Area under the ROC Curve has the most consistent evaluation for binary classification

The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence while the relationships between different variables a...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 12; p. e0316019
Main Author Li, Jing
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.12.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence while the relationships between different variables and the sample size are kept constant. Analyzing 156 data scenarios, 18 model evaluation metrics and five commonly used machine learning models as well as a naive random guess model, I find that evaluation metrics that are less influenced by prevalence offer more consistent evaluation of individual models and more consistent ranking of a set of models. In particular, Area Under the ROC Curve (AUC) which takes all decision thresholds into account when evaluating models has the smallest variance in evaluating individual models and smallest variance in ranking of a set of models. A close threshold analysis using all possible thresholds for all metrics further supports the hypothesis that considering all decision thresholds helps reduce the variance in model evaluation with respect to prevalence change in data. The results have significant implications for model evaluation and model selection in binary classification tasks.
AbstractList The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence while the relationships between different variables and the sample size are kept constant. Analyzing 156 data scenarios, 18 model evaluation metrics and five commonly used machine learning models as well as a naive random guess model, I find that evaluation metrics that are less influenced by prevalence offer more consistent evaluation of individual models and more consistent ranking of a set of models. In particular, Area Under the ROC Curve (AUC) which takes all decision thresholds into account when evaluating models has the smallest variance in evaluating individual models and smallest variance in ranking of a set of models. A close threshold analysis using all possible thresholds for all metrics further supports the hypothesis that considering all decision thresholds helps reduce the variance in model evaluation with respect to prevalence change in data. The results have significant implications for model evaluation and model selection in binary classification tasks.
The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence while the relationships between different variables and the sample size are kept constant. Analyzing 156 data scenarios, 18 model evaluation metrics and five commonly used machine learning models as well as a naive random guess model, I find that evaluation metrics that are less influenced by prevalence offer more consistent evaluation of individual models and more consistent ranking of a set of models. In particular, Area Under the ROC Curve (AUC) which takes all decision thresholds into account when evaluating models has the smallest variance in evaluating individual models and smallest variance in ranking of a set of models. A close threshold analysis using all possible thresholds for all metrics further supports the hypothesis that considering all decision thresholds helps reduce the variance in model evaluation with respect to prevalence change in data. The results have significant implications for model evaluation and model selection in binary classification tasks.The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence while the relationships between different variables and the sample size are kept constant. Analyzing 156 data scenarios, 18 model evaluation metrics and five commonly used machine learning models as well as a naive random guess model, I find that evaluation metrics that are less influenced by prevalence offer more consistent evaluation of individual models and more consistent ranking of a set of models. In particular, Area Under the ROC Curve (AUC) which takes all decision thresholds into account when evaluating models has the smallest variance in evaluating individual models and smallest variance in ranking of a set of models. A close threshold analysis using all possible thresholds for all metrics further supports the hypothesis that considering all decision thresholds helps reduce the variance in model evaluation with respect to prevalence change in data. The results have significant implications for model evaluation and model selection in binary classification tasks.
