cTDHd35P_ABITIK4 |
CitedBy_id | crossref_primary_10_1038_s41541_024_00807_1 crossref_primary_10_3390_v15122413 crossref_primary_10_3390_v17020181 crossref_primary_10_1126_sciadv_adj4198 crossref_primary_10_3389_fmicb_2024_1415698 crossref_primary_10_1371_journal_pbio_3002216 crossref_primary_10_3389_fpls_2023_1270963 |
Cites_doi | 10.1038/s41467-022-33483-7 10.1101/gad.305250.117 10.1038/emboj.2008.49 10.1006/excr.1999.4656 10.3390/genes10120968 10.1126/science.1178955 10.1126/science.1147347 10.1371/journal.ppat.1004191 10.1128/JVI.02057-18 10.3390/v8030082 10.1016/0092-8674(86)90600-8 10.1371/journal.ppat.1007036 10.1016/j.gene.2012.04.039 10.1161/CIRCULATIONAHA.118.035966 10.1101/gad.1957510 10.1146/annurev-med-042320-015952 10.1128/JVI.74.14.6394-6400.2000 10.1126/science.280.5370.1757 10.1016/0092-8674(92)90211-T 10.1016/j.mib.2013.04.009 10.1128/jvi.63.4.1651-1660.1989 10.1099/vir.0.83426-0 10.1128/JVI.00792-11 10.1128/JVI.74.14.6570-6580.2000 10.1038/334320a0 10.3389/fmicb.2018.00207 10.1371/journal.ppat.1007086 10.1073/pnas.85.16.5997 10.1074/jbc.274.5.2706 10.1101/gad.357006 10.1128/JCM.00455-17 10.3390/v14010078 10.1128/jvi.3.3.326-330.1969 10.1128/JVI.78.15.7916-7924.2004 10.1128/JVI.73.11.8958-8965.1999 10.1093/genetics/78.2.737 10.1016/j.molcel.2021.10.003 10.1038/srep43876 10.1093/gbe/evx046 10.1006/biol.1993.1095 10.1016/j.celrep.2017.10.005 10.1126/science.2839901 10.1074/jbc.M110.119693 10.1016/S0092-8674(00)81890-5 10.1126/science.1132505 10.1016/j.cell.2010.03.050 10.1016/j.celrep.2017.10.051 10.1128/JVI.01394-09 10.1038/nrmicro2614 10.1016/j.coviro.2014.09.007 10.1002/rmv.326 10.1101/gad.8.14.1726 10.1093/nar/gkw567 10.1016/j.tcb.2016.09.011 10.1128/JVI.75.13.5740-5751.2001 10.1038/ni.2048 10.1128/jvi.42.3.1017-1028.1982 10.1128/JVI.78.3.1393-1402.2004 10.1016/0027-5107(64)90047-8 10.1101/cshperspect.a032870 10.1093/hmg/ddac021 10.1016/j.chom.2016.03.009 10.1038/emboj.2011.146 10.1099/0022-1317-23-1-41 10.3390/ijms21062054 10.1093/nar/gkab549 10.1126/science.1068284 10.1099/0022-1317-80-4-917 10.1128/JVI.78.12.6271-6281.2004 10.1002/embj.201386124 10.1099/0022-1317-82-2-397 10.1155/2011/369648 |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Kim et al 2023 Kim et al |
Copyright_xml | – notice: Copyright: © 2023 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Kim et al 2023 Kim et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.3001693 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale in Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Alternative translation mechanism in enteroviruses |
EISSN | 1545-7885 |
ExternalDocumentID | 2777430335 oai_doaj_org_article_4b0526246b48475ab092514771c6ee48 PMC9894558 A736385609 36689548 10_1371_journal_pbio_3001693 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States Netherlands |
GeographicLocations_xml | – name: Netherlands – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI045818 – fundername: ; grantid: AI045818 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 PYCSY QF4 QN7 RNS RPM RZL SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ ADRAZ ADXHL C1A CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK AGJBV CZG M~E UMP ZA5 |
ID | FETCH-LOGICAL-c695t-5146c916a4c6659d9f72ef97be241a5a57d4decbdcec24744eb09c54404274b03 |
IEDL.DBID | 7X7 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun May 07 16:29:23 EDT 2023 Wed Aug 27 01:31:36 EDT 2025 Thu Aug 21 18:38:05 EDT 2025 Thu Jul 10 23:20:19 EDT 2025 Fri Jul 25 12:15:39 EDT 2025 Tue Jun 17 22:01:53 EDT 2025 Tue Jun 10 21:02:18 EDT 2025 Fri Jun 27 05:31:48 EDT 2025 Fri Jun 27 05:31:06 EDT 2025 Fri Jun 27 05:30:20 EDT 2025 Mon Jul 21 06:05:07 EDT 2025 Tue Jul 01 01:15:05 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright: © 2023 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c695t-5146c916a4c6659d9f72ef97be241a5a57d4decbdcec24744eb09c54404274b03 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-7564-5642 |
OpenAccessLink | https://www.proquest.com/docview/2777430335?pq-origsite=%requestingapplication% |
PMID | 36689548 |
PQID | 2777430335 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_2777430335 doaj_primary_oai_doaj_org_article_4b0526246b48475ab092514771c6ee48 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894558 proquest_miscellaneous_2768812226 proquest_journals_2777430335 gale_infotracmisc_A736385609 gale_infotracacademiconefile_A736385609 gale_incontextgauss_ISR_A736385609 gale_incontextgauss_ISN_A736385609 gale_incontextgauss_IOV_A736385609 pubmed_primary_36689548 crossref_primary_10_1371_journal_pbio_3001693 crossref_citationtrail_10_1371_journal_pbio_3001693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230123 |
PublicationDateYYYYMMDD | 2023-01-23 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Herold (pbio.3001693.ref057) 2000; 74 Y Xiao (pbio.3001693.ref018) 2016; 19 MA Skabkin (pbio.3001693.ref066) 2010; 24 SR Nallagatla (pbio.3001693.ref042) 2007; 318 X Li (pbio.3001693.ref044) 2001; 82 SE Dmitriev (pbio.3001693.ref065) 2010; 285 J. Felsenstein (pbio.3001693.ref002) 1974; 78 AA Komar (pbio.3001693.ref060) 2012; 502 HS Oh (pbio.3001693.ref025) 2018; 14 GD Amoutzias (pbio.3001693.ref008) 2022; 14 E Simon-Loriere (pbio.3001693.ref003) 2011; 9 J Rehwinkel (pbio.3001693.ref049) 2013; 16 EV Pilipenko (pbio.3001693.ref030) 1992; 68 JP White (pbio.3001693.ref062) 2011; 85 AP Gmyl (pbio.3001693.ref031) 1999; 73 A Woodman (pbio.3001693.ref014) 2016; 44 JE Novak (pbio.3001693.ref038) 1994; 8 H Kim (pbio.3001693.ref075) 2019; 10 S Dahmane (pbio.3001693.ref022) 2022; 13 W Liu (pbio.3001693.ref051) 2019; 5 pbio.3001693.ref048 JE Carette (pbio.3001693.ref047) 2009; 326 NS Cuervo (pbio.3001693.ref004) 2001; 75 V Hornung (pbio.3001693.ref059) 2006; 314 F Guo (pbio.3001693.ref050) 2017; 21 S Banerjee (pbio.3001693.ref041) 2018; 14 N. Altan-Bonnet (pbio.3001693.ref021) 2017; 27 E Gonzalez-Almela (pbio.3001693.ref037) 2018; 9 D Egger (pbio.3001693.ref039) 2000; 74 A Bouin (pbio.3001693.ref071) 2019; 139 PD Copper (pbio.3001693.ref011) 1974; 23 CS Hahn (pbio.3001693.ref005) 1988; 85 D Sun (pbio.3001693.ref073) 2016; 8 NY Hsu (pbio.3001693.ref023) 2010; 141 RC Wek (pbio.3001693.ref035) 2018; 10 TV Pestova (pbio.3001693.ref064) 2008; 27 A Gallei (pbio.3001693.ref052) 2004; 78 J Pelletier (pbio.3001693.ref027) 1988; 334 R Janissen (pbio.3001693.ref019) 2021; 81 C Li (pbio.3001693.ref016) 2019; 93 O Kew (pbio.3001693.ref009) 2002; 296 K Ichihara (pbio.3001693.ref045) 2021; 49 E Martinez-Salas (pbio.3001693.ref061) 2008; 89 KE Murray (pbio.3001693.ref055) 2004; 78 TR Sweeney (pbio.3001693.ref043) 2014; 33 D Trono (pbio.3001693.ref028) 1988; 241 D Sergiescu (pbio.3001693.ref012) 1969; 3 JH Kim (pbio.3001693.ref068) 2011; 30 D Dulin (pbio.3001693.ref020) 2017; 21 MG Kearse (pbio.3001693.ref032) 2017; 31 RL Graham (pbio.3001693.ref006) 2010; 84 RE Lloyd (pbio.3001693.ref069) 2022; 73 KS Kim (pbio.3001693.ref070) 2001; 11 A Castelló (pbio.3001693.ref072) 2011; 2011 YF Wang (pbio.3001693.ref074) 2004; 78 JJ Arnold (pbio.3001693.ref017) 1999; 274 A Woodman (pbio.3001693.ref015) 2019; 93 AB Chetverin (pbio.3001693.ref054) 1997; 88 M Kotecki (pbio.3001693.ref046) 1999; 252 K Lowry (pbio.3001693.ref013) 2014; 10 E Wimmer (pbio.3001693.ref056) 1993; 21 MA Sanz (pbio.3001693.ref036) 2017; 7 WT Jackson (pbio.3001693.ref024) 2014; 9 SK Jang (pbio.3001693.ref029) 1989; 63 A Pichlmair (pbio.3001693.ref058) 2011; 12 I Ventoso (pbio.3001693.ref067) 2006; 20 JL Cannon (pbio.3001693.ref007) 2017; 55 AJ Dorner (pbio.3001693.ref026) 1982; 42 M Kleine Büning (pbio.3001693.ref053) 2017; 9 SK Choi (pbio.3001693.ref063) 1998; 280 KM Green (pbio.3001693.ref033) 2022; 31 T Ishii (pbio.3001693.ref040) 1999; 80 AA Komar (pbio.3001693.ref034) 2020; 21 HJ Muller (pbio.3001693.ref001) 1964; 106 K Kirkegaard (pbio.3001693.ref010) 1986; 47 37490454 - PLoS Biol. 2023 Jul 25;21(7):e3002216 |
