State of the Art Review: Brachial-Ankle PWV

The brachial-ankle pulse wave velocity (brachial-ankle PWV), which is measured simply by wrapping pressure cuffs around the four extremities, is a simple marker to assess the stiffness of the medium- to large- sized arteries. The accuracy and reproducibility of its measurement have been confirmed to...

Full description

Saved in:
Bibliographic Details
Published inJournal of Atherosclerosis and Thrombosis Vol. 27; no. 7; pp. 621 - 636
Main Authors Tomiyama, Hirofumi, Shiina, Kazuki
Format Journal Article
LanguageEnglish
Published Japan Japan Atherosclerosis Society 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The brachial-ankle pulse wave velocity (brachial-ankle PWV), which is measured simply by wrapping pressure cuffs around the four extremities, is a simple marker to assess the stiffness of the medium- to large- sized arteries. The accuracy and reproducibility of its measurement have been confirmed to be acceptable. Risk factors for cardiovascular disease, especially advanced age and high blood pressure, are reported to be associated with an increase of the arterial stiffness. Furthermore, arterial stiffness might be involved in a vicious cycle with the development/progression of hypertension, diabetes mellitus and chronic kidney disease. Increase in the arterial stiffness is thought to contribute to the development of cardiovascular disease via pathophysiological abnormalities induced in the heart, brain, kidney, and also the arteries themselves. A recent independent participant data meta-analysis conducted in Japan demonstrated that the brachial-ankle PWV is a useful marker to predict future cardiovascular events in Japanese subjects without a previous history of cardiovascular disease, independent of the conventional model for the risk assessment. The cutoff point may be 16.0 m/s in individuals with a low risk of cardiovascular disease (CVD), and 18.0 m/s in individuals with a high risk of CVD and subjects with hypertension. In addition, the method of measurement of the brachial-ankle PWV can also be used to calculate the inter-arm systolic blood pressure difference and ankle-brachial pressure index, which are also useful markers for cardiovascular risk assessment.
AbstractList The brachial-ankle pulse wave velocity (brachial-ankle PWV), which is measured simply by wrapping pressure cuffs around the four extremities, is a simple marker to assess the stiffness of the medium- to large- sized arteries. The accuracy and reproducibility of its measurement have been confirmed to be acceptable. Risk factors for cardiovascular disease, especially advanced age and high blood pressure, are reported to be associated with an increase of the arterial stiffness. Furthermore, arterial stiffness might be involved in a vicious cycle with the development/progression of hypertension, diabetes mellitus and chronic kidney disease. Increase in the arterial stiffness is thought to contribute to the development of cardiovascular disease via pathophysiological abnormalities induced in the heart, brain, kidney, and also the arteries themselves. A recent independent participant data meta-analysis conducted in Japan demonstrated that the brachial-ankle PWV is a useful marker to predict future cardiovascular events in Japanese subjects without a previous history of cardiovascular disease, independent of the conventional model for the risk assessment. The cutoff point may be 16.0 m/s in individuals with a low risk of cardiovascular disease (CVD), and 18.0 m/s in individuals with a high risk of CVD and subjects with hypertension. In addition, the method of measurement of the brachial-ankle PWV can also be used to calculate the inter-arm systolic blood pressure difference and ankle-brachial pressure index, which are also useful markers for cardiovascular risk assessment.
The brachial-ankle pulse wave velocity (brachial-ankle PWV), which is measured simply by wrapping pressure cuffs around the four extremities, is a simple marker to assess the stiffness of the medium- to large- sized arteries. The accuracy and reproducibility of its measurement have been confirmed to be acceptable. Risk factors for cardiovascular disease, especially advanced age and high blood pressure, are reported to be associated with an increase of the arterial stiffness. Furthermore, arterial stiffness might be involved in a vicious cycle with the development/progression of hypertension, diabetes mellitus and chronic kidney disease. Increase in the arterial stiffness is thought to contribute to the development of cardiovascular disease via pathophysiological abnormalities induced in the heart, brain, kidney, and also the arteries themselves. A recent independent participant data meta-analysis conducted in Japan demonstrated that the brachial-ankle PWV is a useful marker to predict future cardiovascular events in Japanese subjects without a previous history of cardiovascular disease, independent of the conventional model for the risk assessment. The cutoff point may be 16.0 m/s in individuals with a low risk of cardiovascular disease (CVD), and 18.0 m/s in individuals with a high risk of CVD and subjects with hypertension. In addition, the method of measurement of the brachial-ankle PWV can also be used to calculate the inter-arm systolic blood pressure difference and ankle-brachial pressure index, which are also useful markers for cardiovascular risk assessment.The brachial-ankle pulse wave velocity (brachial-ankle PWV), which is measured simply by wrapping pressure cuffs around the four extremities, is a simple marker to assess the stiffness of the medium- to large- sized arteries. The accuracy and reproducibility of its measurement have been confirmed to be acceptable. Risk factors for cardiovascular disease, especially advanced age and high blood pressure, are reported to be associated with an increase of the arterial stiffness. Furthermore, arterial stiffness might be involved in a vicious cycle with the development/progression of hypertension, diabetes mellitus and chronic kidney disease. Increase in the arterial stiffness is thought to contribute to the development of cardiovascular disease via pathophysiological abnormalities induced in the heart, brain, kidney, and also the arteries themselves. A recent independent participant data meta-analysis conducted in Japan demonstrated that the brachial-ankle PWV is a useful marker to predict future cardiovascular events in Japanese subjects without a previous history of cardiovascular disease, independent of the conventional model for the risk assessment. The cutoff point may be 16.0 m/s in individuals with a low risk of cardiovascular disease (CVD), and 18.0 m/s in individuals with a high risk of CVD and subjects with hypertension. In addition, the method of measurement of the brachial-ankle PWV can also be used to calculate the inter-arm systolic blood pressure difference and ankle-brachial pressure index, which are also useful markers for cardiovascular risk assessment.
Author Tomiyama, Hirofumi
Shiina, Kazuki
Author_xml – sequence: 1
  fullname: Tomiyama, Hirofumi
  organization: Department of Cardiology, Tokyo Medical University
– sequence: 2
  fullname: Shiina, Kazuki
  organization: Department of Cardiology, Tokyo Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32448827$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vEzEQhi1URNvAiTvaI1K1xZ9rhwNSqKAgVQKVqhxHE6-3cXDs4nUK_fc4JI0A4cPMyPPO-0gzx-QgpugIec7oqVKKvVpiOb28ZppK9ogcMWNoK4wWB7UWstZSm0NyPI5LSoVQij8hh4JLaQzXR-TkS8HimjQ0ZeGaWS7Npbvz7sfr5m1Gu_AY2ln8Flzz-ev1U_J4wDC6Z7s8IVfv312dfWgvPp1_PJtdtLabytIqM7VqyjqUYm77YbDGdLyvP7yTnbBCsV5TPh0QeT_0w1Qoy6ntUGA_R8XFhLzZ2t6u5yvXWxdLxgC32a8w30NCD393ol_ATboDLWknqa4GL3cGOX1fu7HAyo_WhYDRpfUIvOqU1kazKn3xJ2sPeVhQFbCtwOY0jtkNYH3dmE8btA_AKGyOAPUIsDtCnTn5Z-bB9v_q86268r3FkGLw0cEyrXOsWwb3U_dpdY_AKadAKddU18SAdnwTRCeUYaK-CZltnZZjwRu3p2Iu3gb3m8o16E3Y0fc9u8AMLopfbt21EA
CitedBy_id crossref_primary_10_5551_jat_65055
crossref_primary_10_5551_jat_RV17047
crossref_primary_10_3390_toxins14040287
crossref_primary_10_1136_bmjophth_2024_001980
crossref_primary_10_1111_jch_14384
crossref_primary_10_3390_medicina60050835
crossref_primary_10_1016_j_nutres_2023_09_007
crossref_primary_10_1186_s12882_024_03612_z
crossref_primary_10_1016_j_clineuro_2023_107918
crossref_primary_10_1167_tvst_13_7_10
crossref_primary_10_1186_s12933_021_01443_y
crossref_primary_10_1016_j_clinbiochem_2023_110593
crossref_primary_10_1159_000541076
crossref_primary_10_1186_s12879_023_08650_w
crossref_primary_10_3390_biomedicines11030674
crossref_primary_10_1016_j_hlc_2022_05_044
crossref_primary_10_1038_s41440_022_01057_1
crossref_primary_10_3389_fcvm_2022_883651
crossref_primary_10_3390_toxins14080526
crossref_primary_10_38109_2075_082X_2024_4_111_119
crossref_primary_10_24884_1682_6655_2024_23_4_114_123
crossref_primary_10_3389_fcvm_2023_1105464
crossref_primary_10_1097_HJH_0000000000003876
crossref_primary_10_3389_fcvm_2024_1227906
crossref_primary_10_3390_jpm11121278
crossref_primary_10_1097_HJH_0000000000003481
crossref_primary_10_1161_JAHA_122_028586
crossref_primary_10_1016_j_numecd_2024_103791
crossref_primary_10_1186_s12933_023_02083_0
crossref_primary_10_1016_j_archger_2023_105309
crossref_primary_10_1038_s41598_023_46932_0
crossref_primary_10_3389_fcvm_2021_737899
crossref_primary_10_5551_jat_64541
crossref_primary_10_1007_s11906_022_01211_7
crossref_primary_10_3390_medicina60050697
crossref_primary_10_1038_s41371_022_00671_3
crossref_primary_10_5551_jat_64942
crossref_primary_10_1038_s41440_025_02137_8
crossref_primary_10_1507_endocrj_EJ23_0160
crossref_primary_10_3389_fmed_2024_1430437
crossref_primary_10_1210_clinem_dgae683
crossref_primary_10_3389_fendo_2023_1308719
crossref_primary_10_3390_ijms22084071
crossref_primary_10_1093_ajh_hpae124
crossref_primary_10_1111_jch_14602
crossref_primary_10_3390_jcm12216943
crossref_primary_10_1002_clc_23777
crossref_primary_10_1111_jch_14447
crossref_primary_10_3389_fcvm_2021_760361
crossref_primary_10_70368_gecs_v1i1_12230
crossref_primary_10_1038_s41440_023_01552_z
crossref_primary_10_1038_s41440_021_00678_2
crossref_primary_10_1111_dom_15835
crossref_primary_10_1016_j_jpba_2024_116097
crossref_primary_10_3389_fphar_2022_1120043
crossref_primary_10_1161_HYPERTENSIONAHA_123_21314
crossref_primary_10_3390_jcdd10030127
crossref_primary_10_3390_nu14122429
crossref_primary_10_1002_cam4_6251
crossref_primary_10_1038_s41440_023_01354_3
crossref_primary_10_1161_HYPERTENSIONAHA_122_19016
crossref_primary_10_3389_fcvm_2022_837490
crossref_primary_10_3390_medicina58060789
crossref_primary_10_3390_medicina57101011
crossref_primary_10_1038_s41440_022_00857_9
crossref_primary_10_3390_mi15040507
crossref_primary_10_1097_MD_0000000000029609
crossref_primary_10_1161_STROKEAHA_123_042512
Cites_doi 10.1111/jch.13484
10.1291/hypres.29.433
10.1161/HYPERTENSIONAHA.114.03304
10.1291/hypres.29.589
10.1002/jcsm.12195
10.1038/hr.2010.56
10.5551/jat.44859
10.1097/HJH.0000000000001589
10.1097/HJH.0000000000002020
10.1186/s12933-016-0472-8
10.1016/j.jacl.2020.01.015
10.1291/hypres.29.673
10.1159/000505717
10.1097/01.hjh.0000254375.73241.e2
10.1007/s12265-011-9345-4
10.1016/j.atherosclerosis.2013.09.028
10.1161/HYPERTENSIONAHA.114.04063
10.1177/1358863X10382946
10.2169/internalmedicine.53.2999
10.1038/jhh.2013.103
10.1161/ATVBAHA.114.304798
10.1161/CIRCULATIONAHA.107.763730
10.1253/circj.72.722
10.1253/circj.CJ-17-0636
10.1038/hr.2010.77
10.7150/ijms.6645
10.1161/CIRCRESAHA.116.305720
10.1016/j.amjhyper.2004.06.028
10.1016/j.jacc.2006.12.050
10.1161/HYPERTENSIONAHA.114.03282
10.1038/sj.jhh.1001913
10.1161/ATVBAHA.116.308674
10.1093/ajh/hpx049
10.1097/HJH.0b013e32835c5c23
10.1016/j.jocn.2019.07.050
10.1186/s12933-014-0128-5
10.1056/NEJMoa1409077
10.1536/ihj.54.160
10.1161/JAHA.118.008588
10.1002/acr.22563
10.1161/JAHA.115.002270
10.1111/jch.13209
10.1111/j.1365-2796.2006.01624.x
10.1001/jama.2019.12843
10.1016/j.atherosclerosis.2010.05.033
10.5551/jat.15040
10.1097/HJH.0000000000001949
10.1136/hrt.2005.067934
10.1038/ajh.2011.109
10.1161/01.HYP.0000198539.34501.1a
10.1161/HYPERTENSIONAHA.109.137653
10.1291/hypres.25.359
10.1161/HYPERTENSIONAHA.117.08933
10.1291/hypres.31.1895
10.1053/j.ajkd.2018.04.018
10.1253/circj.69.55
10.5551/jat.10397
10.1093/cvr/cvy009
10.3109/09537104.2014.978274
10.1016/j.atherosclerosis.2018.05.048
10.1093/ajh/hpz048
10.2215/CJN.01880507
10.1016/j.atherosclerosis.2018.01.039
10.1097/MD.0000000000018793
10.1161/JAHA.119.013019
10.1161/HYPERTENSIONAHA.116.07650
10.1161/HYPERTENSIONAHA.118.12110
10.2215/CJN.07700910
10.2188/jea.JE20140250
10.1080/08037051.2017.1283955
10.1097/HJH.0b013e3283369fe8
10.1097/MCA.0000000000000777
10.1111/1744-9987.12055
10.1291/hypres.27.625
10.1159/000245067
10.1053/j.ajkd.2018.04.005
10.1038/hr.2010.126
10.1159/000201416
10.1681/ASN.2010080863
10.1007/s00380-014-0485-8
10.1016/j.atherosclerosis.2016.08.027
10.1152/japplphysiol.90549.2008
10.1016/j.atherosclerosis.2017.11.026
10.1016/j.jjcc.2014.01.004
10.1016/j.atherosclerosis.2011.09.037
10.1097/HJH.0000000000001591
10.1016/j.atherosclerosis.2017.01.006
10.1002/clc.23188
10.1161/JAHA.119.013004
10.1161/01.HYP.0000177474.06749.98
10.1038/hr.2012.53
10.1016/j.jacc.2009.12.042
10.1038/ajh.2009.240
10.1097/HJH.0000000000002007
10.5551/jat.29918
10.3346/jkms.2014.29.10.1391
10.1038/hr.2011.81
10.1016/j.atherosclerosis.2014.09.011
10.1161/HYPERTENSIONAHA.119.13496
10.5551/jat.32979
10.1161/ATVBAHA.112.252957
10.1038/hr.2010.25
10.1111/j.1744-9987.2012.01058.x
10.1016/j.ypmed.2004.04.026
10.1161/CIRCULATIONAHA.118.032410
10.1016/j.ijcard.2017.11.022
10.1097/HJH.0000000000000607
10.5551/jat.38901
10.1053/j.ajkd.2005.06.016
10.1016/S0753-3322(05)80008-3
10.1007/s12928-012-0135-y
10.1161/HYPERTENSIONAHA.118.11554
10.2337/dc17-1071
10.1038/hr.2010.103
10.1097/HJH.0000000000000114
10.1016/S0021-9150(02)00332-5
10.1161/HYPERTENSIONAHA.108.115972
10.1161/HYPERTENSIONAHA.118.11390
10.1161/01.ATV.0000160548.78317.29
10.1016/j.atherosclerosis.2014.12.023
10.1161/HYPERTENSIONAHA.118.10923
10.1161/HYPERTENSIONAHA.106.076166
10.1016/j.atherosclerosis.2011.04.039
10.1016/j.cca.2018.05.046
10.1253/circj.CJ-08-0350
10.1016/j.ijcard.2016.11.073
10.1253/circj.69.815
10.1016/j.jacc.2013.09.063
10.1016/j.jacc.2019.07.012
10.5551/jat.33084
10.2337/dc11-1333
10.1161/HYPERTENSIONAHA.115.07023
10.1136/heartjnl-2017-311751
10.1016/j.jacc.2012.07.054
10.1253/circj.CJ-09-0534
10.1253/circj.CJ-15-1356
10.1093/ajh/hpv124
10.1186/s12933-019-0915-0
10.1016/j.jash.2012.10.004
10.1016/j.amjms.2015.11.017
10.1210/jc.2011-2595
10.1038/sj.jhh.1001838
10.1007/s00380-016-0919-6
ContentType Journal Article
Copyright 2020 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
2020 Japan Atherosclerosis Society 2020
Copyright_xml – notice: 2020 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
– notice: 2020 Japan Atherosclerosis Society 2020
CorporateAuthor Department of Cardiology
Tokyo Medical University
CorporateAuthor_xml – name: Department of Cardiology
– name: Tokyo Medical University
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.5551/jat.RV17041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1880-3873
EndPage 636
ExternalDocumentID PMC7406407
32448827
10_5551_jat_RV17041
ex7domya_2020_002707_001_0621_06363581333
article_jat_27_7_27_RV17041_article_char_en
Genre Journal Article
Review
GroupedDBID ---
.55
29J
2WC
53G
5GY
5VS
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
DIK
DU5
E3Z
F5P
GROUPED_DOAJ
GX1
HYE
JMI
JSF
JSH
KQ8
M~E
OK1
P6G
RJT
RNS
RPM
RZJ
TR2
X7M
3O-
AAFWJ
OVT
TKC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c694t-589c5916a43bcdffc8862d59126463c351d7029faa2dfdf935c20c6a3adba523
ISSN 1340-3478
1880-3873
IngestDate Thu Aug 21 14:14:51 EDT 2025
Fri Jul 11 15:26:05 EDT 2025
Mon Jul 21 06:02:17 EDT 2025
Tue Jul 01 02:27:11 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Thu Jul 10 16:14:52 EDT 2025
Wed Apr 05 06:24:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords Individual participant data meta-analysis
Cardiovascular disease
Arterial stiffness
Brachial-ankle pulse wave velocity
Language English
License This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.http://creativecommons.org/licenses/by-nc-sa/3.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c694t-589c5916a43bcdffc8862d59126463c351d7029faa2dfdf935c20c6a3adba523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7406407
PMID 32448827
PQID 2406577871
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7406407
proquest_miscellaneous_2406577871
pubmed_primary_32448827
crossref_citationtrail_10_5551_jat_RV17041
crossref_primary_10_5551_jat_RV17041
medicalonline_journals_ex7domya_2020_002707_001_0621_06363581333
jstage_primary_article_jat_27_7_27_RV17041_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200701
  day: 1
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Atherosclerosis and Thrombosis
PublicationTitleAlternate JAT
PublicationYear 2020
Publisher Japan Atherosclerosis Society
Publisher_xml – name: Japan Atherosclerosis Society
References 50) Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol, 2005; 25: 932-943
152) Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol, 2015; 35: 243-252
39) Huang Y, Bi Y, Xu M, Ma Z, Xu Y, Wang T, Li M, Liu Y, Lu J, Chen Y, Huang F, Xu B, Zhang J, Wang W, Li X, Ning G. Nonalcoholic fatty liver disease is associated with atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol, 2012; 32: 2321-2326
150) Mandraffino G, Scicali R, Rodríguez-Carrio J, Savarino F, Mamone F, Scuruchi M, Cinquegrani M, Imbalzano E, Di Pino A, Piro S, Rabuazzo AM, Squadrito G, Purrello F, Saitta A. Arterial stiffness improvement after adding on PCSK9 inhibitors or ezetimibe to high-intensity statins in patients with familial hypercholesterolemia: A Two-Lipid Center Real-World Experience. J Clin Lipidol, 2020 Feb 4. pii: S1933-2874(20)30015-5
63) Tomiyama H, Yamashina A. Arterial stiffness in prehypertension: a possible vicious cycle. J Cardiovasc Transl Res, 2012; 5: 280-286
10) Nichols WW, O'Rourke M, Vlachopoulos C. McDonald's Blood flow in arteries, theoretical, experimental and clinical principles, Six edition, CRC press, Boca Raton, FL, USA, 2011
6) Laurent S, Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension. Hyper tension, 2007; 49: 1202-1206
85) Kawai T, Ohishi M, Onishi M, Ito N, Takeya Y, Maekawa Y, Rakugi H. Cut-off value of brachial-ankle pulse wave velocity to predict cardiovascular disease in hypertensive patients: a cohort study. J Atheroscler Thromb, 2013; 20: 391-400
99) Lu YC, Lyu P, Zhu HY, Xu DX, Tahir S, Zhang HF, Zhou F, Yao WM, Gong L, Zhou YL, Yang R, Sheng YH, Xu DJ, Kong XQ, Staessen JA, Li XL. Brachial-ankle pulse wave velocity compared with mean arterial pressure and pulse pressure in risk stratification in a Chinese population. J Hypertens, 2018 Mar; 36(3): 528- 536
132) Kim J, Song TJ, Song D, Lee KJ, Kim EH, Lee HS, Nam CM, Nam HS, Kim YD, Heo JH. Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke. Hypertension, 2014; 64: 240-246
120) Seo HJ, Ki YJ, Han MA, Choi DH, Ryu SW. Brachial-ankle pulse wave velocity and mean platelet volume as predictive values after percutaneous coronary intervention for long-term clinical outcomes in Korea: A comparable and additive study. Platelets, 2015; 26(7): 665-671
82) Joo HJ, Cho SA, Cho JY, Lee S, Park JH, Hwang SH, Hong SJ, Yu CW, Lim DS. Brachial-Ankle Pulse Wave Velocity is Associated with Composite Carotid and Coronary Atherosclerosis in a Middle-Aged Asymptomatic Population. J Atheroscler Thromb, 2016 Sep 1; 23(9): 1033-1046
95) Miyano I, Nishinaga M, Takata J, Shimizu Y, Okumiya K, Matsubayashi K, Ozawa T, Sugiura T, Yasuda N, Doi Y. Association between brachial-ankle pulse wave velocity and 3-year mortality in community-dwelling older adults. Hypertens Res, 2010; 33: 678-682
25) Tomiyama H, Yamashina A, Arai T, Hirose K, Koji Y, Chikamori T, Hori S, Yamamoto Y, Doba N, Hinohara S. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement--a survey of 12517 subjects. Atherosclerosis, 2003; 166: 303-309
71) Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol, 2012 Nov 20; 60(21): 2170-2177
96) Kawai T, Ohishi M, Onishi M, Ito N, Takeya Y, Oguro R, Takami Y, Yamamoto K, Rakugi H. Prognostic impact of regional arterial stiffness in hypertensive patients. Heart Vessels, 2015; 30: 338-346
139) Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Ler man A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J Am Heart Assoc, 2015 Nov 13; 4(11). pii: e002270
127) Tomiyama H, Koji Y, Yambe M, Shiina K, Motobe K, Yamada J, Shido N, Tanaka N, Chikamori T, Yamashina A. Brachial -- ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome. Circ J, 2005; 69: 815-822
147) Tomiyama H, Miwa T, Kan K, Matsuhisa M, Kamiya H, Nanasato M, Kitano T, Sano H, Ohno J, Iida M, Sata M, Yamada H, Maemura K, Tanaka A, Murohara T, Node K. Impact of glycemic control with sitagliptin on the 2-year progression of arterial stiffness: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol, 2016 Nov 3; 15(1): 150
1) Tomiyama H, Matsumoto C, Shiina K, Yamashina A. Brachial-Ankle PWV: Current Status and Future Directions as a Useful Marker in the Management of Cardiovascular Disease and/or Cardiovascular Risk Factors. J Atheroscler Thromb, 2016; 23: 128-146
7) Pierce GL. Mechanisms and subclinical consequences of aortic stiffness. Hypertension, 2017; 70: 848-853
17) Kitagawa N, Ushigome E, Matsumoto S, Oyabu C, Ushigome H, Yokota I, Asano M, Tanaka M, Yamazaki M, Fukui M. Threshold value of home pulse pressure predicting arterial stiffness in patients with type 2 diabetes: KAMOGAWA-HBP study. J Clin Hypertens (Greenwich), 2018; 20: 472-477
128) Kaneko H, Yajima J, Oikawa Y, Matsuno S, Funada R, Tanaka S, Fukamachi D, Suzuki S, Aizawa T, Yamashita T. Role of arterial stiffness and impaired renal function in the progression of new coronary lesions after percutaneous coronary intervention. Cardiovasc Interv Ther, 2013; 28: 56-62
57) Yambe M, Tomiyama H, Yamada J, Koji Y, Motobe K, Shiina K, Yamamoto Y, Yamashina A. Arterial stiffness and progression to hypertension in Japanese male subjects with high normal blood pressure. J Hypertens, 2007; 25: 87-93
40) Tang B, Luo F, Zhao J, Ma J, Tan I, Butlin M, Avolio A, Zuo J. Relationship between body mass index and arterial stiffness in a health assessment Chinese population. Medicine (Baltimore), 2020; 99: e18793
75) Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985), 2008 Nov; 105(5): 1652-1660
109) Morimoto S, Yurugi T, Aota Y, Sakuma T, Jo F, Nishikawa M, Iwasaka T, Maki K. Prognostic significance of ankle-brachial index, brachial-ankle pulse wave velocity, flow-mediated dilation, and nitroglycerin-mediated dilation in end-stage renal disease. Am J Nephrol, 2009; 30: 55-63
100) Ichikawa K, Sakuragi S, Nishihara T, Tsuji M, Mori A, Yokohama F, Wada T, Hasegawa D, Kawamoto K, Tanakaya M, Katayama Y, Ito H. Influence of arterial stiffness on cardiovascular outcome in patients without high blood pressure. Heart, 2018 Feb; 104(4): 318-323
134) Han M, Kim YD, Park HJ, Hwang IG, Choi J, Ha J, Heo JH, Nam HS. Brachial-ankle pulse wave velocity for predicting functional outcomes in patients with cryptogenic stroke. J Clin Neurosci, 2019 Nov; 69: 214- 219
104) Nagai K, Shibata S, Akishita M, Sudoh N, Obara T, Toba K, Kozaki K. Efficacy of combined use of three non-invasive atherosclerosis tests to predict vascular events in the elderly; carotid intima-media thickness, flow-mediated dilation of brachial artery and pulse wave velocity. Atherosclerosis, 2013 Dec; 231(2): 365-370
74) Jefferson AL, Cambronero FE, Liu D, Moore EE, Neal JE, Terry JG, Nair S, Pechman KR, Rane S, Davis LT, Gifford KA, Hohman TJ, Bell SP, Wang TJ, Beckman JA, Carr JJ. Higher Aortic Stiffness Is Related to Lower Cerebral Blood Flow and Preserved Cerebrovascular Reactivity in Older Adults. Circulation, 2018 Oct 30; 138(18): 1951-1962
138) Wilkinson IB, Mäki-Petäjä KM, Mitchell GF. Uses of Arterial Stiffness in Clinical Practice. Arterioscler Thromb Vasc Biol, 2020; Feb 27: ATVBAHA120313130
86) Matsuoka O, Otsuka K, Murakami S, Hotta N, Yamanaka G, Kubo Y, Yamanaka T, Shinagawa M, Nunoda S, Nishimura Y, Shibata K, Saitoh H, Nishinaga M, Ishine M, Wada T, Okumiya K, Matsubayashi K, Yano S, Ichihara K, Cornélissen G, Halberg F, Ozawa T. Arterial stiffness independently predicts cardiovascular events in an elderly community -- Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed Pharmacother, 2005; 59 Suppl 1: S40-4
155) Desai AS, Solomon SD, Shah AM, Claggett BL, Fang JC, Izzo J, McCague K, Abbas CA, Rocha R, Mitchell GF; EVALUATE-HF Investigators. Effect of Sacubitril-Valsartan vs Enalapril on Aortic Stiffness in Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA, 2019; Sep 2: 1-10
54) Lacolley P, Regnault V, Avolio AP. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res, 2018; 114: 513-528
83) Tomiyama H, Ishizu T, Kohro T, Matsumoto C, Higashi Y, Takase B, Suzuki T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Yamashina A. Longitudinal association among endothelial function, arterial stiffness and subclinical organ damage in hypertension. Int J Cardiol, 2018 Feb 15; 253: 161-166
126) Hwang IC, Jin KN, Kim HL, Kim YN, Im MS, Lim WH, Seo JB, Kim SH, Zo JH, Kim MA. Additional prognostic value of brachial-ankle pulse wave velocity to coronary computed tomography angiography in patients with suspected coronary artery disease. Atherosclerosis, 2018 Jan; 268: 127-137
151) Upala S, Wirunsawanya K, Jaruvongvanich V, Sanguankeo A. Effects of statin therapy on arterial stiffness: A systematic review and meta-analysis of randomized controlled trial. Int J Cardiol, 2017 Jan 15; 227: 338-341
33) Tomiyama H, Shiina K, Vlachopoulos C, Iwasaki Y, Matsumoto C, Kimura K, Fujii M, Chikamori T, Yamashina A. Involvement of Arterial Stiffness and Inflammation in Hyperuricemia-Related Development of Hypertension. Hypertension, 2018; 72: 739-745
111) Kuwahara M, Hasumi S, Mandai S, Tanaka T, Shikuma S, Akita W, Mori Y, Sasaki S. Rate of a
88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
150
151
152
153
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – reference: 97) Turin, T. C. et al. Brachial-ankle pulse wave velocity predicts all-cause mortality in the general population: findings from the Takashima study, Japan. Hypertens Res, 2010; 33: 922-925
– reference: 2) Tomiyama H, Yamashina A. Non-invasive vascular function tests: their pathophysiological background and clinical application.Circ J, 2010; 74: 24-33
– reference: 41) Townsend RR, Wimmer NJ, Chirinos JA, Parsa A, Weir M, Perumal K, Lash JP, Chen J, Steigerwalt SP, Flack J, Go AS, Rafey M, Rahman M, Sheridan A, Gadegbeku CA, Robinson NA, Joffe M. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am J Hypertens, 2010; 23: 282-289
– reference: 57) Yambe M, Tomiyama H, Yamada J, Koji Y, Motobe K, Shiina K, Yamamoto Y, Yamashina A. Arterial stiffness and progression to hypertension in Japanese male subjects with high normal blood pressure. J Hypertens, 2007; 25: 87-93
– reference: 124) Tabata N, Sueta D, Yamamoto E, Takashio S, Arima Y, Araki S, Yamanaga K, Ishii M, Sakamoto K, Kanazawa H, Fujisue K, Hanatani S, Soejima H, Hokimoto S, Izumiya Y, Kojima S, Yamabe H, Kaikita K, Matsui K, Tsujita K. A retrospective study of arterial stiffness and subsequent clinical outcomes in cancer patients undergoing percutaneous coronary intervention. J Hypertens, 2019 Jan 7. doi: 10.1097/HJH.0000000000001949. [Epub ahead of print]
– reference: 52) Kim M, Yoo HJ, Kim M, Ahn HY, Park J, Lee SH, Lee JH. Associations among oxidative stress, Lp-PLA2 activity and arterial stiffness according to blood pressure status at a 3.5-year follow-up in subjects with prehypertension. Atherosclerosis, 2017; 257: 179-185
– reference: 122) Chen SC, Lee WH, Hsu PC, Lin MY, Lee CS, Lin TH, Voon WC, Lai WT, Sheu SH, Su HM. Association of Brachial-Ankle Pulse Wave Velocity With Cardiovascular Events in Atrial Fibrillation. Am J Hypertens, 2016 Mar; 29(3): 348-356
– reference: 82) Joo HJ, Cho SA, Cho JY, Lee S, Park JH, Hwang SH, Hong SJ, Yu CW, Lim DS. Brachial-Ankle Pulse Wave Velocity is Associated with Composite Carotid and Coronary Atherosclerosis in a Middle-Aged Asymptomatic Population. J Atheroscler Thromb, 2016 Sep 1; 23(9): 1033-1046
– reference: 31) Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta, 2018; 484: 150-163
– reference: 3) Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Yamashina A; Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies)*. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension, 2017; 69: 1045-1052
– reference: 140) Tomiyama H, Ohkuma T, Ninomiya T, Nakano H, Matsumoto C, Avolio A, Kohro T, Higashi Y, Maruhashi T, Takase B, Suzuki T, Ishizu T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Chikamori T, Yamashina A. Brachial-Ankle Pulse Wave Velocity Versus Its Stiffness Index β-Transformed Value as Risk Marker for Cardiovascular Disease. J Am Heart Assoc, 2019 Dec 17; 8(24): e013004
– reference: 43) Song SH, Kwak IS, Kim YJ, Lee HS, Rhee H, Lee DW, Kang YH, Kim SJ. Serum cystatin C is related to pulse wave velocity even in subjects with normal serum creatinine. Hypertens Res, 2008; 31: 1895-1902
– reference: 141) Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Aboyans V, Yamashina A; collaborative group for the Japan Brachial-Ankle pulse wave VELocity individual participant data meta-analysis of prospective studies to examine the significance of the Ankle-Brachial Index (J-BAVEL-ABI). Ankle-brachial index measured by oscillometry is predictive for cardiovascular disease and premature death in the Japanese population: An individual participant data meta-analysis. Atherosclerosis, 2018 Aug; 275: 141-148
– reference: 9) Segers P, Rietzschel ER, Chirinos JA. Brief Review on How to Measure Arterial Stiffness in Humans. Arterioscler Thromb Vasc Biol, 2019; Dec 26: ATVBAHA119313132
– reference: 83) Tomiyama H, Ishizu T, Kohro T, Matsumoto C, Higashi Y, Takase B, Suzuki T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Yamashina A. Longitudinal association among endothelial function, arterial stiffness and subclinical organ damage in hypertension. Int J Cardiol, 2018 Feb 15; 253: 161-166
– reference: 40) Tang B, Luo F, Zhao J, Ma J, Tan I, Butlin M, Avolio A, Zuo J. Relationship between body mass index and arterial stiffness in a health assessment Chinese population. Medicine (Baltimore), 2020; 99: e18793
– reference: 77) Kohara K, Okada Y, Ochi M, Ohara M, Nagai T, Tabara Y, Igase M. Muscle mass decline, arterial stiffness, white matter hyperintensity, and cognitive impairment: Japan Shimanami Health Promoting Program study. J Cachexia Sarcopenia Muscle, 2017 Aug; 8(4): 557-566
– reference: 72) Shaikh AY, Wang N, Yin X, Larson MG, Vasan RS, Hamburg NM, Magnani JW, Ellinor PT, Lubitz SA, Mitchell GF, Benjamin EJ, McManus DD. Relations of Arterial Stiffness and Brachial Flow-Mediated Dilation With New-Onset Atrial Fibrillation: The Framingham Heart Study. Hypertension, 2016 Sep; 68(3): 590-596
– reference: 75) Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985), 2008 Nov; 105(5): 1652-1660
– reference: 94) Munakata M, Konno S, Miura Y, Yoshinaga K; J-TOPP Study Group. Prognostic significance of the brachial-ankle pulse wave velocity in patients with essential hypertension: final results of the J-TOPP study. Hypertens Res, 2012; 35(8): 839-842
– reference: 29) Tomiyama H, Hashimoto H, Tanaka H, Matsumoto C, Odaira M, Yamada J, Yoshida M, Shiina K, Nagata M, Yamashina A. Continuous smoking and progression of arterial stiffening: a prospective study. J Am Coll Cardiol, 2010; 55: 1979-1987
– reference: 65) O'Rourke MF, Safar ME, Dzau V. The Cardiovascular Continuum extended: aging effects on the aorta and microvasculature. Vasc Med, 2010; 15: 461-468
– reference: 126) Hwang IC, Jin KN, Kim HL, Kim YN, Im MS, Lim WH, Seo JB, Kim SH, Zo JH, Kim MA. Additional prognostic value of brachial-ankle pulse wave velocity to coronary computed tomography angiography in patients with suspected coronary artery disease. Atherosclerosis, 2018 Jan; 268: 127-137
– reference: 7) Pierce GL. Mechanisms and subclinical consequences of aortic stiffness. Hypertension, 2017; 70: 848-853
– reference: 98) Ueki Y, Miura T, Minamisawa M, Abe N, Nishimura H, Hashizume N, Mochidome T, Harada M, Shimizu K, Oguchi Y, Yoshie K, Shoin W, Ebisawa S, Motoki H, Koyama J, Ikeda U. The usefulness of brachial-ankle pulse wave velocity in predicting long-term cardiovascular events in younger patients. Heart Vessels, 2017 Jun; 32(6): 660-667
– reference: 12) http: //www.j-circ.or.jp/guideline/pdf/JCS2013_ yamashina_h.pdf
– reference: 148) Lunder M, Janić M, Japelj M, Juretič A, Janež A, Šabovič M. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol, 2018 Dec 3; 17(1): 153. d
– reference: 79) Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med, 2006; 259: 381-392
– reference: 91) Nagai K, Shibata S, Akishita M, Sudoh N, Obara T, Toba K, Kozaki K. Efficacy of combined use of three non-invasive atherosclerosis tests to predict vascular events in the elderly; carotid intima-media thickness, flow-mediated dilation of brachial artery and pulse wave velocity. Atherosclerosis, 2013; 231: 365-370
– reference: 99) Lu YC, Lyu P, Zhu HY, Xu DX, Tahir S, Zhang HF, Zhou F, Yao WM, Gong L, Zhou YL, Yang R, Sheng YH, Xu DJ, Kong XQ, Staessen JA, Li XL. Brachial-ankle pulse wave velocity compared with mean arterial pressure and pulse pressure in risk stratification in a Chinese population. J Hypertens, 2018 Mar; 36(3): 528- 536
– reference: 101) Kusunose K, Sato M, Yamada H, Saijo Y, Bando M, Hirata Y, Nishio S, Hayashi S, Sata M. Prognostic Implications of Non-Invasive Vascular Function Tests in High-Risk Atherosclerosis Patients. Circ J, 2016; 80(4): 1034-1040
– reference: 67) Cho IJ, Chang HJ, Park HB, Heo R, Shin S, Shim CY, Hong GR, Chung N. Aortic calcification is associated with arterial stiffening, left ventricular hypertrophy, and diastolic dysfunction in elderly male patients with hypertension. J Hypertens, 2015 Aug; 33(8): 1633-1641
– reference: 6) Laurent S, Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension. Hyper tension, 2007; 49: 1202-1206
– reference: 146) Tomiyama H, Yoshida M, Yamada J, Matsumoto C, Odaira M, Shiina K, Yamashina A. Arterial-cardiac destiffening following long-term antihypertensive treatment. Am J Hypertens, 2011; 24: 1080-1086
– reference: 149) Hongo M, Tsutsui H, Mawatari E, Hidaka H, Kumazaki S, Yazaki Y, Takahashi M, Kinoshita O, Ikeda U. Fluvastatin improves arterial stiffness in patients with coronary artery disease and hyperlipidemia: a 5-year follow-up study. Circ J, 2008; 72: 722-728
– reference: 38) Kadoya M, Kurajoh M, Kakutani-Hatayama M, Morimoto A, Miyoshi A, Kosaka-Hamamoto K, Shoji T, Moriwaki Y, Inaba M, Koyama H. Low sleep quality is associated with progression of arterial stiffness in patients with cardiovascular risk factors: HSCAA study. Atherosclerosis, 2018; 270: 95-101
– reference: 16) Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension, 2009; 54: 1328-1336
– reference: 33) Tomiyama H, Shiina K, Vlachopoulos C, Iwasaki Y, Matsumoto C, Kimura K, Fujii M, Chikamori T, Yamashina A. Involvement of Arterial Stiffness and Inflammation in Hyperuricemia-Related Development of Hypertension. Hypertension, 2018; 72: 739-745
– reference: 109) Morimoto S, Yurugi T, Aota Y, Sakuma T, Jo F, Nishikawa M, Iwasaka T, Maki K. Prognostic significance of ankle-brachial index, brachial-ankle pulse wave velocity, flow-mediated dilation, and nitroglycerin-mediated dilation in end-stage renal disease. Am J Nephrol, 2009; 30: 55-63
– reference: 49) Luft FC. Molecular mechanisms of arterial stiffness: new insights. J Am Soc Hypertens, 2012; 6: 436-438
– reference: 139) Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Ler man A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J Am Heart Assoc, 2015 Nov 13; 4(11). pii: e002270
– reference: 11) Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res, 2002; 25: 359-364
– reference: 64) Safar ME, Blacher J, Jankowski P. Arterial stiffness, pulse pressure, and cardiovascular disease-is it possible to break the vicious circle? Atherosclerosis, 2011; 218: 263-271
– reference: 51) Ninomiya H, Katakami N, Sato I, Osawa S, Yamamoto Y, Takahara M, Kawamori D, Matsuoka TA, Shimomura I. Association between Subclinical Atherosclerosis Markers and the Level of Accumulated Advanced Glycation End-Products in the Skin of Patients with Diabetes. J Atheroscler Thromb, 2018; 25: 1274-1284
– reference: 4) Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol, 2014; 63: 636-646
– reference: 80) Briet M, Collin C, Karras A, Laurent S, Bozec E, Jacquot C, Stengel B, Houillier P, Froissart M, Boutouyrie P; Nephrotest Study Group. Arterial remodeling associates with CKD progression. J Am Soc Nephrol, 2011 May; 22(5): 967-974
– reference: 85) Kawai T, Ohishi M, Onishi M, Ito N, Takeya Y, Maekawa Y, Rakugi H. Cut-off value of brachial-ankle pulse wave velocity to predict cardiovascular disease in hypertensive patients: a cohort study. J Atheroscler Thromb, 2013; 20: 391-400
– reference: 8) Chirinos JA, Segers P, Hughes T, Townsend R. Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol, 2019 3; 74: 1237-1263
– reference: 120) Seo HJ, Ki YJ, Han MA, Choi DH, Ryu SW. Brachial-ankle pulse wave velocity and mean platelet volume as predictive values after percutaneous coronary intervention for long-term clinical outcomes in Korea: A comparable and additive study. Platelets, 2015; 26(7): 665-671
– reference: 152) Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol, 2015; 35: 243-252
– reference: 150) Mandraffino G, Scicali R, Rodríguez-Carrio J, Savarino F, Mamone F, Scuruchi M, Cinquegrani M, Imbalzano E, Di Pino A, Piro S, Rabuazzo AM, Squadrito G, Purrello F, Saitta A. Arterial stiffness improvement after adding on PCSK9 inhibitors or ezetimibe to high-intensity statins in patients with familial hypercholesterolemia: A Two-Lipid Center Real-World Experience. J Clin Lipidol, 2020 Feb 4. pii: S1933-2874(20)30015-5
– reference: 32) Saijo Y, Utsugi M, Yoshioka E, Horikawa N, Sato T, Gong YY, Kishi R. Relationships of C-reactive protein, uric acid, and glomerular filtration rate to arterial stiffness in Japanese subjects. J Hum Hypertens, 2005; 19: 907-913
– reference: 10) Nichols WW, O'Rourke M, Vlachopoulos C. McDonald's Blood flow in arteries, theoretical, experimental and clinical principles, Six edition, CRC press, Boca Raton, FL, USA, 2011
– reference: 104) Nagai K, Shibata S, Akishita M, Sudoh N, Obara T, Toba K, Kozaki K. Efficacy of combined use of three non-invasive atherosclerosis tests to predict vascular events in the elderly; carotid intima-media thickness, flow-mediated dilation of brachial artery and pulse wave velocity. Atherosclerosis, 2013 Dec; 231(2): 365-370
– reference: 90) Chang LH, Lin HD, Kwok CF, Won JG, Chen HS, Chu CH, Hwu CM, Kuo CS, Jap TS, Shih KC, Lin LY. The combination of the ankle brachial index and brachial ankle pulse wave velocity exhibits a superior association with outcomes in diabetic patients. Intern Med, 2014; 53: 2425-2431
– reference: 108) Kato A, Takita T, Furuhashi M, Maruyama Y, Miyajima H, Kumagai H. Brachial-ankle pulse wave velocity and the cardio-ankle vascular index as a predictor of cardiovascular outcomes in patients on regular hemodialysis. Ther Apher Dial, 2012 Jun; 16(3): 232-241
– reference: 132) Kim J, Song TJ, Song D, Lee KJ, Kim EH, Lee HS, Nam CM, Nam HS, Kim YD, Heo JH. Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke. Hypertension, 2014; 64: 240-246
– reference: 143) Tomiyama H, Ohkuma T, Ninomiya T, Mastumoto C, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Aboyans V, Yamashina A; Collaborative Group for J-BAVELs (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies). Steno-Stiffness Approach for Cardiovascular Disease Risk Assessment in Primary Prevention. Hypertension, 2019 Mar; 73(3): 508-513
– reference: 76) Taniguchi Y, Fujiwara Y, Nofuji Y, Nishi M, Murayama H, Seino S, Tajima R, Matsuyama Y, Shinkai S. Prospective Study of Arterial Stiffness and Subsequent Cognitive Decline Among Community-Dwelling Older Japanese. J Epidemiol, 2015; 25(9): 592-599
– reference: 14) Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper MY, DeVan AE, Anton MA, Tanaka H. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens, 2005; 19: 401-406
– reference: 27) Sougawa Y, Miyai N, Utsumi M, Miyashita K, Takeda S, Arita M. Brachial-ankle pulse wave velocity in healthy Japanese adolescents: reference values for the assessment of arterial stiffness and cardiovascular risk profiles. Hypertens Res, 2019 Dec 18. doi: 10.1038/s41440- 019-0370-z
– reference: 74) Jefferson AL, Cambronero FE, Liu D, Moore EE, Neal JE, Terry JG, Nair S, Pechman KR, Rane S, Davis LT, Gifford KA, Hohman TJ, Bell SP, Wang TJ, Beckman JA, Carr JJ. Higher Aortic Stiffness Is Related to Lower Cerebral Blood Flow and Preserved Cerebrovascular Reactivity in Older Adults. Circulation, 2018 Oct 30; 138(18): 1951-1962
– reference: 24) Reiner Ž, Simental-Mendía LE, Ruscica M, Katsiki N, Banach M, Al Rasadi K, Jamialahmadi T, Sahebkar A. Pulse wave velocity as a measure of arterial stiffness in patients with familial hypercholesterolemia: a systematic review and meta-analysis. Arch Med Sci, 2019; 15: 1365-1374
– reference: 115) Otsuka K, Nakanishi K, Shimada K, Nakamura H, Inanami H, Nishioka H, Fujimoto K, Kasayuki N, Yoshiyama M. Ankle-brachial index, arterial stiffness, and biomarkers in the prediction of mortality and outcomes in patients with end-stage kidney disease. Clin Cardiol, 2019 Jul; 42(7): 656-662
– reference: 15) Sugawara J, Hayashi K, Tanaka H. Arterial path length estimation on brachial-ankle pulse wave velocity: validity of height-based formulas. J Hypertens, 2014; 32: 881-889
– reference: 53) Lacolley P, Regnault V, Laurent S. Mechanisms of Arterial Stiffening: From Mechanotransduction to Epigenetics. Arterioscler Thromb Vasc Biol, 2020; Feb 20: ATVBAHA119313129. doi: 10.1161/ATVBAHA.119. 313129
– reference: 135) Matsushima H, Hosomi N, Hara N, Yoshimoto T, Neshige S, Kono R, Himeno T, Takeshima S, Takamatsu K, Shimoe Y, Ota T, Maruyama H, Ohtsuki T, Kuriyama M, Matsumoto M. Ability of the Ankle Brachial Index and Brachial-Ankle Pulse Wave Velocity to Predict the 3-Month Outcome in Patients with Non-Cardioembolic Stroke. J Atheroscler Thromb, 2017 Nov 1; 24(11): 1167-1173
– reference: 37) Saito T, Saito T, Sugiyama S, Asai K, Yasutake M, Mizuno K. Effects of long-term treatment for obstructive sleep apnea on pulse wave velocity. Hypertens Res, 2010; 33: 844-849
– reference: 113) Kato, A., Takita, T., Furuhashi, M., Kumagai, H, Hishida, A. A small reduction in the ankle-brachial index is associated with increased mortality in patients on chronic hemodialysis. Nephron Clin Pract, 2010; 114: c29-37
– reference: 61) Chen SC, Chang JM, Liu WC, Tsai YC, Tsai JC, Hsu PC, Lin TH, Lin MY, Su HM, Hwang SJ, Chen HC. Brachial-ankle pulse wave velocity and rate of renal function decline and mortality in chronic kidney disease. Clin J Am Soc Nephrol, 2011; 6: 724-732
– reference: 100) Ichikawa K, Sakuragi S, Nishihara T, Tsuji M, Mori A, Yokohama F, Wada T, Hasegawa D, Kawamoto K, Tanakaya M, Katayama Y, Ito H. Influence of arterial stiffness on cardiovascular outcome in patients without high blood pressure. Heart, 2018 Feb; 104(4): 318-323
– reference: 21) Chen S, Li W, Jin C, Vaidya A, Gao J, Yang H, Wu S, Gao X. Resting Heart Rate Trajectory Pattern Predicts Arterial Stiffness in a Community-Based Chinese Cohort. Arterioscler Thromb Vasc Biol, 2017; 37: 359-364
– reference: 133) Ishizuka K, Hoshino T, Shimizu S, Shirai Y, Mizuno S, Toi S, Maruyama K, Uchiyama S, Kitagawa K. Brachial-ankle pulse wave velocity is associated with 3-month functional prognosis after ischemic stroke. Atherosclerosis, 2016 Dec; 255: 1-5
– reference: 42) Yoshida M, Tomiyama H, Yamada J, Koji Y, Shiina K, Nagata M, Yamashina A. Relationships among renal function loss within the normal to mildly impaired range, arterial stiffness, inflammation, and oxidative stress. Clin J Am Soc Nephrol, 2007; 2: 1118-1124
– reference: 13) Motobe K, Tomiyama H, Koji Y, Yambe M, Gulinisa Z, Arai T, Ichihashi H, Nagae T, Ishimaru S, Yamashina A. Cut-off value of the ankle-brachial pressure index at which the accuracy of brachial-ankle pulse wave velocity measurement is diminished. Circ J, 2005; 69: 55-60
– reference: 96) Kawai T, Ohishi M, Onishi M, Ito N, Takeya Y, Oguro R, Takami Y, Yamamoto K, Rakugi H. Prognostic impact of regional arterial stiffness in hypertensive patients. Heart Vessels, 2015; 30: 338-346
– reference: 48) Jain S, Khera R, Corrales-Medina VF, Townsend RR, Chirinos JA. “Inflammation and arterial stiffness in humans”. Atherosclerosis, 2014; 237: 381-390
– reference: 111) Kuwahara M, Hasumi S, Mandai S, Tanaka T, Shikuma S, Akita W, Mori Y, Sasaki S. Rate of ankle-brachial index decline predicts cardiovascular mortality in hemodialysis patients. Ther Apher Dial, 2014; 18: 9-18
– reference: 117) Park KH, Han SJ, Kim HS, Kim MK, Jo SH, Kim SA, Park WJ. Impact of Framingham risk score, flow-mediated dilation, pulse wave velocity, and biomarkers for cardiovascular events in stable angina. J Korean Med Sci, 2014 Oct; 29(10): 1391-1397
– reference: 95) Miyano I, Nishinaga M, Takata J, Shimizu Y, Okumiya K, Matsubayashi K, Ozawa T, Sugiura T, Yasuda N, Doi Y. Association between brachial-ankle pulse wave velocity and 3-year mortality in community-dwelling older adults. Hypertens Res, 2010; 33: 678-682
– reference: 136) Ahn KT, Jeong JO, Jin SA, Kim M, Oh JK, Choi UL, Seong SW, Kim JH, Choi SW, Jeong HS, Song HJ, Kim J, Seong IW. Brachial-ankle PWV for predicting clinical outcomes in patients with acute stroke. Blood Press, 2017 Aug; 26(4): 204-210
– reference: 137) Ohkuma T, Tomiyama H, Ninomiya T, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Yamashina A; Collaborative Group for Japan Brachial-Ankle pulse wave VELocity individual participant data meta-analysis of prospective studies (J-BAVEL). Proposed Cutoff Value of Brachial-Ankle Pulse Wave Velocity for the Management of Hypertension. Circ J, 2017 Sep 25; 81(10): 1540-1542
– reference: 147) Tomiyama H, Miwa T, Kan K, Matsuhisa M, Kamiya H, Nanasato M, Kitano T, Sano H, Ohno J, Iida M, Sata M, Yamada H, Maemura K, Tanaka A, Murohara T, Node K. Impact of glycemic control with sitagliptin on the 2-year progression of arterial stiffness: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol, 2016 Nov 3; 15(1): 150
– reference: 17) Kitagawa N, Ushigome E, Matsumoto S, Oyabu C, Ushigome H, Yokota I, Asano M, Tanaka M, Yamazaki M, Fukui M. Threshold value of home pulse pressure predicting arterial stiffness in patients with type 2 diabetes: KAMOGAWA-HBP study. J Clin Hypertens (Greenwich), 2018; 20: 472-477
– reference: 123) Park HW, Kim HR, Kang MG, Kim K, Koh JS, Park JR, Hwang SJ, Jeong YH, Ahn JH, Park Y, Hwang JY. Predictive value of the combination of brachial-ankle pulse wave velocity and ankle-brachial index for cardiovascular outcomes in patients with acute myocardial infarction. Coron Artery Dis, 2020 Mar; 31(2): 157-165
– reference: 134) Han M, Kim YD, Park HJ, Hwang IG, Choi J, Ha J, Heo JH, Nam HS. Brachial-ankle pulse wave velocity for predicting functional outcomes in patients with cryptogenic stroke. J Clin Neurosci, 2019 Nov; 69: 214- 219
– reference: 103) Song Y, Xu B, Xu R, Tung R, Frank E, Tromble W, Fu T, Zhang W, Yu T, Zhang C, Fan F, Zhang Y, Li J, Bao H, Cheng X, Qin X, Tang G, Chen Y, Yang T, Sun N, Li X, Zhao L, Hou FF, Ge J, Dong Q, Wang B, Xu X, Huo Y. Independent and Joint Effect of Brachial-Ankle Pulse Wave Velocity and Blood Pressure Control on Incident Stroke in Hypertensive Adults. Hypertension, 2016 Jul; 68(1): 46-53
– reference: 89) Ninomiya T, Kojima I, Doi Y, Fukuhara M, Hirakawa Y, Hata J, Kitazono T, Kiyohara Y. Brachial-ankle pulse wave velocity predicts the development of cardiovascular disease in a general Japanese population: the Hisayama Study. J Hypertens, 2013; 31: 477-483
– reference: 114) Wei SY, Huang JC, Chen SC, Chang JM, Chen HC. Unequal Arterial Stiffness With Overall and Cardiovascular Mortality in Patients Receiving Hemodialysis. Am J Med Sci, 2016 Feb; 351(2): 187-193
– reference: 44) Zanoli L, Empana JP, Perier MC, Alivon M, Ketthab H, Castellino P, Laude D, Thomas F, Pannier B, Laurent S, Jouven X, Boutouyrie P. Increased carotid stiffness and remodelling at early stages of chronic kidney disease. J Hypertens, 2019; 37: 1176-1182
– reference: 153) Kawasaki T, Sullivan CV, Ozoe N, Higaki H, Kawasaki J. A long-term, comprehensive exercise program that incorporates a variety of physical activities improved the blood pressure, lipid and glucose metabolism, arterial stiffness, and balance of middle-aged and elderly Japanese. Hypertens Res, 2011; 34: 1059-1066
– reference: 87) Takashima N, Turin TC, Matsui K, Rumana N, Nakamura Y, Kadota A, Saito Y, Sugihara H, Morita Y, Ichikawa M, Hirose K, Kawakani K, Hamajima N, Miura K, Ueshima H, Kita Y. The relationship of brachial-ankle pulse wave velocity to future cardiovascular disease events in the general Japanese population: the Takashima Study. J Hum Hypertens, 2014; 28: 323-327
– reference: 34) Saijo Y, Yoshioka E, Fukui T, Kawaharada M, Kishi R. Metabolic syndrome, C-reactive protein and increased arterial stiffness in Japanese subjects. Hypertens Res, 2006; 29: 589-596
– reference: 71) Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol, 2012 Nov 20; 60(21): 2170-2177
– reference: 1) Tomiyama H, Matsumoto C, Shiina K, Yamashina A. Brachial-Ankle PWV: Current Status and Future Directions as a Useful Marker in the Management of Cardiovascular Disease and/or Cardiovascular Risk Factors. J Atheroscler Thromb, 2016; 23: 128-146
– reference: 131) Meguro T, Nagatomo Y, Nagae A, Seki C, Kondou N, Shibata M, Oda Y. Elevated arterial stiffness evaluated by brachial-ankle pulse wave velocity is deleterious for the prognosis of patients with heart failure. Circ J, 2009; 73: 673-680
– reference: 36) Shiina K, Tomiyama H, Takata Y, Usui Y, Asano K, Hirayama Y, Nakamura T, Yamashina A. Concurrent presence of metabolic syndrome in obstructive sleep apnea syndrome exacerbates the cardiovascular risk: a sleep clinic cohort study. Hypertens Res, 2006; 29: 433-441
– reference: 25) Tomiyama H, Yamashina A, Arai T, Hirose K, Koji Y, Chikamori T, Hori S, Yamamoto Y, Doba N, Hinohara S. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement--a survey of 12517 subjects. Atherosclerosis, 2003; 166: 303-309
– reference: 93) Katakami N, Osonoi T, Takahara M, Saitou M, Matsuoka TA, Yamasaki Y, Shimomura I. Clinical utility of brachial-ankle pulse wave velocity in the prediction of cardiovascular events in diabetic patients. Cardiovasc Diabetol, 2014; 13: 128
– reference: 28) Chung TH, Shim JY, Kwon YJ, Lee YJ. High triglyceride to high-density lipoprotein cholesterol ratio and arterial stiffness in postmenopausal Korean women. J Clin Hypertens (Greenwich), 2019; 21: 399-404
– reference: 59) Muhammad IF, Borné Y, Östling G, Kennbäck C, Gottsäter M, Persson M, Nilsson PM, Engström G. Arterial Stiffness and Incidence of Diabetes: A Population-Based Cohort Study. Diabetes Care, 2017; 40: 1739-1745
– reference: 125) Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, Iwamoto A, Kajikawa M, Matsumoto T, Oda N, Kishimoto S, Matsui S, Hashimoto H, Aibara Y, Mohamad Yusoff F, Hidaka T, Kihara Y, Chayama K, Noma K, Nakashima A, Goto C, Tomiyama H, Takase B, Kohro T, Suzuki T, Ishizu T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Watanabe K, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Ikeda H, Yamashina A, Higashi Y. Endothelial Dysfunction, Increased Arterial Stiffness, and Cardiovascular Risk Prediction in Patients With Coronary Artery Disease: FMD-J (Flow-Mediated Dilation Japan) Study A. J Am Heart Assoc, 2018 Jul 12; 7(14). pii: e008588
– reference: 144) Munakata M, Nagasaki A, Nunokawa T, Sakuma T, Kato H, Yoshinaga K, Toyota T. Effects of valsartan and nifedipine coat-core on systemic arterial stiffness in hypertensive patients. Am J Hypertens, 2004; 17(11 Pt 1): 1050-1055
– reference: 142) Tomiyama H, Ohkuma T, Ninomiya T, Mastumoto C, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Yamashina A; collaborative group for J-BAVEL-IAD (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies to Examine the Significance of Inter-Arm Blood Pressure Difference). Simultaneously Measured Interarm Blood Pressure Difference and Stroke: An Individual Participants Data Meta-Analysis. Hypertension, 2018 Jun; 71(6): 1030-1038
– reference: 121) Lee HS, Kim HL, Kim H, Hwang D, Choi HM, Oh SW, Seo JB, Chung WY, Kim SH, Kim MA, Zo JH. incremental Prognostic Value of Brachial-Ankle Pulse Wave Velocity to Single-Photon Emission Computed Tomography in Patients with Suspected Coronary Artery Disease. J Atheroscler Thromb, 2015; 22(10): 1040-1050
– reference: 60) Tomiyama H, Tanaka H, Hashimoto H, Matsumoto C, Odaira M, Yamada J, Yoshida M, Shiina K, Nagata M, Yamashina A. Arterial stiffness and declines in individuals with normal renal function/early chronic kidney disease. Atherosclerosis, 2010; 212: 345-250
– reference: 39) Huang Y, Bi Y, Xu M, Ma Z, Xu Y, Wang T, Li M, Liu Y, Lu J, Chen Y, Huang F, Xu B, Zhang J, Wang W, Li X, Ning G. Nonalcoholic fatty liver disease is associated with atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol, 2012; 32: 2321-2326
– reference: 145) Laurent S, Boutouyrie P; Vascular Mechanism Collaboration. Dose-dependent arterial destiffening and inward remodeling after olmesartan in hypertensives with metabolic syndrome. Hypertension, 2014; 64: 709-716
– reference: 92) Yoshida M, Mita T, Yamamoto R, Shimizu T, Ikeda F, Ohmura C, Kanazawa A, Hirose T, Kawamori R, Watada H. Combination of the Framingham risk score and carotid intima-media thickness improves the prediction of cardiovascular events in patients with type 2 diabetes. Diabetes Care, 2012; 35: 178-180
– reference: 22) Li CH, Wu JS, Yang YC, Shih CC, Lu FH, Chang CJ. Increased arterial stiffness in subjects with impaired glucose tolerance and newly diagnosed diabetes but not isolated impaired fasting glucose. J Clin Endocrinol Metab, 2012; 97: E658-62
– reference: 129) Nakamura M, Yamashita T, Yajima J, Oikawa Y, Sagara K, Koike A, Kirigaya H, Nagashima K, Sawada H, Aizawa T; Shinken Database Study Group. Brachial-ankle pulse wave velocity as a risk stratification index for the short-term prognosis of type 2 diabetic patients with coronary artery disease. Hypertens Res, 2010; 33: 1018-1024
– reference: 18) Tomiyama H, Hashimoto H, Hirayama Y, Yambe M, Yamada J, Koji Y, Shiina K, Yamamoto Y, Yamashina A. Synergistic acceleration of arterial stiffening in the presence of raised blood pressure and raised plasma glucose. Hypertension, 2006; 47: 180-188
– reference: 23) Prenner SB, Chirinos JA. Arterial stiffness in diabetes mellitus. Atherosclerosis, 2015; 238: 370-379
– reference: 50) Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol, 2005; 25: 932-943
– reference: 116) Yoon HE, Shin DI, Kim SJ, Koh ES, Hwang HS, Chung S, Shin SJ. Brachial-ankle pulse wave velocity predicts decline in renal function and cardiovascular events in early stages of chronic kidney disease. Int J Med Sci, 2013; 10: 1430-1436
– reference: 118) Wang X, Dang A. Prognostic Value of Brachial-Ankle Pulse Wave Velocity in Patients With Takayasu Arteritis With Drug-Eluting Stent Implantation. Arthritis Care Res (Hoboken), 2015 Aug; 67(8): 1150-1157
– reference: 70) Tokitsu T, Yamamoto E, Oike F, Hirata Y, Tsujita K, Yamamuro M, Kaikita K, Hokimoto S. Clinical significance of brachial-ankle pulse-wave velocity in patients with heart failure with preserved left ventricular ejection fraction. J Hypertens, 2018 Mar; 36(3): 560-568
– reference: 128) Kaneko H, Yajima J, Oikawa Y, Matsuno S, Funada R, Tanaka S, Fukamachi D, Suzuki S, Aizawa T, Yamashita T. Role of arterial stiffness and impaired renal function in the progression of new coronary lesions after percutaneous coronary intervention. Cardiovasc Interv Ther, 2013; 28: 56-62
– reference: 138) Wilkinson IB, Mäki-Petäjä KM, Mitchell GF. Uses of Arterial Stiffness in Clinical Practice. Arterioscler Thromb Vasc Biol, 2020; Feb 27: ATVBAHA120313130
– reference: 86) Matsuoka O, Otsuka K, Murakami S, Hotta N, Yamanaka G, Kubo Y, Yamanaka T, Shinagawa M, Nunoda S, Nishimura Y, Shibata K, Saitoh H, Nishinaga M, Ishine M, Wada T, Okumiya K, Matsubayashi K, Yano S, Ichihara K, Cornélissen G, Halberg F, Ozawa T. Arterial stiffness independently predicts cardiovascular events in an elderly community -- Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed Pharmacother, 2005; 59 Suppl 1: S40-4
– reference: 88) Ishisone T, Koeda Y, Tanaka F, Sato K, Nagano M, Nakamura M. Comparison of utility of arterial stiffness parameters for predicting cardiovascular events in the general population. Int Heart J, 2013; 54: 160-165
– reference: 78) Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HA. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation, 2008; 118: 968-976
– reference: 62) Townsend RR. Arterial Stiffness in CKD: A Review. Am J Kidney Dis, 2019; 73: 240-247
– reference: 105) Kim ED, Ballew SH, Tanaka H, Heiss G, Coresh J, Matsushita K. Short-Term Prognostic Impact of Arterial Stiffness in Older Adults Without Prevalent Cardiovascular Disease. Hypertension, 2019 Dec; 74(6): 1373- 1382
– reference: 55) Huveneers S, Daemen MJ, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res, 2015; 116: 895-908
– reference: 73) Fukuda D, Yoshiyama M, Shimada K, Yamashita H, Ehara S, Nakamura Y, Kamimori K, Tanaka A, Kawarabayashi T, Yoshikawa J. Relation between aortic stiffness and coronary flow reserve in patients with coronary artery disease. Heart, 2006 Jun; 92(6): 759-762
– reference: 54) Lacolley P, Regnault V, Avolio AP. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res, 2018; 114: 513-528
– reference: 63) Tomiyama H, Yamashina A. Arterial stiffness in prehypertension: a possible vicious cycle. J Cardiovasc Transl Res, 2012; 5: 280-286
– reference: 119) Park HW, Kim HR, Kang MG, Kim K, Koh JS, Park JR, Hwang SJ, Jeong YH, Ahn JH, Park Y, Hwang JY. Predictive value of the combination of brachial-ankle pulse wave velocity and ankle-brachial index for cardiovascular outcomes in patients with acute myocardial infarction. Coron Artery Dis, 2020 Mar; 31(2): 157-165
– reference: 26) Fujiwara Y, Chaves P, Takahashi R, Amano H, Kumagai S, Fujita K, Yoshida H, Wang DG, Varadhan R, Uchida H, Shinkai S. Relationships between brachial-ankle pulse wave velocity and conventional atherosclerotic risk factors in community-dwelling people. Prev Med, 2004; 39: 1135-1142
– reference: 107) Maeda Y, Inoguchi T, Etoh E, Kodama Y, Sasaki S, Sonoda N, Nawata H, Shimabukuro M, Takayanagi R. Kuwahara M, Hasumi S, Mandai S, Tanaka T, Shikuma S, Akita W, Mori Y, Sasaki S. Rate of ankle-brachial index decline predicts cardiovascular mortality in hemodialysis patients. Ther Apher Dial, 2014; 18: 9-18
– reference: 30) Doonan RJ, Hausvater A, Scallan C, Mikhailidis DP, Pilote L, Daskalopoulou SS. The effect of smoking on arterial stiffness. Hypertens Res, 2010; 33: 398-410
– reference: 154) McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med, 2014; 371: 993-1004
– reference: 66) O'Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol, 2007; 50: 1-13
– reference: 81) Beaussier H, Masson I, Collin C, Bozec E, Laloux B, Calvet D, Zidi M, Boutouyrie P, Laurent S. Carotid plaque, arterial stiffness gradient, and remodeling in hypertension. Hypertension, 2008; 52: 729-736
– reference: 56) Lee SJ, Avolio A, Seo DC, Kim BS, Kang JH, Lee MY, Sung KC. Relationship Between Brachial-Ankle Pulse Wave Velocity and Incident Hypertension According to 2017 ACC/AHA High Blood Pressure Guidelines. J Am Heart Assoc, 2019; 8: e013019
– reference: 35) Tomiyama H, Hirayama Y, Hashimoto H, Yambe M, Yamada J, Koji Y, Motobe K, Shiina K, Yamamoto Y, Yamashinai A. The effects of changes in the metabolic syndrome detection status on arterial stiffening: a prospective study. Hypertens Res, 2006; 29: 673-678
– reference: 58) Zhang Y, He P, Li Y, Zhang Y, Li J, Liang M, Wang G, Tang G, Song Y, Wang B, Liu C, Liu L, Cui Y, Wang X, Huo Y, Xu X, Qin X. Positive association between baseline brachial-ankle pulse wave velocity and the risk of new-onset diabetes in hypertensive patients. Cardiovasc Diabetol, 2019; 18: 111
– reference: 151) Upala S, Wirunsawanya K, Jaruvongvanich V, Sanguankeo A. Effects of statin therapy on arterial stiffness: A systematic review and meta-analysis of randomized controlled trial. Int J Cardiol, 2017 Jan 15; 227: 338-341
– reference: 127) Tomiyama H, Koji Y, Yambe M, Shiina K, Motobe K, Yamada J, Shido N, Tanaka N, Chikamori T, Yamashina A. Brachial -- ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome. Circ J, 2005; 69: 815-822
– reference: 84) Sheng CS, Li Y, Li LH, Huang QF, Zeng WF, Kang YY, Zhang L, Liu M, Wei FF, Li GL, Song J, Wang S, Wang JG. Brachial-ankle pulse wave velocity as a predictor of mortality in elderly Chinese. Hypertension, 2014; 64: 1124-1130
– reference: 19) Wang Y, Yuan Y, Gao WH, Yan Y, Wang KK, Qu PF, Hu JW, Chu C, Wang LJ, Gao K, Liao YY, Chen C, Xu JT, Ma Q, Zheng WL, Li H, Yuan ZY, Mu JJ. Predictors for progressions of brachial-ankle pulse wave velocity and carotid intima-media thickness over a 12-year follow-up: Hanzhong Adolescent Hypertension Study. J Hypertens, 2019; 37: 1167-1175
– reference: 20) Tomiyama H, Hashimoto H, Tanaka H, Matsumoto C, Odaira M, Yamada J, Yoshida M, Shiina K, Nagata M, Yamashina A; baPWV/cfPWV Collaboration Group. Synergistic relationship between changes in the pulse wave velocity and changes in the heart rate in middle-aged Japanese adults: a prospective study. J Hypertens, 2010; 28: 687-694
– reference: 45) Lioufas NM, Pedagogos E, Hawley CM, Pascoe EM, Elder GJ, Badve SV, Valks A, Toussaint ND; IMPROVE-CKD Investigators. Aortic Calcification and Arterial Stiffness Burden in a Chronic Kidney Disease Cohort with High Cardiovascular Risk: Baseline Characteristics of the Impact of Phosphate Reduction On Vascular End-Points in Chronic Kidney Disease Trial. Am J Nephrol, 2020; Feb 5: 1-15
– reference: 110) Kitahara T, Ono K, Tsuchida A, Kawai H, Shinohara M, Ishii Y, Koyanagi H, Noguchi T, Matsumoto T, Sekihara T, Watanabe Y, Kanai H, Ishida H, Nojima Y. Impact of brachial-ankle pulse wave velocity and ankle-brachial blood pressure index on mortality in hemodialysis patients. Am J Kidney Dis, 2005; 46: 688-696
– reference: 47) Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension, 2005; 46: 454-462
– reference: 68) Yambe M, Tomiyama H, Hirayama Y, Gulniza Z, Takata Y, Koji Y, Motobe K, Yamashina A. Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure. Hypertens Res, 2004 Sep; 27(9): 625-631
– reference: 5) Tanaka A, Tomiyama H, Maruhashi T, Matsuzawa Y, Miyoshi T, Kabutoya T, Kario K, Sugiyama S, Munakata M, Ito H, Ueda S, Vlachopoulos C, Higashi Y, Inoue T, Node K; Physiological Diagnosis Criteria for Vascular Failure Committee. Physiological Diagnostic Criteria for Vascular Failure. Hypertension, 2018; 72: 1060-1071
– reference: 112) Amemiya N, Ogawa T, Otsuka K, Ando Y, Nitta K. Comparison of serum albumin, serum C-reactive protein, and pulse wave velocity as predictors of the 4-year mortality of chronic hemodialysis patients. J Atheroscler Thromb, 2011; 18: 1071-1079
– reference: 106) Tanaka M, Ishii H, Aoyama T, Takahashi H, Toriyama T, Kasuga H, Takeshita K, Yoshikawa D, Amano T, Murohara T. Ankle brachial pressure index but not brachial-ankle pulse wave velocity is a strong predictor of systemic atherosclerotic morbidity and mortality in patients on maintenance hemodialysis. Atherosclerosis, 2011; 219: 643-647
– reference: 102) Chang LH, Lin HD, Kwok CF, Won JG, Chen HS, Chu CH, Hwu CM, Kuo CS, Jap TS, Shih KC, Lin LY. The combination of the ankle brachial index and brachial ankle pulse wave velocity exhibits a superior association with outcomes in diabetic patients. Intern Med, 2014; 53(21): 2425-2431
– reference: 130) Sugamata W, Nakamura T, Uematsu M, Kitta Y, Fujioka D, Saito Y, Kawabata K, Obata JE, Watanabe Y, Watanabe K, Kugiyama K. The combined assessment of flow-mediated dilation of the brachial artery and brachial-ankle pulse wave velocity improves the prediction of future coronary events in patients with chronic coronary artery disease. J Cardiol, 2014; 64: 179-184
– reference: 155) Desai AS, Solomon SD, Shah AM, Claggett BL, Fang JC, Izzo J, McCague K, Abbas CA, Rocha R, Mitchell GF; EVALUATE-HF Investigators. Effect of Sacubitril-Valsartan vs Enalapril on Aortic Stiffness in Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA, 2019; Sep 2: 1-10
– reference: 69) Takae M, Yamamoto E, Tokitsu T, Oike F, Nishihara T, Fujisue K, Sueta D, Usuku H, Motozato K, Ito M, Kanazawa H, Araki S, Nakamura T, Arima Y, Takashio S, Suzuki S, Sakamoto K, Soejima H, Yamabe H, Kaikita K, Tsujita K. Clinical Significance of Brachial-Ankle Pulse Wave Velocity in Patients With Heart Failure With Reduced Left Ventricular Ejection Fraction. Am J Hypertens, 2019 Jun 11; 32(7): 657-667
– reference: 46) Kim ED, Tanaka H, Ballew SH, Sang Y, Heiss G, Coresh J, Matsushita K. Associations Between Kidney Disease Measures and Regional Pulse Wave Velocity in a Large Community-Based Cohort: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis, 2018; 72: 682-690
– reference: 156) Safar ME, Smulyan H. Hypertensive Cardiovascular Risk: Pulsatile Hemodynamics, Gender, and Therapeutic Implications. Am J Hypertens, 2017 Oct 1; 30(10): 947-953
– ident: 26
  doi: 10.1111/jch.13484
– ident: 34
  doi: 10.1291/hypres.29.433
– ident: 130
  doi: 10.1161/HYPERTENSIONAHA.114.03304
– ident: 32
  doi: 10.1291/hypres.29.589
– ident: 75
  doi: 10.1002/jcsm.12195
– ident: 93
  doi: 10.1038/hr.2010.56
– ident: 49
  doi: 10.5551/jat.44859
– ident: 51
– ident: 68
  doi: 10.1097/HJH.0000000000001589
– ident: 18
  doi: 10.1097/HJH.0000000000002020
– ident: 145
  doi: 10.1186/s12933-016-0472-8
– ident: 147
  doi: 10.1016/j.jacl.2020.01.015
– ident: 33
  doi: 10.1291/hypres.29.673
– ident: 43
  doi: 10.1159/000505717
– ident: 55
  doi: 10.1097/01.hjh.0000254375.73241.e2
– ident: 61
  doi: 10.1007/s12265-011-9345-4
– ident: 102
  doi: 10.1016/j.atherosclerosis.2013.09.028
– ident: 82
  doi: 10.1161/HYPERTENSIONAHA.114.04063
– ident: 63
  doi: 10.1177/1358863X10382946
– ident: 100
  doi: 10.2169/internalmedicine.53.2999
– ident: 9
– ident: 85
  doi: 10.1038/jhh.2013.103
– ident: 149
  doi: 10.1161/ATVBAHA.114.304798
– ident: 76
  doi: 10.1161/CIRCULATIONAHA.107.763730
– ident: 146
  doi: 10.1253/circj.72.722
– ident: 135
  doi: 10.1253/circj.CJ-17-0636
– ident: 35
  doi: 10.1038/hr.2010.77
– ident: 114
  doi: 10.7150/ijms.6645
– ident: 53
  doi: 10.1161/CIRCRESAHA.116.305720
– ident: 142
  doi: 10.1016/j.amjhyper.2004.06.028
– ident: 64
  doi: 10.1016/j.jacc.2006.12.050
– ident: 143
  doi: 10.1161/HYPERTENSIONAHA.114.03282
– ident: 30
  doi: 10.1038/sj.jhh.1001913
– ident: 20
  doi: 10.1161/ATVBAHA.116.308674
– ident: 153
  doi: 10.1093/ajh/hpx049
– ident: 87
  doi: 10.1097/HJH.0b013e32835c5c23
– ident: 132
  doi: 10.1016/j.jocn.2019.07.050
– ident: 91
  doi: 10.1186/s12933-014-0128-5
– ident: 151
  doi: 10.1056/NEJMoa1409077
– ident: 86
  doi: 10.1536/ihj.54.160
– ident: 123
  doi: 10.1161/JAHA.118.008588
– ident: 116
  doi: 10.1002/acr.22563
– ident: 137
  doi: 10.1161/JAHA.115.002270
– ident: 16
  doi: 10.1111/jch.13209
– ident: 77
  doi: 10.1111/j.1365-2796.2006.01624.x
– ident: 152
  doi: 10.1001/jama.2019.12843
– ident: 58
  doi: 10.1016/j.atherosclerosis.2010.05.033
– ident: 83
  doi: 10.5551/jat.15040
– ident: 122
  doi: 10.1097/HJH.0000000000001949
– ident: 71
  doi: 10.1136/hrt.2005.067934
– ident: 144
  doi: 10.1038/ajh.2011.109
– ident: 17
  doi: 10.1161/01.HYP.0000198539.34501.1a
– ident: 15
  doi: 10.1161/HYPERTENSIONAHA.109.137653
– ident: 10
  doi: 10.1291/hypres.25.359
– ident: 6
  doi: 10.1161/HYPERTENSIONAHA.117.08933
– ident: 41
  doi: 10.1291/hypres.31.1895
– ident: 44
  doi: 10.1053/j.ajkd.2018.04.018
– ident: 12
  doi: 10.1253/circj.69.55
– ident: 110
  doi: 10.5551/jat.10397
– ident: 52
  doi: 10.1093/cvr/cvy009
– ident: 118
  doi: 10.3109/09537104.2014.978274
– ident: 139
  doi: 10.1016/j.atherosclerosis.2018.05.048
– ident: 67
  doi: 10.1093/ajh/hpz048
– ident: 40
  doi: 10.2215/CJN.01880507
– ident: 36
  doi: 10.1016/j.atherosclerosis.2018.01.039
– ident: 38
  doi: 10.1097/MD.0000000000018793
– ident: 54
  doi: 10.1161/JAHA.119.013019
– ident: 136
– ident: 70
  doi: 10.1161/HYPERTENSIONAHA.116.07650
– ident: 141
  doi: 10.1161/HYPERTENSIONAHA.118.12110
– ident: 59
  doi: 10.2215/CJN.07700910
– ident: 74
  doi: 10.2188/jea.JE20140250
– ident: 134
  doi: 10.1080/08037051.2017.1283955
– ident: 19
  doi: 10.1097/HJH.0b013e3283369fe8
– ident: 117
  doi: 10.1097/MCA.0000000000000777
– ident: 105
  doi: 10.1111/1744-9987.12055
– ident: 66
  doi: 10.1291/hypres.27.625
– ident: 111
  doi: 10.1159/000245067
– ident: 109
  doi: 10.1111/1744-9987.12055
– ident: 60
  doi: 10.1053/j.ajkd.2018.04.005
– ident: 127
  doi: 10.1038/hr.2010.126
– ident: 107
  doi: 10.1159/000201416
– ident: 78
  doi: 10.1681/ASN.2010080863
– ident: 94
  doi: 10.1007/s00380-014-0485-8
– ident: 131
  doi: 10.1016/j.atherosclerosis.2016.08.027
– ident: 73
  doi: 10.1152/japplphysiol.90549.2008
– ident: 88
  doi: 10.2169/internalmedicine.53.2999
– ident: 124
  doi: 10.1016/j.atherosclerosis.2017.11.026
– ident: 128
  doi: 10.1016/j.jjcc.2014.01.004
– ident: 104
  doi: 10.1016/j.atherosclerosis.2011.09.037
– ident: 97
  doi: 10.1097/HJH.0000000000001591
– ident: 50
  doi: 10.1016/j.atherosclerosis.2017.01.006
– ident: 113
  doi: 10.1002/clc.23188
– ident: 138
  doi: 10.1161/JAHA.119.013004
– ident: 45
  doi: 10.1161/01.HYP.0000177474.06749.98
– ident: 92
  doi: 10.1038/hr.2012.53
– ident: 27
  doi: 10.1016/j.jacc.2009.12.042
– ident: 39
  doi: 10.1038/ajh.2009.240
– ident: 42
  doi: 10.1097/HJH.0000000000002007
– ident: 119
  doi: 10.5551/jat.29918
– ident: 115
  doi: 10.3346/jkms.2014.29.10.1391
– ident: 150
  doi: 10.1038/hr.2011.81
– ident: 46
  doi: 10.1016/j.atherosclerosis.2014.09.011
– ident: 103
  doi: 10.1161/HYPERTENSIONAHA.119.13496
– ident: 1
  doi: 10.5551/jat.32979
– ident: 37
  doi: 10.1161/ATVBAHA.112.252957
– ident: 28
  doi: 10.1038/hr.2010.25
– ident: 106
  doi: 10.1111/j.1744-9987.2012.01058.x
– ident: 24
  doi: 10.1016/j.ypmed.2004.04.026
– ident: 8
– ident: 72
  doi: 10.1161/CIRCULATIONAHA.118.032410
– ident: 81
  doi: 10.1016/j.ijcard.2017.11.022
– ident: 65
  doi: 10.1097/HJH.0000000000000607
– ident: 133
  doi: 10.5551/jat.38901
– ident: 108
  doi: 10.1053/j.ajkd.2005.06.016
– ident: 84
  doi: 10.1016/S0753-3322(05)80008-3
– ident: 126
  doi: 10.1007/s12928-012-0135-y
– ident: 4
  doi: 10.1161/HYPERTENSIONAHA.118.11554
– ident: 57
  doi: 10.2337/dc17-1071
– ident: 95
  doi: 10.1038/hr.2010.103
– ident: 14
  doi: 10.1097/HJH.0000000000000114
– ident: 23
  doi: 10.1016/S0021-9150(02)00332-5
– ident: 79
  doi: 10.1161/HYPERTENSIONAHA.108.115972
– ident: 31
  doi: 10.1161/HYPERTENSIONAHA.118.11390
– ident: 48
  doi: 10.1161/01.ATV.0000160548.78317.29
– ident: 22
  doi: 10.1016/j.atherosclerosis.2014.12.023
– ident: 140
  doi: 10.1161/HYPERTENSIONAHA.118.10923
– ident: 5
  doi: 10.1161/HYPERTENSIONAHA.106.076166
– ident: 62
  doi: 10.1016/j.atherosclerosis.2011.04.039
– ident: 29
  doi: 10.1016/j.cca.2018.05.046
– ident: 129
  doi: 10.1253/circj.CJ-08-0350
– ident: 148
  doi: 10.1016/j.ijcard.2016.11.073
– ident: 125
  doi: 10.1253/circj.69.815
– ident: 3
  doi: 10.1016/j.jacc.2013.09.063
– ident: 7
  doi: 10.1016/j.jacc.2019.07.012
– ident: 11
– ident: 80
  doi: 10.5551/jat.33084
– ident: 121
  doi: 10.1097/MCA.0000000000000777
– ident: 90
  doi: 10.2337/dc11-1333
– ident: 101
  doi: 10.1161/HYPERTENSIONAHA.115.07023
– ident: 98
  doi: 10.1136/heartjnl-2017-311751
– ident: 69
  doi: 10.1016/j.jacc.2012.07.054
– ident: 2
  doi: 10.1253/circj.CJ-09-0534
– ident: 99
  doi: 10.1253/circj.CJ-15-1356
– ident: 120
  doi: 10.1093/ajh/hpv124
– ident: 56
  doi: 10.1186/s12933-019-0915-0
– ident: 47
  doi: 10.1016/j.jash.2012.10.004
– ident: 112
  doi: 10.1016/j.amjms.2015.11.017
– ident: 21
  doi: 10.1210/jc.2011-2595
– ident: 89
  doi: 10.1016/j.atherosclerosis.2013.09.028
– ident: 13
  doi: 10.1038/sj.jhh.1001838
– ident: 96
  doi: 10.1007/s00380-016-0919-6
– ident: 25
SSID ssj0033552
ssib002822083
Score 2.5241323
SecondaryResourceType review_article
Snippet The brachial-ankle pulse wave velocity (brachial-ankle PWV), which is measured simply by wrapping pressure cuffs around the four extremities, is a simple...
SourceID pubmedcentral
proquest
pubmed
crossref
medicalonline
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 621
SubjectTerms Ankle Brachial Index - methods
Arterial stiffness
Brachial-ankle pulse wave velocity
Cardiovascular disease
Heart Disease Risk Factors
Humans
Individual participant data meta-analysis
Pulse Wave Analysis - methods
Reproducibility of Results
Review
Risk Assessment - methods
Vascular Stiffness
Title State of the Art Review: Brachial-Ankle PWV
URI https://www.jstage.jst.go.jp/article/jat/27/7/27_RV17041/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=ex7domya/2020/002707/001&name=0621-0636e
https://www.ncbi.nlm.nih.gov/pubmed/32448827
https://www.proquest.com/docview/2406577871
https://pubmed.ncbi.nlm.nih.gov/PMC7406407
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Atherosclerosis and Thrombosis, 2020/07/01, Vol.27(7), pp.621-636
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfKQAgJIb4pXwrSnkDpkjhxlj1REKhCGkKojL4Z58NqWJOgNpXY_np-jp00HUVi8GK1zil2_Duf7-y7MyH7LnU9Rp3UBrgwUOLItQXLHNulYSS8yJGsieM-_sgmX_wPs2A2GHzreS2t63iUnO-MK_kXVFEHXFWU7CWQ7V6KCvwGviiBMMq_wrjRFNtT_vGybnPDwsp_s1RekmJhj8vTRfbq09eTP6mhSgOsVngzylxnbJ7Ol1URq7-bTegiPxNFo2lOcsjudZF3mzPzPG8jy87Xp3l_IwFWY-t0aoQ8Fufyt0aN72hPQlIfgtvX9-6MMl0HIaCS9NK-WNUh_4Z9wp6MZDok2iy3TOc_uSjJA2hyzQ0C9ejziRs6vrtZsDo3QjPwHFTcC3moCkPN22cqeA28coVc9WBINOHgs84JiELbas7D24_SEZyq8YNe01s6y7XvUNtVPoabhT5K0ylNdlkoFx1te5rL9Da5ZbC2xrqrd8ggK--S68fGqeIe0QaHVUkLqCgyS7PRkbXNRBaY6D6Zvn83fTuxzR0adsIiv7aDwygJYAIIn8ZJKmVyCBM2RQ0UYUYTGrhp6HiRFMJLZSojGiSekzBBRRqLwKMPyF5ZldkjYkmHYcKr62lEDK1TiIT6QUpliukuhWRD8rIdJJ6Y_PLqmpMFh52pRrSByYzokOx3xD90WpXdZEd6tDuiS0A-JK-3EOJm5q549jNMq-JMcDUNuNqZcZQXhssd8CYKylRWQErpkLxoQeUQu-osTZRZtV5xpQgHIVY79PGhBrnrI2wULIteOCThFvwdgUrpvv2kzOdNavfQb07WH__Pdz8hNzbT-ynZq5fr7Bk05zp-3jD_L4-9xyQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Art+Review%3A+Brachial-Ankle+PWV&rft.jtitle=Journal+of+Atherosclerosis+and+Thrombosis&rft.au=Tomiyama%2C+Hirofumi&rft.au=Shiina%2C+Kazuki&rft.date=2020-07-01&rft.pub=Japan+Atherosclerosis+Society&rft.issn=1340-3478&rft.eissn=1880-3873&rft.volume=27&rft.issue=7&rft.spage=621&rft.epage=636&rft_id=info:doi/10.5551%2Fjat.RV17041&rft.externalDocID=article_jat_27_7_27_RV17041_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3478&client=summon