Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware
Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-gu...
Saved in:
Published in | NeuroImage clinical Vol. 20; pp. 458 - 465 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction.
Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols.
A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm).
We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
[Display omitted]
•Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude.•Optic radiation tractography was performed using “standard” and “state-of-the-art” acquisitions.•Meyer's loop to Temporal Pole distance varies up to 16.5 mm for the same subject across protocols.•State-of-the-art protocols provide Meyer's loop measurements that are in line with ex-vivo studies.•Surgical planning for anterior temporal lobe resection depends on protocol and available hardware. |
---|---|
AbstractList | Unlabelled Image
•
Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude.
•
Optic radiation tractography was performed using “standard” and “state-of-the-art” acquisitions.
•
Meyer's loop to Temporal Pole distance varies up to 16.5 mm for the same subject across protocols.
•
State-of-the-art protocols provide Meyer's loop measurements that are in line with ex-vivo studies.
•
Surgical planning for anterior temporal lobe resection depends on protocol and available hardware. Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. [Display omitted] •Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude.•Optic radiation tractography was performed using “standard” and “state-of-the-art” acquisitions.•Meyer's loop to Temporal Pole distance varies up to 16.5 mm for the same subject across protocols.•State-of-the-art protocols provide Meyer's loop measurements that are in line with ex-vivo studies.•Surgical planning for anterior temporal lobe resection depends on protocol and available hardware. Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction.IntroductionSurgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction.Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols.MethodsDiffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols.A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm).ResultsA significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm).We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.ConclusionWe showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. Introduction: Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Methods: Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. Results: A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). Conclusion: We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. A significant effect of data acquisition on the ML-TP distance was observed between protocols ( < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm). We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. AbstractIntroductionSurgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. MethodsDiffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. ResultsA significant effect of data acquisition on the ML-TP distance was observed between protocols ( p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). ConclusionWe showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. |
Author | Chamberland, Maxime Jones, Derek K. Tax, Chantal M.W. |
AuthorAffiliation | a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom b School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia |
AuthorAffiliation_xml | – name: a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom – name: b School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia |
Author_xml | – sequence: 1 givenname: Maxime orcidid: 0000-0001-7064-0984 surname: Chamberland fullname: Chamberland, Maxime email: chamberlandm@cardiff.ac.uk organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom – sequence: 2 givenname: Chantal M.W. surname: Tax fullname: Tax, Chantal M.W. organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom – sequence: 3 givenname: Derek K. surname: Jones fullname: Jones, Derek K. organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30128284$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktv1DAQjlARLaV_gAPKDS5ZxpNs4iBUCVU8KhVxAE4cLMeeZB2ydrCTov33ON1StZUo1si27O9hjb-nyYF1lpLkOYMVA1a-7lfWqGGFwPgKYiF7lBwhsjxja44Ht_aHyUkIPcTBAaqyfJIc5sCQIy-Okh-faUf-ZUgH58Z08lJNrvNy3OzS1vnUbGVHWTcbTToNs-_I71JNI1kdUmev7o3t0tG7ySk3pNLqdCO9_i09PUset3IIdHK9HiffP7z_dvYpu_jy8fzs3UWmyjqfMl7yCjg2inGsUEuu41xWhaoKwhYYoNKKsNDIZcsUKaW1ppyqtWQNA8qPk_O9rnayF6OPj_I74aQRVwfOd0L6KXaLRIWyqQvkOroVbSNlG7uwrqHhqqoAIWqd7rXGudlS9LWxJ8Md0bs31mxE5y5FCXUJ60Xg1bWAd79mCpPYmqBoGKQlNweBUDPM8yJnEfritteNyd_fiQDcA5R3IXhqbyAMxJIC0YslBWJJgYBYuKjyeyRlJjkZt7zXDA9T3-6pFH_r0pAXQRmyirTxpKbYTvMw_fQeXQ0mouTwM4Ys9G72NuZAMBFQgPi6JHQJKOM5YIllFHjzb4H_uf8B7O33Cw |