References_xml | – volume: 13 start-page: 5986 issue: 1 year: 2022 ident: pbio.3001693.ref022 article-title: Membrane-assisted assembly and selective secretory autophagy of enteroviruses publication-title: Nat Commun doi: 10.1038/s41467-022-33483-7 – volume: 31 start-page: 1717 issue: 17 year: 2017 ident: pbio.3001693.ref032 article-title: Non-AUG translation: a new start for protein synthesis in eukaryotes publication-title: Genes Dev doi: 10.1101/gad.305250.117 – volume: 27 start-page: 1060 issue: 7 year: 2008 ident: pbio.3001693.ref064 article-title: eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II publication-title: EMBO J doi: 10.1038/emboj.2008.49 – volume: 252 start-page: 273 issue: 2 year: 1999 ident: pbio.3001693.ref046 article-title: Isolation and characterization of a near-haploid human cell line publication-title: Exp Cell Res doi: 10.1006/excr.1999.4656 – volume: 10 start-page: 968 issue: 12 year: 2019 ident: pbio.3001693.ref075 article-title: RNA-Dependent RNA Polymerase Speed and Fidelity are not the Only Determinants of the Mechanism or Efficiency of Recombination publication-title: Genes (Basel) doi: 10.3390/genes10120968 – volume: 326 start-page: 1231 issue: 5957 year: 2009 ident: pbio.3001693.ref047 article-title: Haploid genetic screens in human cells identify host factors used by pathogens publication-title: Science doi: 10.1126/science.1178955 – volume: 318 start-page: 1455 issue: 5855 year: 2007 ident: pbio.3001693.ref042 article-title: 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops publication-title: Science doi: 10.1126/science.1147347 – volume: 10 start-page: e1004191 issue: 6 year: 2014 ident: pbio.3001693.ref013 article-title: Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length ’imprecise’ intermediates publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004191 – volume: 93 start-page: e02057 issue: 4 year: 2019 ident: pbio.3001693.ref015 article-title: Predicting Intraserotypic Recombination in Enterovirus 71 publication-title: J Virol doi: 10.1128/JVI.02057-18 – volume: 8 start-page: 82 issue: 3 year: 2016 ident: pbio.3001693.ref073 article-title: Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells publication-title: Viruses doi: 10.3390/v8030082 – volume: 47 start-page: 433 issue: 3 year: 1986 ident: pbio.3001693.ref010 article-title: The mechanism of RNA recombination in poliovirus publication-title: Cell doi: 10.1016/0092-8674(86)90600-8 – volume: 14 start-page: e1007036 issue: 4 year: 2018 ident: pbio.3001693.ref025 article-title: Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007036 – volume: 502 start-page: 75 issue: 2 year: 2012 ident: pbio.3001693.ref060 article-title: A new framework for understanding IRES-mediated translation publication-title: Gene doi: 10.1016/j.gene.2012.04.039 – volume: 139 start-page: 2326 issue: 20 year: 2019 ident: pbio.3001693.ref071 article-title: Enterovirus Persistence in Cardiac Cells of Patients With Idiopathic Dilated Cardiomyopathy Is Linked to 5’ Terminal Genomic RNA-Deleted Viral Populations With Viral-Encoded Proteinase Activities publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.035966 – volume: 24 start-page: 1787 issue: 16 year: 2010 ident: pbio.3001693.ref066 article-title: Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling publication-title: Genes Dev doi: 10.1101/gad.1957510 – volume: 73 start-page: 483 year: 2022 ident: pbio.3001693.ref069 article-title: Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? publication-title: Annu Rev Med doi: 10.1146/annurev-med-042320-015952 – volume: 74 start-page: 6394 issue: 14 year: 2000 ident: pbio.3001693.ref057 article-title: Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis publication-title: J Virol doi: 10.1128/JVI.74.14.6394-6400.2000 – volume: 280 start-page: 1757 issue: 5370 year: 1998 ident: pbio.3001693.ref063 article-title: Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast publication-title: Science doi: 10.1126/science.280.5370.1757 – volume: 68 start-page: 119 issue: 1 year: 1992 ident: pbio.3001693.ref030 article-title: Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA publication-title: Cell doi: 10.1016/0092-8674(92)90211-T – volume: 16 start-page: 485 issue: 4 year: 2013 ident: pbio.3001693.ref049 article-title: Targeting the viral Achilles’ heel: recognition of 5′-triphosphate RNA in innate anti-viral defence publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2013.04.009 – volume: 63 start-page: 1651 issue: 4 year: 1989 ident: pbio.3001693.ref029 article-title: Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo publication-title: J Virol doi: 10.1128/jvi.63.4.1651-1660.1989 – volume: 89 start-page: 611 issue: Pt 3 year: 2008 ident: pbio.3001693.ref061 article-title: New insights into internal ribosome entry site elements relevant for viral gene expression publication-title: J Gen Virol doi: 10.1099/vir.0.83426-0 – volume: 85 start-page: 8884 issue: 17 year: 2011 ident: pbio.3001693.ref062 article-title: Poliovirus switches to an eIF2-independent mode of translation during infection publication-title: J Virol doi: 10.1128/JVI.00792-11 – volume: 74 start-page: 6570 issue: 14 year: 2000 ident: pbio.3001693.ref039 article-title: Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis publication-title: J Virol doi: 10.1128/JVI.74.14.6570-6580.2000 – volume: 334 start-page: 320 issue: 6180 year: 1988 ident: pbio.3001693.ref027 article-title: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA publication-title: Nature doi: 10.1038/334320a0 – volume: 9 start-page: 207 year: 2018 ident: pbio.3001693.ref037 article-title: The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00207 – volume: 14 start-page: e1007086 issue: 5 year: 2018 ident: pbio.3001693.ref041 article-title: Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007086 – volume: 5 issue: 10 year: 2019 ident: pbio.3001693.ref051 article-title: More than efficacy revealed by single-cell analysis of antiviral therapeutics publication-title: Sci Adv – volume: 85 start-page: 5997 issue: 16 year: 1988 ident: pbio.3001693.ref005 article-title: Western equine encephalitis virus is a recombinant virus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.85.16.5997 – volume: 274 start-page: 2706 issue: 5 year: 1999 ident: pbio.3001693.ref017 article-title: Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro publication-title: J Biol Chem doi: 10.1074/jbc.274.5.2706 – volume: 20 start-page: 87 issue: 1 year: 2006 ident: pbio.3001693.ref067 article-title: Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR publication-title: Genes Dev doi: 10.1101/gad.357006 – volume: 55 start-page: 2208 issue: 7 year: 2017 ident: pbio.3001693.ref007 article-title: Genetic and Epidemiologic Trends of Norovirus Outbreaks in the United States from 2013 to 2016 Demonstrated Emergence of Novel GII.4 Recombinant Viruses publication-title: J Clin Microbiol doi: 10.1128/JCM.00455-17 – volume: 14 start-page: 78 issue: 1 year: 2022 ident: pbio.3001693.ref008 article-title: The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2 publication-title: Viruses doi: 10.3390/v14010078 – volume: 93 start-page: e00576 issue: 13 year: 2019 ident: pbio.3001693.ref016 article-title: Senecavirus-Specific Recombination Assays Reveal the Intimate Link between Polymerase Fidelity and RNA Recombination publication-title: J Virol – volume: 3 start-page: 326 issue: 3 year: 1969 ident: pbio.3001693.ref012 article-title: Recombination between guanidine-resistant and dextran sulfate-resistant mutants of type 1 poliovirus publication-title: J Virol doi: 10.1128/jvi.3.3.326-330.1969 – ident: pbio.3001693.ref048 – volume: 78 start-page: 7916 issue: 15 year: 2004 ident: pbio.3001693.ref074 article-title: A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection publication-title: J Virol doi: 10.1128/JVI.78.15.7916-7924.2004 – volume: 73 start-page: 8958 issue: 11 year: 1999 ident: pbio.3001693.ref031 article-title: Nonreplicative RNA recombination in poliovirus publication-title: J Virol doi: 10.1128/JVI.73.11.8958-8965.1999 – volume: 78 start-page: 737 issue: 2 year: 1974 ident: pbio.3001693.ref002 article-title: The evolutionary advantage of recombination publication-title: Genetics doi: 10.1093/genetics/78.2.737 – volume: 81 issue: 21 year: 2021 ident: pbio.3001693.ref019 article-title: Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses publication-title: Mol Cell doi: 10.1016/j.molcel.2021.10.003 – volume: 7 start-page: 43876 year: 2017 ident: pbio.3001693.ref036 article-title: Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D publication-title: Sci Rep doi: 10.1038/srep43876 – volume: 9 start-page: 817 issue: 4 year: 2017 ident: pbio.3001693.ref053 article-title: Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins publication-title: Genome Biol Evol doi: 10.1093/gbe/evx046 – volume: 21 start-page: 349 issue: 4 year: 1993 ident: pbio.3001693.ref056 article-title: Molecular biology and cell-free synthesis of poliovirus publication-title: Biologicals doi: 10.1006/biol.1993.1095 – volume: 21 start-page: 1063 issue: 4 year: 2017 ident: pbio.3001693.ref020 article-title: Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers publication-title: Cell Rep doi: 10.1016/j.celrep.2017.10.005 – volume: 241 start-page: 445 issue: 4864 year: 1988 ident: pbio.3001693.ref028 article-title: Translation in mammalian cells of a gene linked to the poliovirus 5′ noncoding region publication-title: Science doi: 10.1126/science.2839901 – volume: 285 start-page: 26779 issue: 35 year: 2010 ident: pbio.3001693.ref065 article-title: GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor publication-title: J Biol Chem doi: 10.1074/jbc.M110.119693 – volume: 88 start-page: 503 issue: 4 year: 1997 ident: pbio.3001693.ref054 article-title: Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure publication-title: Cell doi: 10.1016/S0092-8674(00)81890-5 – volume: 314 start-page: 994 issue: 5801 year: 2006 ident: pbio.3001693.ref059 article-title: 5′-Triphosphate RNA is the ligand for RIG-I publication-title: Science doi: 10.1126/science.1132505 – volume: 141 start-page: 799 issue: 5 year: 2010 ident: pbio.3001693.ref023 article-title: Viral reorganization of the secretory pathway generates distinct organelles for RNA replication publication-title: Cell doi: 10.1016/j.cell.2010.03.050 – volume: 21 start-page: 1692 issue: 6 year: 2017 ident: pbio.3001693.ref050 article-title: Single-Cell Virology: On-Chip Investigation of Viral Infection Dynamics publication-title: Cell Rep doi: 10.1016/j.celrep.2017.10.051 – volume: 84 start-page: 3134 issue: 7 year: 2010 ident: pbio.3001693.ref006 article-title: Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission publication-title: J Virol doi: 