PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation
Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitati...
Saved in:
Published in | NeuroImage clinical Vol. 17; pp. 80 - 89 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-1582 2213-1582 |
DOI | 10.1016/j.nicl.2017.10.004 |
Cover
Loading…
Abstract | Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.
•A fully automated method for DBS electrode localization•Reconstruction of complete electrode trajectories including bending by brain shift•Automatic detection of individual contacts in high-resolution CT data•Very high accuracy shown using custom phantom and robustness shown on clinical data•Publicly available toolbox for convenient use |
---|---|
AbstractList | Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of
= 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. •A fully automated method for DBS electrode localization•Reconstruction of complete electrode trajectories including bending by brain shift•Automatic detection of individual contacts in high-resolution CT data•Very high accuracy shown using custom phantom and robustness shown on clinical data•Publicly available toolbox for convenient use Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. • A fully automated method for DBS electrode localization • Reconstruction of complete electrode trajectories including bending by brain shift • Automatic detection of individual contacts in high-resolution CT data • Very high accuracy shown using custom phantom and robustness shown on clinical data • Publicly available toolbox for convenient use AbstractDeep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N= 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care.Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N = 44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. |
Author | Hertel, Frank Gemmar, Peter Goncalves, Jorge Husch, Andreas V. Petersen, Mikkel |
AuthorAffiliation | c Trier University of Applied Sciences, Schneidershof, Trier, Germany d Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark b Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg a National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg |
AuthorAffiliation_xml | – name: a National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg – name: b Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg – name: c Trier University of Applied Sciences, Schneidershof, Trier, Germany – name: d Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark |
Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0001-9404-5127 surname: Husch fullname: Husch, Andreas email: husch.andreas@chl.lu organization: National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg – sequence: 2 givenname: Mikkel surname: V. Petersen fullname: V. Petersen, Mikkel organization: Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark – sequence: 3 givenname: Peter surname: Gemmar fullname: Gemmar, Peter organization: Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg – sequence: 4 givenname: Jorge orcidid: 0000-0002-5228-6165 surname: Goncalves fullname: Goncalves, Jorge organization: Systems Control Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 5 Avenue du Swing, Belvaux, Luxembourg – sequence: 5 givenname: Frank surname: Hertel fullname: Hertel, Frank organization: National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29062684$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1r3TAQNCWlSdP8gR6Kjr28V0m2ZbuUQHikbSDQ0o-zkKV1IleWXiU5kH_fdV5SkkBTXbTszszC7Lws9nzwUBSvGV0zysS7ce2tdmtOWYONNaXVs-KAc1auWN3yvXv1fnGU0kjxtZQ2Qrwo9nlHBRdtdVD4r2pz-o2syAkZZueuiZpzmFQGQybIl8GQIUQCDnSOwQDJUY1Yh4hIb4gOPiudSQSsUo6zzjZ4Yj0xAFvSR4VlynaanVomr4rng3IJjm7_w-Lnx9Mfm8-r8y-fzjYn5ystujKvuoH3De1UCZRC1bYDG4aq5rrjNa-10pzxvjRNLUxPS85FrxhvOqVEJ2iP9pSHxdlO1wQ1ym20k4rXMigrbxohXkgVMxoIsuVgTAlD07ZlNWjoO90p2lZ11UNVCY1axzut7dxPYDR4NME9EH048fZSXoQrWYuqRsdR4O2tQAy_Z0hZTjZpcE55CHOSrKtrKsq2qRH65v6uv0vuDoaAdgfQMaQUYZDa5htrcbV1klG5xEOOcomHXOKx9DAeSOWPqHfqT5I-7EiA17qyEGXSFrwGY_HmGe20T9OPH9G1s4hS7hdcQxrDHD3mQDKZuKTy-xLaJbOsKSlH91Dg_b8F_rf9Dxxi_M8 |
CitedBy_id | crossref_primary_10_1016_j_clinph_2021_03_037 crossref_primary_10_1016_j_nicl_2018_09_030 crossref_primary_10_1038_s41467_024_55242_6 crossref_primary_10_1016_j_nbd_2024_106689 crossref_primary_10_1002_acn3_51463 crossref_primary_10_3233_JPD_230200 crossref_primary_10_1073_pnas_2314918121 crossref_primary_10_1159_000541151 crossref_primary_10_1007_s44194_024_00040_x crossref_primary_10_1038_s41467_020_16734_3 crossref_primary_10_1016_j_neurom_2022_01_013 crossref_primary_10_1016_j_expneurol_2022_114135 crossref_primary_10_1002_mds_28952 crossref_primary_10_1093_brain_awz417 crossref_primary_10_1016_j_biotno_2024_08_001 crossref_primary_10_1016_j_nbd_2021_105348 crossref_primary_10_1016_j_wneu_2024_05_150 crossref_primary_10_1016_j_nicl_2024_103591 crossref_primary_10_1186_s12883_021_02148_1 crossref_primary_10_1159_000510883 crossref_primary_10_3390_brainsci12060755 crossref_primary_10_1038_s41582_020_00426_z crossref_primary_10_1111_jon_13133 crossref_primary_10_1016_j_parkreldis_2019_08_017 crossref_primary_10_1038_s41593_024_01570_1 crossref_primary_10_1016_j_jneumeth_2018_09_009 crossref_primary_10_1080_03772063_2021_1962742 crossref_primary_10_1016_j_biopsych_2023_12_010 crossref_primary_10_1016_j_neuroimage_2020_117330 crossref_primary_10_1093_brain_awab258 crossref_primary_10_1038_s41398_022_01830_3 crossref_primary_10_3390_bioengineering10080898 crossref_primary_10_1093_neuros_nyz544 crossref_primary_10_1002_ana_26324 crossref_primary_10_1073_pnas_2417617122 crossref_primary_10_1016_j_brs_2025_03_008 crossref_primary_10_1016_j_isci_2023_107066 crossref_primary_10_1227_neu_0000000000002600 crossref_primary_10_3233_JPD_212997 crossref_primary_10_1016_j_nicl_2020_102486 crossref_primary_10_1016_j_eplepsyres_2025_107516 crossref_primary_10_1016_j_nicl_2022_102971 crossref_primary_10_3389_fneur_2023_1238743 crossref_primary_10_1093_braincomms_fcad238 crossref_primary_10_1111_ner_13109 crossref_primary_10_1088_1741_2552_acbee1 crossref_primary_10_1093_brain_awaa394 crossref_primary_10_1227_neu_0000000000002836 crossref_primary_10_1523_ENEURO_0060_18_2018 crossref_primary_10_1109_TBME_2020_3006765 crossref_primary_10_1016_j_brs_2024_01_006 crossref_primary_10_1002_acn3_52067 crossref_primary_10_1016_j_clinph_2023_07_007 crossref_primary_10_1038_s41591_024_03306_x crossref_primary_10_1016_j_neuroimage_2020_117307 crossref_primary_10_1186_s12967_021_03110_y crossref_primary_10_1111_ner_13217 crossref_primary_10_52294_001c_129658 crossref_primary_10_1038_s41467_023_41128_6 crossref_primary_10_1016_j_wneu_2024_04_055 crossref_primary_10_1016_j_brs_2018_01_031 crossref_primary_10_1038_s41467_024_48731_1 crossref_primary_10_3390_brainsci11111450 crossref_primary_10_1088_1741_2552_ad2a36 crossref_primary_10_1159_000530462 crossref_primary_10_1016_j_neuroimage_2022_119320 crossref_primary_10_3233_JPD_212778 crossref_primary_10_1016_j_nicl_2021_102746 crossref_primary_10_1038_s41598_021_88114_w crossref_primary_10_1159_000505702 crossref_primary_10_1007_s00406_023_01683_x crossref_primary_10_1159_000539398 crossref_primary_10_1002_mds_28878 crossref_primary_10_3390_jcm12247561 crossref_primary_10_3389_fneur_2019_00314 crossref_primary_10_1159_000495413 crossref_primary_10_1038_s41531_024_00812_0 crossref_primary_10_3171_2021_2_JNS204026 crossref_primary_10_3389_fnhum_2019_00163 crossref_primary_10_1016_j_clinph_2019_02_011 crossref_primary_10_1016_j_neurom_2022_04_040 crossref_primary_10_1016_j_neuroimage_2022_119552 crossref_primary_10_7554_eLife_57445 crossref_primary_10_1227_neu_0000000000002536 crossref_primary_10_1016_j_nicl_2018_10_016 crossref_primary_10_3390_jcm10163468 crossref_primary_10_1016_j_nicl_2023_103449 crossref_primary_10_3389_fnsys_2021_747681 crossref_primary_10_1007_s00415_022_11266_w crossref_primary_10_1016_j_neuroimage_2020_117018 crossref_primary_10_1093_brain_awz285 crossref_primary_10_5334_tohm_904 crossref_primary_10_1016_j_neurol_2020_02_009 crossref_primary_10_1002_ana_25958 crossref_primary_10_1073_pnas_2114985119 crossref_primary_10_1017_cjn_2025_29 crossref_primary_10_1111_ner_13352 crossref_primary_10_1007_s00415_023_12095_1 crossref_primary_10_1007_s00701_023_05806_0 crossref_primary_10_1002_mds_29830 crossref_primary_10_1111_ner_13356 crossref_primary_10_1016_j_brs_2024_05_013 crossref_primary_10_1523_JNEUROSCI_1366_24_2024 crossref_primary_10_3171_2020_2_JNS193226 crossref_primary_10_1002_mdc3_14195 crossref_primary_10_1007_s00429_023_02733_9 crossref_primary_10_47924_neurotarget202176 crossref_primary_10_1016_j_neuroimage_2023_119862 crossref_primary_10_1016_j_neuroimage_2025_121101 crossref_primary_10_1093_braincomms_fcac063 crossref_primary_10_1016_j_neurom_2024_02_002 crossref_primary_10_3233_JPD_230181 crossref_primary_10_1183_13993003_01156_2024 crossref_primary_10_1016_j_brs_2023_08_020 crossref_primary_10_1016_j_neuroimage_2018_09_072 crossref_primary_10_1016_j_clinph_2024_03_012 crossref_primary_10_1016_j_nicl_2021_102846 crossref_primary_10_1177_19714009211036689 crossref_primary_10_1016_j_jdbs_2024_11_002 crossref_primary_10_1016_j_nbd_2020_105134 crossref_primary_10_1227_neu_0000000000002484 crossref_primary_10_1016_j_wneu_2020_04_240 crossref_primary_10_3389_fnhum_2022_925283 crossref_primary_10_1016_j_brs_2021_04_005 crossref_primary_10_1126_scitranslmed_abo1800 crossref_primary_10_1016_j_nicl_2022_103185 crossref_primary_10_1159_000529961 crossref_primary_10_1002_ana_26674 crossref_primary_10_1016_j_heliyon_2024_e31475 crossref_primary_10_1016_j_neuroimage_2018_08_068 crossref_primary_10_1002_ana_25567 crossref_primary_10_1002_acn3_589 crossref_primary_10_1016_j_brs_2019_05_001 crossref_primary_10_1007_s11548_018_1740_8 crossref_primary_10_1016_j_biopsych_2021_04_006 crossref_primary_10_1016_j_bpsc_2022_10_005 crossref_primary_10_1038_s41467_022_34510_3 crossref_primary_10_1016_j_biopsych_2023_01_017 crossref_primary_10_1093_neuros_nyab195 crossref_primary_10_1080_21681163_2018_1523750 crossref_primary_10_1136_bcr_2020_239316 crossref_primary_10_3390_brainsci10121015 crossref_primary_10_1016_j_neurom_2023_09_003 crossref_primary_10_1016_j_wnsx_2024_100342 crossref_primary_10_7554_eLife_65444 crossref_primary_10_1159_000494738 crossref_primary_10_1093_brain_awac009 crossref_primary_10_1038_s41531_024_00848_2 crossref_primary_10_2176_jns_nmc_2023_0254 crossref_primary_10_1111_pcn_13619 crossref_primary_10_1111_ner_13493 crossref_primary_10_1055_s_0043_1764416 crossref_primary_10_1002_ana_25734 crossref_primary_10_1002_ana_25975 crossref_primary_10_1016_j_parkreldis_2022_11_006 crossref_primary_10_1159_000519917 crossref_primary_10_1016_j_neurom_2023_04_471 |
Cites_doi | 10.1002/hbm.23039 10.3174/ajnr.A5153 10.1212/WNL.0000000000000315 10.1016/j.jneumeth.2009.12.016 10.1016/j.neuroimage.2004.07.037 10.1056/NEJMoa060281 10.1002/mds.27042 10.1016/S1474-4422(13)70294-1 10.1159/000271823 10.1016/j.neuroimage.2014.12.002 10.1056/NEJMoa1205158 10.1002/mds.20957 10.1227/NEU.0000000000000540 10.1212/WNL.46.4.1150 10.3171/2016.4.JNS1624 10.1093/brain/awt151 10.1007/s11548-014-1007-y 10.1002/ana.24974 10.1056/NEJM200002173420703 10.1371/journal.pone.0176132 10.1016/j.clinph.2003.10.033 10.3174/ajnr.A2906 10.1007/s11548-013-0911-x 10.1002/mds.10163 10.1002/mds.25006 10.1007/s101430050014 10.1002/mds.10162 10.1016/j.wneu.2010.12.003 10.1002/mds.25665 10.1007/s00701-009-0393-3 10.1159/000209296 10.1016/j.neuroimage.2017.07.012 10.1056/NEJMoa042187 |
ContentType | Journal Article |
Copyright | 2017 The Authors The Authors 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: The Authors – notice: 2017 The Authors 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nicl.2017.10.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 89 |
ExternalDocumentID | oai_doaj_org_article_82edd3ef78834fceb9c9a08454be446c PMC5645007 29062684 10_1016_j_nicl_2017_10_004 S2213158217302450 1_s2_0_S2213158217302450 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c693t-9f2b709a3e00e488f1ff452c92525cac212b3d756db03226ba1279aa6960b1013 |
IEDL.DBID | M48 |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 14:02:29 EDT 2025 Thu Jul 10 23:07:14 EDT 2025 Thu Apr 03 07:01:38 EDT 2025 Tue Jul 01 01:09:39 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Wed May 17 01:21:53 EDT 2023 Sun Feb 23 10:19:27 EST 2025 Tue Aug 26 16:33:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-9f2b709a3e00e488f1ff452c92525cac212b3d756db03226ba1279aa6960b1013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9404-5127 0000-0002-5228-6165 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2017.10.004 |
PMID | 29062684 |
PQID | 1955063875 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_82edd3ef78834fceb9c9a08454be446c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5645007 proquest_miscellaneous_1955063875 pubmed_primary_29062684 crossref_citationtrail_10_1016_j_nicl_2017_10_004 crossref_primary_10_1016_j_nicl_2017_10_004 elsevier_sciencedirect_doi_10_1016_j_nicl_2017_10_004 elsevier_clinicalkeyesjournals_1_s2_0_S2213158217302450 elsevier_clinicalkey_doi_10_1016_j_nicl_2017_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Coenen, Allert, Paus, Kronenbürger, Urbach, Mädler (bb0020) 2014; 75 McIntyre, Mori, Sherman, Thakor, Vitek (bb0125) 2004; 115 Krack, Fraix, Mendes, Benabid, Pollak (bb0100) 2002; 17 Vidailhet, Vercueil, Houeto, Krystkowiak, Benabid, Cornu, Lagrange, Tézenas du Montcel, Dormont, Grand, Blond, Detante, Pillon, Ardouin, Agid, Destée, Pollak (bb0165) 2005; 352 Horn, Kühn (bb0080) 2015; 107 Husch, Gemmar, Lohscheller, Bernard, Hertel (bb0095) 2015 Mahlknecht, Akram, Georgiev, Tripoliti, Candelario, Zacharia, Zrinzo, Hyam, Hariz, Foltynie, Rothwell, Limousin (bb0120) 2017; 32 Paek, Kim, Yoon, Heo, Kim, Kim, Lim, Kim, Kim, Han, Kim, Jeon (bb0130) 2011; 75 Hebb, Miller (bb0065) 2010; 187 Lauro, Vanegas-Arroyave, Huang, Taylor, Zaghloul, Lungu, Saad, Horovitz (bb0110) 2016; 37 Hemm, Coste, Gabrillargues, Ouchchane, Sarry, Caire, Vassal, Nuti, Derost, Durif, Lemaire (bb0075) 2009; 151 Volkmann, Herzog, Kopper, Deuschl (bb0170) 2002; 17 da Silva, Rozanski, Cunha (bb0025) 2015 Akram, Sotiropoulos, Jbabdi, Georgiev, Mahlknecht, Hyam, Foltynie, Limousin, De Vita, Jahanshahi, Hariz, Ashburner, Behrens, Zrinzo (bb0005) 2017; 158 Petersen, Lund, Sunde, Frandsen, Rosendal, Juul, Østergaard (bb0135) 2017; 126 Witt, Granert, Daniels, Volkmann, Falk, van Eimeren, Deuschl (bb0185) 2013; 136 Horn, Reich, Vorwerk, Li, Wenzel, Fang, Schmitz-Hübsch, Nickl, Kupsch, Volkmann, Kühn, Fox (bb0085) 2017; 82 Madler, Coenen (bb0115) 2012; 33 Lalys, Haegelen, D’albis, Jannin (bb0105) 2014; 9 Deuschl, Schade-Brittinger, Krack, Volkmann, Schäfer, Bötzel, Daniels, Deutschländer, Dillmann, Eisner, Gruber, Hamel, Herzog, Hilker, Klebe, Kloss, Koy, Krause, Kupsch, Lorenz, Lorenzl, Mehdorn, Moringlane, Oertel, Pinsker, Reichmann, Reuss, Schneider, Schnitzler, Steude, Sturm, Timmermann, Tronnier, Trottenberg, Wojtecki, Wolf, Poewe, Voges (bb0040) 2006; 355 D’Albis, Haegelen, Essert, Fernández-Vidal, Lalys, Jannin (bb0030) 2015; 10 Plantinga, Temel, Duchin, UludaÄ, Patriat, Roebroeck, Kuijf, Jahanshahi, Ter Haar Romenij, Vitek, Harel (bb0140) 2016 Chen, Hallmann, Romero, Wang, Astrom, Ryzhkov, Nijlunsing, Meine (bb0015) 2014; 9 Hubble, Busenbark, Wilkinson, Penn, Lyons, Koller (bb0090) 1996; 46 Hariz, Blomstedt, Zrinzo (bb0060) 2013; 28 Wodarg, Herzog, Reese, Falk, Pinsker, Steigerwald, Jansen, Deuschl, Mehdorn, Volkmann (bb0190) 2012; 27 Tournier, Calamante, Gadian, Connelly (bb0160) 2004; 23 D’Haese, Pallavaram, Konrad, Neimat, Fitzpatrick, Dawant (bb0045) 2010; 88 Schuepbach, Rau, Knudsen, Volkmann, Krack, Timmermann, Hälbig, Hesekamp, Navarro, Meier, Falk, Mehdorn, Paschen, Maarouf, Barbe, Fink, Kupsch, Gruber, Schneider, Seigneuret, Kistner, Chaynes, Ory-Magne, Brefel Courbon, Vesper, Schnitzler, Wojtecki, Houeto, Bataille, Maltête, Damier, Raoul, Sixel-Doering, Hellwig, Gharabaghi, Krüger, Pinsker, Amtage, Régis, Witjas, Thobois, Mertens, Kloss, Hartmann, Oertel, Post, Speelman, Agid, Schade-Brittinger, Deuschl (bb0150) 2013; 368 Welter, Schüpbach, Czernecki, Karachi, Fernandez-Vidal, Golmard, Serra, Navarro, Welaratne, Hartmann, Mesnage, Pineau, Cornu, Pidoux, Worbe, Zikos, Grabli, Galanaud, Bonnet, Belaid, Dormont, Vidailhet, Mallet, Houeto, Bardinet, Yelnik, Agid (bb0180) 2014; 82 Grunert, Mäurer, Müller-Forell (bb0050) 1999; 22 Gunalan, Chaturvedi, Howell, Duchin, Lempka, Patriat, Sapiro, Harel, McIntyre (bb0055) 2017; 12 Reinacher, Krüger, Coenen, Shah, Roelz, Jenkner, Egger (bb0145) 2017; 38 Deuschl, Herzog, Kleiner-Fisman, Kubu, Lozano, Lyons, Rodriguez-Oroz, Tamma, Tröster, Vitek, Volkmann, Voon (bb0035) 2006; 21 Wang, Poirier, Guo, Parrent, Peters, Khan (bb0175) 2016; 9784 Hebb, Poliakov (bb0070) 2009; 87 Schuurman, Bosch, Bossuyt, Bonsel, Van Someren, De Bie, Merkus, Speelman (bb0155) 2000; 342 Castrioto, Lhommée, Moro, Krack (bb0010) 2014; 13 Hariz (10.1016/j.nicl.2017.10.004_bb0060) 2013; 28 Schuurman (10.1016/j.nicl.2017.10.004_bb0155) 2000; 342 Chen (10.1016/j.nicl.2017.10.004_bb0015) 2014; 9 Grunert (10.1016/j.nicl.2017.10.004_bb0050) 1999; 22 Reinacher (10.1016/j.nicl.2017.10.004_bb0145) 2017; 38 Tournier (10.1016/j.nicl.2017.10.004_bb0160) 2004; 23 Paek (10.1016/j.nicl.2017.10.004_bb0130) 2011; 75 Hubble (10.1016/j.nicl.2017.10.004_bb0090) 1996; 46 Petersen (10.1016/j.nicl.2017.10.004_bb0135) 2017; 126 Schuepbach (10.1016/j.nicl.2017.10.004_bb0150) 2013; 368 McIntyre (10.1016/j.nicl.2017.10.004_bb0125) 2004; 115 Lalys (10.1016/j.nicl.2017.10.004_bb0105) 2014; 9 Deuschl (10.1016/j.nicl.2017.10.004_bb0040) 2006; 355 Welter (10.1016/j.nicl.2017.10.004_bb0180) 2014; 82 Gunalan (10.1016/j.nicl.2017.10.004_bb0055) 2017; 12 Plantinga (10.1016/j.nicl.2017.10.004_bb0140) 2016 Hemm (10.1016/j.nicl.2017.10.004_bb0075) 2009; 151 Hebb (10.1016/j.nicl.2017.10.004_bb0065) 2010; 187 Akram (10.1016/j.nicl.2017.10.004_bb0005) 2017; 158 Horn (10.1016/j.nicl.2017.10.004_bb0085) 2017; 82 Wodarg (10.1016/j.nicl.2017.10.004_bb0190) 2012; 27 Volkmann (10.1016/j.nicl.2017.10.004_bb0170) 2002; 17 Mahlknecht (10.1016/j.nicl.2017.10.004_bb0120) 2017; 32 Hebb (10.1016/j.nicl.2017.10.004_bb0070) 2009; 87 Castrioto (10.1016/j.nicl.2017.10.004_bb0010) 2014; 13 Wang (10.1016/j.nicl.2017.10.004_bb0175) 2016; 9784 Coenen (10.1016/j.nicl.2017.10.004_bb0020) 2014; 75 Husch (10.1016/j.nicl.2017.10.004_bb0095) 2015 Vidailhet (10.1016/j.nicl.2017.10.004_bb0165) 2005; 352 D’Haese (10.1016/j.nicl.2017.10.004_bb0045) 2010; 88 Krack (10.1016/j.nicl.2017.10.004_bb0100) 2002; 17 Deuschl (10.1016/j.nicl.2017.10.004_bb0035) 2006; 21 D’Albis (10.1016/j.nicl.2017.10.004_bb0030) 2015; 10 Horn (10.1016/j.nicl.2017.10.004_bb0080) 2015; 107 Lauro (10.1016/j.nicl.2017.10.004_bb0110) 2016; 37 Madler (10.1016/j.nicl.2017.10.004_bb0115) 2012; 33 da Silva (10.1016/j.nicl.2017.10.004_bb0025) 2015 Witt (10.1016/j.nicl.2017.10.004_bb0185) 2013; 136 |
References_xml | – volume: 82 start-page: 67 year: 2017 end-page: 78 ident: bb0085 article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease publication-title: Ann. Neurol. – start-page: 77 year: 2015 end-page: 82 ident: bb0095 article-title: Assessment of electrode displacement and deformation with respect to pre-operative planning in deep brain stimulation publication-title: Bildverarbeitung für die Medizin 2015: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. März 2015 in Lübeck – volume: 32 start-page: 1174 year: 2017 end-page: 1182 ident: bb0120 article-title: Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. – year: 2016 ident: bb0140 article-title: Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI publication-title: NeuroImage – volume: 9 start-page: S195 year: 2014 end-page: S201 ident: bb0015 article-title: Combining tubular tracking and skeletonization for fully-automatic and accurate lead localization in CT images publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 82 start-page: 1352 year: 2014 end-page: 1361 ident: bb0180 article-title: Optimal target localization for subthalamic stimulation in patients with Parkinson disease publication-title: Neurology – volume: 12 start-page: e0176132 year: 2017 ident: bb0055 article-title: Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example publication-title: PLoS One – volume: 33 start-page: 1072 year: 2012 end-page: 1080 ident: bb0115 article-title: Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue publication-title: Am. J. Neuroradiol. – volume: 23 start-page: 1176 year: 2004 end-page: 1185 ident: bb0160 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: NeuroImage – volume: 27 start-page: 874 year: 2012 end-page: 879 ident: bb0190 article-title: Stimulation site within the MRI-defined STN predicts postoperative motor outcome publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. – volume: 342 start-page: 461 year: 2000 end-page: 468 ident: bb0155 article-title: A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor publication-title: N. Engl. J. Med. – volume: 158 start-page: 332 year: 2017 end-page: 345 ident: bb0005 article-title: Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in parkinson's disease publication-title: NeuroImage – volume: 10 start-page: 117 year: 2015 end-page: 128 ident: bb0030 article-title: Pydbs: an automated image processing workflow for deep brain stimulation surgery publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 87 start-page: 155 year: 2009 end-page: 160 ident: bb0070 article-title: Imaging of deep brain stimulation leads using extended Hounsfield unit CT publication-title: Stereotact. Funct. Neurosurg. – volume: 75 start-page: 517 year: 2011 end-page: 524 ident: bb0130 article-title: Fusion image-based programming after subthalamic nucleus deep brain stimulation publication-title: World Neurosurg. – volume: 21 start-page: S219 year: 2006 end-page: S237 ident: bb0035 article-title: Deep brain stimulation: postoperative issues publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. – volume: 115 start-page: 589 year: 2004 end-page: 595 ident: bb0125 article-title: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus publication-title: Clin. Neurophysiol. – volume: 107 start-page: 127 year: 2015 end-page: 135 ident: bb0080 article-title: Lead-dbs: a toolbox for deep brain stimulation electrode localizations and visualizations publication-title: NeuroImage – volume: 126 start-page: 1657 year: 2017 end-page: 1668 ident: bb0135 article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation publication-title: J. Neurosurg. – volume: 187 start-page: 114 year: 2010 end-page: 119 ident: bb0065 article-title: Semi-automatic stereotactic coordinate identification algorithm for routine localization of deep brain stimulation electrodes publication-title: J. Neurosci. Methods – volume: 75 start-page: 657 year: 2014 end-page: 669 ident: bb0020 article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study publication-title: Neurosurgery – volume: 151 start-page: 823 year: 2009 end-page: 829 ident: bb0075 article-title: Contact position analysis of deep brain stimulation electrodes on post-operative CT images publication-title: Acta Neurochirurgica – volume: 37 start-page: 422 year: 2016 end-page: 433 ident: bb0110 article-title: Dbsproc: an open source process for DBS electrode localization and tractographic analysis publication-title: Hum. Brain Mapp. – volume: 88 start-page: 81 year: 2010 end-page: 87 ident: bb0045 article-title: Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift publication-title: Stereotact. Funct. Neurosurg. – volume: 46 start-page: 1150 year: 1996 end-page: 1153 ident: bb0090 article-title: Deep brain stimulation for essential tremor publication-title: Neurology – volume: 38 start-page: 1111 year: 2017 end-page: 1116 ident: bb0145 article-title: Determining the orientation of directional deep brain stimulation electrodes using 3d rotational fluoroscopy publication-title: AJNR Am. J. Neuroradiol. – volume: 13 start-page: 287 year: 2014 end-page: 305 ident: bb0010 article-title: Mood and behavioural effects of subthalamic stimulation in parkinson's disease publication-title: Lancet Neurol. – volume: 368 start-page: 610 year: 2013 end-page: 622 ident: bb0150 article-title: Neurostimulation for Parkinson's disease with early motor complications publication-title: N. Engl. J. Med. – volume: 17 start-page: S188 year: 2002 end-page: S197 ident: bb0100 article-title: Postoperative management of subthalamic nucleus stimulation for Parkinson's disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. – volume: 17 start-page: S181 year: 2002 end-page: S187 ident: bb0170 article-title: Introduction to the programming of deep brain stimulators publication-title: Mov. Disord. – volume: 28 start-page: 1784 year: 2013 end-page: 1792 ident: bb0060 article-title: Future of brain stimulation: new targets, new indications, new technology publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. – volume: 9 start-page: 107 year: 2014 end-page: 117 ident: bb0105 article-title: Analysis of electrode deformations in deep brain stimulation surgery publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 136 start-page: 2109 year: 2013 end-page: 2119 ident: bb0185 article-title: Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial publication-title: Brain J. Neurol. – volume: 355 start-page: 896 year: 2006 end-page: 908 ident: bb0040 article-title: A randomized trial of deep-brain stimulation for Parkinson's disease publication-title: N. Engl. J. Med. – volume: 9784 year: 2016 ident: bb0175 article-title: Generation and evaluation of an ultra-high-field Atlas with applications in DBS planning publication-title: Proc. SPIE – volume: 22 start-page: 173 year: 1999 end-page: 187 ident: bb0050 article-title: Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging publication-title: Neurosurg. Rev. – volume: 352 start-page: 459 year: 2005 end-page: 467 ident: bb0165 article-title: Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia publication-title: N. Engl. J. Med. – start-page: 292 year: 2015 end-page: 295 ident: bb0025 article-title: A 3D multimodal approach to precisely locate dbs electrodes in the basal ganglia brain region publication-title: Proc. 7th Int. IEEE/EMBS Conf. Neural Engineering (NER) – volume: 37 start-page: 422 year: 2016 ident: 10.1016/j.nicl.2017.10.004_bb0110 article-title: Dbsproc: an open source process for DBS electrode localization and tractographic analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23039 – volume: 38 start-page: 1111 year: 2017 ident: 10.1016/j.nicl.2017.10.004_bb0145 article-title: Determining the orientation of directional deep brain stimulation electrodes using 3d rotational fluoroscopy publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A5153 – volume: 82 start-page: 1352 year: 2014 ident: 10.1016/j.nicl.2017.10.004_bb0180 article-title: Optimal target localization for subthalamic stimulation in patients with Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0000000000000315 – volume: 187 start-page: 114 year: 2010 ident: 10.1016/j.nicl.2017.10.004_bb0065 article-title: Semi-automatic stereotactic coordinate identification algorithm for routine localization of deep brain stimulation electrodes publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.12.016 – volume: 23 start-page: 1176 issue: 3 year: 2004 ident: 10.1016/j.nicl.2017.10.004_bb0160 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.037 – volume: 355 start-page: 896 year: 2006 ident: 10.1016/j.nicl.2017.10.004_bb0040 article-title: A randomized trial of deep-brain stimulation for Parkinson's disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa060281 – volume: 32 start-page: 1174 issue: 8 year: 2017 ident: 10.1016/j.nicl.2017.10.004_bb0120 article-title: Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.27042 – volume: 13 start-page: 287 year: 2014 ident: 10.1016/j.nicl.2017.10.004_bb0010 article-title: Mood and behavioural effects of subthalamic stimulation in parkinson's disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70294-1 – volume: 88 start-page: 81 year: 2010 ident: 10.1016/j.nicl.2017.10.004_bb0045 article-title: Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000271823 – volume: 107 start-page: 127 year: 2015 ident: 10.1016/j.nicl.2017.10.004_bb0080 article-title: Lead-dbs: a toolbox for deep brain stimulation electrode localizations and visualizations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.002 – volume: 368 start-page: 610 year: 2013 ident: 10.1016/j.nicl.2017.10.004_bb0150 article-title: Neurostimulation for Parkinson's disease with early motor complications publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1205158 – volume: 21 start-page: S219 issue: Suppl 14 year: 2006 ident: 10.1016/j.nicl.2017.10.004_bb0035 article-title: Deep brain stimulation: postoperative issues publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.20957 – volume: 75 start-page: 657 year: 2014 ident: 10.1016/j.nicl.2017.10.004_bb0020 article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study publication-title: Neurosurgery doi: 10.1227/NEU.0000000000000540 – year: 2016 ident: 10.1016/j.nicl.2017.10.004_bb0140 article-title: Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI publication-title: NeuroImage – volume: 46 start-page: 1150 issue: 4 year: 1996 ident: 10.1016/j.nicl.2017.10.004_bb0090 article-title: Deep brain stimulation for essential tremor publication-title: Neurology doi: 10.1212/WNL.46.4.1150 – volume: 126 start-page: 1657 year: 2017 ident: 10.1016/j.nicl.2017.10.004_bb0135 article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation publication-title: J. Neurosurg. doi: 10.3171/2016.4.JNS1624 – volume: 136 start-page: 2109 year: 2013 ident: 10.1016/j.nicl.2017.10.004_bb0185 article-title: Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial publication-title: Brain J. Neurol. doi: 10.1093/brain/awt151 – volume: 10 start-page: 117 year: 2015 ident: 10.1016/j.nicl.2017.10.004_bb0030 article-title: Pydbs: an automated image processing workflow for deep brain stimulation surgery publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-1007-y – volume: 9784 year: 2016 ident: 10.1016/j.nicl.2017.10.004_bb0175 article-title: Generation and evaluation of an ultra-high-field Atlas with applications in DBS planning – volume: 82 start-page: 67 year: 2017 ident: 10.1016/j.nicl.2017.10.004_bb0085 article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.24974 – volume: 342 start-page: 461 issue: 7 year: 2000 ident: 10.1016/j.nicl.2017.10.004_bb0155 article-title: A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200002173420703 – volume: 12 start-page: e0176132 year: 2017 ident: 10.1016/j.nicl.2017.10.004_bb0055 article-title: Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example publication-title: PLoS One doi: 10.1371/journal.pone.0176132 – volume: 115 start-page: 589 year: 2004 ident: 10.1016/j.nicl.2017.10.004_bb0125 article-title: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.10.033 – volume: 33 start-page: 1072 issue: 6 year: 2012 ident: 10.1016/j.nicl.2017.10.004_bb0115 article-title: Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A2906 – start-page: 292 year: 2015 ident: 10.1016/j.nicl.2017.10.004_bb0025 article-title: A 3D multimodal approach to precisely locate dbs electrodes in the basal ganglia brain region – start-page: 77 year: 2015 ident: 10.1016/j.nicl.2017.10.004_bb0095 article-title: Assessment of electrode displacement and deformation with respect to pre-operative planning in deep brain stimulation – volume: 9 start-page: 107 issue: 1 year: 2014 ident: 10.1016/j.nicl.2017.10.004_bb0105 article-title: Analysis of electrode deformations in deep brain stimulation surgery publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-013-0911-x – volume: 17 start-page: S188 issue: Suppl 3 year: 2002 ident: 10.1016/j.nicl.2017.10.004_bb0100 article-title: Postoperative management of subthalamic nucleus stimulation for Parkinson's disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.10163 – volume: 27 start-page: 874 year: 2012 ident: 10.1016/j.nicl.2017.10.004_bb0190 article-title: Stimulation site within the MRI-defined STN predicts postoperative motor outcome publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.25006 – volume: 22 start-page: 173 issue: 4 year: 1999 ident: 10.1016/j.nicl.2017.10.004_bb0050 article-title: Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging publication-title: Neurosurg. Rev. doi: 10.1007/s101430050014 – volume: 17 start-page: S181 issue: S3 year: 2002 ident: 10.1016/j.nicl.2017.10.004_bb0170 article-title: Introduction to the programming of deep brain stimulators publication-title: Mov. Disord. doi: 10.1002/mds.10162 – volume: 9 start-page: S195 issue: 1 year: 2014 ident: 10.1016/j.nicl.2017.10.004_bb0015 article-title: Combining tubular tracking and skeletonization for fully-automatic and accurate lead localization in CT images publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 75 start-page: 517 year: 2011 ident: 10.1016/j.nicl.2017.10.004_bb0130 article-title: Fusion image-based programming after subthalamic nucleus deep brain stimulation publication-title: World Neurosurg. doi: 10.1016/j.wneu.2010.12.003 – volume: 28 start-page: 1784 year: 2013 ident: 10.1016/j.nicl.2017.10.004_bb0060 article-title: Future of brain stimulation: new targets, new indications, new technology publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.25665 – volume: 151 start-page: 823 year: 2009 ident: 10.1016/j.nicl.2017.10.004_bb0075 article-title: Contact position analysis of deep brain stimulation electrodes on post-operative CT images publication-title: Acta Neurochirurgica doi: 10.1007/s00701-009-0393-3 – volume: 87 start-page: 155 year: 2009 ident: 10.1016/j.nicl.2017.10.004_bb0070 article-title: Imaging of deep brain stimulation leads using extended Hounsfield unit CT publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000209296 – volume: 158 start-page: 332 year: 2017 ident: 10.1016/j.nicl.2017.10.004_bb0005 article-title: Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in parkinson's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.012 – volume: 352 start-page: 459 year: 2005 ident: 10.1016/j.nicl.2017.10.004_bb0165 article-title: Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa042187 |
SSID | ssj0000800766 |
Score | 2.5150027 |
Snippet | Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural... AbstractDeep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 80 |
SubjectTerms | Algorithms Brain - diagnostic imaging Brain - physiology Deep Brain Stimulation - instrumentation Deep Brain Stimulation - methods Electrodes, Implanted Electronic Data Processing Humans Models, Biological Radiology Regular Tomography Scanners, X-Ray Computed |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k14yUjcUCDxI46PpWpVIRUhoFJvlp9iV5CttNsD_56Z2Ik2gNoL18SO45nxPOzxN4S84TZ0YAVcDa5AXwsvfG2b1NU6Bt7HoEJIuA959qk7PRcfL-TFXqkvzAnL8MCZcO97FkPgMUGoxkXy0WmvbdMLKVyEUMaj9gWbtxdMrYsfpMaDSsZaXreyZ-XGTE7uQtRZzOtS78bULrGwSiN4_8I4_e18_plDuWeUTu6Ru8WbpId5FvfJrTg8ILfPynn5QzJ8tkfHX2hNDynus_-i9mq3AR81BppLR1PwWWkphRMihTHW4zY-tBwCxTx263d0jJpnpFm6GmiI8ZI6LC9BQUf8LDXAHpHzk-NvR6d1qbBQ-07zXa0Tc6rRlsemibCUU5uSkMxrJpn01oNdczwo2QXXwMrvnG2Z0tZ2EPc4ICV_TA6GzRCfEio5C31KDtgUhODRKc8VGL5G-GCtDhVpJwobX-DHsQrGDzPlma0NcsUgV_AZcKUib-c-lxl849rWH5Bxc0sEzh4fgDiZIk7mJnGqCJ_Ybqa7qaBN4UOra4dW_-oVt0UhbE1rtsw05iuKI0pjC5qVCdlURM49i8-TfZkbR3w9yaQBhYCnPHaImysYSUPQCVpVyYo8yTI6kwSx_RHeB_53Ib0Lmi3fDKvvI-g4og7Bmnr2P4j8nNyBqfR5J-sFOQD5jS_Bt9u5V-My_g36BEyS priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Kp6QFwQb8JLRuKGwia2E8fHdtWqQipCQKW9WX7CVpBdsdsDf8-M40SEoiJxXK8dWzPjeXkehLzmxrcgBWwJqkBXCidcaarYlip43gUvvY_ohzx_355diHerZnVAlmMuDIZVZt4_8PTErfPIIkNzsV2vF58Yq3mNeZ5ApEwku52LLiXxrY4nPwtqRDI9WeL8Ehfk3JkhzAvrz2KEl3ybgrzETD6lMv4zMXVdDf0zmvI38XR6l9zJeiU9Go5-jxyE_j65dZ5fzh-Q_oNZnnykJT2i6HH_Sc3VfgPaavB0aCJNQXuluSmODxT2uEwOfZjZe4oR7cbtabKfp5qzdN1TH8KWWmw0QYFbfM_dwB6Si9OTz8uzMvdaKF2r-L5UkVlZKcNDVQW41LGOUTTMKdawxhkHEs5yL5vW2wp4QGtNzaQypgULyAIo-SNy2G_68ITQhjPfxWi7jnsheLDScQkisBLOG6N8QeoRwtrlQuTYD-ObHiPOLjViRSNWcAywUpA305rtUIbjxtnHiLhpJpbQTgObH190piHdseA9D1HCOUV0wSqnTNWJRtgANrIrCB_RrscsVeCr8KH1jVvLv60Ku8wadrrWO6YrfY18C9JMK2c34J87vhppUgNrwPce04fNFeykwPwE_iqbgjweaHQCCVb5x0I_cN4Z9c5gNv-nX39N5cex_hDcqaf_ed5n5Db86gY31nNyCCQbXoBit7cv0839BQbOS-M priority: 102 providerName: Elsevier |
Title | PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158217302450 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217302450 https://dx.doi.org/10.1016/j.nicl.2017.10.004 https://www.ncbi.nlm.nih.gov/pubmed/29062684 https://www.proquest.com/docview/1955063875 https://pubmed.ncbi.nlm.nih.gov/PMC5645007 https://doaj.org/article/82edd3ef78834fceb9c9a08454be446c |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qBfFF_DZVywq-SUqyH9nsg0hbWqpwIurBvS37We-oubZ3BfvfO5tsotGjgi8Hl-xmw8zszG9mJzMIvabaVWAFTA5QoM6ZZTbXRahy6R2tvRPOhRiHnHysTqbsw4zPtlDf7igRcLXRtYv9pKaXZ3s_Lq7fwYZ_-ytXKxaRjWlaYq_N1GK30G2wTCK2cpgkuL9I6Ei0x5eElDQveU3SdzSbHzOyVW1J_5HJ-huS_plZ-ZupOr6P7iWMifc7oXiAtnzzEN2ZpFP0R6j5pA-PPuMc7-MYfb_G-mq9BOTqHe4aSmNAsjg1yHEewxqLNrgPIxuHY3a7tmvc-tJD_Vk8b7Dz_hyb2HQCg-b4njqDPUbT46Ovhyd56ruQ20rSdS4DMaKQmvqi8LDBQxkC48RKwgm32oK1M9QJXjlTgD6ojC6JkFpX4A0ZICV9grabZeOfIcwpcXUIpq6pY4x6IywVYA4LZp3W0mWo7CmsbCpKHntjnKk--2yhIldU5Eq8BlzJ0JthznlXkuPG0QeRccPIWE67vbC8PFVpd6qaeOeoDwLekwXrjbRSFzXjzHjwl22GaM921X-xCjoWHjS_cWmxaZZf9VKuSrUiqlBfojhGaSxB3xLGiwzxYWZCQh3C-eeKr3qZVKAm4tmPbvzyClaS4IqCrhU8Q087GR1IEiv-x6I_8L4j6R3RbHynmX9rS5HHWkSwp3b-iz7P0V34V3cBrRdoGwTWvwSItza7bWgEft_PDnbbPfwTheJQvA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KqKBFwQb7a8jMQNhU1sJ06O7arVFroVglbam-UnpILsqrs98PfMJE5EKCoSV8cTWzPjeXk8Q8hbrl0BWsAkYAqUibDCJjoNRVJ5x0vvpHMB45CL02J-Lj4s8-UOmfVvYTCtMsr-Tqa30jqOTCM2p-u6nn5hLOMZvvMEJmUC_fZbYA0UyNrHy4Mh0IImkWzvLBEgQYj4eKbL88ICtJjiJd-3WV5ipKDaOv4jPXXdDv0znfI3_XR0n9yLhiXd7_b-gOz45iG5vYhX549I80nPDj_ThO5TDLn_pPpquwJz1TvadZGmYL7S2BXHeQprXLQRfZjZOIop7dpuaetAD0Vnad1Q5_2aGuw0QUFc_IjtwB6T86PDs9k8ic0WEltUfJtUgRmZVpr7NPVwqkMWgsiZrVjOcqstqDjDncwLZ1IQAoXRGZOV1gW4QAZQyZ-Q3WbV-GeE5py5MgRTltwJwb2RlkvQgamwTuvKTUjWY1jZWIkcG2J8V33K2YVCqiikCo4BVSbk3QCz7upw3Dj7AAk3zMQa2u3A6vKrikykSuad4z5I2KcI1pvKVjotRS6MByfZTgjvya76Z6ogWOFH9Y1Ly79B-U2UDRuVqQ1TqbrGvxOSD5CjI_DPFd_0PKlANuCFj2786gpWqsD_BAEr8wl52vHogBIs84-VfmC_I-4d4Wz8pam_tfXHsQARnKm9_9zva3JnfrY4USfHpx-fk7vwpexiWi_ILrCvfwlW3ta8ak_xL8KXTwo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PaCER+-+A+fully+automated+method+for+electrode+trajectory+and+contact+reconstruction+in+deep+brain+stimulation&rft.jtitle=NeuroImage+clinical&rft.au=Husch%2C+Andreas&rft.au=V.+Petersen%2C+Mikkel&rft.au=Gemmar%2C+Peter&rft.au=Goncalves%2C+Jorge&rft.date=2018-01-01&rft.pub=Elsevier+Inc&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=17&rft.spage=80&rft.epage=89&rft_id=info:doi/10.1016%2Fj.nicl.2017.10.004&rft.externalDocID=S2213158217302450 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158217X00053%2Fcov150h.gif |