Identification of autism spectrum disorder using deep learning and the ABIDE dataset
The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database know...
Saved in:
Published in | NeuroImage clinical Vol. 17; pp. 16 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.
•We successfully applied Deep Learning to classify ASD and controls using ABIDE data•We extracted patterns of brain function in rs-fMRI and showed anterior-posterior underconnectivity in the autistic brain•Underconnected areas in ASD rs-fMRI data: Paracingulate Gyrus, Supramarginal Gyrus and Middle Temporal Gyrus•We surpass the state-of-the-art in deep learning classification of brain activation by achieving 70% accuracy |
---|---|
AbstractList | The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.
•We successfully applied Deep Learning to classify ASD and controls using ABIDE data•We extracted patterns of brain function in rs-fMRI and showed anterior-posterior underconnectivity in the autistic brain•Underconnected areas in ASD rs-fMRI data: Paracingulate Gyrus, Supramarginal Gyrus and Middle Temporal Gyrus•We surpass the state-of-the-art in deep learning classification of brain activation by achieving 70% accuracy The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. Keywords: Autism, fMRI, ABIDE, Resting state, Deep learning The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. • We successfully applied Deep Learning to classify ASD and controls using ABIDE data • We extracted patterns of brain function in rs-fMRI and showed anterior-posterior underconnectivity in the autistic brain • Underconnected areas in ASD rs-fMRI data: Paracingulate Gyrus, Supramarginal Gyrus and Middle Temporal Gyrus • We surpass the state-of-the-art in deep learning classification of brain activation by achieving 70% accuracy The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. AbstractThe goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. |
Author | Craddock, R. Cameron Meneguzzi, Felipe Heinsfeld, Anibal Sólon Franco, Alexandre Rosa Buchweitz, Augusto |
AuthorAffiliation | g Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA c PUCRS, School of Engineering, Porto Alegre 90619, Rio Grande do Sul, Brazil e PUCRS, School of Humanities, Porto Alegre 90619, Rio Grande do Sul, Brazil b PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil a PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil d PUCRS, School of Medicine, Porto Alegre 90619, Rio Grande do Sul, Brazil f Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA |
AuthorAffiliation_xml | – name: a PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil – name: g Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA – name: d PUCRS, School of Medicine, Porto Alegre 90619, Rio Grande do Sul, Brazil – name: b PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil – name: c PUCRS, School of Engineering, Porto Alegre 90619, Rio Grande do Sul, Brazil – name: e PUCRS, School of Humanities, Porto Alegre 90619, Rio Grande do Sul, Brazil – name: f Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA |
Author_xml | – sequence: 1 givenname: Anibal Sólon orcidid: 0000-0002-2050-0614 surname: Heinsfeld fullname: Heinsfeld, Anibal Sólon organization: PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil – sequence: 2 givenname: Alexandre Rosa surname: Franco fullname: Franco, Alexandre Rosa organization: PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil – sequence: 3 givenname: R. Cameron surname: Craddock fullname: Craddock, R. Cameron organization: Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA – sequence: 4 givenname: Augusto surname: Buchweitz fullname: Buchweitz, Augusto organization: PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil – sequence: 5 givenname: Felipe orcidid: 0000-0003-3549-6168 surname: Meneguzzi fullname: Meneguzzi, Felipe email: felipe.meneguzzi@pucrs.br organization: PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29034163$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1PFDEUnRiIIPIHfDDz6Muu_Zh2ZowhAUTdhMQH8fmmtLdL19l2bTsk_Hs7LBggAfvQ2497zmnvPW-qHR88VtU7SuaUUPlxNfdOD3NGaDsn3byEV9U-Y5TPqOjYzoP1XnWY0oqU0RHSSvm62mM94Q2VfL-6WBj02VmnVXbB18HWaswureu0QZ3juK6NSyEajPWYnF_WBnFTD6iin3bKmzpfYX18svhyVhuVVcL8ttq1akh4eBcPql9fzy5Ov8_Of3xbnB6fz7TseZ61tr2k0oqWIkrCdK9pw4QS0nDOBGt1a_pWNq2RjTRl1lRK1TXM9oI2utH8oFpseU1QK9hEt1bxBoJycHsQ4hJUzKVMCNYa1YlSEytI0_aslyio5VLwnjIlWOE62nJtxss1Gl2qEtXwiPTxjXdXsAzXICQXvGkKwYc7ghj-jJgyrF3SOAzKYxgT0PJqIYt6V1LfP9T6J3LflpLQbRN0DClFtKBdvm1QkXYDUAKTCWAFkwlgMgGQDkooUPYEes_-IujzFoSlW9cOIyTt0Gs0LhYXlHK6l-FHT-B6cCVLDb_xBtMqjNEXHwCFxIDAz8makzMLlDDSTv_99DzB_9T_Alra8Zs |
CitedBy_id | crossref_primary_10_3389_fpsyt_2020_00440 crossref_primary_10_3389_fnagi_2022_912895 crossref_primary_10_1007_s12539_022_00548_6 crossref_primary_10_1016_j_cmpb_2021_106615 crossref_primary_10_1016_j_media_2023_102932 crossref_primary_10_3389_fnins_2020_00676 crossref_primary_10_3389_fpsyt_2025_1485286 crossref_primary_10_1016_j_clinph_2020_11_037 crossref_primary_10_32628_IJSRST25121174 crossref_primary_10_1007_s00247_022_05510_8 crossref_primary_10_1016_j_compbiolchem_2024_108335 crossref_primary_10_1186_s12868_024_00870_3 crossref_primary_10_1016_j_media_2025_103462 crossref_primary_10_1109_TCBB_2022_3170527 crossref_primary_10_1007_s00521_024_10770_6 crossref_primary_10_57197_JDR_2024_0083 crossref_primary_10_3390_a16070315 crossref_primary_10_1109_TCE_2023_3328479 crossref_primary_10_4236_etsn_2021_102003 crossref_primary_10_1016_j_artmed_2022_102475 crossref_primary_10_3390_biomedicines11071858 crossref_primary_10_1109_JBHI_2020_3030853 crossref_primary_10_1007_s12559_021_09981_z crossref_primary_10_1016_j_jneumeth_2020_108884 crossref_primary_10_1016_j_bspc_2023_104892 crossref_primary_10_1016_j_bspc_2023_105864 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_1007_s42600_023_00275_x crossref_primary_10_1155_2022_9991794 crossref_primary_10_3389_fnins_2021_696853 crossref_primary_10_3389_fncom_2019_00009 crossref_primary_10_3389_fpsyt_2021_598518 crossref_primary_10_1016_j_asoc_2021_107375 crossref_primary_10_1093_cercor_bhac513 crossref_primary_10_1016_j_compbiomed_2023_107184 crossref_primary_10_1109_ACCESS_2020_2997334 crossref_primary_10_1007_s10803_019_04171_1 crossref_primary_10_1109_TMI_2019_2933160 crossref_primary_10_1371_journal_pone_0295621 crossref_primary_10_1007_s11571_021_09683_0 crossref_primary_10_3390_jpm12101579 crossref_primary_10_1016_j_artmed_2020_101926 crossref_primary_10_3390_su15054094 