10.1128/JVI.01394-09 – volume: 9 start-page: 617 issue: 8 year: 2011 ident: pbio.3001693.ref003 article-title: Why do RNA viruses recombine? publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2614 – volume: 9 start-page: 67 year: 2014 ident: pbio.3001693.ref024 article-title: Poliovirus-induced changes in cellular membranes throughout infection publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2014.09.007 – volume: 11 start-page: 355 issue: 6 year: 2001 ident: pbio.3001693.ref070 article-title: The group B coxsackieviruses and myocarditis publication-title: Rev Med Virol doi: 10.1002/rmv.326 – volume: 8 start-page: 1726 issue: 14 year: 1994 ident: pbio.3001693.ref038 article-title: Coupling between genome translation and replication in an RNA virus publication-title: Genes Dev doi: 10.1101/gad.8.14.1726 – volume: 44 start-page: 6883 issue: 14 year: 2016 ident: pbio.3001693.ref014 article-title: Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw567 – volume: 27 start-page: 201 issue: 3 year: 2017 ident: pbio.3001693.ref021 article-title: Lipid Tales of Viral Replication and Transmission publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2016.09.011 – volume: 75 start-page: 5740 issue: 13 year: 2001 ident: pbio.3001693.ref004 article-title: Genomic features of intertypic recombinant sabin poliovirus strains excreted by primary vaccinees publication-title: J Virol doi: 10.1128/JVI.75.13.5740-5751.2001 – volume: 12 start-page: 624 issue: 7 year: 2011 ident: pbio.3001693.ref058 article-title: IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA publication-title: Nat Immunol doi: 10.1038/ni.2048 – volume: 42 start-page: 1017 issue: 3 year: 1982 ident: pbio.3001693.ref026 article-title: Identification of the initiation site of poliovirus polyprotein synthesis publication-title: J Virol doi: 10.1128/jvi.42.3.1017-1028.1982 – volume: 78 start-page: 1393 issue: 3 year: 2004 ident: pbio.3001693.ref055 article-title: Replication of poliovirus RNA with complete internal ribosome entry site deletions publication-title: J Virol doi: 10.1128/JVI.78.3.1393-1402.2004 – volume: 106 start-page: 2 year: 1964 ident: pbio.3001693.ref001 article-title: The Relation of Recombination to Mutational Advance publication-title: Mutat Res doi: 10.1016/0027-5107(64)90047-8 – volume: 10 start-page: a032870 issue: 7 year: 2018 ident: pbio.3001693.ref035 article-title: Role of eIF2alpha Kinases in Translational Control and Adaptation to Cellular Stress publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a032870 – volume: 31 start-page: 2521 issue: 15 year: 2022 ident: pbio.3001693.ref033 article-title: Non-canonical initiation factors modulate repeat-associated non-AUG translation publication-title: Hum Mol Genet doi: 10.1093/hmg/ddac021 – volume: 19 start-page: 493 issue: 4 year: 2016 ident: pbio.3001693.ref018 article-title: RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.03.009 – volume: 30 start-page: 2454 issue: 12 year: 2011 ident: pbio.3001693.ref068 article-title: eIF2A mediates translation of hepatitis C viral mRNA under stress conditions publication-title: EMBO J doi: 10.1038/emboj.2011.146 – volume: 23 start-page: 41 issue: 1 year: 1974 ident: pbio.3001693.ref011 article-title: On the nature of poliovirus genetic recombinants publication-title: J Gen Virol doi: 10.1099/0022-1317-23-1-41 – volume: 21 start-page: 2054 issue: 6 year: 2020 ident: pbio.3001693.ref034 article-title: A Retrospective on eIF2A-and Not the Alpha Subunit of eIF2 publication-title: Int J Mol Sci doi: 10.3390/ijms21062054 – volume: 49 start-page: 7298 issue: 13 year: 2021 ident: pbio.3001693.ref045 article-title: Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab549 – volume: 296 start-page: 356 issue: 5566 year: 2002 ident: pbio.3001693.ref009 article-title: Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus publication-title: Science doi: 10.1126/science.1068284 – volume: 80 start-page: 917 issue: Pt 4 year: 1999 ident: pbio.3001693.ref040 article-title: Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA publication-title: J Gen Virol doi: 10.1099/0022-1317-80-4-917 – volume: 78 start-page: 6271 issue: 12 year: 2004 ident: pbio.3001693.ref052 article-title: RNA recombination in vivo in the absence of viral replication publication-title: J Virol doi: 10.1128/JVI.78.12.6271-6281.2004 – volume: 33 start-page: 76 issue: 1 year: 2014 ident: pbio.3001693.ref043 article-title: The mechanism of translation initiation on Type 1 picornavirus IRESs publication-title: EMBO J doi: 10.1002/embj.201386124 – volume: 82 start-page: 397 issue: Pt 2 year: 2001 ident: pbio.3001693.ref044 article-title: The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage publication-title: J Gen Virol doi: 10.1099/0022-1317-82-2-397 – volume: 2011 start-page: 369648 year: 2011 ident: pbio.3001693.ref072 article-title: The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases publication-title: J Biomed Biotechnol doi: 10.1155/2011/369648 – reference: 37490454 - PLoS Biol. 2023 Jul 25;21(7):e3002216 |
SSID | ssj0022928 |
Score | 2.456139 |
Snippet | RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e3001693 |
SubjectTerms | Analysis Biology and Life Sciences Cytoplasm DNA-directed RNA polymerase Enterovirus - physiology Enterovirus Infections - virology Enteroviruses Evolution Genetic aspects Genetic translation Genomes Host-Pathogen Interactions Humans Hypotheses Identification and classification Inactivation Infections Initiation factor eIF-2 Internal ribosome entry site Internal Ribosome Entry Sites Methods Mutation Peptide Initiation Factors - genetics Polymerase chain reaction Protein Biosynthesis Recombination Research and Analysis Methods Ribonucleic acid Ribosomes RNA RNA polymerase RNA sequencing RNA viruses RNA, Viral - genetics RNA, Viral - metabolism RNA-directed RNA polymerase Severe acute respiratory syndrome coronavirus 2 Vaccines Viral infections Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6KodBL6TtK07IthZ4U2_u0ju7DxD2k0DYlN7EvNwJHMpZMyL_vjLQWUUlJD70IrBkJNDOa-Vae_YaQd1BxpTXCp1pJkwrHXWoAmabWhilzSnrmW7bPU3VyJr6cy_Mbo76wJ6yjB-4MNxYWGUmYUFZAIpXGTjIoyULrqVMhiHabL9S8_WIqLrVY1k5VRaoZeJ01j5vmuJ6Oo4-ON7aojvmkZSMZFKWWu7_P0KPNuqpvg59_dlHeKEuLR-RhxJN03j3HY3IvlE_I_W7C5PVTcgVhQJF2E78cbHc1RU7Wy0DBoNQG2mClWgPc9LQoKZxbgkPSoh-N29BLg7O5aHNhGroN2DYcavgVQL9oOrfSOLOHhuWCzcd4_PSMnC0-__h4ksZZC6lTmWxSMKlyABWNcErJzGcrzcIq0zZAiTfSSO2FD87C0zomtBABHOEksgvCutZO-HMyKqsyHBDqLAsgCBLcLbT3Vng7s9o4y7lbTVVC-N7YuYtE5DgPY523_65pWJB0tsvRRXl0UULS_qpNR8Rxh_4H9GOvizTa7QkIrjwGV35XcCXkLUZBjkQZJXbi_DK7us6XX3_mc80hdQFezP6m9P30X5S-DZTeR6VVBRZxJm6RALsiS9dA82igCTnBDcQHGLZ7w9Q50wDzAa1wCVfuQ_l28ZtejDfFFrwyVDvUUTNAgwDXE_Kii_zeuFypGTIHJkQP3omB9YeSsrhoycxxAICUs8P_4a6X5AEDDIpfyBg_IqNmuwuvADM29nWbHn4DWttmgg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGERIv07gubCCDkHhKaX1NHhAql2pFYkhA0d4i23G3Sl1SmlSwf885uYmgDnip1Pg4Ss459vmcON9HyHOouNIakYZaSRMKx11oAJmG1voxc0qmLK3YPk_VyVx8OJNne6TVbG0cWOxc2qGe1HyzGv78fvUaBvyrSrVBj9tOw7Vd5kM-qvhFbpCbUJs0ahp8FN17BcbiSm0VKWhgmGvefEx33Vl6xari9O9m7sF6lRe7YOmfuyt_K1fTA7Lf4Ew6qRPjDtnz2V1yq1aevLpHfkB6UKTjxCcKm21Bkav10lNwNLWelljBVgBDU7rMKBybQaDCZSeZW9JLg5pdtLwwJd143E7sC_jnwX5Z1uGmjZYP9bMpm7zE33f3yXz6_uvbk7DRYAidimUZAp5SDiCkEU4pGafxQjO_iLX14F4jjdSpSL2zcLeOCS2Et6PYSWQdhPWuHfEHZJDlmT8k1FnmocFLSAOh09SK1EZWG2c5d4uxCghvnZ24hqAcdTJWSfXWTcNCpfZdgiFKmhAFJOx6rWuCjn_Yv8E4drZIr10dyDfnSTNaE7hwyRQTygqo3tLAPQEOFFqPnfJeRAF5hlmQIIFGhjt0zs22KJLZp2_JRHOY0gBHxtcZfTn9H6PPPaMXjdEiB48403w6AX5F9q6e5XHPEuYK12s-xLRtHVMkTAP8BxTDJfRsU3l389OuGU-KW_Myn2_RRkWAEgHGB-Rhnfmdc7lSETIKBkT3xkTP-_2WbHlRkZyjMICU0aO_X9YRuc0AdeIzMcaPyaDcbP1jQImlfVIN_F-dC2WQ priority: 102 providerName: Scholars Portal |