CitedBy_id | crossref_primary_10_1007_s00429_022_02503_z crossref_primary_10_1097_WCO_0000000000000905 crossref_primary_10_1016_j_neuroimage_2022_119029 crossref_primary_10_1016_j_nicl_2019_101883 crossref_primary_10_1523_ENEURO_0545_19_2020 crossref_primary_10_1002_hbm_25291 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_1016_j_neuroimage_2022_118958 crossref_primary_10_1111_epi_17490 crossref_primary_10_1016_j_neuroimage_2019_01_077 crossref_primary_10_1016_j_neuroimage_2019_116471 crossref_primary_10_1016_j_neuroimage_2021_118451 crossref_primary_10_1007_s10143_022_01881_6 crossref_primary_10_1186_s12883_019_1537_6 crossref_primary_10_2463_mrms_rev_2024_0007 crossref_primary_10_1162_netn_a_00378 crossref_primary_10_3389_fncir_2019_00062 crossref_primary_10_1016_j_neuroimage_2020_117505 crossref_primary_10_1016_j_media_2025_103498 crossref_primary_10_1016_j_nicl_2019_101826 crossref_primary_10_3389_fnins_2023_1191999 crossref_primary_10_1159_000500136 crossref_primary_10_1002_hbm_24964 crossref_primary_10_1002_hbm_25658 crossref_primary_10_3171_2020_12_JNS203437 crossref_primary_10_1016_j_neuroimage_2019_06_020 |
Cites_doi | 10.1007/s00701-015-2403-y 10.1016/j.clineuro.2014.04.017 10.1016/j.neuroimage.2008.11.038 10.1371/journal.pone.0101524 10.1016/j.neuroimage.2013.04.127 10.1002/hbm.22204 10.1093/brain/awp114 10.1016/j.neuroimage.2015.11.005 10.1016/j.eplepsyres.2014.01.017 10.1016/j.ajo.2005.05.018 10.3389/fninf.2014.00059 10.1016/j.eplepsyres.2014.11.020 10.1167/8.10.12 10.1016/j.neuroimage.2010.09.025 10.1038/sj.eye.6700152 10.1002/ana.22619 10.1016/j.yebeh.2013.03.020 10.1007/BF01401969 10.1002/hbm.23399 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2013.05.057 10.1007/978-3-319-21359-0_2 10.1007/s00429-013-0655-y 10.1016/j.neuroimage.2016.01.011 10.1002/mrm.21890 10.1056/NEJM200108023450501 10.1002/hbm.23741 10.1016/j.eplepsyres.2014.03.006 10.1016/j.jneumeth.2017.05.029 10.1016/j.neuroimage.2015.10.019 10.1227/01.NEU.0000140843.62311.24 10.1002/mrm.22924 10.1016/j.neuroimage.2014.09.005 10.1016/j.neuroimage.2014.07.061 10.1016/j.eplepsyres.2007.07.012 10.1016/j.nicl.2017.10.010 10.3171/2014.12.JNS14281 10.1371/journal.pone.0137064 10.1016/S1053-8119(03)00336-7 10.3174/ajnr.A2652 |
ContentType | Journal Article |
Copyright | 2018 The Authors The Authors 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: The Authors – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nicl.2018.08.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 465 |
ExternalDocumentID | oai_doaj_org_article_72ab9428dbc14fbaaf284590b8c77020 PMC6096050 30128284 10_1016_j_nicl_2018_08_021 S2213158218302626 1_s2_0_S2213158218302626 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c693t-8687082bc18272da8d72d674c74e2f0102cdce24d28af1ceccddde3e75a1b10e3 |
IEDL.DBID | M48 |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:04:31 EDT 2025 Thu Aug 21 17:56:32 EDT 2025 Fri Jul 11 16:13:11 EDT 2025 Mon Jul 21 06:08:03 EDT 2025 Tue Jul 01 01:09:41 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Wed May 17 01:21:53 EDT 2023 Sun Feb 23 10:19:27 EST 2025 Tue Aug 26 16:33:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-8687082bc18272da8d72d674c74e2f0102cdce24d28af1ceccddde3e75a1b10e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7064-0984 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2018.08.021 |
PMID | 30128284 |
PQID | 2091233431 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72ab9428dbc14fbaaf284590b8c77020 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096050 proquest_miscellaneous_2091233431 pubmed_primary_30128284 crossref_primary_10_1016_j_nicl_2018_08_021 crossref_citationtrail_10_1016_j_nicl_2018_08_021 elsevier_sciencedirect_doi_10_1016_j_nicl_2018_08_021 elsevier_clinicalkeyesjournals_1_s2_0_S2213158218302626 elsevier_clinicalkey_doi_10_1016_j_nicl_2018_08_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Leemans, Jones (bb0135) 2009; 61 Essayed, Zhang, Unadkat, Cosgrove, Golby, O'Donnell (bb0085) 2017 Chamberland, Whittingstall, Fortin, Mathieu, Descoteaux (bb0040) 2014; 8 Alexander, Zikic, Zhang, Zhang, Criminisi (bb0005) 2014 Chowdhury, Khan (bb0060) 2010; 5 Tax, Duits, Vilanova, ter Haar Romeny, Hofman, Wagner, Ossenblok (bb0220) 2014; 9 Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong (bb0155) 2017 Mandelstam (bb0160) 2012; 33 Wu, Rigolo, O'Donnell, Norton, Shriver, Golby (bb0245) 2011 James, Radhakrishnan, Thomas, Madhusoodanan, Kesavadas, Abraham, Vilanilam (bb0110) 2015; 110 Wiebe, Blume, Girvin, Eliasziw (bb0235) 2001; 345 Nimsky, Bauer, Carl (bb0180) 2016; 43 Goga, Ture (bb0100) 2015; 122 Sotiropoulos, Zalesky (bb0210) 2017 Benjamin, Singh, Prabhu, Warfield (bb0030) 2014; 35 Peuskens, van Loon, Van Calenbergh, van den Bergh, Goffin, Plets (bb0195) 2004; 55 Bandt, Werner, Dines, Rashid, Eisenman, Hogan, Dowling (bb0025) 2013; 28 Tax, Grussu, Kaden, Ning, Rudrapatna, Evans, St-Jean (bb9955) 2018 Yamamoto, Yamada, Nishimura, Kinoshita (bb0250) 2005; 140 Martinez Heras, Varriano, Prčkovska, Laredo, Andorrà, Martinez Lapiscina (bb0165) 2015; 10 Hales, Smith, Dhanoa-Hayre, O'Hare, Mankad, D'Arco (bb0105) 2018 Borius, Roux, Valton, Sol, Lotterie, Berry (bb0035) 2014; 122 Yogarajah, Focke, Bonelli, Cercignani, Acheson, Parker, Duncan (bb0255) 2009; 132 Andersson, Sotiropoulos (bb0010) 2016; 125 Andersson, Skare, Ashburner (bb0015) 2003; 20 Lilja, Nilsson (bb0140) 2015; 5 Rubino, Rhoton, Tong, Oliveira (bb0200) 2005; 57 Pathak-Ray, Ray, Walters, Hatfield (bb0190) 2002; 16 Girard, Daducci, Petit, Thiran, Whittingstall, Deriche, Descoteaux (bb0090) 2017; 38 Kammen, Law, Tjan, Toga, Shi (bb0125) 2016; 125 Lilja, Ljungberg, Starck, Malmgren, Rydenhag, Nilsson (bb0145) 2014; 108 Chen, Weigel, Ganslandt, Buchfelder, Nimsky (bb0050) 2009; 45 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach (bb0215) 2013 Nowell, Vos, Sidhu, Wilcoxen, Sargsyan, Ourselin, Duncan (bb0185) 2015 Choi, Rubino, Fernandez-Miranda, Abe, Rhoton (bb0055) 2006; 59 Sherbondy, Dougherty, Napel, Wandell (bb0205) 2008; 8 Avants, Tustison, Song, Cook, Klein, Gee (bb0020) 2011; 54 Chamberland, Scherrer, Prabhu, Madsen, Fortin, Whittingstall, Warfield (bb0045) 2017; 38 Nilsson, Starck, Ljungberg, Ribbelin, Jönsson, Malmgren, Rydenhag (bb0175) 2007; 77 Vos, Aksoy, Han, Holdsworth, Maclaren, Viergever, Bammer (bb0230) 2016; 129 de Gervai, Sboto-Frankenstein, Bolster, Thind, Gruwel, Smith, Tomanek (bb0070) 2014; 108 Jeurissen, Descoteaux, Mori, Leemans (bb0120) 2017 Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bb0115) 2014; 103 Dayan, Munoz, Jentschke, Chadwick, Cooper, Riney, Clark (bb0065) 2015; 220 Winston, Daga, Stretton, Modat, Symms, McEvoy, Duncan (bb0240) 2012; 71 Lilja, Ljungberg, Starck, Malmgren, Rydenhag, Nilsson (bb0150) 2015; 157 Dyrby, Lundell, Burke, Reislev, Paulson, Ptito, Siebner (bb0075) 2014; 103 Meesters, Ossenblok, Wagner, Schijns, Boon, Florack, Duits (bb0170) 2017; 288 Ebeling, Reulen (bb0080) 1988; 92 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bb0095) 2013 Tournier, Mori, Leemans (bb0225) 2011; 65 Kovanda, Tubbs, Cohen-Gadol (bb0130) 2014 Benjamin (10.1016/j.nicl.2018.08.021_bb0030) 2014; 35 Avants (10.1016/j.nicl.2018.08.021_bb0020) 2011; 54 Chamberland (10.1016/j.nicl.2018.08.021_bb0045) 2017; 38 Choi (10.1016/j.nicl.2018.08.021_bb0055) 2006; 59 Girard (10.1016/j.nicl.2018.08.021_bb0090) 2017; 38 Glasser (10.1016/j.nicl.2018.08.021_bb0095) 2013; 80 de Gervai (10.1016/j.nicl.2018.08.021_bb0070) 2014; 108 Hales (10.1016/j.nicl.2018.08.021_bb0105) 2018; 17 Yamamoto (10.1016/j.nicl.2018.08.021_bb0250) 2005; 140 Chen (10.1016/j.nicl.2018.08.021_bb0050) 2009; 45 Dayan (10.1016/j.nicl.2018.08.021_bb0065) 2015; 220 Chamberland (10.1016/j.nicl.2018.08.021_bb0040) 2014; 8 Sotiropoulos (10.1016/j.nicl.2018.08.021_bb0210) 2017 Bandt (10.1016/j.nicl.2018.08.021_bb0025) 2013; 28 Rubino (10.1016/j.nicl.2018.08.021_bb0200) 2005; 57 Alexander (10.1016/j.nicl.2018.08.021_bb0005) 2014 Nilsson (10.1016/j.nicl.2018.08.021_bb0175) 2007; 77 Kammen (10.1016/j.nicl.2018.08.021_bb0125) 2016; 125 Sherbondy (10.1016/j.nicl.2018.08.021_bb0205) 2008; 8 Essayed (10.1016/j.nicl.2018.08.021_bb0085) 2017 Yogarajah (10.1016/j.nicl.2018.08.021_bb0255) 2009; 132 Wiebe (10.1016/j.nicl.2018.08.021_bb0235) 2001; 345 Borius (10.1016/j.nicl.2018.08.021_bb0035) 2014; 122 Tax (10.1016/j.nicl.2018.08.021_bb0220) 2014; 9 Tax (10.1016/j.nicl.2018.08.021_bb9955) 2018 Mandelstam (10.1016/j.nicl.2018.08.021_bb0160) 2012; 33 Lilja (10.1016/j.nicl.2018.08.021_bb0145) 2014; 108 Jeurissen (10.1016/j.nicl.2018.08.021_bb0120) 2017 Meesters (10.1016/j.nicl.2018.08.021_bb0170) 2017; 288 Peuskens (10.1016/j.nicl.2018.08.021_bb0195) 2004; 55 Vos (10.1016/j.nicl.2018.08.021_bb0230) 2016; 129 Martinez Heras (10.1016/j.nicl.2018.08.021_bb0165) 2015; 10 Tournier (10.1016/j.nicl.2018.08.021_bb0225) 2011; 65 Winston (10.1016/j.nicl.2018.08.021_bb0240) 2012; 71 Andersson (10.1016/j.nicl.2018.08.021_bb0015) 2003; 20 Lilja (10.1016/j.nicl.2018.08.021_bb0140) 2015; 5 Ebeling (10.1016/j.nicl.2018.08.021_bb0080) 1988; 92 Wu (10.1016/j.nicl.2018.08.021_bb0245) 2011; 70 Lilja (10.1016/j.nicl.2018.08.021_bb0150) 2015; 157 Nowell (10.1016/j.nicl.2018.08.021_bb0185) 2015 Dyrby (10.1016/j.nicl.2018.08.021_bb0075) 2014; 103 Andersson (10.1016/j.nicl.2018.08.021_bb0010) 2016; 125 James (10.1016/j.nicl.2018.08.021_bb0110) 2015; 110 Pathak-Ray (10.1016/j.nicl.2018.08.021_bb0190) 2002; 16 Maier-Hein (10.1016/j.nicl.2018.08.021_bb0155) 2017; 8 Jeurissen (10.1016/j.nicl.2018.08.021_bb0115) 2014; 103 Goga (10.1016/j.nicl.2018.08.021_bb0100) 2015; 122 Nimsky (10.1016/j.nicl.2018.08.021_bb0180) 2016; 43 Sotiropoulos (10.1016/j.nicl.2018.08.021_bb0215) 2013; 80 Kovanda (10.1016/j.nicl.2018.08.021_bb0130) 2014; 5 Chowdhury (10.1016/j.nicl.2018.08.021_bb0060) 2010; 5 Leemans (10.1016/j.nicl.2018.08.021_bb0135) 2009; 61 |
References_xml | – volume: 92 start-page: 29 year: 1988 end-page: 36 ident: bb0080 article-title: Neurosurgical topography of the optic radiation in the temporal lobe publication-title: Acta Neurochir. – volume: 132 start-page: 1656 year: 2009 end-page: 1668 ident: bb0255 article-title: Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography publication-title: Brain – volume: 122 start-page: 87 year: 2014 end-page: 91 ident: bb0035 article-title: Can DTI fiber tracking of the optic radiations predict visual deficit after surgery? publication-title: Clin. Neurol. Neurosurg. – start-page: 125 year: 2013 end-page: 143 ident: bb0215 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: NeuroImage – start-page: e3752 year: 2017 ident: bb0210 article-title: Building connectomes using diffusion MRI: why, how and but publication-title: NMR Biomed. – volume: 110 start-page: 95 year: 2015 end-page: 104 ident: bb0110 article-title: Diffusion tensor imaging tractography of Meyer's loop in planning resective surgery for drug-resistant temporal lobe epilepsy publication-title: Epilepsy Res. – year: 2018 ident: bb9955 article-title: Cross-vendor and Cross-protocol Harmonisation of Diffusion MRI Data: a Comparative Study publication-title: International Symposium on Magnetic Resonance in Medicine (Paris) – volume: 8 start-page: 59 year: 2014 ident: bb0040 article-title: Real-time multi-peak tractography for instantaneous connectivity display publication-title: Frontiers in neuroinformatics – volume: 5 start-page: 78 year: 2010 end-page: 82 ident: bb0060 article-title: Anterior and lateral extension of optic radiation and safety of amygdalohippocampectomy through middle temporal gyrus: a cadaveric study of 11 cerebral hemispheres publication-title: Asian J Neurosurg – volume: 65 start-page: 1532 year: 2011 end-page: 1556 ident: bb0225 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. – volume: 103 start-page: 202 year: 2014 end-page: 213 ident: bb0075 article-title: Interpolation of diffusion weighted imaging datasets publication-title: NeuroImage – volume: 129 start-page: 117 year: 2016 end-page: 132 ident: bb0230 article-title: Trade-off between angular and spatial resolutions in in vivo fiber tractography publication-title: NeuroImage – volume: 33 start-page: 1204 year: 2012 end-page: 1210 ident: bb0160 article-title: Challenges of the anatomy and diffusion tensor tractography of the Meyer loop publication-title: AJNR Am. J. Neuroradiol. – volume: 28 start-page: 17 year: 2013 end-page: 21 ident: bb0025 article-title: Trans-middle temporal gyrus selective amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy in adults: seizure response rates, complications, and neuropsychological outcomes publication-title: Epilepsy Behav. – volume: 45 start-page: 286 year: 2009 end-page: 297 ident: bb0050 article-title: Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery publication-title: NeuroImage – volume: 345 start-page: 311 year: 2001 end-page: 318 ident: bb0235 article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy publication-title: N. Engl. J. Med. – start-page: 1349 year: 2017 ident: bb0155 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nature Communications – volume: 140 start-page: 781 year: 2005 end-page: 785 ident: bb0250 article-title: Tractography to depict three layers of visual field trajectories to the calcarine gyri publication-title: Am J. Ophthalmol. – start-page: e3785 year: 2017 ident: bb0120 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed. – volume: 8 start-page: 12 year: 2008 ident: bb0205 article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography publication-title: J. Vis. – year: 2014 ident: bb0005 article-title: Image Quality Transfer Via Random Forest Regression: Applications in Diffusion MRI – volume: 220 start-page: 291 year: 2015 end-page: 306 ident: bb0065 article-title: Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography publication-title: Brain Struct. Funct. – volume: 288 start-page: 34 year: 2017 end-page: 44 ident: bb0170 article-title: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery publication-title: J. Neurosci. Methods – volume: 57 start-page: 219 year: 2005 end-page: 227 ident: bb0200 article-title: Three-dimensional relationships of the optic radiation publication-title: Neurosurgery – start-page: 541 year: 2018 end-page: 548 ident: bb0105 article-title: Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity publication-title: NeuroImage: Clinical – volume: 38 start-page: 509 year: 2017 end-page: 527 ident: bb0045 article-title: Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET) publication-title: Hum. Brain Mapp. – volume: 103 start-page: 411 year: 2014 end-page: 426 ident: bb0115 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: NeuroImage – volume: 59 start-page: S228 year: 2006 end-page: S235 ident: bb0055 article-title: Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe publication-title: Neurosurgery – volume: 16 start-page: 744 year: 2002 end-page: 748 ident: bb0190 article-title: Detection of visual field defects in patients