crossref_primary_10_1016_j_bspc_2023_104634 crossref_primary_10_3389_fnagi_2022_948704 crossref_primary_10_1016_j_media_2023_102841 crossref_primary_10_3389_fnsys_2022_904770 crossref_primary_10_3390_jimaging6060047 crossref_primary_10_1038_s41598_024_81652_z crossref_primary_10_1016_j_neuroimage_2022_119288 crossref_primary_10_1088_1742_6596_1804_1_012089 crossref_primary_10_3390_children7100182 crossref_primary_10_1007_s11042_024_18800_0 crossref_primary_10_2174_1573405615666191111142039 crossref_primary_10_1016_j_bspc_2022_104234 crossref_primary_10_1016_j_compbiomed_2020_104096 crossref_primary_10_48175_IJARSCT_18782 crossref_primary_10_1109_ACCESS_2019_2929365 crossref_primary_10_1038_s41467_019_08944_1 crossref_primary_10_1049_ccs2_12108 crossref_primary_10_1007_s12652_024_04945_1 crossref_primary_10_1109_TBDATA_2023_3264109 crossref_primary_10_1007_s10278_024_01002_3 crossref_primary_10_3390_e25111509 crossref_primary_10_1016_j_bspc_2024_106944 crossref_primary_10_4103_ijnpnd_ijnpnd_113_24 crossref_primary_10_1007_s11042_024_18519_y crossref_primary_10_1016_j_compbiomed_2022_105854 crossref_primary_10_1016_j_nicl_2020_102181 crossref_primary_10_1016_j_bspc_2024_106934 crossref_primary_10_1016_j_cogsys_2021_10_002 crossref_primary_10_3389_fnins_2020_629630 crossref_primary_10_2196_15767 crossref_primary_10_1088_1741_2552_ac619a crossref_primary_10_1016_j_spen_2020_100803 crossref_primary_10_1002_brb3_3554 crossref_primary_10_1016_j_spen_2020_100805 crossref_primary_10_1016_j_nicl_2024_103663 crossref_primary_10_3390_brainsci15030277 crossref_primary_10_1016_j_neurad_2020_12_003 crossref_primary_10_3389_fnhum_2018_00257 crossref_primary_10_3389_fninf_2019_00070 crossref_primary_10_1109_MSMC_2021_3086989 crossref_primary_10_3389_fnmol_2022_999605 crossref_primary_10_1109_JBHI_2019_2941222 crossref_primary_10_1364_BOE_467943 crossref_primary_10_1007_s43538_024_00344_4 crossref_primary_10_3390_s20216001 crossref_primary_10_1016_j_jneumeth_2020_108799 crossref_primary_10_1016_j_rasd_2023_102223 crossref_primary_10_4108_eetpht_10_5541 crossref_primary_10_1109_TETCI_2024_3377551 crossref_primary_10_1007_s12539_022_00510_6 crossref_primary_10_1016_j_bspc_2023_104686 crossref_primary_10_1109_JBHI_2021_3100559 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1109_TMI_2022_3203899 crossref_primary_10_1007_s00521_023_08218_4 crossref_primary_10_1007_s10916_019_1519_7 crossref_primary_10_54392_irjmt2449 crossref_primary_10_1038_s41386_020_0767_z crossref_primary_10_1088_1741_2552_ad1e22 crossref_primary_10_1016_j_engappai_2022_105034 crossref_primary_10_1016_j_bspc_2020_101958 crossref_primary_10_1016_j_artmed_2024_102998 crossref_primary_10_1088_1741_2552_ac8b39 crossref_primary_10_3390_bioengineering11070671 crossref_primary_10_1007_s12031_019_01311_1 crossref_primary_10_3390_app11136216 crossref_primary_10_1109_TNNLS_2023_3311195 crossref_primary_10_1016_j_compbiomed_2022_105424 crossref_primary_10_3390_brainsci11050603 crossref_primary_10_1016_j_eng_2019_06_008 crossref_primary_10_32604_cmc_2022_026999 crossref_primary_10_1016_j_biopsych_2022_04_008 crossref_primary_10_1016_j_health_2024_100379 crossref_primary_10_1109_TNNLS_2022_3219551 crossref_primary_10_3389_fninf_2018_00023 crossref_primary_10_1007_s41060_023_00408_6 crossref_primary_10_1186_s13229_021_00439_5 crossref_primary_10_1016_j_patter_2022_100602 crossref_primary_10_1038_s41386_019_0428_2 crossref_primary_10_1016_j_media_2024_103211 crossref_primary_10_1109_JBHI_2024_3415000 crossref_primary_10_3389_fpsyt_2024_1397093 crossref_primary_10_1093_pcmedi_pbaa029 crossref_primary_10_3389_fpsyt_2019_00924 crossref_primary_10_1016_j_procs_2022_03_061 crossref_primary_10_1007_s11042_024_19165_0 crossref_primary_10_1109_TCBB_2022_3163140 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_3389_fgene_2020_628539 crossref_primary_10_1109_TMI_2022_3173428 crossref_primary_10_1080_03772063_2023_2196979 crossref_primary_10_1155_2022_8134018 crossref_primary_10_1155_2022_5766386 crossref_primary_10_1016_j_compbiomed_2024_108054 crossref_primary_10_1016_j_neuroimage_2024_120566 crossref_primary_10_1109_TCBB_2024_3422152 crossref_primary_10_1016_j_bspc_2025_107678 crossref_primary_10_3934_math_2024867 crossref_primary_10_1016_j_bspc_2024_106288 crossref_primary_10_1038_s41598_023_46379_3 crossref_primary_10_1111_exsy_13040 crossref_primary_10_1007_s10489_021_02668_w crossref_primary_10_1016_j_csda_2022_107525 crossref_primary_10_3390_s21165256 crossref_primary_10_1016_j_bspc_2023_104914 crossref_primary_10_1016_j_compbiomed_2022_105553 crossref_primary_10_1109_ACCESS_2021_3098453 crossref_primary_10_3389_fnhum_2021_687288 crossref_primary_10_1016_j_eswa_2024_126295 crossref_primary_10_1016_j_ibmed_2025_100213 crossref_primary_10_1007_s12652_020_02332_0 crossref_primary_10_3389_fnins_2021_756868 crossref_primary_10_1002_mp_15545 crossref_primary_10_1109_JBHI_2022_3175071 crossref_primary_10_1016_j_bspc_2021_103015 crossref_primary_10_1109_TMI_2022_3219260 crossref_primary_10_1038_s41598_020_71914_x crossref_primary_10_1016_j_artmed_2022_102309 crossref_primary_10_1016_j_cosrev_2024_100718 crossref_primary_10_1016_j_neunet_2024_106296 crossref_primary_10_1016_j_artmed_2021_102020 crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_1155_2022_5841630 crossref_primary_10_3390_brainsci10100754 crossref_primary_10_57197_JDR_2023_0064 crossref_primary_10_1016_j_procs_2020_09_099 crossref_primary_10_1002_jmri_27949 crossref_primary_10_1016_j_bspc_2022_104521 crossref_primary_10_1007_s41347_025_00500_7 crossref_primary_10_1016_j_patcog_2020_107570 crossref_primary_10_3389_fnins_2023_1222751 crossref_primary_10_1007_s10489_022_03891_9 crossref_primary_10_1016_j_phycom_2020_101115 crossref_primary_10_5607_en_2020_29_1_27 crossref_primary_10_1259_bjr_20180910 crossref_primary_10_1093_bib_bby004 crossref_primary_10_1016_j_neunet_2020_03_017 crossref_primary_10_1016_j_neucom_2023_126791 crossref_primary_10_1016_j_media_2019_101596 crossref_primary_10_3390_ijms24032082 crossref_primary_10_1016_j_media_2021_101986 crossref_primary_10_1088_1741_2552_ad9681 crossref_primary_10_3389_fnins_2020_00858 crossref_primary_10_3390_brainsci15010060 crossref_primary_10_3390_diagnostics13020218 crossref_primary_10_1109_TKDE_2020_3025580 crossref_primary_10_1002_mp_16410 crossref_primary_10_3389_fninf_2021_709179 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_3389_fnins_2021_697870 crossref_primary_10_1016_j_jneumeth_2025_110379 crossref_primary_10_1186_s13040_024_00414_9 crossref_primary_10_1093_cercor_bhad521 crossref_primary_10_1109_TNNLS_2020_3007943 crossref_primary_10_3390_brainsci12050630 crossref_primary_10_1007_s13755_024_00277_8 crossref_primary_10_1016_j_health_2023_100293 crossref_primary_10_51359_1679_1827_2024_263456 crossref_primary_10_1109_TNNLS_2022_3225179 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1016_j_compbiomed_2022_105239 crossref_primary_10_1016_j_health_2023_100178 crossref_primary_10_2174_1570159X22999240531160344 crossref_primary_10_3389_fnins_2021_652987 crossref_primary_10_3390_app12189339 crossref_primary_10_1016_j_compbiomed_2022_106320 crossref_primary_10_1016_j_bspc_2023_104837 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1002_hbm_24943 crossref_primary_10_3389_fpsyt_2019_00620 crossref_primary_10_57197_JDR_2023_0048 crossref_primary_10_1002_hbm_24944 crossref_primary_10_1007_s00234_021_02774_z crossref_primary_10_3390_diagnostics11112032 crossref_primary_10_1155_2020_1394830 crossref_primary_10_1007_s42979_022_01584_1 crossref_primary_10_1109_ACCESS_2019_2902889 crossref_primary_10_1016_j_biopsych_2022_02_005 crossref_primary_10_1016_j_biopsych_2023_04_014 crossref_primary_10_1007_s10489_021_02579_w crossref_primary_10_3390_sym12121995 crossref_primary_10_1016_j_bspc_2020_102099 crossref_primary_10_1007_s11227_021_04268_4 crossref_primary_10_1038_s41380_019_0365_9 crossref_primary_10_1162_netn_a_00281 crossref_primary_10_1016_j_compbiomed_2024_109083 crossref_primary_10_1007_s12144_022_03977_0 crossref_primary_10_1007_s00521_023_08565_2 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1002_ima_23054 crossref_primary_10_1177_20552076241313407 crossref_primary_10_3390_math12182886 crossref_primary_10_1007_s10916_023_02032_0 crossref_primary_10_54105_ijainn_B1024_43122 crossref_primary_10_1080_10888438_2022_2095281 crossref_primary_10_1590_1516_4446_2019_0757 crossref_primary_10_1155_2022_3372217 crossref_primary_10_3389_fnins_2021_753033 crossref_primary_10_4018_IJEHMC_2019070105 crossref_primary_10_1007_s12021_021_09514_x crossref_primary_10_1016_j_jneumeth_2022_109732 crossref_primary_10_3390_s21248171 crossref_primary_10_3390_e22080893 crossref_primary_10_1093_cercor_bhy321 crossref_primary_10_1016_j_bspc_2024_106671 crossref_primary_10_1080_08839514_2021_2004655 crossref_primary_10_3390_antiox8060187 crossref_primary_10_1038_s41598_024_64299_8 crossref_primary_10_3389_fninf_2020_611762 crossref_primary_10_3390_s23063062 crossref_primary_10_1142_S021821302030001X crossref_primary_10_1007_s12065_020_00498_2 crossref_primary_10_1002_brb3_1970 crossref_primary_10_1088_1741_2552_acbe1f crossref_primary_10_1016_j_mehy_2020_109978 crossref_primary_10_1186_s12859_023_05495_7 crossref_primary_10_1016_j_engappai_2022_105659 crossref_primary_10_1007_s12021_021_09548_1 crossref_primary_10_1016_j_bbr_2023_114603 crossref_primary_10_1007_s13369_024_09362_2 crossref_primary_10_1016_j_eswa_2023_122102 crossref_primary_10_1038_s41598_022_06459_2 crossref_primary_10_1016_j_media_2020_101662 crossref_primary_10_1109_JBHI_2023_3286421 crossref_primary_10_1155_2023_4136087 crossref_primary_10_1186_s12920_019_0598_0 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_3390_electronics12030612 crossref_primary_10_1186_s11689_022_09438_w crossref_primary_10_3390_diagnostics13172773 crossref_primary_10_1109_TMI_2023_3337362 crossref_primary_10_1016_j_bspc_2022_103887 crossref_primary_10_1016_j_bspc_2021_103108 crossref_primary_10_3389_fpsyg_2020_00220 crossref_primary_10_1038_s41593_022_01059_9 crossref_primary_10_1155_2022_5782569 crossref_primary_10_1016_j_ejmp_2019_08_010 crossref_primary_10_1016_j_media_2020_101765 crossref_primary_10_1016_j_jbi_2024_104714 crossref_primary_10_3389_fninf_2023_1310400 crossref_primary_10_1145_3450630 crossref_primary_10_4018_IJSSCI_318677 crossref_primary_10_2174_2666082215666191111121115 crossref_primary_10_1109_TNSRE_2023_3314516 crossref_primary_10_1089_brain_2018_0587 crossref_primary_10_1155_2020_1357853 crossref_primary_10_1016_j_neucom_2020_04_152 crossref_primary_10_1155_2023_6330002 crossref_primary_10_1109_ACCESS_2024_3360691 crossref_primary_10_3389_fnhum_2019_00203 crossref_primary_10_3389_fnhum_2022_1005425 crossref_primary_10_1038_s41398_024_02972_2 crossref_primary_10_1007_s00521_023_08499_9 crossref_primary_10_1093_cercor_bhad103 crossref_primary_10_1016_j_biopsych_2022_01_010 crossref_primary_10_1007_s11571_022_09828_9 crossref_primary_10_1109_ACCESS_2022_3146719 crossref_primary_10_1016_j_compbiomed_2021_104949 crossref_primary_10_1016_j_mlwa_2022_100290 crossref_primary_10_1142_S0129065722500447 crossref_primary_10_1007_s11517_022_02558_4 crossref_primary_10_1007_s11571_024_10176_z crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1186_s12859_021_04295_1 crossref_primary_10_1016_j_media_2018_06_001 crossref_primary_10_1016_j_compbiomed_2022_106141 crossref_primary_10_1109_TCDS_2022_3152791 crossref_primary_10_1016_j_neucom_2022_02_017 crossref_primary_10_1109_TNSRE_2021_3120024 crossref_primary_10_2174_0126662558284886240130154414 crossref_primary_10_1038_s41598_024_53942_z crossref_primary_10_1007_s13042_023_01980_w crossref_primary_10_1007_s12559_021_09940_8 crossref_primary_10_1007_s12559_020_09773_x crossref_primary_10_1007_s11042_020_10473_9 crossref_primary_10_1155_2023_4853800 crossref_primary_10_1371_journal_pone_0206351 crossref_primary_10_1109_TSIPN_2025_3540709 crossref_primary_10_3389_fninf_2022_949926 crossref_primary_10_1007_s11042_024_19374_7 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_3390_math12111648 crossref_primary_10_32604_iasc_2022_020287 crossref_primary_10_1016_j_bspc_2025_107513 crossref_primary_10_1007_s11831_021_09682_8 crossref_primary_10_1038_s41598_024_71174_z crossref_primary_10_1109_TNNLS_2023_3243000 crossref_primary_10_1080_21681163_2021_1972343 crossref_primary_10_1007_s12021_023_09639_1 crossref_primary_10_1007_s11334_023_00536_z crossref_primary_10_1109_ACCESS_2024_3388911 crossref_primary_10_1016_j_jneumeth_2024_110100 crossref_primary_10_1162_netn_a_00171 crossref_primary_10_1016_j_bspc_2023_105090 crossref_primary_10_1109_TCBB_2020_2989315 crossref_primary_10_1142_S0129065720500124 crossref_primary_10_1016_j_neunet_2020_12_005 crossref_primary_10_1142_S012906572150009X crossref_primary_10_1007_s11760_023_02741_6 crossref_primary_10_1016_j_media_2020_101843 crossref_primary_10_1142_S0129065718500582 crossref_primary_10_1016_j_ridd_2023_104602 crossref_primary_10_1038_s44184_023_00040_z crossref_primary_10_1371_journal_pone_0276832 crossref_primary_10_1007_s40489_019_00158_x crossref_primary_10_3389_fpsyt_2019_00392 crossref_primary_10_1109_JBHI_2024_3476076 crossref_primary_10_3390_brainsci10120949 crossref_primary_10_1016_j_nicl_2022_103082 crossref_primary_10_35377_saucis_04_01_879735 crossref_primary_10_1016_j_engappai_2023_107185 crossref_primary_10_1186_s40708_023_00217_4 crossref_primary_10_1007_s00530_023_01132_8 crossref_primary_10_1002_hbm_70190 crossref_primary_10_1007_s11604_018_0794_4 crossref_primary_10_1002_hbm_25145 crossref_primary_10_3390_bioengineering10010056 crossref_primary_10_52547_shefa_9_3_1 crossref_primary_10_1016_j_jneumeth_2024_110319 crossref_primary_10_1109_TCDS_2021_3073368 crossref_primary_10_57197_JDR_2024_0003 crossref_primary_10_1016_j_jneumeth_2021_109271 crossref_primary_10_3389_fnins_2018_01018 crossref_primary_10_1016_j_neunet_2024_106945 crossref_primary_10_1142_S012906572550011X crossref_primary_10_1016_j_matpr_2021_07_380 crossref_primary_10_3389_fped_2024_1400110 crossref_primary_10_3389_fnins_2022_1087176 crossref_primary_10_1038_s41598_020_60702_2 crossref_primary_10_1038_s41598_022_09821_6 crossref_primary_10_1515_revneuro_2020_0043 crossref_primary_10_3233_HIS_240029 crossref_primary_10_1016_j_neubiorev_2019_07_010 crossref_primary_10_1038_s41467_019_11203_y crossref_primary_10_1016_j_compeleceng_2023_108720 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1016_j_artmed_2020_101870 crossref_primary_10_1007_s11517_023_02859_2 crossref_primary_10_1162_imag_a_00222 crossref_primary_10_1016_j_neunet_2021_09_018 crossref_primary_10_1016_j_knosys_2024_111450 crossref_primary_10_2196_14108 crossref_primary_10_1155_2022_4516005 crossref_primary_10_1186_s12880_024_01360_y crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_1016_j_imu_2022_100911 crossref_primary_10_1093_pnasnexus_pgac066 crossref_primary_10_1016_j_compbiomed_2021_104963 crossref_primary_10_1109_TNSRE_2022_3233656 crossref_primary_10_1016_j_neuri_2022_100084 crossref_primary_10_1093_comjnl_bxaa023 crossref_primary_10_3390_app11083636 crossref_primary_10_1007_s12539_024_00625_y crossref_primary_10_1109_ACCESS_2019_2933550 crossref_primary_10_1016_j_neulet_2020_135519 crossref_primary_10_1089_cmb_2020_0252 crossref_primary_10_1109_ACCESS_2019_2940198 crossref_primary_10_7769_gesec_v16i1_4406 crossref_primary_10_1007_s42979_023_02439_z crossref_primary_10_1007_s43441_021_00355_z crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1016_j_neucom_2022_09_129 crossref_primary_10_1016_j_neucom_2020_06_152 crossref_primary_10_3389_fnins_2021_674055 crossref_primary_10_1007_s11042_024_20111_3 crossref_primary_10_1016_j_cmpb_2022_106772 crossref_primary_10_1016_j_jneumeth_2019_108538 crossref_primary_10_1177_20552076241256730 crossref_primary_10_1109_ACCESS_2023_3325701 crossref_primary_10_1007_s13369_023_08560_8 crossref_primary_10_1016_j_patrec_2020_04_028 crossref_primary_10_3389_fnins_2018_00491 crossref_primary_10_15406_iratj_2024_10_00278 crossref_primary_10_3389_fnins_2022_1046268 crossref_primary_10_1080_15374416_2018_1443461 crossref_primary_10_1007_s10489_024_05655_z crossref_primary_10_3389_fnins_2021_729937 crossref_primary_10_1109_JBHI_2022_3159031 crossref_primary_10_3389_fnins_2019_01325 crossref_primary_10_1109_TNNLS_2022_3154755 crossref_primary_10_1016_j_bspc_2021_102833 crossref_primary_10_1109_ACCESS_2019_2936639 crossref_primary_10_1109_JBHI_2020_2998603 crossref_primary_10_1016_j_brainresbull_2025_111290 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_3389_fncom_2021_594659 crossref_primary_10_1016_j_procs_2023_10_617 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_jneumeth_2020_108840 crossref_primary_10_1038_s41398_018_0296_2 crossref_primary_10_1002_hbm_26581 crossref_primary_10_1016_j_brainresbull_2023_110826 crossref_primary_10_1016_j_media_2022_102591 crossref_primary_10_1002_aur_2974 crossref_primary_10_1007_s11831_021_09649_9 crossref_primary_10_1016_j_media_2021_102279 crossref_primary_10_1038_s41380_023_02060_9 crossref_primary_10_1016_j_neuroimage_2019_06_012 crossref_primary_10_1016_j_media_2022_102471 crossref_primary_10_3389_fnins_2023_1333725 crossref_primary_10_1093_cercor_bhae069 crossref_primary_10_1007_s11042_024_19881_7 crossref_primary_10_1016_j_eswa_2020_113513 crossref_primary_10_1016_j_neuroimage_2022_119212 crossref_primary_10_3389_fncom_2024_1388083 crossref_primary_10_1371_journal_pbio_3001627 crossref_primary_10_3389_fncom_2021_654315 crossref_primary_10_1016_j_compbiomed_2024_108415 crossref_primary_10_1109_TBDATA_2023_3294000 crossref_primary_10_1142_S0218488523500344 crossref_primary_10_3389_fnins_2021_720909 crossref_primary_10_3390_diagnostics11081373 crossref_primary_10_32604_csse_2023_025331 crossref_primary_10_3389_fnins_2022_900330 crossref_primary_10_37394_23208_2024_21_5 crossref_primary_10_4236_ijids_2025_71001 crossref_primary_10_1109_ACCESS_2020_3016734 |
Cites_doi | 10.1016/j.neuroimage.2008.11.007 10.1016/j.neuroimage.2007.04.042 10.1212/WNL.53.9.2145 10.1002/mrm.22159 10.1097/01.wnr.0000239956.45448.4c 10.1136/bmj.309.6947.102 10.1080/17470910802198510 10.1093/cercor/bhr099 10.1016/j.nicl.2014.12.013 10.1038/ng.608 10.1371/journal.pone.0066032 10.3389/fnhum.2013.00458 10.1093/cercor/bhr162 10.1016/j.neuroimage.2013.04.083 10.1016/j.neuroimage.2014.03.048 10.1162/0898929053467550 10.1002/mrm.1910340409 10.1093/brain/awr263 10.1007/BF03341111 10.1093/cercor/bhl006 10.1016/j.bandl.2011.09.003 10.1002/hbm.22842 10.1089/brain.2012.0134 10.1016/j.neuroimage.2016.10.045 10.1016/j.neuroimage.2010.10.042 10.1371/journal.pone.0113879 10.1093/brain/awh199 10.1073/pnas.0905267106 10.1126/science.1063736 10.1093/cercor/bhn256 10.1126/science.1152876 10.1186/2047-217X-3-28 |
ContentType | Journal Article |
Copyright | 2017 2017 Published by Elsevier Inc. 2017 |
Copyright_xml | – notice: 2017 – notice: 2017 Published by Elsevier Inc. 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nicl.2017.08.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_ffda85221f50479296e51f3653912a52 PMC5635344 29034163 10_1016_j_nicl_2017_08_017 S2213158217302073 1_s2_0_S2213158217302073 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c693t-7f7b16f571ee602c9c1425a56d332527c7d97647d646d7d6c166a842f9514c4c3 |
IEDL.DBID | M48 |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:09:14 EDT 2025 Thu Aug 21 18:27:52 EDT 2025 Fri Jul 11 15:09:07 EDT 2025 Thu Apr 03 07:00:23 EDT 2025 Thu Apr 24 22:52:51 EDT 2025 Tue Jul 01 01:09:38 EDT 2025 Wed May 17 01:21:53 EDT 2023 Sun Feb 23 10:19:27 EST 2025 Tue Aug 26 16:33:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Autism fMRI ABIDE Resting state |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-7f7b16f571ee602c9c1425a56d332527c7d97647d646d7d6c166a842f9514c4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2050-0614 0000-0003-3549-6168 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2017.08.017 |
PMID | 29034163 |
PQID | 1951565048 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ffda85221f50479296e51f3653912a52 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635344 proquest_miscellaneous_1951565048 pubmed_primary_29034163 crossref_citationtrail_10_1016_j_nicl_2017_08_017 crossref_primary_10_1016_j_nicl_2017_08_017 elsevier_sciencedirect_doi_10_1016_j_nicl_2017_08_017 elsevier_clinicalkeyesjournals_1_s2_0_S2213158217302073 elsevier_clinicalkey_doi_10_1016_j_nicl_2017_08_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Kassam, Markey, Cherkassky, Loewenstein, Just (bb0145) 2013; 8 Haxby (bb0095) 2001; 293 Ho (bb0110) 1995; 1 Kana, Keller, Cherkassky, Minshew, Just (bb0140) 2009; 4 Mitchell (bb0165) 2008; 320 Biswal, Yetkin, Haughton, Hyde (bb0045) 1995; 34 Craddock, James (bb0070) 2012; 33 Pereira, Mitchell, Botvinick (bb0180) 2009; 45 Shinkareva, Malave, Mason, Mitchell, Just (bb0205) 2011; 54 Behzadi, Restom, Liau, Liu (bb0040) 2007; 37 Maaten, Hinton, van der Maaten (bb0160) 2008; 9 Craddock, Holtzheimer, Hu, Mayberg (bb0065) 2009; 62 Anderson (bb0020) 2011; 134 Bauer, Just (bb0035) 2015; 36 O’Toole, Jiang, Abdi, Haxby (bb0175) 2005; 17 Koyamada, Shikauchi, Nakae, Koyama, Ishii (bb0150) 2015 Aylward (bb0030) 1999; 53 Cherkassky, Kana, Keller, Just (bb0060) 2006; 17 Heinsfeld, Franco, Buchweitz, Meneguzzi (bb0100) 2017 Hjelm (bb0105) 2014; 96 Varoquaux, Thirion (bb0235) 2014; 3 Shehzad (bb0200) 2009; 19 Buchweitz, Shinkareva, Mason, Mitchell, Just (bb0050) 2012; 120 Vincent, Larochelle, Bengio, Manzagol (bb0240) 2008 Nielsen (bb0170) 2013; 7 Altman, Bland (bb0015) 1994; 309 Arbabshirani, Plis, Sui, Calhoun (bb0025) 2016; 145 Zablotsky, Black, Maenner, Schieve, Blumberg (bb0255) 2015 Schipul, Williams, Keller, Minshew, Just (bb0195) 2012; 22 Abraham (bb0005) 2017; 147 Just, Cherkassky, Buchweitz, Keller, Mitchell (bb0125) 2014; 9 Plitt, Barnes, Martin (bb0190) 2015; 7 Fox (bb0085) 2010; 4 Just (bb0120) 2004; 127 Castellanos, Di Martino, Craddock, Mehta, Milham (bb0055) 2013; 80 Yang (bb0250) 2010; 42 Just, Keller, Kana (bb0135) 2013 Plis (bb0185) 2014; 8 Vapnik (bb0230) 1998 Franco, Mannell, Calhoun, Mayer (bb0090) 2013; 3 Just, Cherkassky, Keller, Kana, Minshew (bb0130) 2006; 17 Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bb0210) 2012; 22 Smith (bb0215) 2009; 106 Akshoomoff, Corsello, Schmidt (bb0010) 2006; 11 Uddin, Supekar, Menon (bb0225) 2013; 7 Di Martino (bb0075) 2014; 19 Jordan, Mitchell (bb0115) 2015; 349 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0245) 2010; 11 Hjelm (10.1016/j.nicl.2017.08.017_bb0105) 2014; 96 Just (10.1016/j.nicl.2017.08.017_bb0135) 2013 Vapnik (10.1016/j.nicl.2017.08.017_bb0230) 1998 Craddock (10.1016/j.nicl.2017.08.017_bb0070) 2012; 33 Nielsen (10.1016/j.nicl.2017.08.017_bb0170) 2013; 7 Behzadi (10.1016/j.nicl.2017.08.017_bb0040) 2007; 37 Anderson (10.1016/j.nicl.2017.08.017_bb0020) 2011; 134 O’Toole (10.1016/j.nicl.2017.08.017_bb0175) 2005; 17 Craddock (10.1016/j.nicl.2017.08.017_bb0065) 2009; 62 Shinkareva (10.1016/j.nicl.2017.08.017_bb0205) 2011; 54 Yang (10.1016/j.nicl.2017.08.017_bb0250) 2010; 42 Vincent (10.1016/j.nicl.2017.08.017_bb0245) 2010; 11 Varoquaux (10.1016/j.nicl.2017.08.017_bb0235) 2014; 3 Plis (10.1016/j.nicl.2017.08.017_bb0185) 2014; 8 Plitt (10.1016/j.nicl.2017.08.017_bb0190) 2015; 7 Bauer (10.1016/j.nicl.2017.08.017_bb0035) 2015; 36 Just (10.1016/j.nicl.2017.08.017_bb0125) 2014; 9 Just (10.1016/j.nicl.2017.08.017_bb0130) 2006; 17 Zablotsky (10.1016/j.nicl.2017.08.017_bb0255) 2015 Shehzad (10.1016/j.nicl.2017.08.017_bb0200) 2009; 19 Pereira (10.1016/j.nicl.2017.08.017_bb0180) 2009; 45 Abraham (10.1016/j.nicl.2017.08.017_bb0005) 2017; 147 Cherkassky (10.1016/j.nicl.2017.08.017_bb0060) 2006; 17 Kana (10.1016/j.nicl.2017.08.017_bb0140) 2009; 4 Uddin (10.1016/j.nicl.2017.08.017_bb0225) 2013; 7 Koyamada (10.1016/j.nicl.2017.08.017_bb0150) 2015 Schipul (10.1016/j.nicl.2017.08.017_bb0195) 2012; 22 Heinsfeld (10.1016/j.nicl.2017.08.017_bb0100) 2017 Castellanos (10.1016/j.nicl.2017.08.017_bb0055) 2013; 80 Ho (10.1016/j.nicl.2017.08.017_bb0110) 1995; 1 Shirer (10.1016/j.nicl.2017.08.017_bb0210) 2012; 22 Smith (10.1016/j.nicl.2017.08.017_bb0215) 2009; 106 Kassam (10.1016/j.nicl.2017.08.017_bb0145) 2013; 8 Di Martino (10.1016/j.nicl.2017.08.017_bb0075) 2014; 19 Franco (10.1016/j.nicl.2017.08.017_bb0090) 2013; 3 Aylward (10.1016/j.nicl.2017.08.017_bb0030) 1999; 53 Akshoomoff (10.1016/j.nicl.2017.08.017_bb0010) 2006; 11 Jordan (10.1016/j.nicl.2017.08.017_bb0115) 2015; 349 Altman (10.1016/j.nicl.2017.08.017_bb0015) 1994; 309 Maaten (10.1016/j.nicl.2017.08.017_bb0160) 2008; 9 Fox (10.1016/j.nicl.2017.08.017_bb0085) 2010; 4 Vincent (10.1016/j.nicl.2017.08.017_bb0240) 2008 Buchweitz (10.1016/j.nicl.2017.08.017_bb0050) 2012; 120 Arbabshirani (10.1016/j.nicl.2017.08.017_bb0025) 2016; 145 Biswal (10.1016/j.nicl.2017.08.017_bb0045) 1995; 34 Just (10.1016/j.nicl.2017.08.017_bb0120) 2004; 127 Haxby (10.1016/j.nicl.2017.08.017_bb0095) 2001; 293 Mitchell (10.1016/j.nicl.2017.08.017_bb0165) 2008; 320 |
References_xml | – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bb0075 article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism – volume: 293 start-page: 2425 year: 2001 end-page: 2430 ident: bb0095 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science – volume: 120 start-page: 282 year: 2012 end-page: 289 ident: bb0050 article-title: Identifying bilingual semantic neural representations across languages publication-title: Brain Lang. – volume: 349 year: 2015 ident: bb0115 article-title: Machine learning: trends, perspectives, and prospects – start-page: 35 year: 2013 end-page: 63 ident: bb0135 article-title: A theory of autism based on frontal-posterior underconnectivity publication-title: Development and Brain Systems in Autism – volume: 145 start-page: 137 year: 2016 end-page: 165 ident: bb0025 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: NeuroImage – volume: 62 start-page: 1619 year: 2009 end-page: 1628 ident: bb0065 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. – volume: 17 start-page: 1687 year: 2006 end-page: 1690 ident: bb0060 article-title: Functional connectivity in a baseline resting-state network in autism publication-title: NeuroReport – volume: 80 start-page: 527 year: 2013 end-page: 540 ident: bb0055 article-title: Clinical applications of the functional connectome publication-title: NeuroImage – volume: 19 start-page: 2209 year: 2009 end-page: 2229 ident: bb0200 article-title: The resting brain: unconstrained yet reliable publication-title: Cereb. Cortex – start-page: 55 year: 1998 end-page: 85 ident: bb0230 article-title: The support vector method of function estimation publication-title: Nonlinear Modeling – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: bb0005 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage – volume: 3 start-page: 28 year: 2014 ident: bb0235 article-title: How machine learning is shaping cognitive neuroimaging publication-title: GigaScience – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bb0215 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. – volume: 22 start-page: 937 year: 2012 end-page: 950 ident: bb0195 article-title: Distinctive neural processes during learning in autism publication-title: Cereb. Cortex – volume: 11 start-page: 7 year: 2006 end-page: 19 ident: bb0010 article-title: The role of the autism diagnostic observation schedule in the assessment of autism spectrum disorders in school and community settings publication-title: Calif. Sch. Psychol. – volume: 4 start-page: 135 year: 2009 end-page: 152 ident: bb0140 article-title: Atypical fronto-posterior synchronization of theroy of mind regions in autism during mental state attribution publication-title: Soc. Neurosci. – year: 2015 ident: bb0150 article-title: Deep Learning of fMRI Big Data: A Novel Approach to Subject-Transfer Decoding – volume: 17 start-page: 951 year: 2006 end-page: 961 ident: bb0130 article-title: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry publication-title: Cereb. Cortex – volume: 320 start-page: 1191 year: 2008 end-page: 1195 ident: bb0165 article-title: Predicting human brain activity associated with the meanings of nouns publication-title: Science – volume: 1 start-page: 278 year: 1995 end-page: 282 ident: bb0110 article-title: Random decision forests publication-title: Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bb0160 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 158 year: 2012 end-page: 165 ident: bb0210 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bb0245 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 3213 year: 2015 end-page: 3226 ident: bb0035 article-title: Monitoring the growth of the neural representations of new animal concepts publication-title: Hum. Brain Mapp. – volume: 134 start-page: 3739 year: 2011 end-page: 3751 ident: bb0020 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain – volume: 127 start-page: 1811 year: 2004 end-page: 1821 ident: bb0120 article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity publication-title: Brain – start-page: 1 year: 2015 end-page: 20 ident: bb0255 article-title: Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. publication-title: Natl. Health Stat. Rep. – volume: 3 start-page: 363 year: 2013 end-page: 374 ident: bb0090 article-title: Impact of analysis methods on the reproducibility and reliability of resting-state networks publication-title: Brain Connect. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bb0045 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – volume: 45 start-page: S199 year: 2009 end-page: S209 ident: bb0180 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage – volume: 33 year: 2012 ident: bb0070 article-title: A whole brain fMRI atlas spatial generated via spatially constrained spectral clustering publication-title: Human brain … – year: 2017 ident: bb0100 article-title: lsa-pucrs/acerta-abide: Code companion to Neuroimage: Clinical Submission – start-page: 1096 year: 2008 end-page: 1103 ident: bb0240 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bb0040 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage – volume: 54 start-page: 2418 year: 2011 end-page: 2425 ident: bb0205 article-title: Commonality of neural representations of words and pictures publication-title: NeuroImage – volume: 8 start-page: e66032 year: 2013 ident: bb0145 article-title: Identifying emotions on the basis of neural activation publication-title: PLoS ONE – volume: 7 start-page: 1 year: 2013 end-page: 12 ident: bb0170 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. – volume: 8 start-page: 229 year: 2014 ident: bb0185 article-title: Deep learning for neuroimaging: a validation study. publication-title: Front. Neurosci. – volume: 7 start-page: 359 year: 2015 end-page: 366 ident: bb0190 article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards publication-title: NeuroImage: Clinical – volume: 4 start-page: 19 year: 2010 ident: bb0085 article-title: Clinical applications of resting state functional connectivity publication-title: Front. Syst. Neurosci. – volume: 9 start-page: 1 year: 2014 end-page: 22 ident: bb0125 article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism publication-title: PLoS ONE – volume: 17 start-page: 580 year: 2005 end-page: 590 ident: bb0175 article-title: Partially distributed representations of objects and faces in ventral temporal cortex publication-title: J. Cogn. Neurosci. – volume: 7 year: 2013 ident: bb0225 article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective publication-title: Front. Hum. Neurosci. – volume: 309 start-page: 102 year: 1994 ident: bb0015 article-title: Diagnostic tests 2: predictive values publication-title: BMJ – volume: 53 year: 1999 ident: bb0030 article-title: MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults publication-title: Neurology – volume: 96 start-page: 245 year: 2014 end-page: 260 ident: bb0105 article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks publication-title: NeuroImage – volume: 42 start-page: 565 year: 2010 end-page: 569 ident: bb0250 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. – volume: 45 start-page: S199 issue: 1 year: 2009 ident: 10.1016/j.nicl.2017.08.017_bb0180 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 37 start-page: 90 issue: 1 year: 2007 ident: 10.1016/j.nicl.2017.08.017_bb0040 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.04.042 – start-page: 35 year: 2013 ident: 10.1016/j.nicl.2017.08.017_bb0135 article-title: A theory of autism based on frontal-posterior underconnectivity – volume: 53 issue: 9 year: 1999 ident: 10.1016/j.nicl.2017.08.017_bb0030 article-title: MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults publication-title: Neurology doi: 10.1212/WNL.53.9.2145 – volume: 8 start-page: 229 issue: August year: 2014 ident: 10.1016/j.nicl.2017.08.017_bb0185 article-title: Deep learning for neuroimaging: a validation study. publication-title: Front. Neurosci. – volume: 62 start-page: 1619 issue: 6 year: 2009 ident: 10.1016/j.nicl.2017.08.017_bb0065 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22159 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 10.1016/j.nicl.2017.08.017_bb0075 article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism – volume: 17 start-page: 1687 issue: 16 year: 2006 ident: 10.1016/j.nicl.2017.08.017_bb0060 article-title: Functional connectivity in a baseline resting-state network in autism publication-title: NeuroReport doi: 10.1097/01.wnr.0000239956.45448.4c – volume: 33 issue: 8 year: 2012 ident: 10.1016/j.nicl.2017.08.017_bb0070 article-title: A whole brain fMRI atlas spatial generated via spatially constrained spectral clustering publication-title: Human brain … – year: 2017 ident: 10.1016/j.nicl.2017.08.017_bb0100 – volume: 309 start-page: 102 issue: 6947 year: 1994 ident: 10.1016/j.nicl.2017.08.017_bb0015 article-title: Diagnostic tests 2: predictive values publication-title: BMJ doi: 10.1136/bmj.309.6947.102 – volume: 4 start-page: 135 issue: 2 year: 2009 ident: 10.1016/j.nicl.2017.08.017_bb0140 article-title: Atypical fronto-posterior synchronization of theroy of mind regions in autism during mental state attribution publication-title: Soc. Neurosci. doi: 10.1080/17470910802198510 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.nicl.2017.08.017_bb0160 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 349 issue: 6245 year: 2015 ident: 10.1016/j.nicl.2017.08.017_bb0115 article-title: Machine learning: trends, perspectives, and prospects – volume: 22 start-page: 158 issue: 1 year: 2012 ident: 10.1016/j.nicl.2017.08.017_bb0210 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr099 – volume: 7 start-page: 359 year: 2015 ident: 10.1016/j.nicl.2017.08.017_bb0190 article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.12.013 – volume: 42 start-page: 565 issue: 7 year: 2010 ident: 10.1016/j.nicl.2017.08.017_bb0250 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. doi: 10.1038/ng.608 – volume: 8 start-page: e66032 issue: 6 year: 2013 ident: 10.1016/j.nicl.2017.08.017_bb0145 article-title: Identifying emotions on the basis of neural activation publication-title: PLoS ONE doi: 10.1371/journal.pone.0066032 – volume: 7 year: 2013 ident: 10.1016/j.nicl.2017.08.017_bb0225 article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00458 – volume: 4 start-page: 19 year: 2010 ident: 10.1016/j.nicl.2017.08.017_bb0085 article-title: Clinical applications of resting state functional connectivity publication-title: Front. Syst. Neurosci. – volume: 22 start-page: 937 issue: 4 year: 2012 ident: 10.1016/j.nicl.2017.08.017_bb0195 article-title: Distinctive neural processes during learning in autism publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr162 – volume: 145 start-page: 137 issue: Pt B year: 2016 ident: 10.1016/j.nicl.2017.08.017_bb0025 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: NeuroImage – volume: 80 start-page: 527 year: 2013 ident: 10.1016/j.nicl.2017.08.017_bb0055 article-title: Clinical applications of the functional connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.083 – volume: 7 start-page: 1 issue: September year: 2013 ident: 10.1016/j.nicl.2017.08.017_bb0170 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. – volume: 11 start-page: 3371 issue: 3 year: 2010 ident: 10.1016/j.nicl.2017.08.017_bb0245 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 96 start-page: 245 year: 2014 ident: 10.1016/j.nicl.2017.08.017_bb0105 article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.048 – volume: 17 start-page: 580 issue: 4 year: 2005 ident: 10.1016/j.nicl.2017.08.017_bb0175 article-title: Partially distributed representations of objects and faces in ventral temporal cortex publication-title: J. Cogn. Neurosci. doi: 10.1162/0898929053467550 – start-page: 55 year: 1998 ident: 10.1016/j.nicl.2017.08.017_bb0230 article-title: The support vector method of function estimation – volume: 1 start-page: 278 year: 1995 ident: 10.1016/j.nicl.2017.08.017_bb0110 article-title: Random decision forests – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 10.1016/j.nicl.2017.08.017_bb0045 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 134 start-page: 3739 issue: 12 year: 2011 ident: 10.1016/j.nicl.2017.08.017_bb0020 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain doi: 10.1093/brain/awr263 – start-page: 1096 year: 2008 ident: 10.1016/j.nicl.2017.08.017_bb0240 article-title: Extracting and composing robust features with denoising autoencoders – volume: 11 start-page: 7 issue: 1 year: 2006 ident: 10.1016/j.nicl.2017.08.017_bb0010 article-title: The role of the autism diagnostic observation schedule in the assessment of autism spectrum disorders in school and community settings publication-title: Calif. Sch. Psychol. doi: 10.1007/BF03341111 – start-page: 1 issue: 87 year: 2015 ident: 10.1016/j.nicl.2017.08.017_bb0255 article-title: Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. publication-title: Natl. Health Stat. Rep. – volume: 17 start-page: 951 issue: 4 year: 2006 ident: 10.1016/j.nicl.2017.08.017_bb0130 article-title: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry publication-title: Cereb. Cortex doi: 10.1093/cercor/bhl006 – volume: 120 start-page: 282 issue: 3 year: 2012 ident: 10.1016/j.nicl.2017.08.017_bb0050 article-title: Identifying bilingual semantic neural representations across languages publication-title: Brain Lang. doi: 10.1016/j.bandl.2011.09.003 – volume: 36 start-page: 3213 issue: 8 year: 2015 ident: 10.1016/j.nicl.2017.08.017_bb0035 article-title: Monitoring the growth of the neural representations of new animal concepts publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22842 – volume: 3 start-page: 363 issue: 4 year: 2013 ident: 10.1016/j.nicl.2017.08.017_bb0090 article-title: Impact of analysis methods on the reproducibility and reliability of resting-state networks publication-title: Brain Connect. doi: 10.1089/brain.2012.0134 – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.nicl.2017.08.017_bb0005 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 54 start-page: 2418 issue: 3 year: 2011 ident: 10.1016/j.nicl.2017.08.017_bb0205 article-title: Commonality of neural representations of words and pictures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.042 – volume: 9 start-page: 1 issue: 12 year: 2014 ident: 10.1016/j.nicl.2017.08.017_bb0125 article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism publication-title: PLoS ONE doi: 10.1371/journal.pone.0113879 – volume: 127 start-page: 1811 issue: 8 year: 2004 ident: 10.1016/j.nicl.2017.08.017_bb0120 article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity publication-title: Brain doi: 10.1093/brain/awh199 – year: 2015 ident: 10.1016/j.nicl.2017.08.017_bb0150 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.nicl.2017.08.017_bb0215 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 293 start-page: 2425 issue: 5539 year: 2001 ident: 10.1016/j.nicl.2017.08.017_bb0095 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – volume: 19 start-page: 2209 issue: 10 year: 2009 ident: 10.1016/j.nicl.2017.08.017_bb0200 article-title: The resting brain: unconstrained yet reliable publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn256 – volume: 320 start-page: 1191 issue: 5880 year: 2008 ident: 10.1016/j.nicl.2017.08.017_bb0165 article-title: Predicting human brain activity associated with the meanings of nouns publication-title: Science doi: 10.1126/science.1152876 – volume: 3 start-page: 28 issue: 1 year: 2014 ident: 10.1016/j.nicl.2017.08.017_bb0235 article-title: How machine learning is shaping cognitive neuroimaging publication-title: GigaScience doi: 10.1186/2047-217X-3-28 |
SSID | ssj0000800766 |
Score | 2.622062 |
Snippet | The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based... AbstractThe goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16 |
SubjectTerms | ABIDE Adolescent Adult Autism Autism Spectrum Disorder - diagnostic imaging Brain - diagnostic imaging Brain Mapping Case-Control Studies Child Datasets as Topic Deep learning Female fMRI Functional Neuroimaging Humans Image Processing, Computer-Assisted Machine Learning - classification Male Neural Networks, Computer Neural Pathways - diagnostic imaging Radiology Regular Rest Resting state Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLAsojUJCRuKGI9ds5tqhVVam90Eq9WV7bKa1otmq2_58Z29nuAmovXPawG6-T8Tw-xzPfEPLFeq8kVuZaG20rVUhtp61sTcItEYT8Lle9H5_owzN5dK7O11p9YU5YoQcugvvW99FbAAmsV8iGzjudFOsFMqoy7lX2vhDz1jZTVxUHmXxQCSNFy5TltWKmJHch6yzmdZnM35m7ld1HpUzevxGc_gaff-ZQrgWlgxfkeUWTdLc8xUvyJA2vyNPjel6-TU5LHW5fX8zRRU89aNp4TXOF5e3dNY2VfpNiBvwFjSnd0NpK4oL6IVJAiHQXHPo-xWzSMS1fk7OD_dPvh23to9AG3Ylla3ozZ7pXhqWkZzx0gYGleqWjEFxxE0wEUCJN1FJH-AxMa28l7wF9ySCDeEO2hsWQ3hEaQOxBWy-imssYwfo7rkLexHSw-fANYZMcXagk49jr4pebssmuHMreoewdNsBkpiFfV2NuCsXGg1fv4fKsrkR67PwFKI2rSuMeU5qGiGlx3VSBCj4T_ujywanNv0alsZr96JgbuZu5H6h0qHMM_CcHJ9oQtRpZkU1BLI_O-HnSPAdmj2c5fkiLO5gJ1gawOPjfhrwtmrgSCe9mAnE23O-Gjm7IbPOX4fJnphZXgD-FlO__h5A_kGfwKLa8r9ohW6DU6SMguOX8UzbW3wj2PNk priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhh9JL6bvuCxV6K4utt_aYhIRQSC9NwDchS1rXpVmbrPP_O6PVbrtNSaEXg9eSJUbfjj5JM58I-Wi9VxIzc62NtpIqpKrWVlYm4ZIIpvw6Z71ffNHnV_LzUi0PyMmQC4NhlcX39z49e-vyZF6sOd9tNvOvnDPBMM8TQMoBqeCHhbQ5iW95PO6zICMy-cgSy1dYoeTO9GFeqD-LEV4mK3nme8t-zU9Zxn8yTd2loX9GU_42PZ09Jo8Kr6RHfdefkIPUPiUPLsrJ-TNy2WfkNmWLjm4b6gFz3TXNuZY3t9c0FiFOirHwaxpT2tFyqcSa-jZS4Ir0CFz7KcW40i7tn5Ors9PLk_Oq3KhQBV2LfWUas2K6UYalpBc81IHBO-uVjkJwxU0wEeiJNFFLHeEzMK29lbwBHiaDDOIFOWy3bXpFaFCiDtp6EdVKxgh-oOYq5OVMDcsQPyNssKMLRW4cb7344Ya4su8Obe_Q9g6vwmRmRj6NdXa92Ma9pY9xeMaSKJSdH2xv1q4gxTVN9BY4JmsUiunzWifFGoGCvIx7xWdEDIPrhlxU8J7wR5t7mzZ_q5W64gA6x1zH3cLdAemMqLHmBOf_bPHDgDwHDgBPdXybtrfQEowNsHLwxDPyskfiaBJeLwQybujvBKMTm01_aTffssi4AiYqpHz9n_19Qx7CN9tvVr0lh4Dj9A7o2371Pr-fPwHzGT6Q priority: 102 providerName: Elsevier |
Title | Identification of autism spectrum disorder using deep learning and the ABIDE dataset |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158217302073 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217302073 https://dx.doi.org/10.1016/j.nicl.2017.08.017 https://www.ncbi.nlm.nih.gov/pubmed/29034163 https://www.proquest.com/docview/1951565048 https://pubmed.ncbi.nlm.nih.gov/PMC5635344 https://doaj.org/article/ffda85221f50479296e51f3653912a52 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkRAXxLvhURmJGwpav5MDQi1qVZCWC11pb5bXdpZWbbbsbiX498w4zkJgVS5cckjieHc8nvlsz3xDyOvKOSUxM7eqQlVK5WNZ60qWJuKSCFx-nbLex5_1yUR-mqrpDunLHWUBrrYu7bCe1GR58fb7tx_vYcK_-xWrhSSyGKZlEh0nM7fIbfBMBisajDPcP8_oyKTjS86ZKJmqeM6j2f6Zga9KlP4Dl_U3JP0zsvI3V3V8n9zLGJMedErxgOzE9iG5M86n6I_IaZed2-TtOrpoqAP9W13SlHe5vL6kIZNyUoyLn9MQ4xXNBSbm1LWBAm6kB2DmjyjGmK7i-jGZHB-dfjgpc3WF0utarEvTmBnTjTIsRj3ivvYM5q9TOgjBFTfeBIAq0gQtdYCrZ1q7SvIGMJn00osnZLddtHGPUK9E7XXlRFAzGQLYhJorn5Y2NSxJXEFYL0frM_U4VsC4sH2M2blF2VuUvcWymMwU5M2mzVVHvHHj24c4PJs3kTQ73Vgs5zbPQds0wVWAN1mjkFif1zoq1ggk52XcKV4Q0Q-u7fNSwZLCh85u7NpsaxVXvS5bZlfcjuwXVDrUOQZWlYNpLYjatMx4p8Mx_-zxVa95FowBnvC4Ni6uoScYG0DoYJUL8rTTxI1IeD0SiL7h9w50dCCz4ZP27GsiHFeASoWUz_6HkJ-Tu_BXqm4X6wXZBaWOLwHXrWf7aT8Erh-nh_tp4v4EKFVH7w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKkYAL4k14GokbWiV-7x7bqlUKTS-kUm6WY3tDEN1ETfr_mfF6F0JRkbjksLsTW-Px-LM98w0hH0vnlMTM3LIMZSGVj0WlS1mYiFsiWPKrlPU-OdfjC_l5pmZ75KjLhcGwyuz7W5-evHV-MszaHK6Xy-FXzplgmOcJRsrBUu-Qu4AGDM7O09lhf9CCkMikO0sUKFAiJ8-0cV5IQIshXiZReabCZb8WqMTjv7NO3cShf4ZT_rY-nTwiDzOwpAdt3x-Tvdg8Ifcm-er8KZm2Kbl1PqOjq5o6MLrNJU3JllfXlzRkJk6KwfALGmJc01xVYkFdEyiARXoAvv2YYmDpJm6fkYuT4-nRuMglFQqvK7EtTG3mTNfKsBj1iPvKM5i0TukgBFfceBMAn0gTtNQBfj3T2pWS1wDEpJdePCf7zaqJLwn1SlRel04ENZchgCOouPJpP1PBPsQNCOv0aH3mG8eyFz9sF1j23aLuLereYi1MZgbkUy-zbtk2bv36EIen_xKZstOD1dXCZlOxdR1cCSCT1QrZ9Hmlo2K1QEZexp3iAyK6wbVdMiq4T_ij5a1Nm79JxU32ABvL7Ibbkb1hpQOieskdQ_9nix86y7PgAfBaxzVxdQ0twdgALAdXPCAvWkvsVcKrkUDIDf3dsdEdne2-aZbfEsu4AigqpHz1n_19T-6Pp5Mze3Z6_uU1eQBvyvbk6g3ZB5uObwHLbefv0lz9Ce1yQbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+autism+spectrum+disorder+using+deep+learning+and+the+ABIDE+dataset&rft.jtitle=NeuroImage+clinical&rft.au=Anibal+S%C3%B3lon+Heinsfeld&rft.au=Alexandre+Rosa+Franco&rft.au=R.+Cameron+Craddock&rft.au=Augusto+Buchweitz&rft.date=2018-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=17&rft.spage=16&rft.epage=23&rft_id=info:doi/10.1016%2Fj.nicl.2017.08.017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffda85221f50479296e51f3653912a52 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158217X00053%2Fcov150h.gif |