Identification of autism spectrum disorder using deep learning and the ABIDE dataset

The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database know...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 17; pp. 16 - 23
Main Authors Heinsfeld, Anibal Sólon, Franco, Alexandre Rosa, Craddock, R. Cameron, Buchweitz, Augusto, Meneguzzi, Felipe
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. •We successfully applied Deep Learning to classify ASD and controls using ABIDE data•We extracted patterns of brain function in rs-fMRI and showed anterior-posterior underconnectivity in the autistic brain•Underconnected areas in ASD rs-fMRI data: Paracingulate Gyrus, Supramarginal Gyrus and Middle Temporal Gyrus•We surpass the state-of-the-art in deep learning classification of brain activation by achieving 70% accuracy
AbstractList The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. •We successfully applied Deep Learning to classify ASD and controls using ABIDE data•We extracted patterns of brain function in rs-fMRI and showed anterior-posterior underconnectivity in the autistic brain•Underconnected areas in ASD rs-fMRI data: Paracingulate Gyrus, Supramarginal Gyrus and Middle Temporal Gyrus•We surpass the state-of-the-art in deep learning classification of brain activation by achieving 70% accuracy
The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.
The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. Keywords: Autism, fMRI, ABIDE, Resting state, Deep learning
The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model. • We successfully applied Deep Learning to classify ASD and controls using ABIDE data • We extracted patterns of brain function in rs-fMRI and showed anterior-posterior underconnectivity in the autistic brain • Underconnected areas in ASD rs-fMRI data: Paracingulate Gyrus, Supramarginal Gyrus and Middle Temporal Gyrus • We surpass the state-of-the-art in deep learning classification of brain activation by achieving 70% accuracy
The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.
AbstractThe goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.
Author Craddock, R. Cameron
Meneguzzi, Felipe
Heinsfeld, Anibal Sólon
Franco, Alexandre Rosa
Buchweitz, Augusto
AuthorAffiliation g Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
c PUCRS, School of Engineering, Porto Alegre 90619, Rio Grande do Sul, Brazil
e PUCRS, School of Humanities, Porto Alegre 90619, Rio Grande do Sul, Brazil
b PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil
a PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil
d PUCRS, School of Medicine, Porto Alegre 90619, Rio Grande do Sul, Brazil
f Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA
AuthorAffiliation_xml – name: a PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil
– name: g Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
– name: d PUCRS, School of Medicine, Porto Alegre 90619, Rio Grande do Sul, Brazil
– name: b PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil
– name: c PUCRS, School of Engineering, Porto Alegre 90619, Rio Grande do Sul, Brazil
– name: e PUCRS, School of Humanities, Porto Alegre 90619, Rio Grande do Sul, Brazil
– name: f Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA
Author_xml – sequence: 1
  givenname: Anibal Sólon
  orcidid: 0000-0002-2050-0614
  surname: Heinsfeld
  fullname: Heinsfeld, Anibal Sólon
  organization: PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil
– sequence: 2
  givenname: Alexandre Rosa
  surname: Franco
  fullname: Franco, Alexandre Rosa
  organization: PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil
– sequence: 3
  givenname: R. Cameron
  surname: Craddock
  fullname: Craddock, R. Cameron
  organization: Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA
– sequence: 4
  givenname: Augusto
  surname: Buchweitz
  fullname: Buchweitz, Augusto
  organization: PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre 90619, Rio Grande do Sul, Brazil
– sequence: 5
  givenname: Felipe
  orcidid: 0000-0003-3549-6168
  surname: Meneguzzi
  fullname: Meneguzzi, Felipe
  email: felipe.meneguzzi@pucrs.br
  organization: PUCRS, School of Computer Science, Porto Alegre 90619, Rio Grande do Sul, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29034163$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1PFDEUnRiIIPIHfDDz6Muu_Zh2ZowhAUTdhMQH8fmmtLdL19l2bTsk_Hs7LBggAfvQ2497zmnvPW-qHR88VtU7SuaUUPlxNfdOD3NGaDsn3byEV9U-Y5TPqOjYzoP1XnWY0oqU0RHSSvm62mM94Q2VfL-6WBj02VmnVXbB18HWaswureu0QZ3juK6NSyEajPWYnF_WBnFTD6iin3bKmzpfYX18svhyVhuVVcL8ttq1akh4eBcPql9fzy5Ov8_Of3xbnB6fz7TseZ61tr2k0oqWIkrCdK9pw4QS0nDOBGt1a_pWNq2RjTRl1lRK1TXM9oI2utH8oFpseU1QK9hEt1bxBoJycHsQ4hJUzKVMCNYa1YlSEytI0_aslyio5VLwnjIlWOE62nJtxss1Gl2qEtXwiPTxjXdXsAzXICQXvGkKwYc7ghj-jJgyrF3SOAzKYxgT0PJqIYt6V1LfP9T6J3LflpLQbRN0DClFtKBdvm1QkXYDUAKTCWAFkwlgMgGQDkooUPYEes_-IujzFoSlW9cOIyTt0Gs0LhYXlHK6l-FHT-B6cCVLDb_xBtMqjNEXHwCFxIDAz8makzMLlDDSTv_99DzB_9T_Alra8Zs
CitedBy_id crossref_primary_10_3389_fpsyt_2020_00440
crossref_primary_10_3389_fnagi_2022_912895
crossref_primary_10_1007_s12539_022_00548_6
crossref_primary_10_1016_j_cmpb_2021_106615
crossref_primary_10_1016_j_media_2023_102932
crossref_primary_10_3389_fnins_2020_00676
crossref_primary_10_3389_fpsyt_2025_1485286
crossref_primary_10_1016_j_clinph_2020_11_037
crossref_primary_10_32628_IJSRST25121174
crossref_primary_10_1007_s00247_022_05510_8
crossref_primary_10_1016_j_compbiolchem_2024_108335
crossref_primary_10_1186_s12868_024_00870_3
crossref_primary_10_1016_j_media_2025_103462
crossref_primary_10_1109_TCBB_2022_3170527
crossref_primary_10_1007_s00521_024_10770_6
crossref_primary_10_57197_JDR_2024_0083
crossref_primary_10_3390_a16070315
crossref_primary_10_1109_TCE_2023_3328479
crossref_primary_10_4236_etsn_2021_102003
crossref_primary_10_1016_j_artmed_2022_102475
crossref_primary_10_3390_biomedicines11071858
crossref_primary_10_1109_JBHI_2020_3030853
crossref_primary_10_1007_s12559_021_09981_z
crossref_primary_10_1016_j_jneumeth_2020_108884
crossref_primary_10_1016_j_bspc_2023_104892
crossref_primary_10_1016_j_bspc_2023_105864
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_1007_s42600_023_00275_x
crossref_primary_10_1155_2022_9991794
crossref_primary_10_3389_fnins_2021_696853
crossref_primary_10_3389_fncom_2019_00009
crossref_primary_10_3389_fpsyt_2021_598518
crossref_primary_10_1016_j_asoc_2021_107375
crossref_primary_10_1093_cercor_bhac513
crossref_primary_10_1016_j_compbiomed_2023_107184
crossref_primary_10_1109_ACCESS_2020_2997334
crossref_primary_10_1007_s10803_019_04171_1
crossref_primary_10_1109_TMI_2019_2933160
crossref_primary_10_1371_journal_pone_0295621
crossref_primary_10_1007_s11571_021_09683_0
crossref_primary_10_3390_jpm12101579
crossref_primary_10_1016_j_artmed_2020_101926
crossref_primary_10_3390_su15054094
crossref_primary_10_1016_j_bspc_2023_104634
crossref_primary_10_3389_fnagi_2022_948704
crossref_primary_10_1016_j_media_2023_102841
crossref_primary_10_3389_fnsys_2022_904770
crossref_primary_10_3390_jimaging6060047
crossref_primary_10_1038_s41598_024_81652_z
crossref_primary_10_1016_j_neuroimage_2022_119288
crossref_primary_10_1088_1742_6596_1804_1_012089
crossref_primary_10_3390_children7100182
crossref_primary_10_1007_s11042_024_18800_0
crossref_primary_10_2174_1573405615666191111142039
crossref_primary_10_1016_j_bspc_2022_104234
crossref_primary_10_1016_j_compbiomed_2020_104096
crossref_primary_10_48175_IJARSCT_18782
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_1038_s41467_019_08944_1
crossref_primary_10_1049_ccs2_12108
crossref_primary_10_1007_s12652_024_04945_1
crossref_primary_10_1109_TBDATA_2023_3264109
crossref_primary_10_1007_s10278_024_01002_3
crossref_primary_10_3390_e25111509
crossref_primary_10_1016_j_bspc_2024_106944
crossref_primary_10_4103_ijnpnd_ijnpnd_113_24
crossref_primary_10_1007_s11042_024_18519_y
crossref_primary_10_1016_j_compbiomed_2022_105854
crossref_primary_10_1016_j_nicl_2020_102181
crossref_primary_10_1016_j_bspc_2024_106934
crossref_primary_10_1016_j_cogsys_2021_10_002
crossref_primary_10_3389_fnins_2020_629630
crossref_primary_10_2196_15767
crossref_primary_10_1088_1741_2552_ac619a
crossref_primary_10_1016_j_spen_2020_100803
crossref_primary_10_1002_brb3_3554
crossref_primary_10_1016_j_spen_2020_100805
crossref_primary_10_1016_j_nicl_2024_103663
crossref_primary_10_3390_brainsci15030277
crossref_primary_10_1016_j_neurad_2020_12_003
crossref_primary_10_3389_fnhum_2018_00257
crossref_primary_10_3389_fninf_2019_00070
crossref_primary_10_1109_MSMC_2021_3086989
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1109_JBHI_2019_2941222
crossref_primary_10_1364_BOE_467943
crossref_primary_10_1007_s43538_024_00344_4
crossref_primary_10_3390_s20216001
crossref_primary_10_1016_j_jneumeth_2020_108799
crossref_primary_10_1016_j_rasd_2023_102223
crossref_primary_10_4108_eetpht_10_5541
crossref_primary_10_1109_TETCI_2024_3377551
crossref_primary_10_1007_s12539_022_00510_6
crossref_primary_10_1016_j_bspc_2023_104686
crossref_primary_10_1109_JBHI_2021_3100559
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1109_TMI_2022_3203899
crossref_primary_10_1007_s00521_023_08218_4
crossref_primary_10_1007_s10916_019_1519_7
crossref_primary_10_54392_irjmt2449
crossref_primary_10_1038_s41386_020_0767_z
crossref_primary_10_1088_1741_2552_ad1e22
crossref_primary_10_1016_j_engappai_2022_105034
crossref_primary_10_1016_j_bspc_2020_101958
crossref_primary_10_1016_j_artmed_2024_102998
crossref_primary_10_1088_1741_2552_ac8b39
crossref_primary_10_3390_bioengineering11070671
crossref_primary_10_1007_s12031_019_01311_1
crossref_primary_10_3390_app11136216
crossref_primary_10_1109_TNNLS_2023_3311195
crossref_primary_10_1016_j_compbiomed_2022_105424
crossref_primary_10_3390_brainsci11050603
crossref_primary_10_1016_j_eng_2019_06_008
crossref_primary_10_32604_cmc_2022_026999
crossref_primary_10_1016_j_biopsych_2022_04_008
crossref_primary_10_1016_j_health_2024_100379
crossref_primary_10_1109_TNNLS_2022_3219551
crossref_primary_10_3389_fninf_2018_00023
crossref_primary_10_1007_s41060_023_00408_6
crossref_primary_10_1186_s13229_021_00439_5
crossref_primary_10_1016_j_patter_2022_100602
crossref_primary_10_1038_s41386_019_0428_2
crossref_primary_10_1016_j_media_2024_103211
crossref_primary_10_1109_JBHI_2024_3415000
crossref_primary_10_3389_fpsyt_2024_1397093
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_3389_fpsyt_2019_00924
crossref_primary_10_1016_j_procs_2022_03_061
crossref_primary_10_1007_s11042_024_19165_0
crossref_primary_10_1109_TCBB_2022_3163140
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_3389_fgene_2020_628539
crossref_primary_10_1109_TMI_2022_3173428
crossref_primary_10_1080_03772063_2023_2196979
crossref_primary_10_1155_2022_8134018
crossref_primary_10_1155_2022_5766386
crossref_primary_10_1016_j_compbiomed_2024_108054
crossref_primary_10_1016_j_neuroimage_2024_120566
crossref_primary_10_1109_TCBB_2024_3422152
crossref_primary_10_1016_j_bspc_2025_107678
crossref_primary_10_3934_math_2024867
crossref_primary_10_1016_j_bspc_2024_106288
crossref_primary_10_1038_s41598_023_46379_3
crossref_primary_10_1111_exsy_13040
crossref_primary_10_1007_s10489_021_02668_w
crossref_primary_10_1016_j_csda_2022_107525
crossref_primary_10_3390_s21165256
crossref_primary_10_1016_j_bspc_2023_104914
crossref_primary_10_1016_j_compbiomed_2022_105553
crossref_primary_10_1109_ACCESS_2021_3098453
crossref_primary_10_3389_fnhum_2021_687288
crossref_primary_10_1016_j_eswa_2024_126295
crossref_primary_10_1016_j_ibmed_2025_100213
crossref_primary_10_1007_s12652_020_02332_0
crossref_primary_10_3389_fnins_2021_756868
crossref_primary_10_1002_mp_15545
crossref_primary_10_1109_JBHI_2022_3175071
crossref_primary_10_1016_j_bspc_2021_103015
crossref_primary_10_1109_TMI_2022_3219260
crossref_primary_10_1038_s41598_020_71914_x
crossref_primary_10_1016_j_artmed_2022_102309
crossref_primary_10_1016_j_cosrev_2024_100718
crossref_primary_10_1016_j_neunet_2024_106296
crossref_primary_10_1016_j_artmed_2021_102020
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_1155_2022_5841630
crossref_primary_10_3390_brainsci10100754
crossref_primary_10_57197_JDR_2023_0064
crossref_primary_10_1016_j_procs_2020_09_099
crossref_primary_10_1002_jmri_27949
crossref_primary_10_1016_j_bspc_2022_104521
crossref_primary_10_1007_s41347_025_00500_7
crossref_primary_10_1016_j_patcog_2020_107570
crossref_primary_10_3389_fnins_2023_1222751
crossref_primary_10_1007_s10489_022_03891_9
crossref_primary_10_1016_j_phycom_2020_101115
crossref_primary_10_5607_en_2020_29_1_27
crossref_primary_10_1259_bjr_20180910
crossref_primary_10_1093_bib_bby004
crossref_primary_10_1016_j_neunet_2020_03_017
crossref_primary_10_1016_j_neucom_2023_126791
crossref_primary_10_1016_j_media_2019_101596
crossref_primary_10_3390_ijms24032082
crossref_primary_10_1016_j_media_2021_101986
crossref_primary_10_1088_1741_2552_ad9681
crossref_primary_10_3389_fnins_2020_00858
crossref_primary_10_3390_brainsci15010060
crossref_primary_10_3390_diagnostics13020218
crossref_primary_10_1109_TKDE_2020_3025580
crossref_primary_10_1002_mp_16410
crossref_primary_10_3389_fninf_2021_709179
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_3389_fnins_2021_697870
crossref_primary_10_1016_j_jneumeth_2025_110379
crossref_primary_10_1186_s13040_024_00414_9
crossref_primary_10_1093_cercor_bhad521
crossref_primary_10_1109_TNNLS_2020_3007943
crossref_primary_10_3390_brainsci12050630
crossref_primary_10_1007_s13755_024_00277_8
crossref_primary_10_1016_j_health_2023_100293
crossref_primary_10_51359_1679_1827_2024_263456
crossref_primary_10_1109_TNNLS_2022_3225179
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1016_j_compbiomed_2022_105239
crossref_primary_10_1016_j_health_2023_100178
crossref_primary_10_2174_1570159X22999240531160344
crossref_primary_10_3389_fnins_2021_652987
crossref_primary_10_3390_app12189339
crossref_primary_10_1016_j_compbiomed_2022_106320
crossref_primary_10_1016_j_bspc_2023_104837
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1002_hbm_24943
crossref_primary_10_3389_fpsyt_2019_00620
crossref_primary_10_57197_JDR_2023_0048
crossref_primary_10_1002_hbm_24944
crossref_primary_10_1007_s00234_021_02774_z
crossref_primary_10_3390_diagnostics11112032
crossref_primary_10_1155_2020_1394830
crossref_primary_10_1007_s42979_022_01584_1
crossref_primary_10_1109_ACCESS_2019_2902889
crossref_primary_10_1016_j_biopsych_2022_02_005
crossref_primary_10_1016_j_biopsych_2023_04_014
crossref_primary_10_1007_s10489_021_02579_w
crossref_primary_10_3390_sym12121995
crossref_primary_10_1016_j_bspc_2020_102099
crossref_primary_10_1007_s11227_021_04268_4
crossref_primary_10_1038_s41380_019_0365_9
crossref_primary_10_1162_netn_a_00281
crossref_primary_10_1016_j_compbiomed_2024_109083
crossref_primary_10_1007_s12144_022_03977_0
crossref_primary_10_1007_s00521_023_08565_2
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1002_ima_23054
crossref_primary_10_1177_20552076241313407
crossref_primary_10_3390_math12182886
crossref_primary_10_1007_s10916_023_02032_0
crossref_primary_10_54105_ijainn_B1024_43122
crossref_primary_10_1080_10888438_2022_2095281
crossref_primary_10_1590_1516_4446_2019_0757
crossref_primary_10_1155_2022_3372217
crossref_primary_10_3389_fnins_2021_753033
crossref_primary_10_4018_IJEHMC_2019070105
crossref_primary_10_1007_s12021_021_09514_x
crossref_primary_10_1016_j_jneumeth_2022_109732
crossref_primary_10_3390_s21248171
crossref_primary_10_3390_e22080893
crossref_primary_10_1093_cercor_bhy321
crossref_primary_10_1016_j_bspc_2024_106671
crossref_primary_10_1080_08839514_2021_2004655
crossref_primary_10_3390_antiox8060187
crossref_primary_10_1038_s41598_024_64299_8
crossref_primary_10_3389_fninf_2020_611762
crossref_primary_10_3390_s23063062
crossref_primary_10_1142_S021821302030001X
crossref_primary_10_1007_s12065_020_00498_2
crossref_primary_10_1002_brb3_1970
crossref_primary_10_1088_1741_2552_acbe1f
crossref_primary_10_1016_j_mehy_2020_109978
crossref_primary_10_1186_s12859_023_05495_7
crossref_primary_10_1016_j_engappai_2022_105659
crossref_primary_10_1007_s12021_021_09548_1
crossref_primary_10_1016_j_bbr_2023_114603
crossref_primary_10_1007_s13369_024_09362_2
crossref_primary_10_1016_j_eswa_2023_122102
crossref_primary_10_1038_s41598_022_06459_2
crossref_primary_10_1016_j_media_2020_101662
crossref_primary_10_1109_JBHI_2023_3286421
crossref_primary_10_1155_2023_4136087
crossref_primary_10_1186_s12920_019_0598_0
crossref_primary_10_1016_j_mri_2019_05_031
crossref_primary_10_3390_electronics12030612
crossref_primary_10_1186_s11689_022_09438_w
crossref_primary_10_3390_diagnostics13172773
crossref_primary_10_1109_TMI_2023_3337362
crossref_primary_10_1016_j_bspc_2022_103887
crossref_primary_10_1016_j_bspc_2021_103108
crossref_primary_10_3389_fpsyg_2020_00220
crossref_primary_10_1038_s41593_022_01059_9
crossref_primary_10_1155_2022_5782569
crossref_primary_10_1016_j_ejmp_2019_08_010
crossref_primary_10_1016_j_media_2020_101765
crossref_primary_10_1016_j_jbi_2024_104714
crossref_primary_10_3389_fninf_2023_1310400
crossref_primary_10_1145_3450630
crossref_primary_10_4018_IJSSCI_318677
crossref_primary_10_2174_2666082215666191111121115
crossref_primary_10_1109_TNSRE_2023_3314516
crossref_primary_10_1089_brain_2018_0587
crossref_primary_10_1155_2020_1357853
crossref_primary_10_1016_j_neucom_2020_04_152
crossref_primary_10_1155_2023_6330002
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_3389_fnhum_2019_00203
crossref_primary_10_3389_fnhum_2022_1005425
crossref_primary_10_1038_s41398_024_02972_2
crossref_primary_10_1007_s00521_023_08499_9
crossref_primary_10_1093_cercor_bhad103
crossref_primary_10_1016_j_biopsych_2022_01_010
crossref_primary_10_1007_s11571_022_09828_9
crossref_primary_10_1109_ACCESS_2022_3146719
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_1016_j_mlwa_2022_100290
crossref_primary_10_1142_S0129065722500447
crossref_primary_10_1007_s11517_022_02558_4
crossref_primary_10_1007_s11571_024_10176_z
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1186_s12859_021_04295_1
crossref_primary_10_1016_j_media_2018_06_001
crossref_primary_10_1016_j_compbiomed_2022_106141
crossref_primary_10_1109_TCDS_2022_3152791
crossref_primary_10_1016_j_neucom_2022_02_017
crossref_primary_10_1109_TNSRE_2021_3120024
crossref_primary_10_2174_0126662558284886240130154414
crossref_primary_10_1038_s41598_024_53942_z
crossref_primary_10_1007_s13042_023_01980_w
crossref_primary_10_1007_s12559_021_09940_8
crossref_primary_10_1007_s12559_020_09773_x
crossref_primary_10_1007_s11042_020_10473_9
crossref_primary_10_1155_2023_4853800
crossref_primary_10_1371_journal_pone_0206351
crossref_primary_10_1109_TSIPN_2025_3540709
crossref_primary_10_3389_fninf_2022_949926
crossref_primary_10_1007_s11042_024_19374_7
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_3390_math12111648
crossref_primary_10_32604_iasc_2022_020287
crossref_primary_10_1016_j_bspc_2025_107513
crossref_primary_10_1007_s11831_021_09682_8
crossref_primary_10_1038_s41598_024_71174_z
crossref_primary_10_1109_TNNLS_2023_3243000
crossref_primary_10_1080_21681163_2021_1972343
crossref_primary_10_1007_s12021_023_09639_1
crossref_primary_10_1007_s11334_023_00536_z
crossref_primary_10_1109_ACCESS_2024_3388911
crossref_primary_10_1016_j_jneumeth_2024_110100
crossref_primary_10_1162_netn_a_00171
crossref_primary_10_1016_j_bspc_2023_105090
crossref_primary_10_1109_TCBB_2020_2989315
crossref_primary_10_1142_S0129065720500124
crossref_primary_10_1016_j_neunet_2020_12_005
crossref_primary_10_1142_S012906572150009X
crossref_primary_10_1007_s11760_023_02741_6
crossref_primary_10_1016_j_media_2020_101843
crossref_primary_10_1142_S0129065718500582
crossref_primary_10_1016_j_ridd_2023_104602
crossref_primary_10_1038_s44184_023_00040_z
crossref_primary_10_1371_journal_pone_0276832
crossref_primary_10_1007_s40489_019_00158_x
crossref_primary_10_3389_fpsyt_2019_00392
crossref_primary_10_1109_JBHI_2024_3476076
crossref_primary_10_3390_brainsci10120949
crossref_primary_10_1016_j_nicl_2022_103082
crossref_primary_10_35377_saucis_04_01_879735
crossref_primary_10_1016_j_engappai_2023_107185
crossref_primary_10_1186_s40708_023_00217_4
crossref_primary_10_1007_s00530_023_01132_8
crossref_primary_10_1002_hbm_70190
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1002_hbm_25145
crossref_primary_10_3390_bioengineering10010056
crossref_primary_10_52547_shefa_9_3_1
crossref_primary_10_1016_j_jneumeth_2024_110319
crossref_primary_10_1109_TCDS_2021_3073368
crossref_primary_10_57197_JDR_2024_0003
crossref_primary_10_1016_j_jneumeth_2021_109271
crossref_primary_10_3389_fnins_2018_01018
crossref_primary_10_1016_j_neunet_2024_106945
crossref_primary_10_1142_S012906572550011X
crossref_primary_10_1016_j_matpr_2021_07_380
crossref_primary_10_3389_fped_2024_1400110
crossref_primary_10_3389_fnins_2022_1087176
crossref_primary_10_1038_s41598_020_60702_2
crossref_primary_10_1038_s41598_022_09821_6
crossref_primary_10_1515_revneuro_2020_0043
crossref_primary_10_3233_HIS_240029
crossref_primary_10_1016_j_neubiorev_2019_07_010
crossref_primary_10_1038_s41467_019_11203_y
crossref_primary_10_1016_j_compeleceng_2023_108720
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1016_j_artmed_2020_101870
crossref_primary_10_1007_s11517_023_02859_2
crossref_primary_10_1162_imag_a_00222
crossref_primary_10_1016_j_neunet_2021_09_018
crossref_primary_10_1016_j_knosys_2024_111450
crossref_primary_10_2196_14108
crossref_primary_10_1155_2022_4516005
crossref_primary_10_1186_s12880_024_01360_y
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_1016_j_imu_2022_100911
crossref_primary_10_1093_pnasnexus_pgac066
crossref_primary_10_1016_j_compbiomed_2021_104963
crossref_primary_10_1109_TNSRE_2022_3233656
crossref_primary_10_1016_j_neuri_2022_100084
crossref_primary_10_1093_comjnl_bxaa023
crossref_primary_10_3390_app11083636
crossref_primary_10_1007_s12539_024_00625_y
crossref_primary_10_1109_ACCESS_2019_2933550
crossref_primary_10_1016_j_neulet_2020_135519
crossref_primary_10_1089_cmb_2020_0252
crossref_primary_10_1109_ACCESS_2019_2940198
crossref_primary_10_7769_gesec_v16i1_4406
crossref_primary_10_1007_s42979_023_02439_z
crossref_primary_10_1007_s43441_021_00355_z
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1016_j_neucom_2022_09_129
crossref_primary_10_1016_j_neucom_2020_06_152
crossref_primary_10_3389_fnins_2021_674055
crossref_primary_10_1007_s11042_024_20111_3
crossref_primary_10_1016_j_cmpb_2022_106772
crossref_primary_10_1016_j_jneumeth_2019_108538
crossref_primary_10_1177_20552076241256730
crossref_primary_10_1109_ACCESS_2023_3325701
crossref_primary_10_1007_s13369_023_08560_8
crossref_primary_10_1016_j_patrec_2020_04_028
crossref_primary_10_3389_fnins_2018_00491
crossref_primary_10_15406_iratj_2024_10_00278
crossref_primary_10_3389_fnins_2022_1046268
crossref_primary_10_1080_15374416_2018_1443461
crossref_primary_10_1007_s10489_024_05655_z
crossref_primary_10_3389_fnins_2021_729937
crossref_primary_10_1109_JBHI_2022_3159031
crossref_primary_10_3389_fnins_2019_01325
crossref_primary_10_1109_TNNLS_2022_3154755
crossref_primary_10_1016_j_bspc_2021_102833
crossref_primary_10_1109_ACCESS_2019_2936639
crossref_primary_10_1109_JBHI_2020_2998603
crossref_primary_10_1016_j_brainresbull_2025_111290
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_3389_fncom_2021_594659
crossref_primary_10_1016_j_procs_2023_10_617
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_jneumeth_2020_108840
crossref_primary_10_1038_s41398_018_0296_2
crossref_primary_10_1002_hbm_26581
crossref_primary_10_1016_j_brainresbull_2023_110826
crossref_primary_10_1016_j_media_2022_102591
crossref_primary_10_1002_aur_2974
crossref_primary_10_1007_s11831_021_09649_9
crossref_primary_10_1016_j_media_2021_102279
crossref_primary_10_1038_s41380_023_02060_9
crossref_primary_10_1016_j_neuroimage_2019_06_012
crossref_primary_10_1016_j_media_2022_102471
crossref_primary_10_3389_fnins_2023_1333725
crossref_primary_10_1093_cercor_bhae069
crossref_primary_10_1007_s11042_024_19881_7
crossref_primary_10_1016_j_eswa_2020_113513
crossref_primary_10_1016_j_neuroimage_2022_119212
crossref_primary_10_3389_fncom_2024_1388083
crossref_primary_10_1371_journal_pbio_3001627
crossref_primary_10_3389_fncom_2021_654315
crossref_primary_10_1016_j_compbiomed_2024_108415
crossref_primary_10_1109_TBDATA_2023_3294000
crossref_primary_10_1142_S0218488523500344
crossref_primary_10_3389_fnins_2021_720909
crossref_primary_10_3390_diagnostics11081373
crossref_primary_10_32604_csse_2023_025331
crossref_primary_10_3389_fnins_2022_900330
crossref_primary_10_37394_23208_2024_21_5
crossref_primary_10_4236_ijids_2025_71001
crossref_primary_10_1109_ACCESS_2020_3016734
Cites_doi 10.1016/j.neuroimage.2008.11.007
10.1016/j.neuroimage.2007.04.042
10.1212/WNL.53.9.2145
10.1002/mrm.22159
10.1097/01.wnr.0000239956.45448.4c
10.1136/bmj.309.6947.102
10.1080/17470910802198510
10.1093/cercor/bhr099
10.1016/j.nicl.2014.12.013
10.1038/ng.608
10.1371/journal.pone.0066032
10.3389/fnhum.2013.00458
10.1093/cercor/bhr162
10.1016/j.neuroimage.2013.04.083
10.1016/j.neuroimage.2014.03.048
10.1162/0898929053467550
10.1002/mrm.1910340409
10.1093/brain/awr263
10.1007/BF03341111
10.1093/cercor/bhl006
10.1016/j.bandl.2011.09.003
10.1002/hbm.22842
10.1089/brain.2012.0134
10.1016/j.neuroimage.2016.10.045
10.1016/j.neuroimage.2010.10.042
10.1371/journal.pone.0113879
10.1093/brain/awh199
10.1073/pnas.0905267106
10.1126/science.1063736
10.1093/cercor/bhn256
10.1126/science.1152876
10.1186/2047-217X-3-28
ContentType Journal Article
Copyright 2017
2017 Published by Elsevier Inc. 2017
Copyright_xml – notice: 2017
– notice: 2017 Published by Elsevier Inc. 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2017.08.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 23
ExternalDocumentID oai_doaj_org_article_ffda85221f50479296e51f3653912a52
PMC5635344
29034163
10_1016_j_nicl_2017_08_017
S2213158217302073
1_s2_0_S2213158217302073
Genre Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c693t-7f7b16f571ee602c9c1425a56d332527c7d97647d646d7d6c166a842f9514c4c3
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:09:14 EDT 2025
Thu Aug 21 18:27:52 EDT 2025
Fri Jul 11 15:09:07 EDT 2025
Thu Apr 03 07:00:23 EDT 2025
Thu Apr 24 22:52:51 EDT 2025
Tue Jul 01 01:09:38 EDT 2025
Wed May 17 01:21:53 EDT 2023
Sun Feb 23 10:19:27 EST 2025
Tue Aug 26 16:33:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Autism
fMRI
ABIDE
Resting state
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-7f7b16f571ee602c9c1425a56d332527c7d97647d646d7d6c166a842f9514c4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2050-0614
0000-0003-3549-6168
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2017.08.017
PMID 29034163
PQID 1951565048
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_ffda85221f50479296e51f3653912a52
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635344
proquest_miscellaneous_1951565048
pubmed_primary_29034163
crossref_citationtrail_10_1016_j_nicl_2017_08_017
crossref_primary_10_1016_j_nicl_2017_08_017
elsevier_sciencedirect_doi_10_1016_j_nicl_2017_08_017
elsevier_clinicalkeyesjournals_1_s2_0_S2213158217302073
elsevier_clinicalkey_doi_10_1016_j_nicl_2017_08_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kassam, Markey, Cherkassky, Loewenstein, Just (bb0145) 2013; 8
Haxby (bb0095) 2001; 293
Ho (bb0110) 1995; 1
Kana, Keller, Cherkassky, Minshew, Just (bb0140) 2009; 4
Mitchell (bb0165) 2008; 320
Biswal, Yetkin, Haughton, Hyde (bb0045) 1995; 34
Craddock, James (bb0070) 2012; 33
Pereira, Mitchell, Botvinick (bb0180) 2009; 45
Shinkareva, Malave, Mason, Mitchell, Just (bb0205) 2011; 54
Behzadi, Restom, Liau, Liu (bb0040) 2007; 37
Maaten, Hinton, van der Maaten (bb0160) 2008; 9
Craddock, Holtzheimer, Hu, Mayberg (bb0065) 2009; 62
Anderson (bb0020) 2011; 134
Bauer, Just (bb0035) 2015; 36
O’Toole, Jiang, Abdi, Haxby (bb0175) 2005; 17
Koyamada, Shikauchi, Nakae, Koyama, Ishii (bb0150) 2015
Aylward (bb0030) 1999; 53
Cherkassky, Kana, Keller, Just (bb0060) 2006; 17
Heinsfeld, Franco, Buchweitz, Meneguzzi (bb0100) 2017
Hjelm (bb0105) 2014; 96
Varoquaux, Thirion (bb0235) 2014; 3
Shehzad (bb0200) 2009; 19
Buchweitz, Shinkareva, Mason, Mitchell, Just (bb0050) 2012; 120
Vincent, Larochelle, Bengio, Manzagol (bb0240) 2008
Nielsen (bb0170) 2013; 7
Altman, Bland (bb0015) 1994; 309
Arbabshirani, Plis, Sui, Calhoun (bb0025) 2016; 145
Zablotsky, Black, Maenner, Schieve, Blumberg (bb0255) 2015
Schipul, Williams, Keller, Minshew, Just (bb0195) 2012; 22
Abraham (bb0005) 2017; 147
Just, Cherkassky, Buchweitz, Keller, Mitchell (bb0125) 2014; 9
Plitt, Barnes, Martin (bb0190) 2015; 7
Fox (bb0085) 2010; 4
Just (bb0120) 2004; 127
Castellanos, Di Martino, Craddock, Mehta, Milham (bb0055) 2013; 80
Yang (bb0250) 2010; 42
Just, Keller, Kana (bb0135) 2013
Plis (bb0185) 2014; 8
Vapnik (bb0230) 1998
Franco, Mannell, Calhoun, Mayer (bb0090) 2013; 3
Just, Cherkassky, Keller, Kana, Minshew (bb0130) 2006; 17
Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bb0210) 2012; 22
Smith (bb0215) 2009; 106
Akshoomoff, Corsello, Schmidt (bb0010) 2006; 11
Uddin, Supekar, Menon (bb0225) 2013; 7
Di Martino (bb0075) 2014; 19
Jordan, Mitchell (bb0115) 2015; 349
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0245) 2010; 11
Hjelm (10.1016/j.nicl.2017.08.017_bb0105) 2014; 96
Just (10.1016/j.nicl.2017.08.017_bb0135) 2013
Vapnik (10.1016/j.nicl.2017.08.017_bb0230) 1998
Craddock (10.1016/j.nicl.2017.08.017_bb0070) 2012; 33
Nielsen (10.1016/j.nicl.2017.08.017_bb0170) 2013; 7
Behzadi (10.1016/j.nicl.2017.08.017_bb0040) 2007; 37
Anderson (10.1016/j.nicl.2017.08.017_bb0020) 2011; 134
O’Toole (10.1016/j.nicl.2017.08.017_bb0175) 2005; 17
Craddock (10.1016/j.nicl.2017.08.017_bb0065) 2009; 62
Shinkareva (10.1016/j.nicl.2017.08.017_bb0205) 2011; 54
Yang (10.1016/j.nicl.2017.08.017_bb0250) 2010; 42
Vincent (10.1016/j.nicl.2017.08.017_bb0245) 2010; 11
Varoquaux (10.1016/j.nicl.2017.08.017_bb0235) 2014; 3
Plis (10.1016/j.nicl.2017.08.017_bb0185) 2014; 8
Plitt (10.1016/j.nicl.2017.08.017_bb0190) 2015; 7
Bauer (10.1016/j.nicl.2017.08.017_bb0035) 2015; 36
Just (10.1016/j.nicl.2017.08.017_bb0125) 2014; 9
Just (10.1016/j.nicl.2017.08.017_bb0130) 2006; 17
Zablotsky (10.1016/j.nicl.2017.08.017_bb0255) 2015
Shehzad (10.1016/j.nicl.2017.08.017_bb0200) 2009; 19
Pereira (10.1016/j.nicl.2017.08.017_bb0180) 2009; 45
Abraham (10.1016/j.nicl.2017.08.017_bb0005) 2017; 147
Cherkassky (10.1016/j.nicl.2017.08.017_bb0060) 2006; 17
Kana (10.1016/j.nicl.2017.08.017_bb0140) 2009; 4
Uddin (10.1016/j.nicl.2017.08.017_bb0225) 2013; 7
Koyamada (10.1016/j.nicl.2017.08.017_bb0150) 2015
Schipul (10.1016/j.nicl.2017.08.017_bb0195) 2012; 22
Heinsfeld (10.1016/j.nicl.2017.08.017_bb0100) 2017
Castellanos (10.1016/j.nicl.2017.08.017_bb0055) 2013; 80
Ho (10.1016/j.nicl.2017.08.017_bb0110) 1995; 1
Shirer (10.1016/j.nicl.2017.08.017_bb0210) 2012; 22
Smith (10.1016/j.nicl.2017.08.017_bb0215) 2009; 106
Kassam (10.1016/j.nicl.2017.08.017_bb0145) 2013; 8
Di Martino (10.1016/j.nicl.2017.08.017_bb0075) 2014; 19
Franco (10.1016/j.nicl.2017.08.017_bb0090) 2013; 3
Aylward (10.1016/j.nicl.2017.08.017_bb0030) 1999; 53
Akshoomoff (10.1016/j.nicl.2017.08.017_bb0010) 2006; 11
Jordan (10.1016/j.nicl.2017.08.017_bb0115) 2015; 349
Altman (10.1016/j.nicl.2017.08.017_bb0015) 1994; 309
Maaten (10.1016/j.nicl.2017.08.017_bb0160) 2008; 9
Fox (10.1016/j.nicl.2017.08.017_bb0085) 2010; 4
Vincent (10.1016/j.nicl.2017.08.017_bb0240) 2008
Buchweitz (10.1016/j.nicl.2017.08.017_bb0050) 2012; 120
Arbabshirani (10.1016/j.nicl.2017.08.017_bb0025) 2016; 145
Biswal (10.1016/j.nicl.2017.08.017_bb0045) 1995; 34
Just (10.1016/j.nicl.2017.08.017_bb0120) 2004; 127
Haxby (10.1016/j.nicl.2017.08.017_bb0095) 2001; 293
Mitchell (10.1016/j.nicl.2017.08.017_bb0165) 2008; 320
References_xml – volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bb0075
  article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism
– volume: 293
  start-page: 2425
  year: 2001
  end-page: 2430
  ident: bb0095
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
– volume: 120
  start-page: 282
  year: 2012
  end-page: 289
  ident: bb0050
  article-title: Identifying bilingual semantic neural representations across languages
  publication-title: Brain Lang.
– volume: 349
  year: 2015
  ident: bb0115
  article-title: Machine learning: trends, perspectives, and prospects
– start-page: 35
  year: 2013
  end-page: 63
  ident: bb0135
  article-title: A theory of autism based on frontal-posterior underconnectivity
  publication-title: Development and Brain Systems in Autism
– volume: 145
  start-page: 137
  year: 2016
  end-page: 165
  ident: bb0025
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: NeuroImage
– volume: 62
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: bb0065
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 1687
  year: 2006
  end-page: 1690
  ident: bb0060
  article-title: Functional connectivity in a baseline resting-state network in autism
  publication-title: NeuroReport
– volume: 80
  start-page: 527
  year: 2013
  end-page: 540
  ident: bb0055
  article-title: Clinical applications of the functional connectome
  publication-title: NeuroImage
– volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  ident: bb0200
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
– start-page: 55
  year: 1998
  end-page: 85
  ident: bb0230
  article-title: The support vector method of function estimation
  publication-title: Nonlinear Modeling
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: bb0005
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
– volume: 3
  start-page: 28
  year: 2014
  ident: bb0235
  article-title: How machine learning is shaping cognitive neuroimaging
  publication-title: GigaScience
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bb0215
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 22
  start-page: 937
  year: 2012
  end-page: 950
  ident: bb0195
  article-title: Distinctive neural processes during learning in autism
  publication-title: Cereb. Cortex
– volume: 11
  start-page: 7
  year: 2006
  end-page: 19
  ident: bb0010
  article-title: The role of the autism diagnostic observation schedule in the assessment of autism spectrum disorders in school and community settings
  publication-title: Calif. Sch. Psychol.
– volume: 4
  start-page: 135
  year: 2009
  end-page: 152
  ident: bb0140
  article-title: Atypical fronto-posterior synchronization of theroy of mind regions in autism during mental state attribution
  publication-title: Soc. Neurosci.
– year: 2015
  ident: bb0150
  article-title: Deep Learning of fMRI Big Data: A Novel Approach to Subject-Transfer Decoding
– volume: 17
  start-page: 951
  year: 2006
  end-page: 961
  ident: bb0130
  article-title: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry
  publication-title: Cereb. Cortex
– volume: 320
  start-page: 1191
  year: 2008
  end-page: 1195
  ident: bb0165
  article-title: Predicting human brain activity associated with the meanings of nouns
  publication-title: Science
– volume: 1
  start-page: 278
  year: 1995
  end-page: 282
  ident: bb0110
  article-title: Random decision forests
  publication-title: Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bb0160
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 158
  year: 2012
  end-page: 165
  ident: bb0210
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bb0245
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 3213
  year: 2015
  end-page: 3226
  ident: bb0035
  article-title: Monitoring the growth of the neural representations of new animal concepts
  publication-title: Hum. Brain Mapp.
– volume: 134
  start-page: 3739
  year: 2011
  end-page: 3751
  ident: bb0020
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
– volume: 127
  start-page: 1811
  year: 2004
  end-page: 1821
  ident: bb0120
  article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity
  publication-title: Brain
– start-page: 1
  year: 2015
  end-page: 20
  ident: bb0255
  article-title: Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey.
  publication-title: Natl. Health Stat. Rep.
– volume: 3
  start-page: 363
  year: 2013
  end-page: 374
  ident: bb0090
  article-title: Impact of analysis methods on the reproducibility and reliability of resting-state networks
  publication-title: Brain Connect.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bb0045
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 45
  start-page: S199
  year: 2009
  end-page: S209
  ident: bb0180
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
– volume: 33
  year: 2012
  ident: bb0070
  article-title: A whole brain fMRI atlas spatial generated via spatially constrained spectral clustering
  publication-title: Human brain …
– year: 2017
  ident: bb0100
  article-title: lsa-pucrs/acerta-abide: Code companion to Neuroimage: Clinical Submission
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bb0240
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bb0040
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
– volume: 54
  start-page: 2418
  year: 2011
  end-page: 2425
  ident: bb0205
  article-title: Commonality of neural representations of words and pictures
  publication-title: NeuroImage
– volume: 8
  start-page: e66032
  year: 2013
  ident: bb0145
  article-title: Identifying emotions on the basis of neural activation
  publication-title: PLoS ONE
– volume: 7
  start-page: 1
  year: 2013
  end-page: 12
  ident: bb0170
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front. Hum. Neurosci.
– volume: 8
  start-page: 229
  year: 2014
  ident: bb0185
  article-title: Deep learning for neuroimaging: a validation study.
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 359
  year: 2015
  end-page: 366
  ident: bb0190
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage: Clinical
– volume: 4
  start-page: 19
  year: 2010
  ident: bb0085
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front. Syst. Neurosci.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 22
  ident: bb0125
  article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism
  publication-title: PLoS ONE
– volume: 17
  start-page: 580
  year: 2005
  end-page: 590
  ident: bb0175
  article-title: Partially distributed representations of objects and faces in ventral temporal cortex
  publication-title: J. Cogn. Neurosci.
– volume: 7
  year: 2013
  ident: bb0225
  article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective
  publication-title: Front. Hum. Neurosci.
– volume: 309
  start-page: 102
  year: 1994
  ident: bb0015
  article-title: Diagnostic tests 2: predictive values
  publication-title: BMJ
– volume: 53
  year: 1999
  ident: bb0030
  article-title: MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults
  publication-title: Neurology
– volume: 96
  start-page: 245
  year: 2014
  end-page: 260
  ident: bb0105
  article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks
  publication-title: NeuroImage
– volume: 42
  start-page: 565
  year: 2010
  end-page: 569
  ident: bb0250
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
– volume: 45
  start-page: S199
  issue: 1
  year: 2009
  ident: 10.1016/j.nicl.2017.08.017_bb0180
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 37
  start-page: 90
  issue: 1
  year: 2007
  ident: 10.1016/j.nicl.2017.08.017_bb0040
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– start-page: 35
  year: 2013
  ident: 10.1016/j.nicl.2017.08.017_bb0135
  article-title: A theory of autism based on frontal-posterior underconnectivity
– volume: 53
  issue: 9
  year: 1999
  ident: 10.1016/j.nicl.2017.08.017_bb0030
  article-title: MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults
  publication-title: Neurology
  doi: 10.1212/WNL.53.9.2145
– volume: 8
  start-page: 229
  issue: August
  year: 2014
  ident: 10.1016/j.nicl.2017.08.017_bb0185
  article-title: Deep learning for neuroimaging: a validation study.
  publication-title: Front. Neurosci.
– volume: 62
  start-page: 1619
  issue: 6
  year: 2009
  ident: 10.1016/j.nicl.2017.08.017_bb0065
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22159
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 10.1016/j.nicl.2017.08.017_bb0075
  article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism
– volume: 17
  start-page: 1687
  issue: 16
  year: 2006
  ident: 10.1016/j.nicl.2017.08.017_bb0060
  article-title: Functional connectivity in a baseline resting-state network in autism
  publication-title: NeuroReport
  doi: 10.1097/01.wnr.0000239956.45448.4c
– volume: 33
  issue: 8
  year: 2012
  ident: 10.1016/j.nicl.2017.08.017_bb0070
  article-title: A whole brain fMRI atlas spatial generated via spatially constrained spectral clustering
  publication-title: Human brain …
– year: 2017
  ident: 10.1016/j.nicl.2017.08.017_bb0100
– volume: 309
  start-page: 102
  issue: 6947
  year: 1994
  ident: 10.1016/j.nicl.2017.08.017_bb0015
  article-title: Diagnostic tests 2: predictive values
  publication-title: BMJ
  doi: 10.1136/bmj.309.6947.102
– volume: 4
  start-page: 135
  issue: 2
  year: 2009
  ident: 10.1016/j.nicl.2017.08.017_bb0140
  article-title: Atypical fronto-posterior synchronization of theroy of mind regions in autism during mental state attribution
  publication-title: Soc. Neurosci.
  doi: 10.1080/17470910802198510
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.nicl.2017.08.017_bb0160
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 349
  issue: 6245
  year: 2015
  ident: 10.1016/j.nicl.2017.08.017_bb0115
  article-title: Machine learning: trends, perspectives, and prospects
– volume: 22
  start-page: 158
  issue: 1
  year: 2012
  ident: 10.1016/j.nicl.2017.08.017_bb0210
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr099
– volume: 7
  start-page: 359
  year: 2015
  ident: 10.1016/j.nicl.2017.08.017_bb0190
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.12.013
– volume: 42
  start-page: 565
  issue: 7
  year: 2010
  ident: 10.1016/j.nicl.2017.08.017_bb0250
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.608
– volume: 8
  start-page: e66032
  issue: 6
  year: 2013
  ident: 10.1016/j.nicl.2017.08.017_bb0145
  article-title: Identifying emotions on the basis of neural activation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0066032
– volume: 7
  year: 2013
  ident: 10.1016/j.nicl.2017.08.017_bb0225
  article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00458
– volume: 4
  start-page: 19
  year: 2010
  ident: 10.1016/j.nicl.2017.08.017_bb0085
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front. Syst. Neurosci.
– volume: 22
  start-page: 937
  issue: 4
  year: 2012
  ident: 10.1016/j.nicl.2017.08.017_bb0195
  article-title: Distinctive neural processes during learning in autism
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr162
– volume: 145
  start-page: 137
  issue: Pt B
  year: 2016
  ident: 10.1016/j.nicl.2017.08.017_bb0025
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: NeuroImage
– volume: 80
  start-page: 527
  year: 2013
  ident: 10.1016/j.nicl.2017.08.017_bb0055
  article-title: Clinical applications of the functional connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.083
– volume: 7
  start-page: 1
  issue: September
  year: 2013
  ident: 10.1016/j.nicl.2017.08.017_bb0170
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front. Hum. Neurosci.
– volume: 11
  start-page: 3371
  issue: 3
  year: 2010
  ident: 10.1016/j.nicl.2017.08.017_bb0245
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 96
  start-page: 245
  year: 2014
  ident: 10.1016/j.nicl.2017.08.017_bb0105
  article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.048
– volume: 17
  start-page: 580
  issue: 4
  year: 2005
  ident: 10.1016/j.nicl.2017.08.017_bb0175
  article-title: Partially distributed representations of objects and faces in ventral temporal cortex
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/0898929053467550
– start-page: 55
  year: 1998
  ident: 10.1016/j.nicl.2017.08.017_bb0230
  article-title: The support vector method of function estimation
– volume: 1
  start-page: 278
  year: 1995
  ident: 10.1016/j.nicl.2017.08.017_bb0110
  article-title: Random decision forests
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 10.1016/j.nicl.2017.08.017_bb0045
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 134
  start-page: 3739
  issue: 12
  year: 2011
  ident: 10.1016/j.nicl.2017.08.017_bb0020
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– start-page: 1096
  year: 2008
  ident: 10.1016/j.nicl.2017.08.017_bb0240
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 11
  start-page: 7
  issue: 1
  year: 2006
  ident: 10.1016/j.nicl.2017.08.017_bb0010
  article-title: The role of the autism diagnostic observation schedule in the assessment of autism spectrum disorders in school and community settings
  publication-title: Calif. Sch. Psychol.
  doi: 10.1007/BF03341111
– start-page: 1
  issue: 87
  year: 2015
  ident: 10.1016/j.nicl.2017.08.017_bb0255
  article-title: Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey.
  publication-title: Natl. Health Stat. Rep.
– volume: 17
  start-page: 951
  issue: 4
  year: 2006
  ident: 10.1016/j.nicl.2017.08.017_bb0130
  article-title: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl006
– volume: 120
  start-page: 282
  issue: 3
  year: 2012
  ident: 10.1016/j.nicl.2017.08.017_bb0050
  article-title: Identifying bilingual semantic neural representations across languages
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2011.09.003
– volume: 36
  start-page: 3213
  issue: 8
  year: 2015
  ident: 10.1016/j.nicl.2017.08.017_bb0035
  article-title: Monitoring the growth of the neural representations of new animal concepts
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22842
– volume: 3
  start-page: 363
  issue: 4
  year: 2013
  ident: 10.1016/j.nicl.2017.08.017_bb0090
  article-title: Impact of analysis methods on the reproducibility and reliability of resting-state networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0134
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.nicl.2017.08.017_bb0005
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 54
  start-page: 2418
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2017.08.017_bb0205
  article-title: Commonality of neural representations of words and pictures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.042
– volume: 9
  start-page: 1
  issue: 12
  year: 2014
  ident: 10.1016/j.nicl.2017.08.017_bb0125
  article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113879
– volume: 127
  start-page: 1811
  issue: 8
  year: 2004
  ident: 10.1016/j.nicl.2017.08.017_bb0120
  article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity
  publication-title: Brain
  doi: 10.1093/brain/awh199
– year: 2015
  ident: 10.1016/j.nicl.2017.08.017_bb0150
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.nicl.2017.08.017_bb0215
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 293
  start-page: 2425
  issue: 5539
  year: 2001
  ident: 10.1016/j.nicl.2017.08.017_bb0095
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 19
  start-page: 2209
  issue: 10
  year: 2009
  ident: 10.1016/j.nicl.2017.08.017_bb0200
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn256
– volume: 320
  start-page: 1191
  issue: 5880
  year: 2008
  ident: 10.1016/j.nicl.2017.08.017_bb0165
  article-title: Predicting human brain activity associated with the meanings of nouns
  publication-title: Science
  doi: 10.1126/science.1152876
– volume: 3
  start-page: 28
  issue: 1
  year: 2014
  ident: 10.1016/j.nicl.2017.08.017_bb0235
  article-title: How machine learning is shaping cognitive neuroimaging
  publication-title: GigaScience
  doi: 10.1186/2047-217X-3-28
SSID ssj0000800766
Score 2.622062
Snippet The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based...
AbstractThe goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms ABIDE
Adolescent
Adult
Autism
Autism Spectrum Disorder - diagnostic imaging
Brain - diagnostic imaging
Brain Mapping
Case-Control Studies
Child
Datasets as Topic
Deep learning
Female
fMRI
Functional Neuroimaging
Humans
Image Processing, Computer-Assisted
Machine Learning - classification
Male
Neural Networks, Computer
Neural Pathways - diagnostic imaging
Radiology
Regular
Rest
Resting state
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLAsojUJCRuKGI9ds5tqhVVam90Eq9WV7bKa1otmq2_58Z29nuAmovXPawG6-T8Tw-xzPfEPLFeq8kVuZaG20rVUhtp61sTcItEYT8Lle9H5_owzN5dK7O11p9YU5YoQcugvvW99FbAAmsV8iGzjudFOsFMqoy7lX2vhDz1jZTVxUHmXxQCSNFy5TltWKmJHch6yzmdZnM35m7ld1HpUzevxGc_gaff-ZQrgWlgxfkeUWTdLc8xUvyJA2vyNPjel6-TU5LHW5fX8zRRU89aNp4TXOF5e3dNY2VfpNiBvwFjSnd0NpK4oL6IVJAiHQXHPo-xWzSMS1fk7OD_dPvh23to9AG3Ylla3ozZ7pXhqWkZzx0gYGleqWjEFxxE0wEUCJN1FJH-AxMa28l7wF9ySCDeEO2hsWQ3hEaQOxBWy-imssYwfo7rkLexHSw-fANYZMcXagk49jr4pebssmuHMreoewdNsBkpiFfV2NuCsXGg1fv4fKsrkR67PwFKI2rSuMeU5qGiGlx3VSBCj4T_ujywanNv0alsZr96JgbuZu5H6h0qHMM_CcHJ9oQtRpZkU1BLI_O-HnSPAdmj2c5fkiLO5gJ1gawOPjfhrwtmrgSCe9mAnE23O-Gjm7IbPOX4fJnphZXgD-FlO__h5A_kGfwKLa8r9ohW6DU6SMguOX8UzbW3wj2PNk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhh9JL6bvuCxV6K4utt_aYhIRQSC9NwDchS1rXpVmbrPP_O6PVbrtNSaEXg9eSJUbfjj5JM58I-Wi9VxIzc62NtpIqpKrWVlYm4ZIIpvw6Z71ffNHnV_LzUi0PyMmQC4NhlcX39z49e-vyZF6sOd9tNvOvnDPBMM8TQMoBqeCHhbQ5iW95PO6zICMy-cgSy1dYoeTO9GFeqD-LEV4mK3nme8t-zU9Zxn8yTd2loX9GU_42PZ09Jo8Kr6RHfdefkIPUPiUPLsrJ-TNy2WfkNmWLjm4b6gFz3TXNuZY3t9c0FiFOirHwaxpT2tFyqcSa-jZS4Ir0CFz7KcW40i7tn5Ors9PLk_Oq3KhQBV2LfWUas2K6UYalpBc81IHBO-uVjkJwxU0wEeiJNFFLHeEzMK29lbwBHiaDDOIFOWy3bXpFaFCiDtp6EdVKxgh-oOYq5OVMDcsQPyNssKMLRW4cb7344Ya4su8Obe_Q9g6vwmRmRj6NdXa92Ma9pY9xeMaSKJSdH2xv1q4gxTVN9BY4JmsUiunzWifFGoGCvIx7xWdEDIPrhlxU8J7wR5t7mzZ_q5W64gA6x1zH3cLdAemMqLHmBOf_bPHDgDwHDgBPdXybtrfQEowNsHLwxDPyskfiaBJeLwQybujvBKMTm01_aTffssi4AiYqpHz9n_19Qx7CN9tvVr0lh4Dj9A7o2371Pr-fPwHzGT6Q
  priority: 102
  providerName: Elsevier
Title Identification of autism spectrum disorder using deep learning and the ABIDE dataset
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158217302073
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217302073
https://dx.doi.org/10.1016/j.nicl.2017.08.017
https://www.ncbi.nlm.nih.gov/pubmed/29034163
https://www.proquest.com/docview/1951565048
https://pubmed.ncbi.nlm.nih.gov/PMC5635344
https://doaj.org/article/ffda85221f50479296e51f3653912a52
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkRAXxLvhURmJGwpav5MDQi1qVZCWC11pb5bXdpZWbbbsbiX498w4zkJgVS5cckjieHc8nvlsz3xDyOvKOSUxM7eqQlVK5WNZ60qWJuKSCFx-nbLex5_1yUR-mqrpDunLHWUBrrYu7bCe1GR58fb7tx_vYcK_-xWrhSSyGKZlEh0nM7fIbfBMBisajDPcP8_oyKTjS86ZKJmqeM6j2f6Zga9KlP4Dl_U3JP0zsvI3V3V8n9zLGJMedErxgOzE9iG5M86n6I_IaZed2-TtOrpoqAP9W13SlHe5vL6kIZNyUoyLn9MQ4xXNBSbm1LWBAm6kB2DmjyjGmK7i-jGZHB-dfjgpc3WF0utarEvTmBnTjTIsRj3ivvYM5q9TOgjBFTfeBIAq0gQtdYCrZ1q7SvIGMJn00osnZLddtHGPUK9E7XXlRFAzGQLYhJorn5Y2NSxJXEFYL0frM_U4VsC4sH2M2blF2VuUvcWymMwU5M2mzVVHvHHj24c4PJs3kTQ73Vgs5zbPQds0wVWAN1mjkFif1zoq1ggk52XcKV4Q0Q-u7fNSwZLCh85u7NpsaxVXvS5bZlfcjuwXVDrUOQZWlYNpLYjatMx4p8Mx_-zxVa95FowBnvC4Ni6uoScYG0DoYJUL8rTTxI1IeD0SiL7h9w50dCCz4ZP27GsiHFeASoWUz_6HkJ-Tu_BXqm4X6wXZBaWOLwHXrWf7aT8Erh-nh_tp4v4EKFVH7w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKkYAL4k14GokbWiV-7x7bqlUKTS-kUm6WY3tDEN1ETfr_mfF6F0JRkbjksLsTW-Px-LM98w0hH0vnlMTM3LIMZSGVj0WlS1mYiFsiWPKrlPU-OdfjC_l5pmZ75KjLhcGwyuz7W5-evHV-MszaHK6Xy-FXzplgmOcJRsrBUu-Qu4AGDM7O09lhf9CCkMikO0sUKFAiJ8-0cV5IQIshXiZReabCZb8WqMTjv7NO3cShf4ZT_rY-nTwiDzOwpAdt3x-Tvdg8Ifcm-er8KZm2Kbl1PqOjq5o6MLrNJU3JllfXlzRkJk6KwfALGmJc01xVYkFdEyiARXoAvv2YYmDpJm6fkYuT4-nRuMglFQqvK7EtTG3mTNfKsBj1iPvKM5i0TukgBFfceBMAn0gTtNQBfj3T2pWS1wDEpJdePCf7zaqJLwn1SlRel04ENZchgCOouPJpP1PBPsQNCOv0aH3mG8eyFz9sF1j23aLuLereYi1MZgbkUy-zbtk2bv36EIen_xKZstOD1dXCZlOxdR1cCSCT1QrZ9Hmlo2K1QEZexp3iAyK6wbVdMiq4T_ij5a1Nm79JxU32ABvL7Ibbkb1hpQOieskdQ_9nix86y7PgAfBaxzVxdQ0twdgALAdXPCAvWkvsVcKrkUDIDf3dsdEdne2-aZbfEsu4AigqpHz1n_19T-6Pp5Mze3Z6_uU1eQBvyvbk6g3ZB5uObwHLbefv0lz9Ce1yQbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+autism+spectrum+disorder+using+deep+learning+and+the+ABIDE+dataset&rft.jtitle=NeuroImage+clinical&rft.au=Anibal+S%C3%B3lon+Heinsfeld&rft.au=Alexandre+Rosa+Franco&rft.au=R.+Cameron+Craddock&rft.au=Augusto+Buchweitz&rft.date=2018-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=17&rft.spage=16&rft.epage=23&rft_id=info:doi/10.1016%2Fj.nicl.2017.08.017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffda85221f50479296e51f3653912a52
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158217X00053%2Fcov150h.gif