Title | The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36689548 https://www.proquest.com/docview/2777430335 https://www.proquest.com/docview/2768812226 https://pubmed.ncbi.nlm.nih.gov/PMC9894558 https://doaj.org/article/4b0526246b48475ab092514771c6ee48 http://dx.doi.org/10.1371/journal.pbio.3001693 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegExIvE98rjMogJJ6yrv5MnlAHq1YQBQZDfYtsx90qdUlpUiH-e-4StyNofLxYSnyJkrvz3c-O8ztCXkDGldaILNJKmkg47iIDyDSy1g-YUzJjWc32OVEnZ-LtVE7DglsZtlVuYmIdqLPC4Rp5n2kAKhBvuXy1_BZh1Sj8uhpKaNwkO0hdhl6tp1cTLpbUtVWRcAYGtebh1zmuB_1gqYOlnRcH_LDmJGmlpprBfxunO8tFUV4HQn_fS_lLchrdIbsBVdJh4wZ3yQ2f3yO3mjqTP-6T7-AMFMk3cf1gtS4pMrNeegpqpdbTCvPVAkBnRuc5hXNjMEs03xbIreilwQpdtLowFV153DzsSzjyID-vGuPSULmH-vGIDfvYvnlAzkbHX16fRKHiQuRUIqsI0JNyABiNcErJJEtmmvlZoq2HRG-kkToTmXcW3tYxoYXw9jBxEjkGYXZrD_lD0smL3O8R6izz0OElGF3oLLMis7HVxlnO3WyguoRvlJ26QEeOVTEWaf2NTcO0pNFdiiZKg4m6JNpetWzoOP4hf4R23MoimXZ9olidp2FspvDgkikmlBWQq6WBdwLUJ7QeOOW9iLvkOXpBinQZOe7HOTfrskzHH76mQ80hgAFqTP4k9HnyP0KnLaGXQWhWgEacCT9KgF6Rq6slud-ShMjgWt176LYbxZTp1RiCKzeufH33s2033hQ34uW-WKOMigETAmjvkkeN52-Vy5WKkT-wS3RrTLS03-7J5xc1pTmWAZAyfvz3x3pCbjPAmLgCxvg-6VSrtX8KmLCyvXrg98jO0fHk42mvXlmB9t2nGNr3Iv4JMflkKA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLuBAgsCcXKTrPcRHxAKlKihJUjQotzMvtJGSu0QO6r6p_iNzNiOi1F5XHqJFO_YsmfGM9-sd78h5AVkXGE0d4GSQgfchjbQgEwDY3yPWSkccwXb51juHvIPEzHZID_We2FwWeU6JhaB2qUW58g7TAFQgXgbijeL7wF2jcKvq-sWGqVb7PmzUyjZstejHbDvS8aG7w_e7QZVV4HAykjkASAEaQEUaW6lFJGLpor5aaSMh2SmhRbKceetcdZbxhXn3nQjK5BHDyo40w3hulfIVUi8XSz21OS8wGNR0csVCW4giKiw2qoXql6n8ozthZml22G34EBppMKiY0CdF1qLeZpdBHp_X7v5SzIc3iI3KxRLB6Xb3SYbPrlDrpV9Lc_uklNwPopknzhfsVxlFJlgTzwFM1LjaY75cQ4g19FZQuHYCNwgmNUNeXN6orEjGM2PdU6XHhcr-wz-eZCf5aUz0apTEPWjIRt08HfnHjm8FFvcJ60kTfwmodYwDwNegJNx5ZzhzvSN0taEoZ32ZJuEa2XHtqI_xy4c87j4pqegDCp1F6OJ4spEbRLUZy1K-o9_yL9FO9aySN5dHEiXR3EVC2K4ccEk49JwwAZCwzMByuRK9az0nvfb5Dl6QYz0HAmu_znSqyyLR5--xgMVQsAElBr9SejL-H-EPjeEXlVC0xQ0YnW1MQP0itxgDcmthiREItsY3kS3XSsmi8_fWThz7coXDz-rh_GiuPAv8ekKZWQfMCgUCW3yoPT8WrmhlH3kK2wT1XgnGtpvjiSz44JCHdsOCNF_-Pfbekqu7x583I_3R-O9R-QGA3yLs28s3CKtfLnyjwGP5uZJEQQo-XbZUecnguOcgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHcDBRYE4uQm2Wd8QCiljRqKQlUo6s14H2kjpXaIHVX9a_w6ZmzHYFQel14ixTu27JnxzDfr3W8IeQkZV5pYuEArGQfCchvEgEwDY3yPWSUdcwXb51jtHYn3x_J4jXxf7YXBZZWrmFgEapdanCPvMA1ABeItl51JtSziYGf4dv4twA5S-KV11U6jdJF9f3EO5Vv2ZrQDtn7F2HD387u9oOowEFgVyjwAtKAsAKRYWKVk6MKJZn4SauMhscUyltoJ561x1lsmtBDedEMrkVMPqjnT5XDda2RdY1XUIuvbu-ODw7rcY2HR2RXpbiCkaF5t3OO616n8ZGtupukW7xaMKI3EWPQPqLNEaz5Ls8sg8O8rOX9JjcPb5FaFaemgdMI7ZM0nd8n1ssvlxT1yDq5IkfoTZy8Wy4wiL-yZp2BUajzNMVvOAPI6Ok0oHBuBUwTTuj1vTs9i7A9G89M4pwuPS5d9Bv88yE_z0rVo1TeI-tGQDTr4u3OfHF2JNR6QVpImfoNQa5iHAS_B5YR2zghn-kbH1nBuJz3VJnyl7MhWZOjYk2MWFV_4NBRFpe4iNFFUmahNgvqseUkG8g_5bbRjLYtU3sWBdHESVZEhghuXTDGhjACkIGN4JsCcQuueVd6Lfpu8QC-IkKwjQbc_iZdZFo0-fokGmkP4BMwa_kno0_h_hA4bQq8roUkKGrFxtU0D9IpMYQ3JzYYkxCXbGN5At10pJot-vsFw5sqVLx9-Xg_jRXEZYOLTJcqoPiBSKBna5GHp-bVyuVJ9ZC9sE914Jxrab44k09OCUB2bEEjZf_T323pGbkDEiT6MxvuPyU0GYBen4hjfJK18sfRPAJzm5mkVBSj5etWB5wf0hKIe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+enterovirus+genome+can+be+translated+in+an+IRES-independent+manner+that+requires+the+initiation+factors+eIF2A%2FeIF2D&rft.jtitle=PLoS+biology&rft.au=Kim%2C+Hyejeong&rft.au=Aponte-Diaz%2C+David&rft.au=Sotoudegan%2C+Mohamad+S&rft.au=Shengjuler%2C+Djoshkun&rft.date=2023-01-23&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=21&rft.issue=1&rft.spage=e3001693&rft_id=info:doi/10.1371%2Fjournal.pbio.3001693&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |