Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware

Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-gu...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 20; pp. 458 - 465
Main Authors Chamberland, Maxime, Tax, Chantal M.W., Jones, Derek K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. [Display omitted] •Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude.•Optic radiation tractography was performed using “standard” and “state-of-the-art” acquisitions.•Meyer's loop to Temporal Pole distance varies up to 16.5 mm for the same subject across protocols.•State-of-the-art protocols provide Meyer's loop measurements that are in line with ex-vivo studies.•Surgical planning for anterior temporal lobe resection depends on protocol and available hardware.
AbstractList Unlabelled Image • Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude. • Optic radiation tractography was performed using “standard” and “state-of-the-art” acquisitions. • Meyer's loop to Temporal Pole distance varies up to 16.5 mm for the same subject across protocols. • State-of-the-art protocols provide Meyer's loop measurements that are in line with ex-vivo studies. • Surgical planning for anterior temporal lobe resection depends on protocol and available hardware.
Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols. [Display omitted] •Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude.•Optic radiation tractography was performed using “standard” and “state-of-the-art” acquisitions.•Meyer's loop to Temporal Pole distance varies up to 16.5 mm for the same subject across protocols.•State-of-the-art protocols provide Meyer's loop measurements that are in line with ex-vivo studies.•Surgical planning for anterior temporal lobe resection depends on protocol and available hardware.
Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction.IntroductionSurgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction.Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols.MethodsDiffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols.A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm).ResultsA significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm).We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.ConclusionWe showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
Introduction: Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Methods: Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. Results: A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). Conclusion: We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. A significant effect of data acquisition on the ML-TP distance was observed between protocols (  < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm). We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
AbstractIntroductionSurgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. MethodsDiffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. ResultsA significant effect of data acquisition on the ML-TP distance was observed between protocols ( p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). ConclusionWe showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
Author Chamberland, Maxime
Jones, Derek K.
Tax, Chantal M.W.
AuthorAffiliation a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
b School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
AuthorAffiliation_xml – name: a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
– name: b School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
Author_xml – sequence: 1
  givenname: Maxime
  orcidid: 0000-0001-7064-0984
  surname: Chamberland
  fullname: Chamberland, Maxime
  email: chamberlandm@cardiff.ac.uk
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
– sequence: 2
  givenname: Chantal M.W.
  surname: Tax
  fullname: Tax, Chantal M.W.
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
– sequence: 3
  givenname: Derek K.
  surname: Jones
  fullname: Jones, Derek K.
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30128284$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQjlARLaV_gAPKDS5ZxpNs4iBUCVU8KhVxAE4cLMeeZB2ydrCTov33ON1StZUo1si27O9hjb-nyYF1lpLkOYMVA1a-7lfWqGGFwPgKYiF7lBwhsjxja44Ht_aHyUkIPcTBAaqyfJIc5sCQIy-Okh-faUf-ZUgH58Z08lJNrvNy3OzS1vnUbGVHWTcbTToNs-_I71JNI1kdUmev7o3t0tG7ySk3pNLqdCO9_i09PUset3IIdHK9HiffP7z_dvYpu_jy8fzs3UWmyjqfMl7yCjg2inGsUEuu41xWhaoKwhYYoNKKsNDIZcsUKaW1ppyqtWQNA8qPk_O9rnayF6OPj_I74aQRVwfOd0L6KXaLRIWyqQvkOroVbSNlG7uwrqHhqqoAIWqd7rXGudlS9LWxJ8Md0bs31mxE5y5FCXUJ60Xg1bWAd79mCpPYmqBoGKQlNweBUDPM8yJnEfritteNyd_fiQDcA5R3IXhqbyAMxJIC0YslBWJJgYBYuKjyeyRlJjkZt7zXDA9T3-6pFH_r0pAXQRmyirTxpKbYTvMw_fQeXQ0mouTwM4Ys9G72NuZAMBFQgPi6JHQJKOM5YIllFHjzb4H_uf8B7O33Cw
CitedBy_id crossref_primary_10_1007_s00429_022_02503_z
crossref_primary_10_1097_WCO_0000000000000905
crossref_primary_10_1016_j_neuroimage_2022_119029
crossref_primary_10_1016_j_nicl_2019_101883
crossref_primary_10_1523_ENEURO_0545_19_2020
crossref_primary_10_1002_hbm_25291
crossref_primary_10_1016_j_neuroimage_2021_118706
crossref_primary_10_1016_j_neuroimage_2022_118958
crossref_primary_10_1111_epi_17490
crossref_primary_10_1016_j_neuroimage_2019_01_077
crossref_primary_10_1016_j_neuroimage_2019_116471
crossref_primary_10_1016_j_neuroimage_2021_118451
crossref_primary_10_1007_s10143_022_01881_6
crossref_primary_10_1186_s12883_019_1537_6
crossref_primary_10_2463_mrms_rev_2024_0007
crossref_primary_10_1162_netn_a_00378
crossref_primary_10_3389_fncir_2019_00062
crossref_primary_10_1016_j_neuroimage_2020_117505
crossref_primary_10_1016_j_media_2025_103498
crossref_primary_10_1016_j_nicl_2019_101826
crossref_primary_10_3389_fnins_2023_1191999
crossref_primary_10_1159_000500136
crossref_primary_10_1002_hbm_24964
crossref_primary_10_1002_hbm_25658
crossref_primary_10_3171_2020_12_JNS203437
crossref_primary_10_1016_j_neuroimage_2019_06_020
Cites_doi 10.1007/s00701-015-2403-y
10.1016/j.clineuro.2014.04.017
10.1016/j.neuroimage.2008.11.038
10.1371/journal.pone.0101524
10.1016/j.neuroimage.2013.04.127
10.1002/hbm.22204
10.1093/brain/awp114
10.1016/j.neuroimage.2015.11.005
10.1016/j.eplepsyres.2014.01.017
10.1016/j.ajo.2005.05.018
10.3389/fninf.2014.00059
10.1016/j.eplepsyres.2014.11.020
10.1167/8.10.12
10.1016/j.neuroimage.2010.09.025
10.1038/sj.eye.6700152
10.1002/ana.22619
10.1016/j.yebeh.2013.03.020
10.1007/BF01401969
10.1002/hbm.23399
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2013.05.057
10.1007/978-3-319-21359-0_2
10.1007/s00429-013-0655-y
10.1016/j.neuroimage.2016.01.011
10.1002/mrm.21890
10.1056/NEJM200108023450501
10.1002/hbm.23741
10.1016/j.eplepsyres.2014.03.006
10.1016/j.jneumeth.2017.05.029
10.1016/j.neuroimage.2015.10.019
10.1227/01.NEU.0000140843.62311.24
10.1002/mrm.22924
10.1016/j.neuroimage.2014.09.005
10.1016/j.neuroimage.2014.07.061
10.1016/j.eplepsyres.2007.07.012
10.1016/j.nicl.2017.10.010
10.3171/2014.12.JNS14281
10.1371/journal.pone.0137064
10.1016/S1053-8119(03)00336-7
10.3174/ajnr.A2652
ContentType Journal Article
Copyright 2018 The Authors
The Authors
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: The Authors
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2018.08.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 465
ExternalDocumentID oai_doaj_org_article_72ab9428dbc14fbaaf284590b8c77020
PMC6096050
30128284
10_1016_j_nicl_2018_08_021
S2213158218302626
1_s2_0_S2213158218302626
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c693t-8687082bc18272da8d72d674c74e2f0102cdce24d28af1ceccddde3e75a1b10e3
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:04:31 EDT 2025
Thu Aug 21 17:56:32 EDT 2025
Fri Jul 11 16:13:11 EDT 2025
Mon Jul 21 06:08:03 EDT 2025
Tue Jul 01 01:09:41 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Wed May 17 01:21:53 EDT 2023
Sun Feb 23 10:19:27 EST 2025
Tue Aug 26 16:33:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-8687082bc18272da8d72d674c74e2f0102cdce24d28af1ceccddde3e75a1b10e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7064-0984
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2018.08.021
PMID 30128284
PQID 2091233431
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_72ab9428dbc14fbaaf284590b8c77020
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096050
proquest_miscellaneous_2091233431
pubmed_primary_30128284
crossref_primary_10_1016_j_nicl_2018_08_021
crossref_citationtrail_10_1016_j_nicl_2018_08_021
elsevier_sciencedirect_doi_10_1016_j_nicl_2018_08_021
elsevier_clinicalkeyesjournals_1_s2_0_S2213158218302626
elsevier_clinicalkey_doi_10_1016_j_nicl_2018_08_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Leemans, Jones (bb0135) 2009; 61
Essayed, Zhang, Unadkat, Cosgrove, Golby, O'Donnell (bb0085) 2017
Chamberland, Whittingstall, Fortin, Mathieu, Descoteaux (bb0040) 2014; 8
Alexander, Zikic, Zhang, Zhang, Criminisi (bb0005) 2014
Chowdhury, Khan (bb0060) 2010; 5
Tax, Duits, Vilanova, ter Haar Romeny, Hofman, Wagner, Ossenblok (bb0220) 2014; 9
Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong (bb0155) 2017
Mandelstam (bb0160) 2012; 33
Wu, Rigolo, O'Donnell, Norton, Shriver, Golby (bb0245) 2011
James, Radhakrishnan, Thomas, Madhusoodanan, Kesavadas, Abraham, Vilanilam (bb0110) 2015; 110
Wiebe, Blume, Girvin, Eliasziw (bb0235) 2001; 345
Nimsky, Bauer, Carl (bb0180) 2016; 43
Goga, Ture (bb0100) 2015; 122
Sotiropoulos, Zalesky (bb0210) 2017
Benjamin, Singh, Prabhu, Warfield (bb0030) 2014; 35
Peuskens, van Loon, Van Calenbergh, van den Bergh, Goffin, Plets (bb0195) 2004; 55
Bandt, Werner, Dines, Rashid, Eisenman, Hogan, Dowling (bb0025) 2013; 28
Tax, Grussu, Kaden, Ning, Rudrapatna, Evans, St-Jean (bb9955) 2018
Yamamoto, Yamada, Nishimura, Kinoshita (bb0250) 2005; 140
Martinez Heras, Varriano, Prčkovska, Laredo, Andorrà, Martinez Lapiscina (bb0165) 2015; 10
Hales, Smith, Dhanoa-Hayre, O'Hare, Mankad, D'Arco (bb0105) 2018
Borius, Roux, Valton, Sol, Lotterie, Berry (bb0035) 2014; 122
Yogarajah, Focke, Bonelli, Cercignani, Acheson, Parker, Duncan (bb0255) 2009; 132
Andersson, Sotiropoulos (bb0010) 2016; 125
Andersson, Skare, Ashburner (bb0015) 2003; 20
Lilja, Nilsson (bb0140) 2015; 5
Rubino, Rhoton, Tong, Oliveira (bb0200) 2005; 57
Pathak-Ray, Ray, Walters, Hatfield (bb0190) 2002; 16
Girard, Daducci, Petit, Thiran, Whittingstall, Deriche, Descoteaux (bb0090) 2017; 38
Kammen, Law, Tjan, Toga, Shi (bb0125) 2016; 125
Lilja, Ljungberg, Starck, Malmgren, Rydenhag, Nilsson (bb0145) 2014; 108
Chen, Weigel, Ganslandt, Buchfelder, Nimsky (bb0050) 2009; 45
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach (bb0215) 2013
Nowell, Vos, Sidhu, Wilcoxen, Sargsyan, Ourselin, Duncan (bb0185) 2015
Choi, Rubino, Fernandez-Miranda, Abe, Rhoton (bb0055) 2006; 59
Sherbondy, Dougherty, Napel, Wandell (bb0205) 2008; 8
Avants, Tustison, Song, Cook, Klein, Gee (bb0020) 2011; 54
Chamberland, Scherrer, Prabhu, Madsen, Fortin, Whittingstall, Warfield (bb0045) 2017; 38
Nilsson, Starck, Ljungberg, Ribbelin, Jönsson, Malmgren, Rydenhag (bb0175) 2007; 77
Vos, Aksoy, Han, Holdsworth, Maclaren, Viergever, Bammer (bb0230) 2016; 129
de Gervai, Sboto-Frankenstein, Bolster, Thind, Gruwel, Smith, Tomanek (bb0070) 2014; 108
Jeurissen, Descoteaux, Mori, Leemans (bb0120) 2017
Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bb0115) 2014; 103
Dayan, Munoz, Jentschke, Chadwick, Cooper, Riney, Clark (bb0065) 2015; 220
Winston, Daga, Stretton, Modat, Symms, McEvoy, Duncan (bb0240) 2012; 71
Lilja, Ljungberg, Starck, Malmgren, Rydenhag, Nilsson (bb0150) 2015; 157
Dyrby, Lundell, Burke, Reislev, Paulson, Ptito, Siebner (bb0075) 2014; 103
Meesters, Ossenblok, Wagner, Schijns, Boon, Florack, Duits (bb0170) 2017; 288
Ebeling, Reulen (bb0080) 1988; 92
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bb0095) 2013
Tournier, Mori, Leemans (bb0225) 2011; 65
Kovanda, Tubbs, Cohen-Gadol (bb0130) 2014
Benjamin (10.1016/j.nicl.2018.08.021_bb0030) 2014; 35
Avants (10.1016/j.nicl.2018.08.021_bb0020) 2011; 54
Chamberland (10.1016/j.nicl.2018.08.021_bb0045) 2017; 38
Choi (10.1016/j.nicl.2018.08.021_bb0055) 2006; 59
Girard (10.1016/j.nicl.2018.08.021_bb0090) 2017; 38
Glasser (10.1016/j.nicl.2018.08.021_bb0095) 2013; 80
de Gervai (10.1016/j.nicl.2018.08.021_bb0070) 2014; 108
Hales (10.1016/j.nicl.2018.08.021_bb0105) 2018; 17
Yamamoto (10.1016/j.nicl.2018.08.021_bb0250) 2005; 140
Chen (10.1016/j.nicl.2018.08.021_bb0050) 2009; 45
Dayan (10.1016/j.nicl.2018.08.021_bb0065) 2015; 220
Chamberland (10.1016/j.nicl.2018.08.021_bb0040) 2014; 8
Sotiropoulos (10.1016/j.nicl.2018.08.021_bb0210) 2017
Bandt (10.1016/j.nicl.2018.08.021_bb0025) 2013; 28
Rubino (10.1016/j.nicl.2018.08.021_bb0200) 2005; 57
Alexander (10.1016/j.nicl.2018.08.021_bb0005) 2014
Nilsson (10.1016/j.nicl.2018.08.021_bb0175) 2007; 77
Kammen (10.1016/j.nicl.2018.08.021_bb0125) 2016; 125
Sherbondy (10.1016/j.nicl.2018.08.021_bb0205) 2008; 8
Essayed (10.1016/j.nicl.2018.08.021_bb0085) 2017
Yogarajah (10.1016/j.nicl.2018.08.021_bb0255) 2009; 132
Wiebe (10.1016/j.nicl.2018.08.021_bb0235) 2001; 345
Borius (10.1016/j.nicl.2018.08.021_bb0035) 2014; 122
Tax (10.1016/j.nicl.2018.08.021_bb0220) 2014; 9
Tax (10.1016/j.nicl.2018.08.021_bb9955) 2018
Mandelstam (10.1016/j.nicl.2018.08.021_bb0160) 2012; 33
Lilja (10.1016/j.nicl.2018.08.021_bb0145) 2014; 108
Jeurissen (10.1016/j.nicl.2018.08.021_bb0120) 2017
Meesters (10.1016/j.nicl.2018.08.021_bb0170) 2017; 288
Peuskens (10.1016/j.nicl.2018.08.021_bb0195) 2004; 55
Vos (10.1016/j.nicl.2018.08.021_bb0230) 2016; 129
Martinez Heras (10.1016/j.nicl.2018.08.021_bb0165) 2015; 10
Tournier (10.1016/j.nicl.2018.08.021_bb0225) 2011; 65
Winston (10.1016/j.nicl.2018.08.021_bb0240) 2012; 71
Andersson (10.1016/j.nicl.2018.08.021_bb0015) 2003; 20
Lilja (10.1016/j.nicl.2018.08.021_bb0140) 2015; 5
Ebeling (10.1016/j.nicl.2018.08.021_bb0080) 1988; 92
Wu (10.1016/j.nicl.2018.08.021_bb0245) 2011; 70
Lilja (10.1016/j.nicl.2018.08.021_bb0150) 2015; 157
Nowell (10.1016/j.nicl.2018.08.021_bb0185) 2015
Dyrby (10.1016/j.nicl.2018.08.021_bb0075) 2014; 103
Andersson (10.1016/j.nicl.2018.08.021_bb0010) 2016; 125
James (10.1016/j.nicl.2018.08.021_bb0110) 2015; 110
Pathak-Ray (10.1016/j.nicl.2018.08.021_bb0190) 2002; 16
Maier-Hein (10.1016/j.nicl.2018.08.021_bb0155) 2017; 8
Jeurissen (10.1016/j.nicl.2018.08.021_bb0115) 2014; 103
Goga (10.1016/j.nicl.2018.08.021_bb0100) 2015; 122
Nimsky (10.1016/j.nicl.2018.08.021_bb0180) 2016; 43
Sotiropoulos (10.1016/j.nicl.2018.08.021_bb0215) 2013; 80
Kovanda (10.1016/j.nicl.2018.08.021_bb0130) 2014; 5
Chowdhury (10.1016/j.nicl.2018.08.021_bb0060) 2010; 5
Leemans (10.1016/j.nicl.2018.08.021_bb0135) 2009; 61
References_xml – volume: 92
  start-page: 29
  year: 1988
  end-page: 36
  ident: bb0080
  article-title: Neurosurgical topography of the optic radiation in the temporal lobe
  publication-title: Acta Neurochir.
– volume: 132
  start-page: 1656
  year: 2009
  end-page: 1668
  ident: bb0255
  article-title: Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography
  publication-title: Brain
– volume: 122
  start-page: 87
  year: 2014
  end-page: 91
  ident: bb0035
  article-title: Can DTI fiber tracking of the optic radiations predict visual deficit after surgery?
  publication-title: Clin. Neurol. Neurosurg.
– start-page: 125
  year: 2013
  end-page: 143
  ident: bb0215
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: NeuroImage
– start-page: e3752
  year: 2017
  ident: bb0210
  article-title: Building connectomes using diffusion MRI: why, how and but
  publication-title: NMR Biomed.
– volume: 110
  start-page: 95
  year: 2015
  end-page: 104
  ident: bb0110
  article-title: Diffusion tensor imaging tractography of Meyer's loop in planning resective surgery for drug-resistant temporal lobe epilepsy
  publication-title: Epilepsy Res.
– year: 2018
  ident: bb9955
  article-title: Cross-vendor and Cross-protocol Harmonisation of Diffusion MRI Data: a Comparative Study
  publication-title: International Symposium on Magnetic Resonance in Medicine (Paris)
– volume: 8
  start-page: 59
  year: 2014
  ident: bb0040
  article-title: Real-time multi-peak tractography for instantaneous connectivity display
  publication-title: Frontiers in neuroinformatics
– volume: 5
  start-page: 78
  year: 2010
  end-page: 82
  ident: bb0060
  article-title: Anterior and lateral extension of optic radiation and safety of amygdalohippocampectomy through middle temporal gyrus: a cadaveric study of 11 cerebral hemispheres
  publication-title: Asian J Neurosurg
– volume: 65
  start-page: 1532
  year: 2011
  end-page: 1556
  ident: bb0225
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
– volume: 103
  start-page: 202
  year: 2014
  end-page: 213
  ident: bb0075
  article-title: Interpolation of diffusion weighted imaging datasets
  publication-title: NeuroImage
– volume: 129
  start-page: 117
  year: 2016
  end-page: 132
  ident: bb0230
  article-title: Trade-off between angular and spatial resolutions in in vivo fiber tractography
  publication-title: NeuroImage
– volume: 33
  start-page: 1204
  year: 2012
  end-page: 1210
  ident: bb0160
  article-title: Challenges of the anatomy and diffusion tensor tractography of the Meyer loop
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 28
  start-page: 17
  year: 2013
  end-page: 21
  ident: bb0025
  article-title: Trans-middle temporal gyrus selective amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy in adults: seizure response rates, complications, and neuropsychological outcomes
  publication-title: Epilepsy Behav.
– volume: 45
  start-page: 286
  year: 2009
  end-page: 297
  ident: bb0050
  article-title: Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery
  publication-title: NeuroImage
– volume: 345
  start-page: 311
  year: 2001
  end-page: 318
  ident: bb0235
  article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy
  publication-title: N. Engl. J. Med.
– start-page: 1349
  year: 2017
  ident: bb0155
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nature Communications
– volume: 140
  start-page: 781
  year: 2005
  end-page: 785
  ident: bb0250
  article-title: Tractography to depict three layers of visual field trajectories to the calcarine gyri
  publication-title: Am J. Ophthalmol.
– start-page: e3785
  year: 2017
  ident: bb0120
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed.
– volume: 8
  start-page: 12
  year: 2008
  ident: bb0205
  article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography
  publication-title: J. Vis.
– year: 2014
  ident: bb0005
  article-title: Image Quality Transfer Via Random Forest Regression: Applications in Diffusion MRI
– volume: 220
  start-page: 291
  year: 2015
  end-page: 306
  ident: bb0065
  article-title: Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography
  publication-title: Brain Struct. Funct.
– volume: 288
  start-page: 34
  year: 2017
  end-page: 44
  ident: bb0170
  article-title: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery
  publication-title: J. Neurosci. Methods
– volume: 57
  start-page: 219
  year: 2005
  end-page: 227
  ident: bb0200
  article-title: Three-dimensional relationships of the optic radiation
  publication-title: Neurosurgery
– start-page: 541
  year: 2018
  end-page: 548
  ident: bb0105
  article-title: Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity
  publication-title: NeuroImage: Clinical
– volume: 38
  start-page: 509
  year: 2017
  end-page: 527
  ident: bb0045
  article-title: Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET)
  publication-title: Hum. Brain Mapp.
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  ident: bb0115
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: NeuroImage
– volume: 59
  start-page: S228
  year: 2006
  end-page: S235
  ident: bb0055
  article-title: Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe
  publication-title: Neurosurgery
– volume: 16
  start-page: 744
  year: 2002
  end-page: 748
  ident: bb0190
  article-title: Detection of visual field defects in patients after anterior temporal lobectomy for mesial temporal sclerosis-establishing eligibility to drive
  publication-title: Eye
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bb0010
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
– volume: 77
  start-page: 11
  year: 2007
  end-page: 16
  ident: bb0175
  article-title: Intersubject variability in the anterior extent of the optic radiation assessed by tractography
  publication-title: Epilepsy Res.
– year: 2015
  ident: bb0185
  article-title: Meyer's loop asymmetry and language lateralisation in epilepsy
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 157
  start-page: 947
  year: 2015
  end-page: 956
  ident: bb0150
  article-title: Tractography of Meyer's loop for temporal lobe resection: validation by prediction of postoperative visual field outcome
  publication-title: Acta Neurochir.
– year: 2014
  ident: bb0130
  article-title: Transsylvian selective amygdalohippocampectomy for treatment of medial temporal lobe epilepsy: surgical technique and operative nuances to avoid complications
  publication-title: Surgical neurology international
– volume: 10
  start-page: e0137064
  year: 2015
  ident: bb0165
  article-title: Improved framework for tractography reconstruction of the optic radiation
  publication-title: PLoS One
– year: 2017
  ident: bb0085
  article-title: White Matter Tractography for Neurosurgical Planning: A Topography-Based Review of the Current State of the Art
– volume: 5
  start-page: 288
  year: 2015
  end-page: 299
  ident: bb0140
  article-title: Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery
  publication-title: Quant Imaging Med Surg
– volume: 43
  start-page: 37
  year: 2016
  end-page: 60
  ident: bb0180
  article-title: Merits and limits of Tractography techniques for the uninitiated
  publication-title: Adv. Tech. Stand. Neurosurg.
– start-page: ons145
  year: 2011
  end-page: ons156
  ident: bb0245
  article-title: Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy
  publication-title: Operative Neurosurgery
– volume: 9
  start-page: e101524
  year: 2014
  ident: bb0220
  article-title: Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery
  publication-title: PLoS One
– volume: 108
  start-page: 872
  year: 2014
  end-page: 882
  ident: bb0070
  article-title: Tractography of Meyer's loop asymmetries
  publication-title: Epilepsy Res.
– volume: 55
  start-page: 1174
  year: 2004
  end-page: 1184
  ident: bb0195
  article-title: Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection
  publication-title: Neurosurgery
– volume: 71
  start-page: 334
  year: 2012
  end-page: 341
  ident: bb0240
  article-title: Optic radiation tractography and vision in anterior temporal lobe resection
  publication-title: Ann. Neurol.
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bb0015
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
– volume: 38
  start-page: 5485
  year: 2017
  end-page: 5500
  ident: bb0090
  article-title: AxTract: toward microstructure informed tractography
  publication-title: Hum. Brain Mapp.
– start-page: 105
  year: 2013
  end-page: 124
  ident: bb0095
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– volume: 122
  start-page: 1253
  year: 2015
  end-page: 1262
  ident: bb0100
  article-title: The anatomy of Meyer's loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection
  publication-title: J. Neurosurg.
– volume: 35
  start-page: 683
  year: 2014
  end-page: 697
  ident: bb0030
  article-title: Optimization of tractography of the optic radiations
  publication-title: Hum. Brain Mapp.
– volume: 61
  start-page: 1336
  year: 2009
  end-page: 1349
  ident: bb0135
  article-title: The B-matrix must be rotated when correcting for subject motion in DTI data
  publication-title: Magn. Reson. Med.
– volume: 125
  start-page: 767
  year: 2016
  end-page: 779
  ident: bb0125
  article-title: Automated Retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis
  publication-title: Neuroimage
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bb0020
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 108
  start-page: 481
  year: 2014
  end-page: 490
  ident: bb0145
  article-title: Visualizing Meyer's loop: a comparison of deterministic and probabilistic tractography
  publication-title: Epilepsy Res.
– volume: 157
  start-page: 947
  issue: 6
  year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0150
  article-title: Tractography of Meyer's loop for temporal lobe resection: validation by prediction of postoperative visual field outcome
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-015-2403-y
– start-page: e3752
  year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0210
  article-title: Building connectomes using diffusion MRI: why, how and but
  publication-title: NMR Biomed.
– volume: 70
  start-page: ons145
  issue: Suppl. 1
  year: 2011
  ident: 10.1016/j.nicl.2018.08.021_bb0245
  article-title: Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy
  publication-title: Operative Neurosurgery
– volume: 122
  start-page: 87
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0035
  article-title: Can DTI fiber tracking of the optic radiations predict visual deficit after surgery?
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2014.04.017
– volume: 45
  start-page: 286
  issue: 2
  year: 2009
  ident: 10.1016/j.nicl.2018.08.021_bb0050
  article-title: Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.038
– volume: 9
  start-page: e101524
  issue: 7
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0220
  article-title: Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101524
– volume: 57
  start-page: 219
  issue: 4 Suppl
  year: 2005
  ident: 10.1016/j.nicl.2018.08.021_bb0200
  article-title: Three-dimensional relationships of the optic radiation
  publication-title: Neurosurgery
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.nicl.2018.08.021_bb0095
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 35
  start-page: 683
  issue: 2
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0030
  article-title: Optimization of tractography of the optic radiations
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22204
– volume: 132
  start-page: 1656
  issue: Pt 6
  year: 2009
  ident: 10.1016/j.nicl.2018.08.021_bb0255
  article-title: Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography
  publication-title: Brain
  doi: 10.1093/brain/awp114
– volume: 5
  start-page: 78
  issue: 1
  year: 2010
  ident: 10.1016/j.nicl.2018.08.021_bb0060
  article-title: Anterior and lateral extension of optic radiation and safety of amygdalohippocampectomy through middle temporal gyrus: a cadaveric study of 11 cerebral hemispheres
  publication-title: Asian J Neurosurg
– volume: 125
  start-page: 767
  year: 2016
  ident: 10.1016/j.nicl.2018.08.021_bb0125
  article-title: Automated Retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.005
– volume: 108
  start-page: 481
  issue: 3
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0145
  article-title: Visualizing Meyer's loop: a comparison of deterministic and probabilistic tractography
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2014.01.017
– volume: 140
  start-page: 781
  issue: 5
  year: 2005
  ident: 10.1016/j.nicl.2018.08.021_bb0250
  article-title: Tractography to depict three layers of visual field trajectories to the calcarine gyri
  publication-title: Am J. Ophthalmol.
  doi: 10.1016/j.ajo.2005.05.018
– volume: 8
  start-page: 59
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0040
  article-title: Real-time multi-peak tractography for instantaneous connectivity display
  publication-title: Frontiers in neuroinformatics
  doi: 10.3389/fninf.2014.00059
– volume: 110
  start-page: 95
  year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0110
  article-title: Diffusion tensor imaging tractography of Meyer's loop in planning resective surgery for drug-resistant temporal lobe epilepsy
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2014.11.020
– year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0185
  article-title: Meyer's loop asymmetry and language lateralisation in epilepsy
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 8
  start-page: 12
  issue: 10
  year: 2008
  ident: 10.1016/j.nicl.2018.08.021_bb0205
  article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography
  publication-title: J. Vis.
  doi: 10.1167/8.10.12
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2018.08.021_bb0020
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 16
  start-page: 744
  issue: 6
  year: 2002
  ident: 10.1016/j.nicl.2018.08.021_bb0190
  article-title: Detection of visual field defects in patients after anterior temporal lobectomy for mesial temporal sclerosis-establishing eligibility to drive
  publication-title: Eye
  doi: 10.1038/sj.eye.6700152
– volume: 71
  start-page: 334
  issue: 3
  year: 2012
  ident: 10.1016/j.nicl.2018.08.021_bb0240
  article-title: Optic radiation tractography and vision in anterior temporal lobe resection
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22619
– volume: 28
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.nicl.2018.08.021_bb0025
  article-title: Trans-middle temporal gyrus selective amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy in adults: seizure response rates, complications, and neuropsychological outcomes
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2013.03.020
– volume: 92
  start-page: 29
  issue: 1–4
  year: 1988
  ident: 10.1016/j.nicl.2018.08.021_bb0080
  article-title: Neurosurgical topography of the optic radiation in the temporal lobe
  publication-title: Acta Neurochir.
  doi: 10.1007/BF01401969
– volume: 38
  start-page: 509
  issue: 1
  year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0045
  article-title: Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET)
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23399
– volume: 5
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0130
  article-title: Transsylvian selective amygdalohippocampectomy for treatment of medial temporal lobe epilepsy: surgical technique and operative nuances to avoid complications
  publication-title: Surgical neurology international
– volume: 8
  start-page: 1349
  year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0155
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-01285-x
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.nicl.2018.08.021_bb0215
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 43
  start-page: 37
  year: 2016
  ident: 10.1016/j.nicl.2018.08.021_bb0180
  article-title: Merits and limits of Tractography techniques for the uninitiated
  publication-title: Adv. Tech. Stand. Neurosurg.
  doi: 10.1007/978-3-319-21359-0_2
– volume: 220
  start-page: 291
  issue: 1
  year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0065
  article-title: Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0655-y
– volume: 129
  start-page: 117
  year: 2016
  ident: 10.1016/j.nicl.2018.08.021_bb0230
  article-title: Trade-off between angular and spatial resolutions in in vivo fiber tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.011
– year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0005
– volume: 61
  start-page: 1336
  issue: 6
  year: 2009
  ident: 10.1016/j.nicl.2018.08.021_bb0135
  article-title: The B-matrix must be rotated when correcting for subject motion in DTI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21890
– volume: 345
  start-page: 311
  issue: 5
  year: 2001
  ident: 10.1016/j.nicl.2018.08.021_bb0235
  article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200108023450501
– volume: 38
  start-page: 5485
  issue: 11
  year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0090
  article-title: AxTract: toward microstructure informed tractography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23741
– volume: 108
  start-page: 872
  issue: 5
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0070
  article-title: Tractography of Meyer's loop asymmetries
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2014.03.006
– volume: 288
  start-page: 34
  year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0170
  article-title: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.05.029
– volume: 5
  start-page: 288
  issue: 2
  year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0140
  article-title: Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery
  publication-title: Quant Imaging Med Surg
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.nicl.2018.08.021_bb0010
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 55
  start-page: 1174
  issue: 5
  year: 2004
  ident: 10.1016/j.nicl.2018.08.021_bb0195
  article-title: Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000140843.62311.24
– volume: 65
  start-page: 1532
  issue: 6
  year: 2011
  ident: 10.1016/j.nicl.2018.08.021_bb0225
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22924
– volume: 103
  start-page: 202
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0075
  article-title: Interpolation of diffusion weighted imaging datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.005
– year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0085
– volume: 103
  start-page: 411
  year: 2014
  ident: 10.1016/j.nicl.2018.08.021_bb0115
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 77
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.nicl.2018.08.021_bb0175
  article-title: Intersubject variability in the anterior extent of the optic radiation assessed by tractography
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2007.07.012
– start-page: e3785
  year: 2017
  ident: 10.1016/j.nicl.2018.08.021_bb0120
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed.
– volume: 17
  start-page: 541
  year: 2018
  ident: 10.1016/j.nicl.2018.08.021_bb0105
  article-title: Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.10.010
– volume: 122
  start-page: 1253
  issue: 6
  year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0100
  article-title: The anatomy of Meyer's loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection
  publication-title: J. Neurosurg.
  doi: 10.3171/2014.12.JNS14281
– volume: 10
  start-page: e0137064
  issue: 9
  year: 2015
  ident: 10.1016/j.nicl.2018.08.021_bb0165
  article-title: Improved framework for tractography reconstruction of the optic radiation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0137064
– year: 2018
  ident: 10.1016/j.nicl.2018.08.021_bb9955
  article-title: Cross-vendor and Cross-protocol Harmonisation of Diffusion MRI Data: a Comparative Study
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.nicl.2018.08.021_bb0015
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 59
  start-page: S228
  issue: 4 Suppl 2
  year: 2006
  ident: 10.1016/j.nicl.2018.08.021_bb0055
  article-title: Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe
  publication-title: Neurosurgery
– volume: 33
  start-page: 1204
  issue: 7
  year: 2012
  ident: 10.1016/j.nicl.2018.08.021_bb0160
  article-title: Challenges of the anatomy and diffusion tensor tractography of the Meyer loop
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2652
SSID ssj0000800766
Score 2.2604449
Snippet Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the...
AbstractIntroductionSurgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if...
Unlabelled Image • Diffusion MRI data from 13 subjects on 3 scanners with different maximum gradient amplitude. • Optic radiation tractography was performed...
Introduction: Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 458
SubjectTerms Computers
Databases, Factual
Diffusion Tensor Imaging - methods
Epilepsy, Temporal Lobe - diagnostic imaging
Epilepsy, Temporal Lobe - physiopathology
Epilepsy, Temporal Lobe - surgery
Humans
Radiology
Regular
Surgery, Computer-Assisted - methods
Temporal Lobe - diagnostic imaging
Temporal Lobe - physiopathology
Temporal Lobe - surgery
Visual Field Tests - methods
Visual Fields - physiology
Visual Pathways - diagnostic imaging
Visual Pathways - physiopathology
Visual Pathways - surgery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gLolAgtFRGqsQBRcR2HCfHgqgqpOUClSpxsPwV2KokVbOr_v3OxM5qQ1F74bKHJN6sZ8Yzz-uZN4QcNbJUWD-Z2yZUedkGlxsLCgHo3YTWc2PGqrTFt-r0rPx6Ls-3Wn1hTlikB46C-6i4sQ1gZG8dK1trTAsOVTaFrZ1SgHXQ-0LM29pMXSQcpMaDSs6ZyJmseaqYicldyDqLeV31yN_J2SwqjeT9s-B0F3z-nUO5FZROnpGnCU3S4ziLXfIodM_J40U6L39Bfi4CQOr3A73s-yu6woqoRFFNAazS5R_wJvmv9dIHT4dYIE1jW9yB9t14H0IbRTKHHiyGms5TLNO6Mddhj5ydfPnx-TRP7RRyVzVildcVrM2agxxrrrg3tYfPSpVOlYG3yC3nYDa89Lw2LXOgWw--TwQlDbOsCOIl2en6LrwmtGK2EC03ilcOm6lbaUFJAGZcCxdKmRE2iVO7xDWOLS8u9ZRUdqFRBRpVoLEPJmcZ-bAZcxWZNu59-hNqafMksmSPF8B2dLId_ZDtZERMOtZTISq4Tvii5b2vVv8aFYa0-gfN9MB1ob-j7aHpMSRZg51jRuRmZAI4Ebg8-MZ3kwFqWP14pGO60K8HjabPhQAUmJFX0SA3IhGIPWDC8HtnpjqT2fxOt_w9MoxXuLGVxZv_IeR98gSnEv-2OiA7q-t1eAtAbmUPxzV7C-R7ROQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HPYgv4rf1iwiCD1K2SdMmffQOj0NYX_RgwYeQpOlZuWuX7S7--86kabGenOBL2abJNslMZ35tZn4h5G1VCIn5k6mtfJmKxrvUWBAIQO_KNzU3JmSlrT-X5xfi06bYHJHTKRcGwyqj7R9terDWsWQVZ3O1bdvVF85ZzjDPEymsAJeDHc6FCkl8m5P5OwsiIhmWLLF-ig1i7swY5oX8sxjhpQKTJ2cL_xRo_Bdu6iYM_TOa8jf3dHaf3Iu4kn4Yu_6AHPnuIbmzjivnj8i3tQdw_W6gV32_pXvMjYpk1RRgK22vwa6kl4e29jUdxlRpOm6QO9C-C9fByVGkdehBd6jpaooJWz_Nzj8mF2cfv56ep3FjhdSVVb5PVQlPqeLWwcuF5LVRNRxLKZwUnjfIMudgNFzUXJmGOZByDVYw97IwzLLM50_Icdd3_hmhJbNZ3nAjeelwW3VbWFvBD-UaKBBFQtg0ndpF1nHc_OJKT-FlPzSKQKMINO6IyVlC3s9ttiPnxq21T1BKc03kyw4F_e5SR4XRkhvoFlc1jFk01pgG3HJRZVY5KQExJySfZKynlFQwovBH7a23ln9r5YdoBwbN9MB1pm_oakKKueVC3f95xzeTAmqwA7i4YzrfHwaoVAEIyQEPJuTpqJDzlOSIQmDA0N-Fqi7mbHmla78HrvESX3GL7Pl_9vcFuYtn4zerl-R4vzv4V4Di9vZ1eEx_AfmfRTo
  priority: 102
  providerName: Elsevier
Title Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158218302626
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158218302626
https://dx.doi.org/10.1016/j.nicl.2018.08.021
https://www.ncbi.nlm.nih.gov/pubmed/30128284
https://www.proquest.com/docview/2091233431
https://pubmed.ncbi.nlm.nih.gov/PMC6096050
https://doaj.org/article/72ab9428dbc14fbaaf284590b8c77020
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkJcEOUZCpWRkDigoNh52DmgiiKqgrRcYKWVOFh-pd1qScpmV4V_35nEWQisirhEu4mdxJ4Zz-fY8w0hL8o8Exg_GZvSF3FWeRtrAwIB6F36ynGtu6i0yafidJp9nOWzHTKkOwod2G6d2mE-qely8frH959HYPBvfu3VQhJZ3KYlOzpOjCvfA88k0FAnAe5fBHQkuuVLzlkas1zyEEez_TYjX9VR-o9c1t-Q9M-dlb-5qpO75E7AmPRtrxT7ZMfX98itSVhFv0--TjwA7ZctXTTNJV1hnFQgrqYAYen8G4wx8dl67ryjbR82TftkuS1t6u46ODyKFA8N6BHVtaMYvHWll_4BmZ68__LuNA5JFmJblOkqlgVYrOTGwkRDcKelg2MhMisyzytknLPQGp45LnXFLEjcwYiYepFrZlji04dkt25q_5jQgpkkrbgWvLCYYt3kxpTwQ9oKTmR5RNjQncoGBnJMhLFQw1azC4UiUCgChdkxOYvIq02dy55_48bSxyilTUnkzu5ONMszFUxRCa7htbh00OasMlpX4KLzMjHSCgHoOSLpIGM1hKfCgAo3mt_4aLGtlm8HlVZMtVwl6jPqHqoeQ-o1mE9GJN_UDLCnhzP_fOLzQQEVjAm40KNr36xbKFQCIEkBG0bkUa-Qmy5JEZFAg-F9R6o66rPxlXp-3vGOFzjdzZMn_yWSA3Ib__VfrZ6S3dVy7Z8BjluZw-77Bxw_zI4PO0O9BkvxRvY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxJvlaSQkDija2Hk4OdKKagvdXmillThYtuOUoJKsNrvi7zOTOBGhqEhcVpEfG9szmfkSe74BeJsnsaT4ycDkLg3i0tlAGxQIQu_clYXQuotKW56mi_P40ypZ7cHhEAtDxyq97e9temetfcncr-Z8XVXzL0LwiFOcJ1FYIS6_ATcRDUjK33C8Ohg_tBAkkt2eJXUIqIcPnunPeREBLR3xyjoqT8EnDqrj8Z_4qas49M_jlL_5p6N7cNcDS_ahH_t92HP1A7i19FvnD-Hr0iG6fteyy6ZZsy0FR3m2aoa4lVU_0LAEF7uqcAVr-1hp1mfIbVlTd_Xo5RjxOjSoPEzXBaOIrZ964x7B-dHHs8NF4DMrBDbNo22QpfiYZsJYfLuQotBZgb-pjK2MnSiJZs7ibERciEyX3KKYCzSDkZOJ5oaHLnoM-3VTu6fAUm7CqBRaitRSXnWTGJPjRWZLLIiTGfBhOZX1tOOU_eJSDefLvisSgSIRKEqJKfgM3o991j3pxrWtD0hKY0sizO4Kms2F8hqjpNA4LJEVOOe4NFqX6JeTPDSZlRIh8wyiQcZqiElFK4p_VF17a_m3Xq71hqBVXLVCheqKss4gGXtO9P2fd3wzKKBCQ0C7O7p2za7FRjmikAgB4Qye9Ao5LklEMAQnjOOdqOpkzaY1dfWtIxtP6R03CZ_953hfw-3F2fJEnRyffn4Od6im_4D1Ava3m517iZBua151j-wvQtpIWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meyer%27s+loop+tractography+for+image-guided+surgery+depends+on+imaging+protocol+and+hardware&rft.jtitle=NeuroImage+clinical&rft.au=Chamberland%2C+Maxime&rft.au=Tax%2C+Chantal+M.W.&rft.au=Jones%2C+Derek+K.&rft.date=2018-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=20&rft.spage=458&rft.epage=465&rft_id=info:doi/10.1016%2Fj.nicl.2018.08.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nicl_2018_08_021
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158218X00047%2Fcov150h.gif