Audience Academic
Author Li, Jing
AuthorAffiliation Old Dominion University, UNITED STATES OF AMERICA
Department of Political Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
AuthorAffiliation_xml – name: Old Dominion University, UNITED STATES OF AMERICA
– name: Department of Political Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-9332-399X
  surname: Li
  fullname: Li, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39715186$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWNts_2BshsHYLpJJlqyP3YwQ9hEoBLp1t0KW5ERFsTJJDtu_n_LREpcyhi9sjp73lfT6nMvirPOdKYqXEEwgovDDre9DJ91kk8sTgCABkD8pLiBH1ZhUAJ2dfJ8XlzHeAlAjRsiz4hxxCmvIyEVxMw1Gln2nTSjTypTXi1k568PWlCsZ95W1j6lUvos2JtOl0myl62WyvitbH8rGdjL8KZWTMdrWqv3K8-JpK100L47vUXHz5fOP2bfx1eLrfDa9GivCURozhgGWtKGamEoZ3UDDcMNaVpsaaAJqTtqK16TFtKbUVJpiwlCFKW9qZrhGo-L1wXfjfBTHRKJAEDPKEaR1JuYHQnt5KzbBrvNphZdW7As-LIUMySpnBK60RoATQBuOW8KZVhWWjdKY01rXNHt9Ou7WN2ujVU4jSDcwHa50diWWfisgJIQAhLLDu6ND8L96E5NY26iMc7Izvj8cnCFeZXhUvHmAPn69I7WU-Qa2a33eWO1MxZRVEHDA-M5r8giVH23WNv9a09pcHwjeDwSZSeZ3Wso-RjH_fv3_7OLnkH17wq6MdGkVvet3PROH4KvTqO8zvmvcDOADoIKPMZj2HoFA7ObjLi6xmw9xnI8s-_hApmzat2xOxLp_i_8Cv8gUTw
CitedBy_id crossref_primary_10_3389_fonc_2025_1525414
crossref_primary_10_1021_acs_jcim_4c02062
crossref_primary_10_1155_jom_5357997
Cites_doi 10.1038/s41598-022-09954-8
10.1186/s12880-015-0068-x
10.1136/emermed-2017-206735
10.1145/3310986.3311023
10.1093/bib/bbr008
10.1186/s12864-019-6413-7
10.1177/0962280212452199
10.1017/pan.2018.55
10.1177/0272989X8900900307
10.1016/S0031-3203(96)00142-2
10.1007/s11634-017-0295-9
10.1111/j.1466-8238.2007.00358.x
10.1093/clinchem/39.4.561
10.1007/s00330-014-3487-0
10.1007/s00357-019-09345-1
10.1177/0969141313517497
10.1016/j.eswa.2020.113391
10.1161/CIRCULATIONAHA.106.672402
10.1148/radiology.143.1.7063747
10.1038/nmeth.3945
10.1145/3383219.3383232
10.1016/j.patrec.2020.03.030
10.1109/ICIST.2012.6221710
10.1093/jnci/95.7.511
10.1186/s13040-023-00322-4
10.1016/j.jclinepi.2015.02.010
10.1016/B978-0-12-405888-0.00005-2
10.1109/ACCESS.2021.3068614
10.1017/S026988892100014X
10.3389/fpubh.2015.00057
10.1007/s10489-021-03041-7
10.1007/s10664-020-09861-4
10.1016/j.jtcvs.2021.07.041
10.1177/09622802211060515
10.1186/s13040-021-00244-z
10.1126/sciadv.aao5580
10.1186/s12911-019-1014-6
10.1111/2041-210X.13826
10.1186/1471-2105-9-410
10.1080/13658816.2013.862623
10.1093/bioinformatics/btq140
10.1109/ACCESS.2023.3278996
10.1159/000074404
10.5220/0003783303100313
10.1016/S0001-2998(78)80014-2
10.1016/j.patcog.2019.02.023
10.1145/347090.347126
10.12746/swrccc.v5i19.391
10.1007/978-3-030-62365-4_10
ContentType Journal Article
Copyright Copyright: © 2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Jing Li 2024 Jing Li
2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Jing Li 2024 Jing Li
– notice: 2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0316019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database


CrossRef

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Consistent model evaluation for binary classification
EISSN 1932-6203
ExternalDocumentID 3148793175
oai_doaj_org_article_42dd309607b94f698dc24abcd4975d57
PMC11666033
A821090890
39715186
10_1371_journal_pone_0316019
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c693t-88404a7b7d6e2cedb1e84b8f85e50d60596f2956f47577e2d746832479b58e9d3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:59 EDT 2025
Wed Aug 27 01:31:33 EDT 2025
Thu Aug 21 18:30:10 EDT 2025
Thu Jul 24 07:32:58 EDT 2025
Fri Jul 25 11:16:42 EDT 2025
Tue Jun 17 21:57:56 EDT 2025
Tue Jun 10 21:05:54 EDT 2025
Fri Jun 27 05:14:49 EDT 2025
Fri Jun 27 05:14:31 EDT 2025
Thu May 22 21:23:22 EDT 2025
Mon Mar 31 02:18:58 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 02:37:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2024 Jing Li. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-88404a7b7d6e2cedb1e84b8f85e50d60596f2956f47577e2d746832479b58e9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-9332-399X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0316019
PMID 39715186
PQID 3148793175
PQPubID 1436336
PageCount e0316019
ParticipantIDs plos_journals_3148793175
doaj_primary_oai_doaj_org_article_42dd309607b94f698dc24abcd4975d57
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11666033
proquest_miscellaneous_3148839260
proquest_journals_3148793175
gale_infotracmisc_A821090890
gale_infotracacademiconefile_A821090890
gale_incontextgauss_ISR_A821090890
gale_incontextgauss_IOV_A821090890
gale_healthsolutions_A821090890
pubmed_primary_39715186
crossref_primary_10_1371_journal_pone_0316019
crossref_citationtrail_10_1371_journal_pone_0316019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-23
PublicationDateYYYYMMDD 2024-12-23
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Morasca (pone.0316019.ref020) 2020; 25
L Lavazza (pone.0316019.ref033) 2022; 31
AM Carrington (pone.0316019.ref041) 2020; 20
MH Zweig (pone.0316019.ref015) 1993; 39
A Jiménez-Valverde (pone.0316019.ref036) 2022; 13
S Parodi (pone.0316019.ref021) 2003; 101
D Chicco (pone.0316019.ref007) 2020; 21
Q Zhu (pone.0316019.ref006) 2020; 136
J Kruschke (pone.0316019.ref048) 2015
JA Hanley (pone.0316019.ref013) 1982; 143
S Yang (pone.0316019.ref023) 2017; 5
AR Redondo (pone.0316019.ref045) 2020
pone.0316019.ref043
pone.0316019.ref001
SG Baker (pone.0316019.ref018) 2003; 95
pone.0316019.ref002
D Chicco (pone.0316019.ref008) 2021; 14
pone.0316019.ref046
DK McClish (pone.0316019.ref032) 1989; 9
JM Vivo (pone.0316019.ref040) 2018; 12
J Lever (pone.0316019.ref003) 2016; 13
A Luque (pone.0316019.ref004) 2019; 91
SA Hicks (pone.0316019.ref010) 2022; 12
S Parodi (pone.0316019.ref037) 2008; 9
SJ Swamidass (pone.0316019.ref039) 2010; 26
J Yao (pone.0316019.ref047) 2020
S Parodi (pone.0316019.ref038) 2016; 25
CE Metz (pone.0316019.ref014) 1978; 8
IM De Diego (pone.0316019.ref009) 2022; 52
J Muschelli (pone.0316019.ref027) 2020; 37
S Halligan (pone.0316019.ref028) 2015; 25
N Wald (pone.0316019.ref029) 2014; 21
RG Pontius (pone.0316019.ref042) 2014; 28
L Lavazza (pone.0316019.ref011) 2023; 11
AP Bradley (pone.0316019.ref017) 1997; 30
ZH Hoo (pone.0316019.ref016) 2017; 34
ME Pérez-Pons (pone.0316019.ref019) 2022; 37
AS Jadhav (pone.0316019.ref005) 2020; 152
NR Cook (pone.0316019.ref025) 2007; 115
D Chicco (pone.0316019.ref034) 2021; 9
B Ozenne (pone.0316019.ref044) 2015; 68
K Bansak (pone.0316019.ref050) 2019; 27
AA Taha (pone.0316019.ref022) 2015; 15
pone.0316019.ref026
J Dressel (pone.0316019.ref049) 2018; 4
D Chicco (pone.0316019.ref012) 2023; 16
Y Yuan (pone.0316019.ref035) 2015; 3
F Movahedi (pone.0316019.ref030) 2023; 165
JM Lobo (pone.0316019.ref031) 2008; 17
D Berrar (pone.0316019.ref024) 2012; 13
References_xml – volume: 12
  start-page: 5979
  issue: 1
  year: 2022
  ident: pone.0316019.ref010
  article-title: On evaluation metrics for medical applications of artificial intelligence
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-09954-8
– volume: 15
  start-page: 29
  issue: 1
  year: 2015
  ident: pone.0316019.ref022
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Medical Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 34
  start-page: 357
  issue: 6
  year: 2017
  ident: pone.0316019.ref016
  article-title: What is an ROC curve?
  publication-title: Emergency Medicine Journal
  doi: 10.1136/emermed-2017-206735
– ident: pone.0316019.ref046
  doi: 10.1145/3310986.3311023
– volume: 13
  start-page: 83
  issue: 1
  year: 2012
  ident: pone.0316019.ref024
  article-title: Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them)
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbr008
– volume: 21
  start-page: 6
  issue: 1
  year: 2020
  ident: pone.0316019.ref007
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 25
  start-page: 294
  issue: 1
  year: 2016
  ident: pone.0316019.ref038
  article-title: Restricted ROC curves are useful tools to evaluate the performance of tumour markers
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280212452199
– volume: 27
  start-page: 370
  issue: 3
  year: 2019
  ident: pone.0316019.ref050
  article-title: Can nonexperts really emulate statistical learning methods? A comment on “The accuracy, fairness, and limits of predicting recidivism”
  publication-title: Polit Anal
  doi: 10.1017/pan.2018.55
– volume: 9
  start-page: 190
  issue: 3
  year: 1989
  ident: pone.0316019.ref032
  article-title: Analyzing a Portion of the ROC Curve
  publication-title: Medical Decision Making
  doi: 10.1177/0272989X8900900307
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: pone.0316019.ref017
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 12
  start-page: 683
  issue: 3
  year: 2018
  ident: pone.0316019.ref040
  article-title: Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-017-0295-9
– volume: 17
  start-page: 145
  issue: 2
  year: 2008
  ident: pone.0316019.ref031
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2007.00358.x
– volume: 39
  start-page: 561
  issue: 4
  year: 1993
  ident: pone.0316019.ref015
  article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clinical chemistry
  doi: 10.1093/clinchem/39.4.561
– volume: 25
  start-page: 932
  issue: 4
  year: 2015
  ident: pone.0316019.ref028
  article-title: Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach
  publication-title: European Radiology
  doi: 10.1007/s00330-014-3487-0
– volume: 37
  start-page: 696
  issue: 3
  year: 2020
  ident: pone.0316019.ref027
  article-title: ROC and AUC with a Binary Predictor: a Potentially Misleading Metric
  publication-title: Journal of Classification
  doi: 10.1007/s00357-019-09345-1
– volume: 21
  start-page: 51
  issue: 1
  year: 2014
  ident: pone.0316019.ref029
  article-title: Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test?
  publication-title: Journal of Medical Screening
  doi: 10.1177/0969141313517497
– volume: 152
  start-page: 113391
  year: 2020
  ident: pone.0316019.ref005
  article-title: A novel weighted TPR-TNR measure to assess performance of the classifiers
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113391
– volume: 115
  start-page: 928
  issue: 7
  year: 2007
  ident: pone.0316019.ref025
  article-title: Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.672402
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: pone.0316019.ref013
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 13
  start-page: 603
  issue: 8
  year: 2016
  ident: pone.0316019.ref003
  article-title: Classification evaluation
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3945
– ident: pone.0316019.ref001
– start-page: 120
  volume-title: Proceedings of the Evaluation and Assessment in Software Engineering
  year: 2020
  ident: pone.0316019.ref047
  doi: 10.1145/3383219.3383232
– volume: 136
  start-page: 71
  year: 2020
  ident: pone.0316019.ref006
  article-title: On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.03.030
– ident: pone.0316019.ref026
  doi: 10.1109/ICIST.2012.6221710
– volume: 95
  start-page: 511
  issue: 7
  year: 2003
  ident: pone.0316019.ref018
  article-title: The Central Role of Receiver Operating Characteristic (ROC) Curves in Evaluating Tests for the Early Detection of Cancer
  publication-title: JNCI Journal of the National Cancer Institute
  doi: 10.1093/jnci/95.7.511
– volume: 16
  issue: 1
  year: 2023
  ident: pone.0316019.ref012
  article-title: The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
  publication-title: BioData Mining
  doi: 10.1186/s13040-023-00322-4
– volume: 68
  start-page: 855
  issue: 8
  year: 2015
  ident: pone.0316019.ref044
  article-title: The precision–recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2015.02.010
– volume-title: Bayes’ rule: Doing Bayesian Data Analysis
  year: 2015
  ident: pone.0316019.ref048
  doi: 10.1016/B978-0-12-405888-0.00005-2
– volume: 9
  start-page: 47112
  year: 2021
  ident: pone.0316019.ref034
  article-title: The Benefits of the Matthews Correlation Coefficient (MCC) Over the Diagnostic Odds Ratio (DOR) in Binary Classification Assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068614
– volume: 37
  start-page: e1
  year: 2022
  ident: pone.0316019.ref019
  article-title: Evaluation metrics and dimensional reduction for binary classification algorithms: a case study on bankruptcy prediction
  publication-title: The Knowledge Engineering Review
  doi: 10.1017/S026988892100014X
– volume: 3
  year: 2015
  ident: pone.0316019.ref035
  article-title: Threshold-Free Measures for Assessing the Performance of Medical Screening Tests
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2015.00057
– volume: 52
  start-page: 12049
  issue: 10
  year: 2022
  ident: pone.0316019.ref009
  article-title: General Performance Score for classification problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-03041-7
– volume: 25
  start-page: 3977
  issue: 5
  year: 2020
  ident: pone.0316019.ref020
  article-title: On the assessment of software defect prediction models via ROC curves
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-020-09861-4
– volume: 165
  start-page: 1433
  issue: 4
  year: 2023
  ident: pone.0316019.ref030
  article-title: Limitations of receiver operating characteristic curve on imbalanced data: Assist device mortality risk scores
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
  doi: 10.1016/j.jtcvs.2021.07.041
– volume: 31
  start-page: 419
  issue: 3
  year: 2022
  ident: pone.0316019.ref033
  article-title: Considerations on the region of interest in the ROC space
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/09622802211060515
– volume: 14
  start-page: 13
  issue: 1
  year: 2021
  ident: pone.0316019.ref008
  article-title: The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
  publication-title: BioData Mining
  doi: 10.1186/s13040-021-00244-z
– volume: 4
  start-page: eaao5580
  issue: 1
  year: 2018
  ident: pone.0316019.ref049
  article-title: The accuracy, fairness, and limits of predicting recidivism
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aao5580
– volume: 20
  start-page: 4
  issue: 1
  year: 2020
  ident: pone.0316019.ref041
  article-title: A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-019-1014-6
– volume: 13
  start-page: 1224
  issue: 6
  year: 2022
  ident: pone.0316019.ref036
  article-title: The uniform AUC: Dealing with the representativeness effect in presence–absence models
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13826
– volume: 9
  start-page: 410
  issue: 1
  year: 2008
  ident: pone.0316019.ref037
  article-title: Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-410
– volume: 28
  start-page: 570
  issue: 3
  year: 2014
  ident: pone.0316019.ref042
  article-title: The total operating characteristic to measure diagnostic ability for multiple thresholds
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2013.862623
– volume: 26
  start-page: 1348
  issue: 10
  year: 2010
  ident: pone.0316019.ref039
  article-title: A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq140
– volume: 11
  start-page: 51515
  year: 2023
  ident: pone.0316019.ref011
  article-title: Common Problems With the Usage of F-Measure and Accuracy Metrics in Medical Research
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3278996
– volume: 101
  start-page: 90
  issue: 1
  year: 2003
  ident: pone.0316019.ref021
  article-title: ROC curves are a suitable and flexible tool for the analysis of gene expression profiles
  publication-title: Cytogenetic and Genome Research
  doi: 10.1159/000074404
– ident: pone.0316019.ref002
  doi: 10.5220/0003783303100313
– volume: 8
  start-page: 283
  issue: 4
  year: 1978
  ident: pone.0316019.ref014
  article-title: Basic principles of ROC analysis
  publication-title: Seminars in Nuclear Medicine
  doi: 10.1016/S0001-2998(78)80014-2
– volume: 91
  start-page: 216
  year: 2019
  ident: pone.0316019.ref004
  article-title: The impact of class imbalance in classification performance metrics based on the binary confusion matrix
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.02.023
– ident: pone.0316019.ref043
  doi: 10.1145/347090.347126
– volume: 5
  start-page: 34
  issue: 19
  year: 2017
  ident: pone.0316019.ref023
  article-title: The receiver operating characteristic (ROC) curve
  publication-title: The Southwest Respiratory and Critical Care Chronicles
  doi: 10.12746/swrccc.v5i19.391
– start-page: 104
  volume-title: Intelligent Data Engineering and Automated Learning—IDEAL 2020
  year: 2020
  ident: pone.0316019.ref045
  doi: 10.1007/978-3-030-62365-4_10
SSID ssj0053866
Score 2.4910948
Snippet The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0316019
SubjectTerms Accuracy
Area Under Curve
Biology and Life Sciences
Classification
Computer and Information Sciences
Data analysis
Data Interpretation, Statistical
Datasets
Evaluation
Evaluation Studies as Topic
Machine Learning
Medicine and Health Sciences
Models, Statistical
Physical Sciences
Ranking
Research and Analysis Methods
ROC Curve
Sample Size
Simulation
Social Sciences
Thresholds
Variance
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0SfzMcVlRFSSoVFjUW5TYDkUqyWqT7e_vjOMNG1SpHLhmJlEyD_sbZeYzIW94miLJXhkL6WzMBZNxWdYidhrgAVNJlUgcFP7yVZ4s-edzcb5z1Bf2hA30wIPhjnhmLUOcraqc1zLX1mS8rIzluRJW-Dly2PO2xdSwBkMWSxkG5ZhKj4JfDldt4w4hjKVn1tnZiDxf_7gqz1aXbXcT5Py7c3JnKzq-T-4FDEnnw7vvkTuueUD2QpZ29F2gkn7_kCzngAkpzomtKSA9ena6oIvN-srRi7LzV363XU8NdsmCu5ue_mH_pgBnaeXHdalBjI1NRV7yiCyPP35fnMThIIXYyJz1sYYqjpeqUla6zDhbpU7zStdaOJFYiSfw1BkUSjVXQimXWcUlZDpXeSW0yy17TGYNmG6fUAAsiXNSGtjnOStrzUttuFHGGqFzpyLCtlYtTGAZx8MuLgv_60xBtTEYqUBfFMEXEYnHu1YDy8Yt-h_QYaMucmT7CxA5RYic4rbIichLdHcxDJyOmV7MdYbdqjpPIvLaayBPRoONOD_LTdcVn05__IPSt7OJ0tugVLdgDlOG4Qf4JuTfmmgeTDQh281EvI_BubVKVzCoZ2GNBRQId24D9mbxq1GMD8Xmusa1m0EHcbKEpz8Z4nu0LMBVwIRaRkRPIn9i-qmk-XXhacpT_COdMPb0fzjrGbmbAZzERqKMHZBZv9645wAH--qFz_xrREdcGg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJvEzJ7SsWAoSVCos6i1KbKdFKsmy2eX3M-M4aYMq4BpPomQe9ud45htCXvAkQZK9IhLS2YgLJqOiqETkNMADpuIyllgo_OmzPFzyjyfiJPxwa0NaZT8n-onaNgb_kR8wwO3gS7DavVn9jLBrFJ6uhhYa18mNBFYaTOnSi_f9TAyxLGUol2MqOQjW2V81tdsHZ5aeX-fScuRZ-4e5ebI6b9qrgOef-ZOXFqTFbXIrIEk660y_Q665-g7ZCbHa0leBUPr1XbKcATKkWC22poD36PHRnM6361-OnhWtv_KjaTfUYK4sGL3e0AsOcAqglpa-aJcaRNqYWuRH7pHl4t3X-WEU2ilERmZsE2nYy_FClcpKlxpny8RpXupKCydiK7EPT5XCdqniSijlUqu4hHjnKiuFdpll98mkBtXtEgqwJXZOSgOrPWdFpXmhDTfKWCN05tSUsF6ruQlc49jy4jz3B2gK9hydknK0RR5sMSXRcNeq49r4h_xbNNggi0zZ_kKzPs1D4OU8tZbhPk2VGa9kpq1JeVEayzMlrIBXfYrmzruy0yHe85lOMWdVZ_GUPPcSyJZRYzrOabFt2_zD0bf_EPpyPBJ6GYSqBtRhilACAd-ELFwjyb2RJMS8GQ3vonP2Wmnzi-iAO3uHvXr42TCMD8UUu9o1204G0bKEpz_o_HvQLIBWQIZaTokeef5I9eOR-vuZJytP8Fw6Zuzh39_rEbmZAlzERKGU7ZHJZr11jwHubconPqZ_A7VCU8w
  priority: 102
  providerName: ProQuest
Title Area under the ROC Curve has the most consistent evaluation for binary classification
URI https://www.ncbi.nlm.nih.gov/pubmed/39715186
https://www.proquest.com/docview/3148793175
https://www.proquest.com/docview/3148839260
https://pubmed.ncbi.nlm.nih.gov/PMC11666033
https://doaj.org/article/42dd309607b94f698dc24abcd4975d57
http://dx.doi.org/10.1371/journal.pone.0316019
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe27sIFMb5WGMUgJOCQKokd2zkg1FUtA2kbKhT1FiW2syGVpDQtggt_O--5aSCoiF18iJ-t5Pn5-ffi90HIMx4EmGQv9SJhjccjJrw0zSPPKoAHTPqZLzBQ-OxcnE75u1k02yPbmq01A6udph3Wk5ou5_3vX3-8hg3_ylVtkMF2UH9RFrYPQgo2RrxPDuBskljT4Iw39wqwu93tJaIWT4Q-q4Pp_jVL67ByOf0bzd1ZzMtqFyz927vyj-NqfIvcrHEmHWwE45Ds2eI2Oax3ckVf1OmmX94h0wHgRoqxZEsKaJBOLoZ0uF5-s_QqrdyTL2W1oho9aUEkihX9nSGcAuSlmQvppRpxODoeuZ67ZDoefRyeenWxBU-LmK08BZYeT2UmjbChtiYLrOKZylVkI98IrNKTh2BM5VxGUtrQSC5AG3AZZ5GysWH3SKcA1h0RCqDGt1YIDViAszRXPFWaa6mNjlRsZZewLVcTXWcix4IY88Rdr0mwSDZMSnAtknotusRrRi02mTj-Q3-CC9bQYh5t96BcXib1tkx4aAxDK05mMc9FrIwOeZppw2MZmQhe9TEud7IJSm20QTJQIXq0qtjvkqeOAnNpFOisc5muqyp5e_HpGkQfJi2i5zVRXgI7dFoHSMA3YY6uFuVxixI0gm51H6FwbrlSJQxsXtDDgBRh5FZgd3c_abpxUnTAK2y53tAglhYw-_2NfDecBUgLuFGJLlEtyW-xvt1TfL5yqcwDvLX2GXtw7W9_SG6EgCvRoyhkx6SzWq7tI8CFq6xH9uVMQquGAbbjNz1ycDI6fz_puT8tPacKsP05-gU97GXd
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNokd2zkgtCwsu_QllS7qLSS20yKVZNnsgvhT_EZm8mqDKuDSa2ZiZcfjmW_W8yDkKfc8bLIXO4GwxuEBE04cp4FjFcADJt3EFVgovLsnxlP-4Sg4WiG_mloYTKtsbGJpqE2u8T_yLQa4HXQJvN3r2TcHp0bh7WozQqNSi2378weEbMWryVvY32e-P3p3OBw79VQBR4uQLRwFIQ2PZSKNsL62JvGs4olKVWAD1wgcR5P6EDWkXAZSWt9ILkDtuQyTQNnQMFj3CrnKGXhyrEwfvW8sP9gOIeryPCa9rVobNmd5Zjfh8Iiyn88591dOCWh9QW92mhcXAd0_8zXPOcDRTXKjRq50UKnaKlmx2S2yWtuGgr6oG1i_vE2mA0CiFKvT5hTwJT3YH9Lhcv7d0pO4KJ98zYsF1ZibC0qWLehZz3EKIJomZZEw1YjsMZWppNwh00sR9F3Sy0B0a4QCTHKtFUIDuuAsThWPleZaaqMDFVrZJ6yRaqTr3uY4YuM0Ki_sJMQ4lZAi3Iuo3os-cdq3ZlVvj3_wv8ENa3mxM3f5IJ8fR_VBj7hvDMO4UCYhT0WojPZ5nGjDQxmYAD51A7c7qspcW_sSDZSPObIqdPvkScmB3TkyTP85jpdFEU32P_0H08eDDtPzminNQRw6rksu4Ddh168O53qHE2yM7pDXUDkbqRTR2WmENxuFvZj8uCXjopjSl9l8WfEgOhew-r1Kv1vJwtECJKpEn6iO5ndE36VkX07K5uge3oO7jN3_-3dtkGvjw92daGeyt_2AXPcBqmKSks_WSW8xX9qHADUXyaPyfFPy-bINym-Vgo90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRAviHFbYTCDQMBD1jR2bOcBodIxrQw2NCjaW0hsZ0MaSWlaEH-NX8c5iZMtaAJe9ppzYqXn5s_1uRDymA-H2GQv8UJhjcdDJrwkyULPKoAHTPqpL7BQ-N2e2JnyN4fh4Qr51dTCYFplExOrQG0Kjf-RDxjgdrAl2O0GmUuLeL-1_XL2zcMJUnjT2ozTqE1k1_78Ace38sVkC3T9JAi2X38c73huwoCnRcQWnoLjDU9kKo2wgbYmHVrFU5Wp0Ia-ETiaJgvgBJFxGUppAyO5ABfgMkpDZSPDYN1L5LJkUqGPqXGbXgJxRAhXqsfkcOAsY3NW5HYTHElUvX3ObIXVxIB2X-jNToryPND7Z-7mmc1w-zq55lAsHdVmt0pWbH6DrLo4UdJnrpn185tkOgJUSrFSbU4Ba9KD_TEdL-ffLT1OyurJ16JcUI15umBw-YKe9h-nAKhpWhUMU40oH9OaKsotMr0QQd8mvRxEt0YoQCbfWiE0IA3OkkzxRGmupTY6VJGVfcIaqcba9TnHcRsncXV5J-G8UwspRl3EThd94rVvzeo-H__gf4UKa3mxS3f1oJgfxc7pYx4Yw_CMKNOIZyJSRgc8SbXhkQxNCJ-6geqO65LXNtbEIxVgvqyK_D55VHFgp44cbf4oWZZlPNn_9B9MHw46TE8dU1aAOHTiyi_gN2EHsA7neocT4o3ukNfQOBuplPGpZ8KbjcGeT37YknFRTO_LbbGseRCpC1j9Tm3frWQBMAMqVaJPVMfyO6LvUvIvx1Wj9CHeifuM3f37d22QKxBK4reTvd175GoAqBXzlQK2TnqL-dLeB9S5SB9U7k3J54uOJ78B5zqTdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Area+under+the+ROC+Curve+has+the+most+consistent+evaluation+for+binary+classification&rft.jtitle=PloS+one&rft.au=Li%2C+Jing&rft.date=2024-12-23&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft.spage=e0316019&rft_id=info:doi/10.1371%2Fjournal.pone.0316019&rft.externalDocID=A821090890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon