Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning
The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub...
Saved in:
Published in | PLoS biology Vol. 10; no. 2; p. e1001267 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1001267 |
Cover
Loading…
Abstract | The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning. |
---|---|
AbstractList | The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning. The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning.The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning. A multimodal neuroimaging study of virtual spatial navigation extends the role of the hippocampal theta rhythm to human memory and self-directed learning. The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning. Neural activity both within and across brain regions can oscillate in different frequency ranges (such as alpha, gamma, and theta frequencies), and these different ranges are associated with distinct functions. In behaving rodents, for example, theta rhythms (4–12 Hz) in the hippocampus are prominent during the initiation of movement and have been linked to spatial exploration. Recent evidence in humans, however, suggests that the human hippocampus is involved in guiding self-directed learning. This suggests that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. In this study, we tested whether there is a human analogue for the movement-initiation-related theta rhythm found in the rodent hippocampus by using a virtual navigation paradigm, combined with non-invasive recordings and functional imaging techniques. Our recordings showed that, indeed, theta power increases are linked to movement initiation. We also examined the relationship to memory encoding, and we found that hippocampal theta oscillations related to pre-retrieval planning predicted memory performance. Imaging results revealed that periods of the task showing movement-related theta also showed increased activity in the hippocampus, as well as other brain regions associated with self-directed learning. These findings directly extend the role of the hippocampal theta rhythm in rodent spatial exploration to human memory and self-directed learning. The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning. |
Audience | Academic |
Author | Litvak, Vladimir Doeller, Christian F. Barnes, Gareth R. Burgess, Neil Bandettini, Peter A. Kaplan, Raphael Düzel, Emrah |
AuthorAffiliation | 5 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands 6 Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom 2 UCL Institute of Cognitive Neuroscience, University College London, London, United Kingdom 4 UCL Institute of Neurology, University College London, London, United Kingdom 8 German Center for Neurodegenerative Diseases (DZNE), Magdeberg, Germany 1 NIMH-UCL Joint Graduate Partnership Program in Neuroscience, Bethesda, Maryland, United States of America Boston University, United States of America 3 Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, United States of America 7 Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany |
AuthorAffiliation_xml | – name: 4 UCL Institute of Neurology, University College London, London, United Kingdom – name: 6 Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom – name: 2 UCL Institute of Cognitive Neuroscience, University College London, London, United Kingdom – name: 3 Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, United States of America – name: 5 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands – name: 8 German Center for Neurodegenerative Diseases (DZNE), Magdeberg, Germany – name: 1 NIMH-UCL Joint Graduate Partnership Program in Neuroscience, Bethesda, Maryland, United States of America – name: 7 Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany – name: Boston University, United States of America |
Author_xml | – sequence: 1 givenname: Raphael surname: Kaplan fullname: Kaplan, Raphael – sequence: 2 givenname: Christian F. surname: Doeller fullname: Doeller, Christian F. – sequence: 3 givenname: Gareth R. surname: Barnes fullname: Barnes, Gareth R. – sequence: 4 givenname: Vladimir surname: Litvak fullname: Litvak, Vladimir – sequence: 5 givenname: Emrah surname: Düzel fullname: Düzel, Emrah – sequence: 6 givenname: Peter A. surname: Bandettini fullname: Bandettini, Peter A. – sequence: 7 givenname: Neil surname: Burgess fullname: Burgess, Neil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22389627$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xLbCP0AQiQvERYo_4sTZBdJUPlqpMKkbiDvrxLFbT4kd4mRi_x6HtmidJgTKhSP7eV8fvzrnNDqyzqooeo7RFNMcv712Q2ehnralcVOMECZZ_ig6wSxlSc45O7rzfxyden-NECEF4U-iY0IoLzKSn0TfP7sb1SjbJytVQ6-q-GqjeohXm9t-08TGxvOhAevP4plzXWUs9Mau40tV6-S96ZQcJXPTtk5C00IdLxV0NiBPo8caaq-e7dZJ9PXjh6vZPFlefFrMzpeJzIq0TwhLKQMqOSKMZYhqDClNw1sIKMRLKHmoP2UlVUjlGBjjDEpZKZKqvNK0oJPo5da3rZ0Xu1C8wBTRjGUU80AstkTl4Fq0nWmguxUOjPi94bq1gK43slYilygDTSDLNE41FFwRTTCjTKckxcFuEr3b3TaUjapkCK6D-sD08MSajVi7G0EJLxgfy329M-jcj0H5XjTGS1XXYJUbvChIxhDHRR7IV_fIhx-3o9YQ6jdWu3CtHD3FOeEUsxxlNFDTB6jwVaoxMvSVNmH_QPDmQBCYXv3s1zB4LxaXq_9gv_w7e_HtkH1xN-s_Ie-bNwBnW0B2zvtOaSFNH_rTjdGbWmAkxknZ5ybGSRG7SQni9J547_9X2S_mNRVS |
CitedBy_id | crossref_primary_10_1016_j_cortex_2023_09_005 crossref_primary_10_1016_j_neuroimage_2015_01_058 crossref_primary_10_1016_j_neuroimage_2022_119766 crossref_primary_10_1080_17588928_2019_1676711 crossref_primary_10_1002_hipo_22264 crossref_primary_10_31857_S0006302924040149 crossref_primary_10_3389_fpsyg_2014_00918 crossref_primary_10_1073_pnas_1708716114 crossref_primary_10_1134_S0006350924700799 crossref_primary_10_1016_j_celrep_2024_115131 crossref_primary_10_1016_j_neuroimage_2019_116192 crossref_primary_10_1016_j_brainres_2014_02_002 crossref_primary_10_1016_j_neuroimage_2013_06_022 crossref_primary_10_1007_s10484_019_09440_4 crossref_primary_10_1002_hipo_22255 crossref_primary_10_1162_jocn_a_01336 crossref_primary_10_1523_ENEURO_0099_21_2021 crossref_primary_10_1016_j_tics_2019_12_006 crossref_primary_10_3389_fnsys_2022_998116 crossref_primary_10_3758_s13415_024_01228_2 crossref_primary_10_1002_ana_25519 crossref_primary_10_1093_cercor_bhs269 crossref_primary_10_1002_hbm_24689 crossref_primary_10_1038_s41467_018_04847_9 crossref_primary_10_1002_hbm_24445 crossref_primary_10_1016_j_neuropsychologia_2012_04_002 crossref_primary_10_4085_1062_6050_450_17 crossref_primary_10_3389_fpsyg_2017_00578 crossref_primary_10_1093_cercor_bhaa172 crossref_primary_10_1080_13875868_2020_1865359 crossref_primary_10_1177_0269881114536790 crossref_primary_10_1016_j_nlm_2019_03_005 crossref_primary_10_1038_s41467_023_44011_6 crossref_primary_10_1523_JNEUROSCI_0957_13_2013 crossref_primary_10_1523_JNEUROSCI_2497_18_2019 crossref_primary_10_1007_s00521_016_2234_7 crossref_primary_10_1162_jocn_a_01143 crossref_primary_10_3389_fnbeh_2015_00323 crossref_primary_10_1016_j_brainres_2013_03_021 crossref_primary_10_1523_JNEUROSCI_0268_13_2013 crossref_primary_10_1002_oby_20573 crossref_primary_10_1073_pnas_2021238118 crossref_primary_10_1098_rstb_2019_0633 crossref_primary_10_1016_j_neubiorev_2015_05_002 crossref_primary_10_1111_ejn_16185 crossref_primary_10_14336_AD_2023_0607 crossref_primary_10_1111_psyp_13090 crossref_primary_10_1152_jn_00988_2014 crossref_primary_10_1093_brain_awaa035 crossref_primary_10_3389_fnhum_2018_00297 crossref_primary_10_1007_s10548_013_0304_z crossref_primary_10_1002_hipo_22315 crossref_primary_10_1109_ACCESS_2020_2984776 crossref_primary_10_1016_j_tics_2017_05_008 crossref_primary_10_1073_pnas_1714691115 crossref_primary_10_1523_JNEUROSCI_1045_22_2022 crossref_primary_10_1038_s41467_023_42231_4 crossref_primary_10_1016_j_cognition_2022_105360 crossref_primary_10_1177_23982128211002725 crossref_primary_10_1523_ENEURO_0184_16_2016 crossref_primary_10_1016_j_neulet_2022_136769 crossref_primary_10_1177_00315125211041341 crossref_primary_10_1523_JNEUROSCI_1414_13_2013 crossref_primary_10_1126_science_1237569 crossref_primary_10_1371_journal_pone_0222064 crossref_primary_10_1016_j_exger_2023_112092 crossref_primary_10_1016_j_biopsycho_2013_10_009 crossref_primary_10_1093_cercor_bhac018 crossref_primary_10_3389_fnagi_2022_912691 crossref_primary_10_1016_j_concog_2015_06_006 crossref_primary_10_1126_sciadv_abj0200 crossref_primary_10_1016_j_nlm_2021_107403 crossref_primary_10_1109_TBCAS_2012_2236089 crossref_primary_10_1016_j_cobeha_2021_02_017 crossref_primary_10_1162_jocn_a_01414 crossref_primary_10_1016_j_cub_2018_09_035 crossref_primary_10_1016_j_cub_2013_04_074 crossref_primary_10_1523_JNEUROSCI_2573_12_2013 crossref_primary_10_1177_1745691612454304 crossref_primary_10_1016_j_neuroimage_2013_06_055 crossref_primary_10_1016_j_neuroimage_2022_119581 crossref_primary_10_1016_j_bbr_2013_12_031 crossref_primary_10_1016_j_neuroimage_2016_08_021 crossref_primary_10_1162_jocn_a_01064 crossref_primary_10_3389_fnhum_2020_592175 crossref_primary_10_1007_s12021_024_09690_6 crossref_primary_10_1098_rstb_2013_0304 crossref_primary_10_1016_j_neuroimage_2014_09_024 crossref_primary_10_1523_JNEUROSCI_2561_17_2018 crossref_primary_10_1038_s41467_020_18864_0 crossref_primary_10_1371_journal_pone_0152115 crossref_primary_10_1016_j_neuroimage_2013_08_029 crossref_primary_10_1002_hipo_23605 crossref_primary_10_1093_brain_awac416 crossref_primary_10_3389_fnins_2018_00273 crossref_primary_10_1523_JNEUROSCI_4116_15_2016 crossref_primary_10_1016_j_neuroimage_2017_01_029 crossref_primary_10_1002_hipo_23284 crossref_primary_10_1523_JNEUROSCI_2915_12_2013 crossref_primary_10_1523_JNEUROSCI_1640_19_2019 crossref_primary_10_1016_j_neuroimage_2013_06_049 crossref_primary_10_1098_rstb_2012_0510 crossref_primary_10_3389_fpsyg_2016_00246 crossref_primary_10_3758_s13423_012_0351_6 crossref_primary_10_1002_hbm_23458 crossref_primary_10_3389_fnsys_2021_665052 crossref_primary_10_3389_fnhum_2018_00361 |
Cites_doi | 10.1093/schbul/sbn060 10.1162/089892902317205339 10.1016/S0028-3932(97)00161-9 10.1046/j.1460-9568.2002.01975.x 10.1016/j.neuron.2010.05.013 10.1016/j.neuron.2010.02.006 10.1038/nature08573 10.1016/j.tics.2008.07.004 10.1371/journal.pbio.0030402 10.1016/S0167-8760(96)00057-8 10.1126/science.7878473 10.1093/cercor/bhq144 10.1002/hipo.20106 10.1111/j.1469-8986.2008.00719.x 10.1196/annals.1440.011 10.1523/JNEUROSCI.3668-10.2011 10.1016/j.neuron.2004.08.035 10.1073/pnas.1014528108 10.1016/S0896-6273(02)00830-9 10.1016/S0166-4328(05)80118-4 10.1038/nature08860 10.1073/pnas.0908403106 10.1523/JNEUROSCI.1868-09.2009 10.1109/TBME.2004.827926 10.1152/jn.00921.2010 10.1073/pnas.0711433105 10.1016/j.neuron.2005.07.013 10.1016/j.tics.2010.01.005 10.1093/cercor/bhp135 10.1073/pnas.0801489105 10.1002/hbm.10072 10.1162/jocn.2009.21240 10.1016/S0028-3932(96)00051-6 10.1176/appi.ajp.2009.09050614 10.1038/nature08499 10.1016/S0896-6273(02)00586-X 10.1002/hipo.20109 10.1073/pnas.97.2.919 10.1016/j.conb.2010.01.004 10.1038/nature08704 10.1002/hipo.20023 10.1016/j.brainresrev.2009.12.004 10.1006/nimg.2001.1054 10.1523/JNEUROSCI.23-34-10809.2003 10.1152/jn.91252.2008 10.1037/0735-7044.119.1.145 10.1073/pnas.0900289106 10.1371/journal.pbio.1000089 10.1097/00001756-199605170-00002 10.1126/science.1085818 10.1093/brain/124.12.2476 10.1016/S1364-6613(00)01845-3 10.1002/hipo.20792 10.1016/j.neuroimage.2005.02.018 10.1002/hipo.20071 10.1016/j.neuroimage.2006.07.029 10.1006/nimg.2001.0746 10.1002/hipo.20394 10.1155/2011/852961 10.1523/JNEUROSCI.1948-06.2006 10.1016/j.neuron.2009.12.002 10.1016/0013-4694(69)90092-3 10.1523/JNEUROSCI.22-22-09932.2002 10.1523/JNEUROSCI.23-11-04726.2003 10.1037/0735-7044.106.3.447 10.1523/JNEUROSCI.5001-07.2008 10.1073/pnas.0337195100 10.1126/science.281.5380.1188 10.1155/2011/156869 10.1016/0013-4694(59)90040-9 10.1016/j.jneumeth.2009.06.029 10.1176/ajp.2007.164.3.516 10.1109/10.871408 10.1046/j.1460-9568.2003.02522.x 10.1073/pnas.0700818104 10.1523/JNEUROSCI.6021-09.2010 10.1038/nrn2979 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 Public Library of Science 2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Kaplan R, Doeller CF, Barnes GR, Litvak V, Düzel E, et al. (2012) Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning. PLoS Biol 10(2): e1001267. doi:10.1371/journal.pbio.1001267 This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 2012 2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Kaplan R, Doeller CF, Barnes GR, Litvak V, Düzel E, et al. (2012) Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning. PLoS Biol 10(2): e1001267. doi:10.1371/journal.pbio.1001267 |
Copyright_xml | – notice: COPYRIGHT 2012 Public Library of Science – notice: 2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Kaplan R, Doeller CF, Barnes GR, Litvak V, Düzel E, et al. (2012) Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning. PLoS Biol 10(2): e1001267. doi:10.1371/journal.pbio.1001267 – notice: This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 2012 – notice: 2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Kaplan R, Doeller CF, Barnes GR, Litvak V, Düzel E, et al. (2012) Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning. PLoS Biol 10(2): e1001267. doi:10.1371/journal.pbio.1001267 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1001267 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection (subscription) ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (UHCL Subscription) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Theta Rhythm Coordinates Self-Directed Learning |
EISSN | 1545-7885 |
ExternalDocumentID | 1303656318 oai_doaj_org_article_7c06af2a66f14fa98e2f21535f424156 PMC3289589 2899879061 A283157063 22389627 10_1371_journal_pbio_1001267 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 091593 – fundername: Intramural NIH HHS – fundername: Wellcome Trust grantid: 095811 – fundername: Medical Research Council grantid: G1000854 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QF4 QN7 RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ ADXHL CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c694t-25435a3c80255603f1a4341262ae08bab878845b3e0e71a5585abcde24e7df393 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:28 EDT 2023 Wed Aug 27 01:13:57 EDT 2025 Thu Aug 21 13:43:50 EDT 2025 Fri Jul 11 00:26:17 EDT 2025 Fri Jul 25 10:36:38 EDT 2025 Tue Jun 17 22:02:04 EDT 2025 Tue Jun 10 21:02:04 EDT 2025 Fri Jun 27 05:31:33 EDT 2025 Fri Jun 27 05:31:18 EDT 2025 Fri Jun 27 05:30:03 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 Tue Jul 01 03:38:20 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Young Adult Magnetic Resonance Imaging Movement Functional Neuroimaging Magnetoencephalography Humans Memory Adolescent Adult Male Hippocampus Theta Rhythm |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c694t-25435a3c80255603f1a4341262ae08bab878845b3e0e71a5585abcde24e7df393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CD NB RK. Performed the experiments: RK CD. Analyzed the data: RK. Contributed reagents/materials/analysis tools: GB VL CD. Wrote the paper: RK CD NB PB ED. |
OpenAccessLink | https://doaj.org/article/7c06af2a66f14fa98e2f21535f424156 |
PMID | 22389627 |
PQID | 1303656318 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_1303656318 doaj_primary_oai_doaj_org_article_7c06af2a66f14fa98e2f21535f424156 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3289589 proquest_miscellaneous_926508197 proquest_journals_1303656318 gale_infotracmisc_A283157063 gale_infotracacademiconefile_A283157063 gale_incontextgauss_ISR_A283157063 gale_incontextgauss_ISN_A283157063 gale_incontextgauss_IOV_A283157063 pubmed_primary_22389627 crossref_citationtrail_10_1371_journal_pbio_1001267 crossref_primary_10_1371_journal_pbio_1001267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2012 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | C Habas (ref47) 2009; 29 C Doeller (ref23) 2008; 105 C. F Doeller (ref24) 2010; 463 E Duzel (ref17) 2010; 20 J Ashburner (ref82) 2005; 26 W Klimesch (ref64) 1996; 24 E Grastyan (ref60) 1959; 11 R Morris (ref54) 2006 W. E DeCouteau (ref45) 2007; 104 S Abrahams (ref40) 1997; 35 R. L Buckner (ref69) 2008; 1124 J. M Hyman (ref61) 2005; 15 U Rutishauser (ref31) 2010; 464 B. D Gonsalves (ref25) 2005; 47 W. D Penny (ref68) 2009; 183 N Weiskopf (ref81) 2006; 33 N Axmacher (ref71) 2010; 65 D Osipova (ref27) 2006; 26 S Guderian (ref28) 2009; 106 B. R Cornwell (ref77) 2010; 167 G Buzsaki (ref3) 2002; 33 A. D Wagner (ref51) 1998; 281 G. C Tombaugh (ref7) 2002; 22 J. E Lisman (ref12) 1995; 267 B. R Cornwell (ref20) 2008; 28 F. P Battaglia (ref70) 2011; 15 A. D Ekstrom (ref18) 2005; 15 A Jeewajee (ref6) 2008; 18 K Benchenane (ref72) 2010; 66 V Litvak (ref32) 2011; 2011 N Burgess (ref43) 2002; 35 W Klimesch (ref13) 1996; 17 R Oostenveld (ref78) 2011; 2011 C. D Tesche (ref14) 2000; 97 J Fell (ref16) 2003; 17 A Ekstrom (ref58) 2009; 101 J. L Voss (ref11) 2011; 14 A. T Mattfield (ref49) 2011; 21 A. J Watrous (ref21) 2011; 105 T Bast (ref5) 2009; 7 A Ekstrom (ref57) 2010; 62 H. J Spiers (ref42) 2001; 124 J. D Berke (ref44) 2004; 43 C. D Harvey (ref36) 2009; 461 V Bohbot (ref41) 1998; 36 J. A Gray (ref73) 1982 A Adhikari (ref75) 2010; 65 L Davachi (ref52) 2003; 100 L. C Hoffmann (ref46) 2009; 106 C Doeller (ref22) 2008; 105 J O'Keefe (ref55) 2006 E. Y Song (ref56) 2005; 15 J Fell (ref30) 2011; 31 J O'Keefe (ref2) 1978 C. H Vanderwolf (ref1) 1969; 26 K Sekihara (ref34) 2004; 51 R. A Epstein (ref50) 2008; 12 J. A Meltzer (ref59) 2009; 46 E Kelemen (ref8) 2005; 15 N. F Gould (ref76) 2007; 164 J. L Andersson (ref84) 2001; 13 F. I. M Craik (ref10) 1986 J Fell (ref66) 2011; 12 J Lisman (ref67) 2008; 34 G Nolte (ref79) 2000; 10 D. B de Araujo (ref19) 2002; 14 I Lee (ref39) 2005; 119 J Jacobs (ref65) 2010; 14 M. W Jones (ref62) 2005; 3 E Save (ref37) 1992; 47 C Hutton (ref83) 2002; 16 L. L Colgin (ref4) 2009; 462 J Shin (ref9) 2011; 21 T. I Brown (ref63) 2010; 21 K Paller (ref53) 2002; 6 E Save (ref38) 1992; 106 O Jensen (ref15) 2002; 15 T Seidenbecher (ref74) 2003; 301 R. J Addante (ref29) 2011; 108 J. B Caplan (ref33) 2003; 23 P. B Sederberg (ref26) 2003; 23 J Jacobs (ref35) 2010; 22 F. M Krienen (ref48) 2009; 19 G. R Barnes (ref80) 2003; 1 |
References_xml | – volume: 34 start-page: 974 year: 2008 ident: ref67 article-title: A neural coding scheme formed by the combined function of gamma and theta oscillations. publication-title: Schizophr Bull doi: 10.1093/schbul/sbn060 – volume: 14 start-page: 70 year: 2002 ident: ref19 article-title: Theta oscillations and human navigation: a magnetoencephalography study. publication-title: J Cogn Neuosci doi: 10.1162/089892902317205339 – volume: 36 start-page: 1217 year: 1998 ident: ref41 article-title: Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. publication-title: Neuropsychologia doi: 10.1016/S0028-3932(97)00161-9 – volume: 15 start-page: 1395 year: 2002 ident: ref15 article-title: Frontal theta activity in humans increases with memory load in working memory task. publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2002.01975.x – volume: 66 start-page: 921 year: 2010 ident: ref72 article-title: Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. publication-title: Neuron doi: 10.1016/j.neuron.2010.05.013 – volume: 65 start-page: 541 year: 2010 ident: ref71 article-title: Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens. publication-title: Neuron doi: 10.1016/j.neuron.2010.02.006 – volume: 462 start-page: 353 year: 2009 ident: ref4 article-title: Frequency of gamma oscillations routes flow of information in the hippocampus. publication-title: Nature doi: 10.1038/nature08573 – volume: 12 start-page: 388 year: 2008 ident: ref50 article-title: Parahippocampal and retrosplenial contributions to human spatial navigation. publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2008.07.004 – volume: 3 start-page: e402 year: 2005 ident: ref62 article-title: Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030402 – volume: 24 start-page: 61 year: 1996 ident: ref64 article-title: Memory processes, brain oscillations and EEG synchronization. publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(96)00057-8 – volume: 267 start-page: 1512 year: 1995 ident: ref12 article-title: Storage of 7+/−2 short-term memories in oscillatory subcycles. publication-title: Science doi: 10.1126/science.7878473 – volume: 21 start-page: 647 year: 2011 ident: ref49 article-title: Striatal and medial temporal lobe functional interactions during visuomotor associative learning. publication-title: Cereb Cortex doi: 10.1093/cercor/bhq144 – volume: 15 start-page: 739 year: 2005 ident: ref61 article-title: Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. publication-title: Hippocampus doi: 10.1002/hipo.20106 – volume: 46 start-page: 153 year: 2009 ident: ref59 article-title: Transverse patterning dissociates human EEG theta power and hippocampal BOLD activation. publication-title: Psychophysiol doi: 10.1111/j.1469-8986.2008.00719.x – volume: 1124 start-page: 1 year: 2008 ident: ref69 article-title: The brain's default system: anatomy, function, and relevance to disease. publication-title: Ann NY Acad Sci doi: 10.1196/annals.1440.011 – volume: 31 start-page: 5392 year: 2011 ident: ref30 article-title: Medial temporal theta/alpha power enhancement precedes successful encoding: evidence based on intracranial EEG. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3668-10.2011 – volume: 43 start-page: 883 year: 2004 ident: ref44 article-title: Oscillatory entrainment of striatal neurons in freely moving rats. publication-title: Neuron doi: 10.1016/j.neuron.2004.08.035 – volume: 108 start-page: 10702 year: 2011 ident: ref29 article-title: Prestimulus theta activity predicts correct source memory retrieval. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014528108 – volume: 35 start-page: 625 year: 2002 ident: ref43 article-title: The human hippocampus and spatial and episodic memory. publication-title: Neuron doi: 10.1016/S0896-6273(02)00830-9 – start-page: 475 year: 2006 ident: ref55 article-title: Hippocampal neurophysiology in the behaving animal. – volume: 47 start-page: 113 year: 1992 ident: ref37 article-title: Exploratory activity and response to a spatial change in rats with hippocampal or posterior parietal cortical lesions. publication-title: Behav Brain Res doi: 10.1016/S0166-4328(05)80118-4 – volume: 464 start-page: 903 year: 2010 ident: ref31 article-title: Human memory strength is predicted by theta-frequency phase-locking of single neurons. publication-title: Nature doi: 10.1038/nature08860 – volume: 106 start-page: 21371 year: 2009 ident: ref46 article-title: Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0908403106 – volume: 29 start-page: 8586 year: 2009 ident: ref47 article-title: Distinct cerebellar contributions to intrinsic connectivity networks. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1868-09.2009 – volume: 51 start-page: 1726 year: 2004 ident: ref34 article-title: Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.827926 – volume: 105 start-page: 1747 year: 2011 ident: ref21 article-title: Behavioral correlates of human hippocampal delta and theta oscillations during navigation. publication-title: J Neurophysiol doi: 10.1152/jn.00921.2010 – volume: 105 start-page: 5909 year: 2008 ident: ref22 article-title: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0711433105 – volume: 47 start-page: 751 year: 2005 ident: ref25 article-title: Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. publication-title: Neuron doi: 10.1016/j.neuron.2005.07.013 – volume: 14 start-page: 162 year: 2010 ident: ref65 article-title: Direct brain recordings fuel advances in cognitive electrophysiology. publication-title: Trends Cog Sci doi: 10.1016/j.tics.2010.01.005 – volume: 19 start-page: 2485 year: 2009 ident: ref48 article-title: Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. publication-title: Cereb Cortex doi: 10.1093/cercor/bhp135 – volume: 105 start-page: 5915 year: 2008 ident: ref23 article-title: Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0801489105 – volume: 1 start-page: 1 year: 2003 ident: ref80 article-title: Statistical flattening of MEG beamformer images. publication-title: Hum Brain Mapp doi: 10.1002/hbm.10072 – volume: 22 start-page: 824 year: 2010 ident: ref35 article-title: Right-lateralized brain oscillations in human spatial navigation. publication-title: J Cogn Neurosci doi: 10.1162/jocn.2009.21240 – volume: 35 start-page: 11 year: 1997 ident: ref40 article-title: Spatial memory deficits in patients with unilateral damage to the right hippocampal formation. publication-title: Neuropsychologia doi: 10.1016/S0028-3932(96)00051-6 – volume: 167 start-page: 836 year: 2010 ident: ref77 