after anterior temporal lobectomy for mesial temporal sclerosis-establishing eligibility to drive publication-title: Eye – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bb0010 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage – volume: 77 start-page: 11 year: 2007 end-page: 16 ident: bb0175 article-title: Intersubject variability in the anterior extent of the optic radiation assessed by tractography publication-title: Epilepsy Res. – year: 2015 ident: bb0185 article-title: Meyer's loop asymmetry and language lateralisation in epilepsy publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 157 start-page: 947 year: 2015 end-page: 956 ident: bb0150 article-title: Tractography of Meyer's loop for temporal lobe resection: validation by prediction of postoperative visual field outcome publication-title: Acta Neurochir. – year: 2014 ident: bb0130 article-title: Transsylvian selective amygdalohippocampectomy for treatment of medial temporal lobe epilepsy: surgical technique and operative nuances to avoid complications publication-title: Surgical neurology international – volume: 10 start-page: e0137064 year: 2015 ident: bb0165 article-title: Improved framework for tractography reconstruction of the optic radiation publication-title: PLoS One – year: 2017 ident: bb0085 article-title: White Matter Tractography for Neurosurgical Planning: A Topography-Based Review of the Current State of the Art – volume: 5 start-page: 288 year: 2015 end-page: 299 ident: bb0140 article-title: Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery publication-title: Quant Imaging Med Surg – volume: 43 start-page: 37 year: 2016 end-page: 60 ident: bb0180 article-title: Merits and limits of Tractography techniques for the uninitiated publication-title: Adv. Tech. Stand. Neurosurg. – start-page: ons145 year: 2011 end-page: ons156 ident: bb0245 article-title: Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy publication-title: Operative Neurosurgery – volume: 9 start-page: e101524 year: 2014 ident: bb0220 article-title: Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery publication-title: PLoS One – volume: 108 start-page: 872 year: 2014 end-page: 882 ident: bb0070 article-title: Tractography of Meyer's loop asymmetries publication-title: Epilepsy Res. – volume: 55 start-page: 1174 year: 2004 end-page: 1184 ident: bb0195 article-title: Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection publication-title: Neurosurgery – volume: 71 start-page: 334 year: 2012 end-page: 341 ident: bb0240 article-title: Optic radiation tractography and vision in anterior temporal lobe resection publication-title: Ann. Neurol. – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bb0015 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: NeuroImage – volume: 38 start-page: 5485 year: 2017 end-page: 5500 ident: bb0090 article-title: AxTract: toward microstructure informed tractography publication-title: Hum. Brain Mapp. – start-page: 105 year: 2013 end-page: 124 ident: bb0095 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage – volume: 122 start-page: 1253 year: 2015 end-page: 1262 ident: bb0100 article-title: The anatomy of Meyer's loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection publication-title: J. Neurosurg. – volume: 35 start-page: 683 year: 2014 end-page: 697 ident: bb0030 article-title: Optimization of tractography of the optic radiations publication-title: Hum. Brain Mapp. – volume: 61 start-page: 1336 year: 2009 end-page: 1349 ident: bb0135 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn. Reson. Med. – volume: 125 start-page: 767 year: 2016 end-page: 779 ident: bb0125 article-title: Automated Retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis publication-title: Neuroimage – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: bb0020 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 108 start-page: 481 year: 2014 end-page: 490 ident: bb0145 article-title: Visualizing Meyer's loop: a comparison of deterministic and probabilistic tractography publication-title: Epilepsy Res. – volume: 157 start-page: 947 issue: 6 year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0150 article-title: Tractography of Meyer's loop for temporal lobe resection: validation by prediction of postoperative visual field outcome publication-title: Acta Neurochir. doi: 10.1007/s00701-015-2403-y – start-page: e3752 year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0210 article-title: Building connectomes using diffusion MRI: why, how and but publication-title: NMR Biomed. – volume: 70 start-page: ons145 issue: Suppl. 1 year: 2011 ident: 10.1016/j.nicl.2018.08.021_bb0245 article-title: Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy publication-title: Operative Neurosurgery – volume: 122 start-page: 87 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0035 article-title: Can DTI fiber tracking of the optic radiations predict visual deficit after surgery? publication-title: Clin. Neurol. Neurosurg. doi: 10.1016/j.clineuro.2014.04.017 – volume: 45 start-page: 286 issue: 2 year: 2009 ident: 10.1016/j.nicl.2018.08.021_bb0050 article-title: Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.038 – volume: 9 start-page: e101524 issue: 7 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0220 article-title: Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery publication-title: PLoS One doi: 10.1371/journal.pone.0101524 – volume: 57 start-page: 219 issue: 4 Suppl year: 2005 ident: 10.1016/j.nicl.2018.08.021_bb0200 article-title: Three-dimensional relationships of the optic radiation publication-title: Neurosurgery – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.nicl.2018.08.021_bb0095 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 35 start-page: 683 issue: 2 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0030 article-title: Optimization of tractography of the optic radiations publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22204 – volume: 132 start-page: 1656 issue: Pt 6 year: 2009 ident: 10.1016/j.nicl.2018.08.021_bb0255 article-title: Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography publication-title: Brain doi: 10.1093/brain/awp114 – volume: 5 start-page: 78 issue: 1 year: 2010 ident: 10.1016/j.nicl.2018.08.021_bb0060 article-title: Anterior and lateral extension of optic radiation and safety of amygdalohippocampectomy through middle temporal gyrus: a cadaveric study of 11 cerebral hemispheres publication-title: Asian J Neurosurg – volume: 125 start-page: 767 year: 2016 ident: 10.1016/j.nicl.2018.08.021_bb0125 article-title: Automated Retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.005 – volume: 108 start-page: 481 issue: 3 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0145 article-title: Visualizing Meyer's loop: a comparison of deterministic and probabilistic tractography publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2014.01.017 – volume: 140 start-page: 781 issue: 5 year: 2005 ident: 10.1016/j.nicl.2018.08.021_bb0250 article-title: Tractography to depict three layers of visual field trajectories to the calcarine gyri publication-title: Am J. Ophthalmol. doi: 10.1016/j.ajo.2005.05.018 – volume: 8 start-page: 59 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0040 article-title: Real-time multi-peak tractography for instantaneous connectivity display publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2014.00059 – volume: 110 start-page: 95 year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0110 article-title: Diffusion tensor imaging tractography of Meyer's loop in planning resective surgery for drug-resistant temporal lobe epilepsy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2014.11.020 – year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0185 article-title: Meyer's loop asymmetry and language lateralisation in epilepsy publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 8 start-page: 12 issue: 10 year: 2008 ident: 10.1016/j.nicl.2018.08.021_bb0205 article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography publication-title: J. Vis. doi: 10.1167/8.10.12 – volume: 54 start-page: 2033 issue: 3 year: 2011 ident: 10.1016/j.nicl.2018.08.021_bb0020 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 16 start-page: 744 issue: 6 year: 2002 ident: 10.1016/j.nicl.2018.08.021_bb0190 article-title: Detection of visual field defects in patients after anterior temporal lobectomy for mesial temporal sclerosis-establishing eligibility to drive publication-title: Eye doi: 10.1038/sj.eye.6700152 – volume: 71 start-page: 334 issue: 3 year: 2012 ident: 10.1016/j.nicl.2018.08.021_bb0240 article-title: Optic radiation tractography and vision in anterior temporal lobe resection publication-title: Ann. Neurol. doi: 10.1002/ana.22619 – volume: 28 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.nicl.2018.08.021_bb0025 article-title: Trans-middle temporal gyrus selective amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy in adults: seizure response rates, complications, and neuropsychological outcomes publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2013.03.020 – volume: 92 start-page: 29 issue: 1–4 year: 1988 ident: 10.1016/j.nicl.2018.08.021_bb0080 article-title: Neurosurgical topography of the optic radiation in the temporal lobe publication-title: Acta Neurochir. doi: 10.1007/BF01401969 – volume: 38 start-page: 509 issue: 1 year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0045 article-title: Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET) publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23399 – volume: 5 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0130 article-title: Transsylvian selective amygdalohippocampectomy for treatment of medial temporal lobe epilepsy: surgical technique and operative nuances to avoid complications publication-title: Surgical neurology international – volume: 8 start-page: 1349 year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0155 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nature Communications doi: 10.1038/s41467-017-01285-x – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.nicl.2018.08.021_bb0215 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 43 start-page: 37 year: 2016 ident: 10.1016/j.nicl.2018.08.021_bb0180 article-title: Merits and limits of Tractography techniques for the uninitiated publication-title: Adv. Tech. Stand. Neurosurg. doi: 10.1007/978-3-319-21359-0_2 – volume: 220 start-page: 291 issue: 1 year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0065 article-title: Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0655-y – volume: 129 start-page: 117 year: 2016 ident: 10.1016/j.nicl.2018.08.021_bb0230 article-title: Trade-off between angular and spatial resolutions in in vivo fiber tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.011 – year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0005 – volume: 61 start-page: 1336 issue: 6 year: 2009 ident: 10.1016/j.nicl.2018.08.021_bb0135 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21890 – volume: 345 start-page: 311 issue: 5 year: 2001 ident: 10.1016/j.nicl.2018.08.021_bb0235 article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200108023450501 – volume: 38 start-page: 5485 issue: 11 year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0090 article-title: AxTract: toward microstructure informed tractography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23741 – volume: 108 start-page: 872 issue: 5 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0070 article-title: Tractography of Meyer's loop asymmetries publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2014.03.006 – volume: 288 start-page: 34 year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0170 article-title: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.05.029 – volume: 5 start-page: 288 issue: 2 year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0140 article-title: Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery publication-title: Quant Imaging Med Surg – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.nicl.2018.08.021_bb0010 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 55 start-page: 1174 issue: 5 year: 2004 ident: 10.1016/j.nicl.2018.08.021_bb0195 article-title: Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection publication-title: Neurosurgery doi: 10.1227/01.NEU.0000140843.62311.24 – volume: 65 start-page: 1532 issue: 6 year: 2011 ident: 10.1016/j.nicl.2018.08.021_bb0225 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22924 – volume: 103 start-page: 202 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0075 article-title: Interpolation of diffusion weighted imaging datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.005 – year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0085 – volume: 103 start-page: 411 year: 2014 ident: 10.1016/j.nicl.2018.08.021_bb0115 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 77 start-page: 11 issue: 1 year: 2007 ident: 10.1016/j.nicl.2018.08.021_bb0175 article-title: Intersubject variability in the anterior extent of the optic radiation assessed by tractography publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2007.07.012 – start-page: e3785 year: 2017 ident: 10.1016/j.nicl.2018.08.021_bb0120 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed. – volume: 17 start-page: 541 year: 2018 ident: 10.1016/j.nicl.2018.08.021_bb0105 article-title: Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.10.010 – volume: 122 start-page: 1253 issue: 6 year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0100 article-title: The anatomy of Meyer's loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection publication-title: J. Neurosurg. doi: 10.3171/2014.12.JNS14281 – volume: 10 start-page: e0137064 issue: 9 year: 2015 ident: 10.1016/j.nicl.2018.08.021_bb0165 article-title: Improved framework for tractography reconstruction of the optic radiation publication-title: PLoS One doi: 10.1371/journal.pone.0137064 – year: 2018 ident: 10.1016/j.nicl.2018.08.021_bb9955 article-title: Cross-vendor and Cross-protocol Harmonisation of Diffusion MRI Data: a Comparative Study – volume: 20 start-page: 870 issue: 2 year: 2003 ident: 10.1016/j.nicl.2018.08.021_bb0015 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00336-7 – volume: 59 start-page: S228 issue: 4 Suppl 2 year: 2006 ident: 10.1016/j.nicl.2018.08.021_bb0055 article-title: Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe publication-title: Neurosurgery – volume: 33 start-page: 1204 issue: 7 year: 2012 ident: 10.1016/j.nicl.2018.08.021_bb0160 article-title: Challenges of the anatomy and diffusion tensor tractography of the Meyer loop publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A2652 |
SSID | ssj0000800766 |
Score | 2.2604449 |
Snippet | Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the... AbstractIntroductionSurgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if... Unlabelled Image • Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude. • Optic radiation tractography was performed... Introduction: Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 458 |
SubjectTerms | Computers Databases, Factual Diffusion Tensor Imaging - methods Epilepsy, Temporal Lobe - diagnostic imaging Epilepsy, Temporal Lobe - physiopathology Epilepsy, Temporal Lobe - surgery Humans Radiology Regular Surgery, Computer-Assisted - methods Temporal Lobe - diagnostic imaging Temporal Lobe - physiopathology Temporal Lobe - surgery Visual Field Tests - methods Visual Fields - physiology Visual Pathways - diagnostic imaging Visual Pathways - physiopathology Visual Pathways - surgery |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gLolAgtFRGqsQBRcR2HCfHgqgqpOUClSpxsPwV2KokVbOr_v3OxM5qQ1F74bKHJN6sZ8Yzz-uZN4QcNbJUWD-Z2yZUedkGlxsLCgHo3YTWc2PGqrTFt-r0rPx6Ls-3Wn1hTlikB46C-6i4sQ1gZG8dK1trTAsOVTaFrZ1SgHXQ-0LM29pMXSQcpMaDSs6ZyJmseaqYicldyDqLeV31yN_J2SwqjeT9s-B0F3z-nUO5FZROnpGnCU3S4ziLXfIodM_J40U6L39Bfi4CQOr3A73s-yu6woqoRFFNAazS5R_wJvmv9dIHT4dYIE1jW9yB9t14H0IbRTKHHiyGms5TLNO6Mddhj5ydfPnx-TRP7RRyVzVildcVrM2agxxrrrg3tYfPSpVOlYG3yC3nYDa89Lw2LXOgWw--TwQlDbOsCOIl2en6LrwmtGK2EC03ilcOm6lbaUFJAGZcCxdKmRE2iVO7xDWOLS8u9ZRUdqFRBRpVoLEPJmcZ-bAZcxWZNu59-hNqafMksmSPF8B2dLId_ZDtZERMOtZTISq4Tvii5b2vVv8aFYa0-gfN9MB1ob-j7aHpMSRZg51jRuRmZAI4Ebg8-MZ3kwFqWP14pGO60K8HjabPhQAUmJFX0SA3IhGIPWDC8HtnpjqT2fxOt_w9MoxXuLGVxZv_IeR98gSnEv-2OiA7q-t1eAtAbmUPxzV7C-R7ROQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HPYgv4rf1iwiCD1K2SdMmffQOj0NYX_RgwYeQpOlZuWuX7S7--86kabGenOBL2abJNslMZ35tZn4h5G1VCIn5k6mtfJmKxrvUWBAIQO_KNzU3JmSlrT-X5xfi06bYHJHTKRcGwyqj7R9terDWsWQVZ3O1bdvVF85ZzjDPEymsAJeDHc6FCkl8m5P5OwsiIhmWLLF-ig1i7swY5oX8sxjhpQKTJ2cL_xRo_Bdu6iYM_TOa8jf3dHaf3Iu4kn4Yu_6AHPnuIbmzjivnj8i3tQdw_W6gV32_pXvMjYpk1RRgK22vwa6kl4e29jUdxlRpOm6QO9C-C9fByVGkdehBd6jpaooJWz_Nzj8mF2cfv56ep3FjhdSVVb5PVQlPqeLWwcuF5LVRNRxLKZwUnjfIMudgNFzUXJmGOZByDVYw97IwzLLM50_Icdd3_hmhJbNZ3nAjeelwW3VbWFvBD-UaKBBFQtg0ndpF1nHc_OJKT-FlPzSKQKMINO6IyVlC3s9ttiPnxq21T1BKc03kyw4F_e5SR4XRkhvoFlc1jFk01pgG3HJRZVY5KQExJySfZKynlFQwovBH7a23ln9r5YdoBwbN9MB1pm_oakKKueVC3f95xzeTAmqwA7i4YzrfHwaoVAEIyQEPJuTpqJDzlOSIQmDA0N-Fqi7mbHmla78HrvESX3GL7Pl_9vcFuYtn4zerl-R4vzv4V4Di9vZ1eEx_AfmfRTo priority: 102 providerName: Elsevier |
Title | Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158218302626 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158218302626 https://dx.doi.org/10.1016/j.nicl.2018.08.021 https://www.ncbi.nlm.nih.gov/pubmed/30128284 https://www.proquest.com/docview/2091233431 https://pubmed.ncbi.nlm.nih.gov/PMC6096050 https://doaj.org/article/72ab9428dbc14fbaaf284590b8c77020 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkJcEOUZCpWRkDigoNh52DmgiiKqgrRcYKWVOFh-pd1qScpmV4V_35nEWQisirhEu4mdxJ4Zz-fY8w0hL8o8Exg_GZvSF3FWeRtrAwIB6F36ynGtu6i0yafidJp9nOWzHTKkOwod2G6d2mE-qely8frH959HYPBvfu3VQhJZ3KYlOzpOjCvfA88k0FAnAe5fBHQkuuVLzlkas1zyEEez_TYjX9VR-o9c1t-Q9M-dlb-5qpO75E7AmPRtrxT7ZMfX98itSVhFv0--TjwA7ZctXTTNJV1hnFQgrqYAYen8G4wx8dl67ryjbR82TftkuS1t6u46ODyKFA8N6BHVtaMYvHWll_4BmZ68__LuNA5JFmJblOkqlgVYrOTGwkRDcKelg2MhMisyzytknLPQGp45LnXFLEjcwYiYepFrZlji04dkt25q_5jQgpkkrbgWvLCYYt3kxpTwQ9oKTmR5RNjQncoGBnJMhLFQw1azC4UiUCgChdkxOYvIq02dy55_48bSxyilTUnkzu5ONMszFUxRCa7htbh00OasMlpX4KLzMjHSCgHoOSLpIGM1hKfCgAo3mt_4aLGtlm8HlVZMtVwl6jPqHqoeQ-o1mE9GJN_UDLCnhzP_fOLzQQEVjAm40KNr36xbKFQCIEkBG0bkUa-Qmy5JEZFAg-F9R6o66rPxlXp-3vGOFzjdzZMn_yWSA3Ib__VfrZ6S3dVy7Z8BjluZw-77Bxw_zI4PO0O9BkvxRvY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxJvlaSQkDija2Hk4OdKKagvdXmillThYtuOUoJKsNrvi7zOTOBGhqEhcVpEfG9szmfkSe74BeJsnsaT4ycDkLg3i0tlAGxQIQu_clYXQuotKW56mi_P40ypZ7cHhEAtDxyq97e9temetfcncr-Z8XVXzL0LwiFOcJ1FYIS6_ATcRDUjK33C8Ohg_tBAkkt2eJXUIqIcPnunPeREBLR3xyjoqT8EnDqrj8Z_4qas49M_jlL_5p6N7cNcDS_ahH_t92HP1A7i19FvnD-Hr0iG6fteyy6ZZsy0FR3m2aoa4lVU_0LAEF7uqcAVr-1hp1mfIbVlTd_Xo5RjxOjSoPEzXBaOIrZ964x7B-dHHs8NF4DMrBDbNo22QpfiYZsJYfLuQotBZgb-pjK2MnSiJZs7ibERciEyX3KKYCzSDkZOJ5oaHLnoM-3VTu6fAUm7CqBRaitRSXnWTGJPjRWZLLIiTGfBhOZX1tOOU_eJSDefLvisSgSIRKEqJKfgM3o991j3pxrWtD0hKY0sizO4Kms2F8hqjpNA4LJEVOOe4NFqX6JeTPDSZlRIh8wyiQcZqiElFK4p_VF17a_m3Xq71hqBVXLVCheqKss4gGXtO9P2fd3wzKKBCQ0C7O7p2za7FRjmikAgB4Qye9Ao5LklEMAQnjOOdqOpkzaY1dfWtIxtP6R03CZ_953hfw-3F2fJEnRyffn4Od6im_4D1Ava3m517iZBua151j-wvQtpIWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meyer%27s+loop+tractography+for+image-guided+surgery+depends+on+imaging+protocol+and+hardware&rft.jtitle=NeuroImage+clinical&rft.au=Chamberland%2C+Maxime&rft.au=Tax%2C+Chantal+M.W.&rft.au=Jones%2C+Derek+K.&rft.date=2018-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=20&rft.spage=458&rft.epage=465&rft_id=info:doi/10.1016%2Fj.nicl.2018.08.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nicl_2018_08_021 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158218X00047%2Fcov150h.gif |