PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation

Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitati...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 17; pp. 80 - 89
Main Authors Husch, Andreas, V. Petersen, Mikkel, Gemmar, Peter, Goncalves, Jorge, Hertel, Frank
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2213-1582
2213-1582
DOI10.1016/j.nicl.2017.10.004

Cover

Loading…
Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. •A fully automated method for DBS electrode localization•Reconstruction of complete electrode trajectories including bending by brain shift•Automatic detection of individual contacts in high-resolution CT data•Very high accuracy shown using custom phantom and robustness shown on clinical data•Publicly available toolbox for convenient use
AbstractList Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of  = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.
Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.
Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. •A fully automated method for DBS electrode localization•Reconstruction of complete electrode trajectories including bending by brain shift•Automatic detection of individual contacts in high-resolution CT data•Very high accuracy shown using custom phantom and robustness shown on clinical data•Publicly available toolbox for convenient use
Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N  = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. • A fully automated method for DBS electrode localization • Reconstruction of complete electrode trajectories including bending by brain shift • Automatic detection of individual contacts in high-resolution CT data • Very high accuracy shown using custom phantom and robustness shown on clinical data • Publicly available toolbox for convenient use
AbstractDeep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N= 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.
Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.
Author Hertel, Frank
Gemmar, Peter
Goncalves, Jorge
Husch, Andreas
V. Petersen, Mikkel
AuthorAffiliation c Trier University of Applied Sciences, Schneidershof, Trier, Germany
d Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
b Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg
a National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg
AuthorAffiliation_xml – name: a National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg
– name: b Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg
– name: c Trier University of Applied Sciences, Schneidershof, Trier, Germany
– name: d Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0001-9404-5127
  surname: Husch
  fullname: Husch, Andreas
  email: husch.andreas@chl.lu
  organization: National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg
– sequence: 2
  givenname: Mikkel
  surname: V. Petersen
  fullname: V. Petersen, Mikkel
  organization: Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
– sequence: 3
  givenname: Peter
  surname: Gemmar
  fullname: Gemmar, Peter
  organization: Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg
– sequence: 4
  givenname: Jorge
  orcidid: 0000-0002-5228-6165
  surname: Goncalves
  fullname: Goncalves, Jorge
  organization: Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg
– sequence: 5
  givenname: Frank
  surname: Hertel
  fullname: Hertel, Frank
  organization: National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29062684$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1r3TAQNCWlSdP8gR6Kjr28V0m2ZbuUQHikbSDQ0o-zkKV1IleWXiU5kH_fdV5SkkBTXbTszszC7Lws9nzwUBSvGV0zysS7ce2tdmtOWYONNaXVs-KAc1auWN3yvXv1fnGU0kjxtZQ2Qrwo9nlHBRdtdVD4r2pz-o2syAkZZueuiZpzmFQGQybIl8GQIUQCDnSOwQDJUY1Yh4hIb4gOPiudSQSsUo6zzjZ4Yj0xAFvSR4VlynaanVomr4rng3IJjm7_w-Lnx9Mfm8-r8y-fzjYn5ystujKvuoH3De1UCZRC1bYDG4aq5rrjNa-10pzxvjRNLUxPS85FrxhvOqVEJ2iP9pSHxdlO1wQ1ym20k4rXMigrbxohXkgVMxoIsuVgTAlD07ZlNWjoO90p2lZ11UNVCY1axzut7dxPYDR4NME9EH048fZSXoQrWYuqRsdR4O2tQAy_Z0hZTjZpcE55CHOSrKtrKsq2qRH65v6uv0vuDoaAdgfQMaQUYZDa5htrcbV1klG5xEOOcomHXOKx9DAeSOWPqHfqT5I-7EiA17qyEGXSFrwGY_HmGe20T9OPH9G1s4hS7hdcQxrDHD3mQDKZuKTy-xLaJbOsKSlH91Dg_b8F_rf9Dxxi_M8
CitedBy_id crossref_primary_10_1016_j_clinph_2021_03_037
crossref_primary_10_1016_j_nicl_2018_09_030
crossref_primary_10_1038_s41467_024_55242_6
crossref_primary_10_1016_j_nbd_2024_106689
crossref_primary_10_1002_acn3_51463
crossref_primary_10_3233_JPD_230200
crossref_primary_10_1073_pnas_2314918121
crossref_primary_10_1159_000541151
crossref_primary_10_1007_s44194_024_00040_x
crossref_primary_10_1038_s41467_020_16734_3
crossref_primary_10_1016_j_neurom_2022_01_013
crossref_primary_10_1016_j_expneurol_2022_114135
crossref_primary_10_1002_mds_28952
crossref_primary_10_1093_brain_awz417
crossref_primary_10_1016_j_biotno_2024_08_001
crossref_primary_10_1016_j_nbd_2021_105348
crossref_primary_10_1016_j_wneu_2024_05_150
crossref_primary_10_1016_j_nicl_2024_103591
crossref_primary_10_1186_s12883_021_02148_1
crossref_primary_10_1159_000510883
crossref_primary_10_3390_brainsci12060755
crossref_primary_10_1038_s41582_020_00426_z
crossref_primary_10_1111_jon_13133
crossref_primary_10_1016_j_parkreldis_2019_08_017
crossref_primary_10_1038_s41593_024_01570_1
crossref_primary_10_1016_j_jneumeth_2018_09_009
crossref_primary_10_1080_03772063_2021_1962742
crossref_primary_10_1016_j_biopsych_2023_12_010
crossref_primary_10_1016_j_neuroimage_2020_117330
crossref_primary_10_1093_brain_awab258
crossref_primary_10_1038_s41398_022_01830_3
crossref_primary_10_3390_bioengineering10080898
crossref_primary_10_1093_neuros_nyz544
crossref_primary_10_1002_ana_26324
crossref_primary_10_1073_pnas_2417617122
crossref_primary_10_1016_j_brs_2025_03_008
crossref_primary_10_1016_j_isci_2023_107066
crossref_primary_10_1227_neu_0000000000002600
crossref_primary_10_3233_JPD_212997
crossref_primary_10_1016_j_nicl_2020_102486
crossref_primary_10_1016_j_eplepsyres_2025_107516
crossref_primary_10_1016_j_nicl_2022_102971
crossref_primary_10_3389_fneur_2023_1238743
crossref_primary_10_1093_braincomms_fcad238
crossref_primary_10_1111_ner_13109
crossref_primary_10_1088_1741_2552_acbee1
crossref_primary_10_1093_brain_awaa394
crossref_primary_10_1227_neu_0000000000002836
crossref_primary_10_1523_ENEURO_0060_18_2018
crossref_primary_10_1109_TBME_2020_3006765
crossref_primary_10_1016_j_brs_2024_01_006
crossref_primary_10_1002_acn3_52067
crossref_primary_10_1016_j_clinph_2023_07_007
crossref_primary_10_1038_s41591_024_03306_x
crossref_primary_10_1016_j_neuroimage_2020_117307
crossref_primary_10_1186_s12967_021_03110_y
crossref_primary_10_1111_ner_13217
crossref_primary_10_52294_001c_129658
crossref_primary_10_1038_s41467_023_41128_6
crossref_primary_10_1016_j_wneu_2024_04_055
crossref_primary_10_1016_j_brs_2018_01_031
crossref_primary_10_1038_s41467_024_48731_1
crossref_primary_10_3390_brainsci11111450
crossref_primary_10_1088_1741_2552_ad2a36
crossref_primary_10_1159_000530462
crossref_primary_10_1016_j_neuroimage_2022_119320
crossref_primary_10_3233_JPD_212778
crossref_primary_10_1016_j_nicl_2021_102746
crossref_primary_10_1038_s41598_021_88114_w
crossref_primary_10_1159_000505702
crossref_primary_10_1007_s00406_023_01683_x
crossref_primary_10_1159_000539398
crossref_primary_10_1002_mds_28878
crossref_primary_10_3390_jcm12247561
crossref_primary_10_3389_fneur_2019_00314
crossref_primary_10_1159_000495413
crossref_primary_10_1038_s41531_024_00812_0
crossref_primary_10_3171_2021_2_JNS204026
crossref_primary_10_3389_fnhum_2019_00163
crossref_primary_10_1016_j_clinph_2019_02_011
crossref_primary_10_1016_j_neurom_2022_04_040
crossref_primary_10_1016_j_neuroimage_2022_119552
crossref_primary_10_7554_eLife_57445
crossref_primary_10_1227_neu_0000000000002536
crossref_primary_10_1016_j_nicl_2018_10_016
crossref_primary_10_3390_jcm10163468
crossref_primary_10_1016_j_nicl_2023_103449
crossref_primary_10_3389_fnsys_2021_747681
crossref_primary_10_1007_s00415_022_11266_w
crossref_primary_10_1016_j_neuroimage_2020_117018
crossref_primary_10_1093_brain_awz285
crossref_primary_10_5334_tohm_904
crossref_primary_10_1016_j_neurol_2020_02_009
crossref_primary_10_1002_ana_25958
crossref_primary_10_1073_pnas_2114985119
crossref_primary_10_1017_cjn_2025_29
crossref_primary_10_1111_ner_13352
crossref_primary_10_1007_s00415_023_12095_1
crossref_primary_10_1007_s00701_023_05806_0
crossref_primary_10_1002_mds_29830
crossref_primary_10_1111_ner_13356
crossref_primary_10_1016_j_brs_2024_05_013
crossref_primary_10_1523_JNEUROSCI_1366_24_2024
crossref_primary_10_3171_2020_2_JNS193226
crossref_primary_10_1002_mdc3_14195
crossref_primary_10_1007_s00429_023_02733_9
crossref_primary_10_47924_neurotarget202176
crossref_primary_10_1016_j_neuroimage_2023_119862
crossref_primary_10_1016_j_neuroimage_2025_121101
crossref_primary_10_1093_braincomms_fcac063
crossref_primary_10_1016_j_neurom_2024_02_002
crossref_primary_10_3233_JPD_230181
crossref_primary_10_1183_13993003_01156_2024
crossref_primary_10_1016_j_brs_2023_08_020
crossref_primary_10_1016_j_neuroimage_2018_09_072
crossref_primary_10_1016_j_clinph_2024_03_012
crossref_primary_10_1016_j_nicl_2021_102846
crossref_primary_10_1177_19714009211036689
crossref_primary_10_1016_j_jdbs_2024_11_002
crossref_primary_10_1016_j_nbd_2020_105134
crossref_primary_10_1227_neu_0000000000002484
crossref_primary_10_1016_j_wneu_2020_04_240
crossref_primary_10_3389_fnhum_2022_925283
crossref_primary_10_1016_j_brs_2021_04_005
crossref_primary_10_1126_scitranslmed_abo1800
crossref_primary_10_1016_j_nicl_2022_103185
crossref_primary_10_1159_000529961
crossref_primary_10_1002_ana_26674
crossref_primary_10_1016_j_heliyon_2024_e31475
crossref_primary_10_1016_j_neuroimage_2018_08_068
crossref_primary_10_1002_ana_25567
crossref_primary_10_1002_acn3_589
crossref_primary_10_1016_j_brs_2019_05_001
crossref_primary_10_1007_s11548_018_1740_8
crossref_primary_10_1016_j_biopsych_2021_04_006
crossref_primary_10_1016_j_bpsc_2022_10_005
crossref_primary_10_1038_s41467_022_34510_3
crossref_primary_10_1016_j_biopsych_2023_01_017
crossref_primary_10_1093_neuros_nyab195
crossref_primary_10_1080_21681163_2018_1523750
crossref_primary_10_1136_bcr_2020_239316
crossref_primary_10_3390_brainsci10121015
crossref_primary_10_1016_j_neurom_2023_09_003
crossref_primary_10_1016_j_wnsx_2024_100342
crossref_primary_10_7554_eLife_65444
crossref_primary_10_1159_000494738
crossref_primary_10_1093_brain_awac009
crossref_primary_10_1038_s41531_024_00848_2
crossref_primary_10_2176_jns_nmc_2023_0254
crossref_primary_10_1111_pcn_13619
crossref_primary_10_1111_ner_13493
crossref_primary_10_1055_s_0043_1764416
crossref_primary_10_1002_ana_25734
crossref_primary_10_1002_ana_25975
crossref_primary_10_1016_j_parkreldis_2022_11_006
crossref_primary_10_1159_000519917
crossref_primary_10_1016_j_neurom_2023_04_471
Cites_doi 10.1002/hbm.23039
10.3174/ajnr.A5153
10.1212/WNL.0000000000000315
10.1016/j.jneumeth.2009.12.016
10.1016/j.neuroimage.2004.07.037
10.1056/NEJMoa060281
10.1002/mds.27042
10.1016/S1474-4422(13)70294-1
10.1159/000271823
10.1016/j.neuroimage.2014.12.002
10.1056/NEJMoa1205158
10.1002/mds.20957
10.1227/NEU.0000000000000540
10.1212/WNL.46.4.1150
10.3171/2016.4.JNS1624
10.1093/brain/awt151
10.1007/s11548-014-1007-y
10.1002/ana.24974
10.1056/NEJM200002173420703
10.1371/journal.pone.0176132
10.1016/j.clinph.2003.10.033
10.3174/ajnr.A2906
10.1007/s11548-013-0911-x
10.1002/mds.10163
10.1002/mds.25006
10.1007/s101430050014
10.1002/mds.10162
10.1016/j.wneu.2010.12.003
10.1002/mds.25665
10.1007/s00701-009-0393-3
10.1159/000209296
10.1016/j.neuroimage.2017.07.012
10.1056/NEJMoa042187
ContentType Journal Article
Copyright 2017 The Authors
The Authors
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: The Authors
– notice: 2017 The Authors 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2017.10.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE





MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 89
ExternalDocumentID oai_doaj_org_article_82edd3ef78834fceb9c9a08454be446c
PMC5645007
29062684
10_1016_j_nicl_2017_10_004
S2213158217302450
1_s2_0_S2213158217302450
Genre Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c693t-9f2b709a3e00e488f1ff452c92525cac212b3d756db03226ba1279aa6960b1013
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:31:58 EDT 2025
Thu Aug 21 14:02:29 EDT 2025
Thu Jul 10 23:07:14 EDT 2025
Thu Apr 03 07:01:38 EDT 2025
Tue Jul 01 01:09:39 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Wed May 17 01:21:53 EDT 2023
Sun Feb 23 10:19:27 EST 2025
Tue Aug 26 16:33:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-9f2b709a3e00e488f1ff452c92525cac212b3d756db03226ba1279aa6960b1013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9404-5127
0000-0002-5228-6165
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2017.10.004
PMID 29062684
PQID 1955063875
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_82edd3ef78834fceb9c9a08454be446c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5645007
proquest_miscellaneous_1955063875
pubmed_primary_29062684
crossref_citationtrail_10_1016_j_nicl_2017_10_004
crossref_primary_10_1016_j_nicl_2017_10_004
elsevier_sciencedirect_doi_10_1016_j_nicl_2017_10_004
elsevier_clinicalkeyesjournals_1_s2_0_S2213158217302450
elsevier_clinicalkey_doi_10_1016_j_nicl_2017_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Coenen, Allert, Paus, Kronenbürger, Urbach, Mädler (bb0020) 2014; 75
McIntyre, Mori, Sherman, Thakor, Vitek (bb0125) 2004; 115
Krack, Fraix, Mendes, Benabid, Pollak (bb0100) 2002; 17
Vidailhet, Vercueil, Houeto, Krystkowiak, Benabid, Cornu, Lagrange, Tézenas du Montcel, Dormont, Grand, Blond, Detante, Pillon, Ardouin, Agid, Destée, Pollak (bb0165) 2005; 352
Horn, Kühn (bb0080) 2015; 107
Husch, Gemmar, Lohscheller, Bernard, Hertel (bb0095) 2015
Mahlknecht, Akram, Georgiev, Tripoliti, Candelario, Zacharia, Zrinzo, Hyam, Hariz, Foltynie, Rothwell, Limousin (bb0120) 2017; 32
Paek, Kim, Yoon, Heo, Kim, Kim, Lim, Kim, Kim, Han, Kim, Jeon (bb0130) 2011; 75
Hebb, Miller (bb0065) 2010; 187
Lauro, Vanegas-Arroyave, Huang, Taylor, Zaghloul, Lungu, Saad, Horovitz (bb0110) 2016; 37
Hemm, Coste, Gabrillargues, Ouchchane, Sarry, Caire, Vassal, Nuti, Derost, Durif, Lemaire (bb0075) 2009; 151
Volkmann, Herzog, Kopper, Deuschl (bb0170) 2002; 17
da Silva, Rozanski, Cunha (bb0025) 2015
Akram, Sotiropoulos, Jbabdi, Georgiev, Mahlknecht, Hyam, Foltynie, Limousin, De Vita, Jahanshahi, Hariz, Ashburner, Behrens, Zrinzo (bb0005) 2017; 158
Petersen, Lund, Sunde, Frandsen, Rosendal, Juul, Østergaard (bb0135) 2017; 126
Witt, Granert, Daniels, Volkmann, Falk, van Eimeren, Deuschl (bb0185) 2013; 136
Horn, Reich, Vorwerk, Li, Wenzel, Fang, Schmitz-Hübsch, Nickl, Kupsch, Volkmann, Kühn, Fox (bb0085) 2017; 82
Madler, Coenen (bb0115) 2012; 33
Lalys, Haegelen, D’albis, Jannin (bb0105) 2014; 9
Deuschl, Schade-Brittinger, Krack, Volkmann, Schäfer, Bötzel, Daniels, Deutschländer, Dillmann, Eisner, Gruber, Hamel, Herzog, Hilker, Klebe, Kloss, Koy, Krause, Kupsch, Lorenz, Lorenzl, Mehdorn, Moringlane, Oertel, Pinsker, Reichmann, Reuss, Schneider, Schnitzler, Steude, Sturm, Timmermann, Tronnier, Trottenberg, Wojtecki, Wolf, Poewe, Voges (bb0040) 2006; 355
D’Albis, Haegelen, Essert, Fernández-Vidal, Lalys, Jannin (bb0030) 2015; 10
Plantinga, Temel, Duchin, UludaÄ, Patriat, Roebroeck, Kuijf, Jahanshahi, Ter Haar Romenij, Vitek, Harel (bb0140) 2016
Chen, Hallmann, Romero, Wang, Astrom, Ryzhkov, Nijlunsing, Meine (bb0015) 2014; 9
Hubble, Busenbark, Wilkinson, Penn, Lyons, Koller (bb0090) 1996; 46
Hariz, Blomstedt, Zrinzo (bb0060) 2013; 28
Wodarg, Herzog, Reese, Falk, Pinsker, Steigerwald, Jansen, Deuschl, Mehdorn, Volkmann (bb0190) 2012; 27
Tournier, Calamante, Gadian, Connelly (bb0160) 2004; 23
D’Haese, Pallavaram, Konrad, Neimat, Fitzpatrick, Dawant (bb0045) 2010; 88
Schuepbach, Rau, Knudsen, Volkmann, Krack, Timmermann, Hälbig, Hesekamp, Navarro, Meier, Falk, Mehdorn, Paschen, Maarouf, Barbe, Fink, Kupsch, Gruber, Schneider, Seigneuret, Kistner, Chaynes, Ory-Magne, Brefel Courbon, Vesper, Schnitzler, Wojtecki, Houeto, Bataille, Maltête, Damier, Raoul, Sixel-Doering, Hellwig, Gharabaghi, Krüger, Pinsker, Amtage, Régis, Witjas, Thobois, Mertens, Kloss, Hartmann, Oertel, Post, Speelman, Agid, Schade-Brittinger, Deuschl (bb0150) 2013; 368
Welter, Schüpbach, Czernecki, Karachi, Fernandez-Vidal, Golmard, Serra, Navarro, Welaratne, Hartmann, Mesnage, Pineau, Cornu, Pidoux, Worbe, Zikos, Grabli, Galanaud, Bonnet, Belaid, Dormont, Vidailhet, Mallet, Houeto, Bardinet, Yelnik, Agid (bb0180) 2014; 82
Grunert, Mäurer, Müller-Forell (bb0050) 1999; 22
Gunalan, Chaturvedi, Howell, Duchin, Lempka, Patriat, Sapiro, Harel, McIntyre (bb0055) 2017; 12
Reinacher, Krüger, Coenen, Shah, Roelz, Jenkner, Egger (bb0145) 2017; 38
Deuschl, Herzog, Kleiner-Fisman, Kubu, Lozano, Lyons, Rodriguez-Oroz, Tamma, Tröster, Vitek, Volkmann, Voon (bb0035) 2006; 21
Wang, Poirier, Guo, Parrent, Peters, Khan (bb0175) 2016; 9784
Hebb, Poliakov (bb0070) 2009; 87
Schuurman, Bosch, Bossuyt, Bonsel, Van Someren, De Bie, Merkus, Speelman (bb0155) 2000; 342
Castrioto, Lhommée, Moro, Krack (bb0010) 2014; 13
Hariz (10.1016/j.nicl.2017.10.004_bb0060) 2013; 28
Schuurman (10.1016/j.nicl.2017.10.004_bb0155) 2000; 342
Chen (10.1016/j.nicl.2017.10.004_bb0015) 2014; 9
Grunert (10.1016/j.nicl.2017.10.004_bb0050) 1999; 22
Reinacher (10.1016/j.nicl.2017.10.004_bb0145) 2017; 38
Tournier (10.1016/j.nicl.2017.10.004_bb0160) 2004; 23
Paek (10.1016/j.nicl.2017.10.004_bb0130) 2011; 75
Hubble (10.1016/j.nicl.2017.10.004_bb0090) 1996; 46
Petersen (10.1016/j.nicl.2017.10.004_bb0135) 2017; 126
Schuepbach (10.1016/j.nicl.2017.10.004_bb0150) 2013; 368
McIntyre (10.1016/j.nicl.2017.10.004_bb0125) 2004; 115
Lalys (10.1016/j.nicl.2017.10.004_bb0105) 2014; 9
Deuschl (10.1016/j.nicl.2017.10.004_bb0040) 2006; 355
Welter (10.1016/j.nicl.2017.10.004_bb0180) 2014; 82
Gunalan (10.1016/j.nicl.2017.10.004_bb0055) 2017; 12
Plantinga (10.1016/j.nicl.2017.10.004_bb0140) 2016
Hemm (10.1016/j.nicl.2017.10.004_bb0075) 2009; 151
Hebb (10.1016/j.nicl.2017.10.004_bb0065) 2010; 187
Akram (10.1016/j.nicl.2017.10.004_bb0005) 2017; 158
Horn (10.1016/j.nicl.2017.10.004_bb0085) 2017; 82
Wodarg (10.1016/j.nicl.2017.10.004_bb0190) 2012; 27
Volkmann (10.1016/j.nicl.2017.10.004_bb0170) 2002; 17
Mahlknecht (10.1016/j.nicl.2017.10.004_bb0120) 2017; 32
Hebb (10.1016/j.nicl.2017.10.004_bb0070) 2009; 87
Castrioto (10.1016/j.nicl.2017.10.004_bb0010) 2014; 13
Wang (10.1016/j.nicl.2017.10.004_bb0175) 2016; 9784
Coenen (10.1016/j.nicl.2017.10.004_bb0020) 2014; 75
Husch (10.1016/j.nicl.2017.10.004_bb0095) 2015
Vidailhet (10.1016/j.nicl.2017.10.004_bb0165) 2005; 352
D’Haese (10.1016/j.nicl.2017.10.004_bb0045) 2010; 88
Krack (10.1016/j.nicl.2017.10.004_bb0100) 2002; 17
Deuschl (10.1016/j.nicl.2017.10.004_bb0035) 2006; 21
D’Albis (10.1016/j.nicl.2017.10.004_bb0030) 2015; 10
Horn (10.1016/j.nicl.2017.10.004_bb0080) 2015; 107
Lauro (10.1016/j.nicl.2017.10.004_bb0110) 2016; 37
Madler (10.1016/j.nicl.2017.10.004_bb0115) 2012; 33
da Silva (10.1016/j.nicl.2017.10.004_bb0025) 2015
Witt (10.1016/j.nicl.2017.10.004_bb0185) 2013; 136
References_xml – volume: 82
  start-page: 67
  year: 2017
  end-page: 78
  ident: bb0085
  article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease
  publication-title: Ann. Neurol.
– start-page: 77
  year: 2015
  end-page: 82
  ident: bb0095
  article-title: Assessment of electrode displacement and deformation with respect to pre-operative planning in deep brain stimulation
  publication-title: Bildverarbeitung für die Medizin 2015: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. März 2015 in Lübeck
– volume: 32
  start-page: 1174
  year: 2017
  end-page: 1182
  ident: bb0120
  article-title: Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
– year: 2016
  ident: bb0140
  article-title: Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI
  publication-title: NeuroImage
– volume: 9
  start-page: S195
  year: 2014
  end-page: S201
  ident: bb0015
  article-title: Combining tubular tracking and skeletonization for fully-automatic and accurate lead localization in CT images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 82
  start-page: 1352
  year: 2014
  end-page: 1361
  ident: bb0180
  article-title: Optimal target localization for subthalamic stimulation in patients with Parkinson disease
  publication-title: Neurology
– volume: 12
  start-page: e0176132
  year: 2017
  ident: bb0055
  article-title: Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example
  publication-title: PLoS One
– volume: 33
  start-page: 1072
  year: 2012
  end-page: 1080
  ident: bb0115
  article-title: Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue
  publication-title: Am. J. Neuroradiol.
– volume: 23
  start-page: 1176
  year: 2004
  end-page: 1185
  ident: bb0160
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: NeuroImage
– volume: 27
  start-page: 874
  year: 2012
  end-page: 879
  ident: bb0190
  article-title: Stimulation site within the MRI-defined STN predicts postoperative motor outcome
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
– volume: 342
  start-page: 461
  year: 2000
  end-page: 468
  ident: bb0155
  article-title: A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor
  publication-title: N. Engl. J. Med.
– volume: 158
  start-page: 332
  year: 2017
  end-page: 345
  ident: bb0005
  article-title: Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in parkinson's disease
  publication-title: NeuroImage
– volume: 10
  start-page: 117
  year: 2015
  end-page: 128
  ident: bb0030
  article-title: Pydbs: an automated image processing workflow for deep brain stimulation surgery
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 87
  start-page: 155
  year: 2009
  end-page: 160
  ident: bb0070
  article-title: Imaging of deep brain stimulation leads using extended Hounsfield unit CT
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 75
  start-page: 517
  year: 2011
  end-page: 524
  ident: bb0130
  article-title: Fusion image-based programming after subthalamic nucleus deep brain stimulation
  publication-title: World Neurosurg.
– volume: 21
  start-page: S219
  year: 2006
  end-page: S237
  ident: bb0035
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
– volume: 115
  start-page: 589
  year: 2004
  end-page: 595
  ident: bb0125
  article-title: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus
  publication-title: Clin. Neurophysiol.
– volume: 107
  start-page: 127
  year: 2015
  end-page: 135
  ident: bb0080
  article-title: Lead-dbs: a toolbox for deep brain stimulation electrode localizations and visualizations
  publication-title: NeuroImage
– volume: 126
  start-page: 1657
  year: 2017
  end-page: 1668
  ident: bb0135
  article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation
  publication-title: J. Neurosurg.
– volume: 187
  start-page: 114
  year: 2010
  end-page: 119
  ident: bb0065
  article-title: Semi-automatic stereotactic coordinate identification algorithm for routine localization of deep brain stimulation electrodes
  publication-title: J. Neurosci. Methods
– volume: 75
  start-page: 657
  year: 2014
  end-page: 669
  ident: bb0020
  article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study
  publication-title: Neurosurgery
– volume: 151
  start-page: 823
  year: 2009
  end-page: 829
  ident: bb0075
  article-title: Contact position analysis of deep brain stimulation electrodes on post-operative CT images
  publication-title: Acta Neurochirurgica
– volume: 37
  start-page: 422
  year: 2016
  end-page: 433
  ident: bb0110
  article-title: Dbsproc: an open source process for DBS electrode localization and tractographic analysis
  publication-title: Hum. Brain Mapp.
– volume: 88
  start-page: 81
  year: 2010
  end-page: 87
  ident: bb0045
  article-title: Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 46
  start-page: 1150
  year: 1996
  end-page: 1153
  ident: bb0090
  article-title: Deep brain stimulation for essential tremor
  publication-title: Neurology
– volume: 38
  start-page: 1111
  year: 2017
  end-page: 1116
  ident: bb0145
  article-title: Determining the orientation of directional deep brain stimulation electrodes using 3d rotational fluoroscopy
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 13
  start-page: 287
  year: 2014
  end-page: 305
  ident: bb0010
  article-title: Mood and behavioural effects of subthalamic stimulation in parkinson's disease
  publication-title: Lancet Neurol.
– volume: 368
  start-page: 610
  year: 2013
  end-page: 622
  ident: bb0150
  article-title: Neurostimulation for Parkinson's disease with early motor complications
  publication-title: N. Engl. J. Med.
– volume: 17
  start-page: S188
  year: 2002
  end-page: S197
  ident: bb0100
  article-title: Postoperative management of subthalamic nucleus stimulation for Parkinson's disease
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
– volume: 17
  start-page: S181
  year: 2002
  end-page: S187
  ident: bb0170
  article-title: Introduction to the programming of deep brain stimulators
  publication-title: Mov. Disord.
– volume: 28
  start-page: 1784
  year: 2013
  end-page: 1792
  ident: bb0060
  article-title: Future of brain stimulation: new targets, new indications, new technology
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
– volume: 9
  start-page: 107
  year: 2014
  end-page: 117
  ident: bb0105
  article-title: Analysis of electrode deformations in deep brain stimulation surgery
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 136
  start-page: 2109
  year: 2013
  end-page: 2119
  ident: bb0185
  article-title: Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial
  publication-title: Brain J. Neurol.
– volume: 355
  start-page: 896
  year: 2006
  end-page: 908
  ident: bb0040
  article-title: A randomized trial of deep-brain stimulation for Parkinson's disease
  publication-title: N. Engl. J. Med.
– volume: 9784
  year: 2016
  ident: bb0175
  article-title: Generation and evaluation of an ultra-high-field Atlas with applications in DBS planning
  publication-title: Proc. SPIE
– volume: 22
  start-page: 173
  year: 1999
  end-page: 187
  ident: bb0050
  article-title: Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging
  publication-title: Neurosurg. Rev.
– volume: 352
  start-page: 459
  year: 2005
  end-page: 467
  ident: bb0165
  article-title: Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia
  publication-title: N. Engl. J. Med.
– start-page: 292
  year: 2015
  end-page: 295
  ident: bb0025
  article-title: A 3D multimodal approach to precisely locate dbs electrodes in the basal ganglia brain region
  publication-title: Proc. 7th Int. IEEE/EMBS Conf. Neural Engineering (NER)
– volume: 37
  start-page: 422
  year: 2016
  ident: 10.1016/j.nicl.2017.10.004_bb0110
  article-title: Dbsproc: an open source process for DBS electrode localization and tractographic analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23039
– volume: 38
  start-page: 1111
  year: 2017
  ident: 10.1016/j.nicl.2017.10.004_bb0145
  article-title: Determining the orientation of directional deep brain stimulation electrodes using 3d rotational fluoroscopy
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5153
– volume: 82
  start-page: 1352
  year: 2014
  ident: 10.1016/j.nicl.2017.10.004_bb0180
  article-title: Optimal target localization for subthalamic stimulation in patients with Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000315
– volume: 187
  start-page: 114
  year: 2010
  ident: 10.1016/j.nicl.2017.10.004_bb0065
  article-title: Semi-automatic stereotactic coordinate identification algorithm for routine localization of deep brain stimulation electrodes
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.12.016
– volume: 23
  start-page: 1176
  issue: 3
  year: 2004
  ident: 10.1016/j.nicl.2017.10.004_bb0160
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.037
– volume: 355
  start-page: 896
  year: 2006
  ident: 10.1016/j.nicl.2017.10.004_bb0040
  article-title: A randomized trial of deep-brain stimulation for Parkinson's disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa060281
– volume: 32
  start-page: 1174
  issue: 8
  year: 2017
  ident: 10.1016/j.nicl.2017.10.004_bb0120
  article-title: Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.27042
– volume: 13
  start-page: 287
  year: 2014
  ident: 10.1016/j.nicl.2017.10.004_bb0010
  article-title: Mood and behavioural effects of subthalamic stimulation in parkinson's disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70294-1
– volume: 88
  start-page: 81
  year: 2010
  ident: 10.1016/j.nicl.2017.10.004_bb0045
  article-title: Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000271823
– volume: 107
  start-page: 127
  year: 2015
  ident: 10.1016/j.nicl.2017.10.004_bb0080
  article-title: Lead-dbs: a toolbox for deep brain stimulation electrode localizations and visualizations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.002
– volume: 368
  start-page: 610
  year: 2013
  ident: 10.1016/j.nicl.2017.10.004_bb0150
  article-title: Neurostimulation for Parkinson's disease with early motor complications
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1205158
– volume: 21
  start-page: S219
  issue: Suppl 14
  year: 2006
  ident: 10.1016/j.nicl.2017.10.004_bb0035
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.20957
– volume: 75
  start-page: 657
  year: 2014
  ident: 10.1016/j.nicl.2017.10.004_bb0020
  article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000000540
– year: 2016
  ident: 10.1016/j.nicl.2017.10.004_bb0140
  article-title: Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI
  publication-title: NeuroImage
– volume: 46
  start-page: 1150
  issue: 4
  year: 1996
  ident: 10.1016/j.nicl.2017.10.004_bb0090
  article-title: Deep brain stimulation for essential tremor
  publication-title: Neurology
  doi: 10.1212/WNL.46.4.1150
– volume: 126
  start-page: 1657
  year: 2017
  ident: 10.1016/j.nicl.2017.10.004_bb0135
  article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation
  publication-title: J. Neurosurg.
  doi: 10.3171/2016.4.JNS1624
– volume: 136
  start-page: 2109
  year: 2013
  ident: 10.1016/j.nicl.2017.10.004_bb0185
  article-title: Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial
  publication-title: Brain J. Neurol.
  doi: 10.1093/brain/awt151
– volume: 10
  start-page: 117
  year: 2015
  ident: 10.1016/j.nicl.2017.10.004_bb0030
  article-title: Pydbs: an automated image processing workflow for deep brain stimulation surgery
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-1007-y
– volume: 9784
  year: 2016
  ident: 10.1016/j.nicl.2017.10.004_bb0175
  article-title: Generation and evaluation of an ultra-high-field Atlas with applications in DBS planning
– volume: 82
  start-page: 67
  year: 2017
  ident: 10.1016/j.nicl.2017.10.004_bb0085
  article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24974
– volume: 342
  start-page: 461
  issue: 7
  year: 2000
  ident: 10.1016/j.nicl.2017.10.004_bb0155
  article-title: A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200002173420703
– volume: 12
  start-page: e0176132
  year: 2017
  ident: 10.1016/j.nicl.2017.10.004_bb0055
  article-title: Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0176132
– volume: 115
  start-page: 589
  year: 2004
  ident: 10.1016/j.nicl.2017.10.004_bb0125
  article-title: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.10.033
– volume: 33
  start-page: 1072
  issue: 6
  year: 2012
  ident: 10.1016/j.nicl.2017.10.004_bb0115
  article-title: Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2906
– start-page: 292
  year: 2015
  ident: 10.1016/j.nicl.2017.10.004_bb0025
  article-title: A 3D multimodal approach to precisely locate dbs electrodes in the basal ganglia brain region
– start-page: 77
  year: 2015
  ident: 10.1016/j.nicl.2017.10.004_bb0095
  article-title: Assessment of electrode displacement and deformation with respect to pre-operative planning in deep brain stimulation
– volume: 9
  start-page: 107
  issue: 1
  year: 2014
  ident: 10.1016/j.nicl.2017.10.004_bb0105
  article-title: Analysis of electrode deformations in deep brain stimulation surgery
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-013-0911-x
– volume: 17
  start-page: S188
  issue: Suppl 3
  year: 2002
  ident: 10.1016/j.nicl.2017.10.004_bb0100
  article-title: Postoperative management of subthalamic nucleus stimulation for Parkinson's disease
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.10163
– volume: 27
  start-page: 874
  year: 2012
  ident: 10.1016/j.nicl.2017.10.004_bb0190
  article-title: Stimulation site within the MRI-defined STN predicts postoperative motor outcome
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.25006
– volume: 22
  start-page: 173
  issue: 4
  year: 1999
  ident: 10.1016/j.nicl.2017.10.004_bb0050
  article-title: Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging
  publication-title: Neurosurg. Rev.
  doi: 10.1007/s101430050014
– volume: 17
  start-page: S181
  issue: S3
  year: 2002
  ident: 10.1016/j.nicl.2017.10.004_bb0170
  article-title: Introduction to the programming of deep brain stimulators
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10162
– volume: 9
  start-page: S195
  issue: 1
  year: 2014
  ident: 10.1016/j.nicl.2017.10.004_bb0015
  article-title: Combining tubular tracking and skeletonization for fully-automatic and accurate lead localization in CT images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 75
  start-page: 517
  year: 2011
  ident: 10.1016/j.nicl.2017.10.004_bb0130
  article-title: Fusion image-based programming after subthalamic nucleus deep brain stimulation
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2010.12.003
– volume: 28
  start-page: 1784
  year: 2013
  ident: 10.1016/j.nicl.2017.10.004_bb0060
  article-title: Future of brain stimulation: new targets, new indications, new technology
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.25665
– volume: 151
  start-page: 823
  year: 2009
  ident: 10.1016/j.nicl.2017.10.004_bb0075
  article-title: Contact position analysis of deep brain stimulation electrodes on post-operative CT images
  publication-title: Acta Neurochirurgica
  doi: 10.1007/s00701-009-0393-3
– volume: 87
  start-page: 155
  year: 2009
  ident: 10.1016/j.nicl.2017.10.004_bb0070
  article-title: Imaging of deep brain stimulation leads using extended Hounsfield unit CT
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000209296
– volume: 158
  start-page: 332
  year: 2017
  ident: 10.1016/j.nicl.2017.10.004_bb0005
  article-title: Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in parkinson's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.012
– volume: 352
  start-page: 459
  year: 2005
  ident: 10.1016/j.nicl.2017.10.004_bb0165
  article-title: Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa042187
SSID ssj0000800766
Score 2.5150027
Snippet Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural...
AbstractDeep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 80
SubjectTerms Algorithms
Brain - diagnostic imaging
Brain - physiology
Deep Brain Stimulation - instrumentation
Deep Brain Stimulation - methods
Electrodes, Implanted
Electronic Data Processing
Humans
Models, Biological
Radiology
Regular
Tomography Scanners, X-Ray Computed
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k14yUjcUCDxI46PpWpVIRUhoFJvlp9iV5CttNsD_56Z2Ik2gNoL18SO45nxPOzxN4S84TZ0YAVcDa5AXwsvfG2b1NU6Bt7HoEJIuA959qk7PRcfL-TFXqkvzAnL8MCZcO97FkPgMUGoxkXy0WmvbdMLKVyEUMaj9gWbtxdMrYsfpMaDSsZaXreyZ-XGTE7uQtRZzOtS78bULrGwSiN4_8I4_e18_plDuWeUTu6Ru8WbpId5FvfJrTg8ILfPynn5QzJ8tkfHX2hNDynus_-i9mq3AR81BppLR1PwWWkphRMihTHW4zY-tBwCxTx263d0jJpnpFm6GmiI8ZI6LC9BQUf8LDXAHpHzk-NvR6d1qbBQ-07zXa0Tc6rRlsemibCUU5uSkMxrJpn01oNdczwo2QXXwMrvnG2Z0tZ2EPc4ICV_TA6GzRCfEio5C31KDtgUhODRKc8VGL5G-GCtDhVpJwobX-DHsQrGDzPlma0NcsUgV_AZcKUib-c-lxl849rWH5Bxc0sEzh4fgDiZIk7mJnGqCJ_Ybqa7qaBN4UOra4dW_-oVt0UhbE1rtsw05iuKI0pjC5qVCdlURM49i8-TfZkbR3w9yaQBhYCnPHaImysYSUPQCVpVyYo8yTI6kwSx_RHeB_53Ib0Lmi3fDKvvI-g4og7Bmnr2P4j8nNyBqfR5J-sFOQD5jS_Bt9u5V-My_g36BEyS
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Kp6QFwQb8JLRuKGwia2E8fHdtWqQipCQKW9WX7CVpBdsdsDf8-M40SEoiJxXK8dWzPjeXkehLzmxrcgBWwJqkBXCidcaarYlip43gUvvY_ohzx_355diHerZnVAlmMuDIZVZt4_8PTErfPIIkNzsV2vF58Yq3mNeZ5ApEwku52LLiXxrY4nPwtqRDI9WeL8Ehfk3JkhzAvrz2KEl3ybgrzETD6lMv4zMXVdDf0zmvI38XR6l9zJeiU9Go5-jxyE_j65dZ5fzh-Q_oNZnnykJT2i6HH_Sc3VfgPaavB0aCJNQXuluSmODxT2uEwOfZjZe4oR7cbtabKfp5qzdN1TH8KWWmw0QYFbfM_dwB6Si9OTz8uzMvdaKF2r-L5UkVlZKcNDVQW41LGOUTTMKdawxhkHEs5yL5vW2wp4QGtNzaQypgULyAIo-SNy2G_68ITQhjPfxWi7jnsheLDScQkisBLOG6N8QeoRwtrlQuTYD-ObHiPOLjViRSNWcAywUpA305rtUIbjxtnHiLhpJpbQTgObH190piHdseA9D1HCOUV0wSqnTNWJRtgANrIrCB_RrscsVeCr8KH1jVvLv60Ku8wadrrWO6YrfY18C9JMK2c34J87vhppUgNrwPce04fNFeykwPwE_iqbgjweaHQCCVb5x0I_cN4Z9c5gNv-nX39N5cex_hDcqaf_ed5n5Db86gY31nNyCCQbXoBit7cv0839BQbOS-M
  priority: 102
  providerName: Elsevier
Title PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158217302450
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217302450
https://dx.doi.org/10.1016/j.nicl.2017.10.004
https://www.ncbi.nlm.nih.gov/pubmed/29062684
https://www.proquest.com/docview/1955063875
https://pubmed.ncbi.nlm.nih.gov/PMC5645007
https://doaj.org/article/82edd3ef78834fceb9c9a08454be446c
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qBfFF_DZVywq-SUqyH9nsg0hbWqpwIurBvS37We-oubZ3BfvfO5tsotGjgi8Hl-xmw8zszG9mJzMIvabaVWAFTA5QoM6ZZTbXRahy6R2tvRPOhRiHnHysTqbsw4zPtlDf7igRcLXRtYv9pKaXZ3s_Lq7fwYZ_-ytXKxaRjWlaYq_N1GK30G2wTCK2cpgkuL9I6Ei0x5eElDQveU3SdzSbHzOyVW1J_5HJ-huS_plZ-ZupOr6P7iWMifc7oXiAtnzzEN2ZpFP0R6j5pA-PPuMc7-MYfb_G-mq9BOTqHe4aSmNAsjg1yHEewxqLNrgPIxuHY3a7tmvc-tJD_Vk8b7Dz_hyb2HQCg-b4njqDPUbT46Ovhyd56ruQ20rSdS4DMaKQmvqi8LDBQxkC48RKwgm32oK1M9QJXjlTgD6ojC6JkFpX4A0ZICV9grabZeOfIcwpcXUIpq6pY4x6IywVYA4LZp3W0mWo7CmsbCpKHntjnKk--2yhIldU5Eq8BlzJ0JthznlXkuPG0QeRccPIWE67vbC8PFVpd6qaeOeoDwLekwXrjbRSFzXjzHjwl22GaM921X-xCjoWHjS_cWmxaZZf9VKuSrUiqlBfojhGaSxB3xLGiwzxYWZCQh3C-eeKr3qZVKAm4tmPbvzyClaS4IqCrhU8Q087GR1IEiv-x6I_8L4j6R3RbHynmX9rS5HHWkSwp3b-iz7P0V34V3cBrRdoGwTWvwSItza7bWgEft_PDnbbPfwTheJQvA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KqKBFwQb7a8jMQNhU1sJ06O7arVFroVglbam-UnpILsqrs98PfMJE5EKCoSV8cTWzPjeXk8Q8hbrl0BWsAkYAqUibDCJjoNRVJ5x0vvpHMB45CL02J-Lj4s8-UOmfVvYTCtMsr-Tqa30jqOTCM2p-u6nn5hLOMZvvMEJmUC_fZbYA0UyNrHy4Mh0IImkWzvLBEgQYj4eKbL88ICtJjiJd-3WV5ipKDaOv4jPXXdDv0znfI3_XR0n9yLhiXd7_b-gOz45iG5vYhX549I80nPDj_ThO5TDLn_pPpquwJz1TvadZGmYL7S2BXHeQprXLQRfZjZOIop7dpuaetAD0Vnad1Q5_2aGuw0QUFc_IjtwB6T86PDs9k8ic0WEltUfJtUgRmZVpr7NPVwqkMWgsiZrVjOcqstqDjDncwLZ1IQAoXRGZOV1gW4QAZQyZ-Q3WbV-GeE5py5MgRTltwJwb2RlkvQgamwTuvKTUjWY1jZWIkcG2J8V33K2YVCqiikCo4BVSbk3QCz7upw3Dj7AAk3zMQa2u3A6vKrikykSuad4z5I2KcI1pvKVjotRS6MByfZTgjvya76Z6ogWOFH9Y1Ly79B-U2UDRuVqQ1TqbrGvxOSD5CjI_DPFd_0PKlANuCFj2786gpWqsD_BAEr8wl52vHogBIs84-VfmC_I-4d4Wz8pam_tfXHsQARnKm9_9zva3JnfrY4USfHpx-fk7vwpexiWi_ILrCvfwlW3ta8ak_xL8KXTwo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PaCER+-+A+fully+automated+method+for+electrode+trajectory+and+contact+reconstruction+in+deep+brain+stimulation&rft.jtitle=NeuroImage+clinical&rft.au=Husch%2C+Andreas&rft.au=V.+Petersen%2C+Mikkel&rft.au=Gemmar%2C+Peter&rft.au=Goncalves%2C+Jorge&rft.date=2018-01-01&rft.pub=Elsevier+Inc&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=17&rft.spage=80&rft.epage=89&rft_id=info:doi/10.1016%2Fj.nicl.2017.10.004&rft.externalDocID=S2213158217302450
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158217X00053%2Fcov150h.gif