article-title: Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography. publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2009.09050614 – volume: 461 start-page: 941 year: 2009 ident: ref36 article-title: Intracellular dynamics of hippocampal place cells during virtual navigation. publication-title: Nature doi: 10.1038/nature08499 – volume: 33 start-page: 325 year: 2002 ident: ref3 article-title: Theta oscillations in the hippocampus. publication-title: Neuron doi: 10.1016/S0896-6273(02)00586-X – year: 1982 ident: ref73 article-title: The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system – volume: 15 start-page: 881 year: 2005 ident: ref18 article-title: Human hippocampal theta activity during virtual navigation. publication-title: Hippocampus doi: 10.1002/hipo.20109 – volume: 97 start-page: 919 year: 2000 ident: ref14 article-title: Theta oscillations index human hippocampal activation during a working memory task. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.2.919 – volume: 20 start-page: 143 year: 2010 ident: ref17 article-title: Brain oscillations and memory. publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2010.01.004 – volume: 463 start-page: 657 year: 2010 ident: ref24 article-title: Evidence for grid cells in a human memory network. publication-title: Nature doi: 10.1038/nature08704 – volume: 15 start-page: 8 year: 2005 ident: ref56 article-title: Role of active movement in place-specific firing of hippocampal neurons. publication-title: Hippocampus doi: 10.1002/hipo.20023 – volume: 62 start-page: 233 year: 2010 ident: ref57 article-title: How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2009.12.004 – volume: 16 start-page: 217 year: 2002 ident: ref83 article-title: Image distortion correction in fMRI: a quantitative evaluation. publication-title: Neuroimage doi: 10.1006/nimg.2001.1054 – volume: 23 start-page: 10809 year: 2003 ident: ref26 article-title: Theta and gamma oscillations during encoding predict subsequent recall. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-34-10809.2003 – volume: 101 start-page: 2668 year: 2009 ident: ref58 article-title: Correlation between BOLD fMRI and theta-band local field potentials in the human hippocampal area. publication-title: J Neurophysiol doi: 10.1152/jn.91252.2008 – volume: 15 start-page: 310 year: 2011 ident: ref70 article-title: The hippocampus: hub of brain network communication for memory. publication-title: Trends Cogn Sci – volume: 119 start-page: 145 year: 2005 ident: ref39 article-title: The role of hippocampal subregions in detecting spatial novelty. publication-title: Behav Neurosci doi: 10.1037/0735-7044.119.1.145 – volume: 106 start-page: 5365 year: 2009 ident: ref28 article-title: Medial temporal theta state before an event predicts episodic encoding success in humans. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900289106 – start-page: 581 year: 2006 ident: ref54 article-title: Theories of hippocampal function. – volume: 7 start-page: e1000089 year: 2009 ident: ref5 article-title: From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000089 – volume: 17 start-page: 1235 year: 1996 ident: ref13 article-title: Theta band power in the human scalp EEG and the encoding of new information. publication-title: Neuroreport doi: 10.1097/00001756-199605170-00002 – volume: 301 start-page: 846 year: 2003 ident: ref74 article-title: Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. publication-title: Science doi: 10.1126/science.1085818 – start-page: 409 year: 1986 ident: ref10 article-title: A functional account of age differences in memory. – volume: 124 start-page: 2476 year: 2001 ident: ref42 article-title: Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. publication-title: Brain doi: 10.1093/brain/124.12.2476 – volume: 6 start-page: 93 year: 2002 ident: ref53 article-title: Observing the transformation of experience into memory. publication-title: Trends Cog Sci doi: 10.1016/S1364-6613(00)01845-3 – volume: 21 start-page: 744 year: 2011 ident: ref9 article-title: The interrelationship between movement and cognition: theta rhythm and the P300 event-related potential. publication-title: Hippocampus doi: 10.1002/hipo.20792 – volume: 26 start-page: 839 year: 2005 ident: ref82 article-title: Unified segmentation. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 15 start-page: 472 year: 2005 ident: ref8 article-title: Is the hippocampal theta rhythm related to cognition in a non-locomotor place recognition task? publication-title: Hippocampus doi: 10.1002/hipo.20071 – year: 1978 ident: ref2 article-title: The hippocampus as a cognitive map – volume: 33 start-page: 493 year: 2006 ident: ref81 article-title: Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.07.029 – volume: 13 start-page: 903 year: 2001 ident: ref84 article-title: Modeling geometric deformations in EPI time series. publication-title: Neuroimage doi: 10.1006/nimg.2001.0746 – volume: 18 start-page: 340 year: 2008 ident: ref6 article-title: Environmental novelty is signaled by reduction of the hippocampal theta frequency. publication-title: Hippocampus doi: 10.1002/hipo.20394 – volume: 2011 start-page: 852961 year: 2011 ident: ref32 article-title: EEG and MEG analysis in SPM8. publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2011/852961 – volume: 26 start-page: 7523 year: 2006 ident: ref27 article-title: Theta and gamma oscillations predict encoding and retrieval of declarative memory. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1948-06.2006 – volume: 14 start-page: 114 year: 2011 ident: ref11 article-title: Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. publication-title: Nat Neurosci – volume: 65 start-page: 257 year: 2010 ident: ref75 article-title: Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. publication-title: Neuron doi: 10.1016/j.neuron.2009.12.002 – volume: 26 start-page: 407 year: 1969 ident: ref1 article-title: Hippocampal electrical activity and voluntary movement in the rat. publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(69)90092-3 – volume: 22 start-page: 9932 year: 2002 ident: ref7 article-title: Theta-frequency synaptic potentiation in CA1 in vitro distinguishes cognitively impaired from unimpaired aged Fischer 344 rats. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-22-09932.2002 – volume: 23 start-page: 4726 year: 2003 ident: ref33 article-title: Human theta oscillations related to sensorimotor integration and spatial learning. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-11-04726.2003 – volume: 106 start-page: 447 year: 1992 ident: ref38 article-title: Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. publication-title: Behav Neurosci doi: 10.1037/0735-7044.106.3.447 – volume: 28 start-page: 5983 year: 2008 ident: ref20 article-title: Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5001-07.2008 – volume: 100 start-page: 2157 year: 2003 ident: ref52 article-title: Multiple routes to memory: distinct medial temporal lobe processes build item and source memory. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0337195100 – volume: 281 start-page: 1188 year: 1998 ident: ref51 article-title: Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. publication-title: Science doi: 10.1126/science.281.5380.1188 – volume: 2011 start-page: 156869 year: 2011 ident: ref78 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2011/156869 – volume: 11 start-page: 409 year: 1959 ident: ref60 article-title: Hippocampal electrical activity during the development of conditioned reflexes. publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(59)90040-9 – volume: 183 start-page: 19 year: 2009 ident: ref68 article-title: Dynamic causal models for phase coupling. publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2009.06.029 – volume: 164 start-page: 516 year: 2007 ident: ref76 article-title: Performance on a virtual reality spatial memory navigation task in depressed patients. publication-title: Am J Psychiatry doi: 10.1176/ajp.2007.164.3.516 – volume: 10 start-page: 1347 year: 2000 ident: ref79 article-title: Current multipole expansion to estimate lateral extent of neuronal activity: a theoretical analysis. publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.871408 – volume: 17 start-page: 1082 year: 2003 ident: ref16 article-title: Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2003.02522.x – volume: 104 start-page: 5644 year: 2007 ident: ref45 article-title: Learning related striatal and hippocampal theta rhythms during acquisition of a procedural maze task. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0700818104 – volume: 21 start-page: 7414 year: 2010 ident: ref63 article-title: Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6021-09.2010 – volume: 12 start-page: 105 year: 2011 ident: ref66 article-title: The role of phase synchronization in memory processes. publication-title: Nat Reviews Neurosci doi: 10.1038/nrn2979 |
SSID | ssj0022928 |
Score | 2.4088287 |
Snippet | The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution... A multimodal neuroimaging study of virtual spatial navigation extends the role of the hippocampal theta rhythm to human memory and self-directed learning. The... The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001267 |
SubjectTerms | Adolescent Adult Behavior Biology Brain Cognitive ability Electric properties Experiments Functional Neuroimaging Health aspects Hippocampus (Brain) Hippocampus - physiology Human mechanics Humans Independent study Learning Magnetic Resonance Imaging Magnetoencephalography Male Medical imaging Memory Movement Network hubs NMR Nuclear magnetic resonance Physiological aspects Post traumatic stress disorder Rodents Theta Rhythm Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEN9daFGEkDiFbmwnTnoriKogtUhA0d4s27F3I22TqMke-u-ZcbyhQUXlwDUeW8rM2PMmGb8h5G2aWGQ9N3FpmYi5dXmsWcniUhhky2Iq8yX_Z-fZ6QX_skyXN1p9YU3YQA88KO5QmEWmHFVZ5hLuVJFb6iBMsdRxn3zg6Qsxb5dMhVSLFr6rKlLNwHYWLFyaYyI5DDZ63-qq8QxE1PeY_x2UPHf_eELP2k3T3QY__6yivBGWTh6RhwFPRsfDezwm92z9hNwfOkxePyXLs8YTgvexv7RiywgAX6-iq_V1v76MqjryTfq6o8g0kIZW-G2wXkWd3bh4iHYwZV21LYQ8ODg2UegysXpGLk4-_fh4GodmCrHJCt7HeOk9VczknnRswVyiOEQwmlFlF7lWOodkmKea2YUViUohjVDalJZyK0rHCvaczOqmtnskSvWCWgvrCK05Fy7nWjtTIlG8Vk4lc8J22pQmMI1jw4uN9L_PBGQcg3Ik2kAGG8xJPM5qB6aNO-Q_oKFGWeTJ9g_Ae2TwHnmX98zJGzSzRCaMGkttVmrbdfLz15_yGIBXkgqAcH8T-n7-L0LfJkLvgpBrQCNGhTsQoFek4ZpI7k8kYdObyfAe-uVOMZ30UCTN4ISGmTtfvX04GodxUayxq22z7WRBEa0nBWj2xeDZo24BQ-bYpWlOxMTnJ8qfjtTV2pOVM8jo07x4-T-s9Yo8ALxKh6L5fTLrr7b2ADBhr1_77f8Lm0dcrw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCIkXxPcKA0UIiSezJnbihBc0JqaCtCFtDPXNsh27rdQlYUkf9t9z57gtQePjNT5b0X35zj7_jpA3aWwR9dzQ0jJBuXU51axktBQG0bKYynzJ_8lpNr3gX2bpLBy4taGscuMTvaMua4Nn5Afe16YZqOCH5gfFrlF4uxpaaNwmdxC6DJMvMdslXEnhe6si4AwYtWDh6RwT8UGQ1LtGL2uPQ5T4TvO7rckj-G_99KhZ1e1NQejvtZS_bE7HD8j9EFVGh70aPCS3bPWI3O37TF4_JrOT2sOCd9TXvtkyAu3oVHS2uO4Wl9GyivxZfvs-OqohGV3iCWE1j87tytHeJ8KU6bJpYOMD97GKAirr_Am5OP707WhKQ0sFarKCdxSfvqeKmdxDj02YixWHfSzJEmUnuVY6h5SYp5rZiRWxSiGZUNqUNuFWlI4V7CkZVXVl90iU6kliLawjtOZcuJxr7UyJcPFaORWPCdtwU5qAN45tL1bSX6IJyDt65kiUgQwyGBO6ndX0eBv_oP-IgtrSIlq2_1BfzWUwPinMJFMuUVnmYu5UkdvEQajDUsd9Ajsmr1HMEvEwKiy4mat128rPX7_LQwi_4lRAIPcnovPT_yE6GxC9DUSuBo4YFV5CAF8RjGtAuT-gBNM3g-E91MsNY1q5MxKYudHVm4ej7TAuipV2la3XrSwSjNnjAjj7rNfsLW8hksyxV9OYiIHOD5g_HKmWCw9ZziCvT_Pi-d__6gW5B_Fo0hfF75NRd7W2LyHm6_Qrb9g_AW4xU60 priority: 102 providerName: ProQuest |
Title | Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22389627 https://www.proquest.com/docview/1303656318 https://www.proquest.com/docview/926508197 https://pubmed.ncbi.nlm.nih.gov/PMC3289589 https://doaj.org/article/7c06af2a66f14fa98e2f21535f424156 http://dx.doi.org/10.1371/journal.pbio.1001267 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLW2Tki8IL5XGFWEkHjK1NhOnCAhtKFNA9QCg6K-WbZjt5FKUppUov-ea-dDBHViL32Iry31-tr33MQ-B6FXYaAt67nyU02YT7WJfUlS4qdMWbYsIiJ35H8yja5m9OM8nB-gVrO1cWC5t7SzelKzzer096_dO1jwb51qAwvaTqdrmRWOUwhH7BAdQW5iVsxhQrvvChgnTm3VUtDAMmekuUx30yi9ZOU4_bude7BeFeU-WPrv6cq_0tXlfXSvwZneWR0YD9CBzh-iO7Xy5O4Rmk8KRxRe-e4yi049AIKV8DbLXbX86WW558T7yjeeKqA8zew7w3zhlXpl_DoLQpdltl5DKoQNZeU16hOLx2h2efH9_ZXfiCz4Kkpo5dvL8KEgKnZkZGNiAkEhs-EICz2OpZAxFMk0lESPNQtECOWFkCrVmGqWGpKQJ2iQF7k-Rl4ox1hrGIdJSSkzMZXSqNQSyEthRDBEpPUmVw0DuRXCWHH3WY1BJVI7h9s54M0cDJHf9VrXDBz_sT-3E9XZWv5s96DYLHizHDlT40gYLKLIBNSIJNbYAPghoaGupB2il3aauWXIyO0RnIXYliX_8PkHPwNAFoQMoN1NRt-mtzG67hm9boxMAR5RorkbAX619Fw9y5OeJWwGqtd8bOOydUzJHUQJI9i5oWcbq_ubva7ZDmrP3uW62JY8wRbFBwl49mkd2Z1vAVvGVr1piFgv5nvO77fk2dKRmBOo9MM4eXbrf_4c3QWwiusT8ydoUG22-gUAwkqO0CGbsxE6Or-Yfrkeudcq8Pvpazxyq_8Pl6hjIA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIgQviO8VBkQIxFNYYidxgoTQGEwtW4u0D9S3zE7stlJJwpIK9Z_ib-TOSVqCxsfLXuNzFP3ufL6Lz78j5IXvKmQ9T-xUMW57Soe2ZCmzU54gWxYTgSn5H42DwZn3aeJPtsiP9i4MllW2PtE46jRP8B_5rvG1fgAm-K74ZmPXKDxdbVto1GZxqFbfIWUr3w4_gH5fUnrw8XR_YDddBewkiLzKxtvfvmBJaNi3HKZd4YErpwEVygmlkCFkhZ4vmXIUd4UP8bSQSaqop3iqGZIvgcu_BhuvgyWEfLJJ8GhkerkiwQ04Ec6aq3qMu7uNZbwu5Dw3vEfUdLbfbIWmY8B6X-gVi7y8LOj9vXbzl83w4Da51USx1l5tdnfIlsrukut1X8vVPTIZ5YaGvLJNrZ1KLbDGSljHs1U1-2rNM8ucHZRvrP0ckJzjH8lsap2ohbZrHwxTBvOigI0W3NXCalhgp_fJ2ZWA_YD0sjxT28TypUOVgvdwKT2P69CTUicp0tNLoYXbJ6xFM04afnNss7GIzaEdhzynBidGHcSNDvrEXs8qan6Pf8i_R0WtZZGd2zzIL6Zxs9hjnjiB0FQEgXY9LaJQUQ2hFfO1ZxLmPnmOao6RfyPDAp-pWJZlPPz8Jd6DcM_1OQSOfxI6Gf-P0HFH6FUjpHNAJBHNzQvAFcm_OpI7HUlwNUlneBvtsgWmjDeLEma2tnr5sLUexpdiZV-m8mUZRxRzBDcCZB_Wlr3GFiLXEHtD9Qnv2HwH_O5INp8ZinRGw8gPo0d__6pn5MbgdHQUHw3Hh4_JTYiFaV2Qv0N61cVSPYF4s5JPzSK3yPlVe5WfGJ-PHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviO8VBkQIxFNoYydxgoTQ2Khaxgra2NQ3Yyd2W6kkYUmF-q_x13HnpC1B4-Nlr_E5iu7OP9_F598R8izwNLKeJ26qGXd9bSJXsZS5KU-QLYvJ0Jb8H43Cwan_fhyMt8iP1V0YLKtcYaIF6jRP8B9512JtEIILdk1TFvHpoP-m-OZiByk8aV2106hd5FAvv0P6Vr4eHoCtn1Paf_d5f-A2HQbcJIz9ysWb4IFkSWSZuHrMeNIHWKchlboXKakiyBD9QDHd09yTAcTWUiWppr7mqWFIxATwf4Uz2DZhLfHxJtmjse3rimQ3ACicNdf2GPe6jZe8LNQstxxI1Ha532yLtnvAeo_YLuZ5eVEA_Hsd5y8bY_8mudFEtM5e7YK3yJbObpOrdY_L5R0yPsotJXnl2ro7nTrgmZV0jqfLavrVmWWOPUcoXzn7OWhyhn8ns4lzoufGrfEYpgxmRQGbLkDX3GkYYSd3yemlKPse2c7yTO8QJ1A9qjW8hyvl-9xEvlImSZGqXkkjvQ5hK22KpOE6x5Ybc2EP8DjkPLVyBNpANDboEHc9q6i5Pv4h_xYNtZZFpm77ID-fiGbhC570QmmoDEPj-UbGkaYGwiwWGN8mzx3yFM0skIsjQ6-eyEVZiuHHM7EHoZ8XcAgi_yR0MvofoeOW0ItGyOSgkUQ2tzBAr0gE1pLcbUkC7CSt4R30y5ViSrFZoDBz5asXDzvrYXwpVvllOl-UIqaYL3gxaPZ-7dlr3UIUG2GfqA7hLZ9vKb89ks2mli6d0SgOovjB37_qCbkGeCI-DEeHD8l1CItpXZu_S7ar84V-BKFnpR7bNe6QL5cNKj8BBwmTUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Movement-related+theta+rhythm+in+humans%3A+coordinating+self-directed+hippocampal+learning&rft.jtitle=PLoS+biology&rft.au=Kaplan%2C+Raphael&rft.au=Doeller%2C+Christian+F&rft.au=Barnes%2C+Gareth+R&rft.au=Litvak%2C+Vladimir&rft.date=2012-02-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.volume=10&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pbio.1001267&rft.externalDocID=A283157063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |