What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis
Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 97; pp. 271 - 283 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.08.2014
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2014.04.037 |
Cover
Loading…
Abstract | Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results.
•Significant multi-voxel pattern analysis results may reflect multidimensional coding.•MVPA is sensitive to magnitude of spatial variability in activation.•MVPA is insensitive to subject-level variability in mean activation.•Voxel-wise analyses are sensitive to subject-level variability in mean activation.•Differences between MVPA and voxel-wise results do not indicate multidimensionality. |
---|---|
AbstractList | Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. •Significant multi-voxel pattern analysis results may reflect multidimensional coding.•MVPA is sensitive to magnitude of spatial variability in activation.•MVPA is insensitive to subject-level variability in mean activation.•Voxel-wise analyses are sensitive to subject-level variability in mean activation.•Differences between MVPA and voxel-wise results do not indicate multidimensionality. Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results.Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. |
Author | Poldrack, Russell A. Norman, Kenneth A. Davis, Tyler LaRocque, Karen F. Wagner, Anthony D. Mumford, Jeanette A. |
AuthorAffiliation | 2 Department of Psychology & Stanford University 4 Departments of Psychology and Neuroscience & Imaging Research Center University of Texas at Austin 3 Neurosciences Program, Stanford University 5 Department of Psychology and Princeton Neuroscience Institute, Princeton University 1 Department of Psychology, Texas Tech University |
AuthorAffiliation_xml | – name: 4 Departments of Psychology and Neuroscience & Imaging Research Center University of Texas at Austin – name: 1 Department of Psychology, Texas Tech University – name: 2 Department of Psychology & Stanford University – name: 3 Neurosciences Program, Stanford University – name: 5 Department of Psychology and Princeton Neuroscience Institute, Princeton University |
Author_xml | – sequence: 1 givenname: Tyler surname: Davis fullname: Davis, Tyler email: tyler.h.davis@ttu.edu organization: Department of Psychology, Texas Tech University, USA – sequence: 2 givenname: Karen F. surname: LaRocque fullname: LaRocque, Karen F. email: klarocqu@stanford.edu organization: Department of Psychology, Stanford University, USA – sequence: 3 givenname: Jeanette A. surname: Mumford fullname: Mumford, Jeanette A. organization: Department of Psychology, University of Texas at Austin, USA – sequence: 4 givenname: Kenneth A. surname: Norman fullname: Norman, Kenneth A. organization: Department of Psychology, Princeton University, USA – sequence: 5 givenname: Anthony D. surname: Wagner fullname: Wagner, Anthony D. organization: Department of Psychology, Stanford University, USA – sequence: 6 givenname: Russell A. surname: Poldrack fullname: Poldrack, Russell A. organization: Department of Psychology, University of Texas at Austin, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28580616$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24768930$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2L1DAUhousuB_6FyQgghd2TJr0Izeuuqi7sCKI4mVI09PdjGkyJums8xP816Yz44zu1cCBtPQ5T9KT9zQ7ss5CliGCZwST6tV8ZmH0Tg_yBmYFJmyGU9H6QXZCMC9zXtbF0fRc0rwhhB9npyHMMcacsOZRdlywumo4xSfZ7--3MqLOoU73PXiwCgJqId4BWDSMJup86X6BQdJ2aLR6Kb2WEdKrNKugAxpA2nN06e5QGNs5qJi_ROuOtE49MfEmN7BMjnVz2gHpYSFVRP2nL1c70-PsYS9NgCfb9Sz79uH914vL_Przx6uLt9e5qjiNecV6WvNWdarBBIqCUNoT1jJey76rVF22RdPyrio7hSnvWds3hLI2FXQ1axQ9y15vvIuxHaBTYKOXRix8mqZfCSe1-P-L1bfixi0FI6RkjCfBi63Au58jhCgGHRQYIy24MQhSliUmRdkUB6CU14TRAif02T107kafZrOmKlJVlEx7P_338LtT_73QBDzfAjIoaXqf5q3DnmvKBidZ4poNp7wLwUO_QwgWU8bEXOwzJqaMCZyK1vsB7lqVjjJqN41Lm0ME7zYCSNe81OBFUHpKXqd9CpDonD5E8uaeRBltdfrnH7A6TPEHxt8LuA |
CitedBy_id | crossref_primary_10_1093_cercor_bhv030 crossref_primary_10_1111_ejn_15918 crossref_primary_10_1111_mbe_12306 crossref_primary_10_1016_j_neuropsychologia_2019_107183 crossref_primary_10_1016_j_physrep_2023_10_005 crossref_primary_10_1093_cercor_bhx216 crossref_primary_10_1093_scan_nsac035 crossref_primary_10_1162_jocn_a_01320 crossref_primary_10_1016_j_cortex_2022_02_014 crossref_primary_10_1523_ENEURO_0512_24_2025 crossref_primary_10_1186_s40345_023_00292_w crossref_primary_10_1007_s00429_024_02804_5 crossref_primary_10_3390_brainsci14010039 crossref_primary_10_1016_j_cub_2015_01_055 crossref_primary_10_1017_S0033291721005171 crossref_primary_10_1038_s41467_024_46094_1 crossref_primary_10_1162_imag_a_00240 crossref_primary_10_1016_j_neuroimage_2018_02_019 crossref_primary_10_1089_brain_2015_0367 crossref_primary_10_1038_nature15692 crossref_primary_10_1111_add_12726 crossref_primary_10_1523_JNEUROSCI_0995_23_2023 crossref_primary_10_1002_brb3_1707 crossref_primary_10_1016_j_brainres_2024_148985 crossref_primary_10_1093_cercor_bhab127 crossref_primary_10_1177_09637214221150511 crossref_primary_10_1016_j_dcn_2024_101468 crossref_primary_10_1093_cercor_bhy137 crossref_primary_10_1016_j_neuroimage_2022_119355 crossref_primary_10_1016_j_cortex_2016_12_011 crossref_primary_10_1016_j_jneumeth_2018_06_029 crossref_primary_10_1080_17588928_2018_1453491 crossref_primary_10_1016_j_neuroimage_2022_119756 crossref_primary_10_3389_fnbot_2020_597471 crossref_primary_10_1186_s12868_017_0395_7 crossref_primary_10_1002_hipo_22531 crossref_primary_10_1093_scan_nsaa127 crossref_primary_10_1007_s00429_019_01948_z crossref_primary_10_1016_j_neuropsychologia_2020_107489 crossref_primary_10_1016_j_bpsc_2021_11_002 crossref_primary_10_1016_j_cortex_2020_05_005 crossref_primary_10_1016_j_neuroimage_2016_04_012 crossref_primary_10_1016_j_visres_2023_108328 crossref_primary_10_1080_02643294_2023_2164923 crossref_primary_10_1016_j_neuropsychologia_2017_06_010 crossref_primary_10_1038_s41467_020_20085_4 crossref_primary_10_1016_j_neuroimage_2015_01_036 crossref_primary_10_1016_j_jpsychires_2020_06_017 crossref_primary_10_1016_j_neubiorev_2017_02_026 crossref_primary_10_3389_fphys_2020_590503 crossref_primary_10_1016_j_neuroimage_2018_07_063 crossref_primary_10_1111_ejn_14322 crossref_primary_10_1016_j_neuroimage_2016_07_023 crossref_primary_10_3389_fnins_2016_00085 crossref_primary_10_1007_s10548_023_00956_x crossref_primary_10_1016_j_neuroscience_2021_06_024 crossref_primary_10_1523_JNEUROSCI_3395_15_2016 crossref_primary_10_1016_j_neuroimage_2015_11_009 crossref_primary_10_1162_jocn_a_01306 crossref_primary_10_1016_j_neuroimage_2017_12_083 crossref_primary_10_1016_j_crneur_2022_100070 crossref_primary_10_1073_pnas_1707522114 crossref_primary_10_1162_jocn_a_00697 crossref_primary_10_1016_j_semarthrit_2017_06_005 crossref_primary_10_1016_j_neuroimage_2016_04_003 crossref_primary_10_1002_hbm_24357 crossref_primary_10_1016_j_ajp_2023_103459 crossref_primary_10_1016_j_neubiorev_2022_104744 crossref_primary_10_1016_j_neuroimage_2018_06_015 crossref_primary_10_3389_fnhum_2017_00445 crossref_primary_10_1002_hbm_70175 crossref_primary_10_1016_j_bpsc_2021_08_007 crossref_primary_10_1093_cercor_bhaa210 crossref_primary_10_1016_j_jneumeth_2018_08_021 crossref_primary_10_1007_s00213_017_4628_3 crossref_primary_10_1093_cercor_bhv041 crossref_primary_10_1016_j_cpet_2022_09_008 crossref_primary_10_1016_j_jneumeth_2023_109808 crossref_primary_10_1002_hipo_23082 crossref_primary_10_1016_j_neuroimage_2022_119499 crossref_primary_10_1002_hipo_23368 crossref_primary_10_1016_j_neuroimage_2017_01_064 crossref_primary_10_1016_j_neuroimage_2018_01_084 crossref_primary_10_1093_cercor_bhz242 crossref_primary_10_1111_epi_13135 crossref_primary_10_1162_jocn_a_01151 crossref_primary_10_1016_j_neuroimage_2021_118825 crossref_primary_10_1371_journal_pone_0194054 crossref_primary_10_1162_jocn_a_02125 crossref_primary_10_1016_j_neuroimage_2020_116981 crossref_primary_10_1162_jocn_a_00740 crossref_primary_10_7554_eLife_06481 crossref_primary_10_1016_j_neuroimage_2021_118786 crossref_primary_10_3233_JAD_150340 crossref_primary_10_1002_brb3_302 crossref_primary_10_1093_cercor_bhx130 crossref_primary_10_1007_s00429_021_02276_x crossref_primary_10_1152_jn_00825_2018 crossref_primary_10_1016_j_neuroimage_2017_08_005 crossref_primary_10_1002_hbm_22881 crossref_primary_10_1523_JNEUROSCI_3272_16_2017 crossref_primary_10_1016_j_neuropsychologia_2022_108373 crossref_primary_10_1016_j_neuroimage_2016_07_040 crossref_primary_10_1038_nn_4499 crossref_primary_10_1093_scan_nsaa057 crossref_primary_10_1016_j_neuroimage_2023_120271 crossref_primary_10_1016_j_neuroimage_2017_09_046 crossref_primary_10_1017_S0952523815000127 crossref_primary_10_1073_pnas_1803650115 crossref_primary_10_1111_nyas_15291 crossref_primary_10_1523_JNEUROSCI_3376_13_2014 crossref_primary_10_1016_j_compbiomed_2017_12_020 crossref_primary_10_1016_j_tics_2015_07_005 crossref_primary_10_1147_JRD_2017_2648699 crossref_primary_10_1016_j_neuroimage_2015_10_059 crossref_primary_10_1523_JNEUROSCI_0138_17_2017 crossref_primary_10_3389_fnins_2016_00619 crossref_primary_10_1016_j_neuroimage_2018_06_076 crossref_primary_10_1016_j_shpsa_2024_06_009 crossref_primary_10_1080_13825585_2022_2040411 crossref_primary_10_3389_fnins_2023_1037294 crossref_primary_10_1002_hbm_26433 crossref_primary_10_1007_s00221_018_5185_7 crossref_primary_10_1523_JNEUROSCI_0460_23_2023 crossref_primary_10_3390_languages6030115 crossref_primary_10_1093_cercor_bhw397 crossref_primary_10_3390_brainsci10090603 crossref_primary_10_3389_fnhum_2016_00320 crossref_primary_10_1162_jocn_a_01933 crossref_primary_10_1093_cercor_bhaa129 crossref_primary_10_1162_jocn_a_01256 crossref_primary_10_1523_JNEUROSCI_0197_19_2019 crossref_primary_10_1016_j_neuroscience_2024_11_024 crossref_primary_10_1016_j_cortex_2024_03_015 crossref_primary_10_1038_s41386_021_01264_3 crossref_primary_10_1038_s42003_023_05499_2 crossref_primary_10_1080_13825585_2021_2019184 crossref_primary_10_1371_journal_pcbi_1006470 crossref_primary_10_1523_JNEUROSCI_1162_22_2024 crossref_primary_10_3389_fnhum_2015_00421 crossref_primary_10_1002_hbm_23074 crossref_primary_10_1016_j_neuroimage_2015_04_006 crossref_primary_10_1016_j_visres_2016_08_008 crossref_primary_10_1038_s41467_023_43737_7 crossref_primary_10_1093_scan_nsad067 crossref_primary_10_3389_fnhum_2014_00339 crossref_primary_10_1016_j_neuroimage_2018_09_074 crossref_primary_10_1038_s41467_019_12016_9 crossref_primary_10_1007_s00429_020_02124_4 crossref_primary_10_1016_j_neuroimage_2016_05_052 crossref_primary_10_1016_j_neuroimage_2023_120172 crossref_primary_10_1038_s41598_020_64547_7 crossref_primary_10_1007_s00429_021_02330_8 crossref_primary_10_1007_s12021_015_9292_3 crossref_primary_10_1162_jocn_a_01623 crossref_primary_10_3389_fnhum_2015_00151 crossref_primary_10_1162_imag_a_00422 crossref_primary_10_1523_JNEUROSCI_1712_19_2020 crossref_primary_10_1002_hbm_25127 crossref_primary_10_1016_j_neuroimage_2016_04_044 crossref_primary_10_1080_23273798_2014_994010 crossref_primary_10_1016_j_cub_2019_02_035 crossref_primary_10_1016_j_tics_2024_06_004 crossref_primary_10_1038_s42003_025_07561_7 crossref_primary_10_1126_sciadv_adn2776 crossref_primary_10_1523_JNEUROSCI_1744_20_2020 crossref_primary_10_3389_fnbeh_2018_00297 crossref_primary_10_1038_s42003_021_02109_x crossref_primary_10_1016_j_tins_2016_01_004 crossref_primary_10_1080_09515089_2021_1914831 crossref_primary_10_1016_j_neuroimage_2015_04_015 crossref_primary_10_1016_j_tics_2022_05_006 crossref_primary_10_1093_bjps_axx023 crossref_primary_10_3390_brainsci13101469 crossref_primary_10_1162_jocn_a_01473 crossref_primary_10_1016_j_neuroimage_2019_01_071 crossref_primary_10_1111_psyp_13220 crossref_primary_10_3389_fnins_2019_01348 crossref_primary_10_1016_j_neulet_2020_134901 crossref_primary_10_1177_03331024231222637 crossref_primary_10_1002_hbm_24944 crossref_primary_10_1016_j_bandl_2023_105377 crossref_primary_10_1038_s41598_020_64044_x crossref_primary_10_1002_hbm_22767 crossref_primary_10_7554_eLife_10499 |
Cites_doi | 10.1002/hbm.460020402 10.1016/j.tics.2006.07.005 10.1016/j.neuroimage.2010.05.079 10.1523/JNEUROSCI.4293-12.2013 10.1016/j.neuropsychologia.2008.12.029 10.1126/science.1152876 10.1016/S0028-3932(98)00019-0 10.1146/annurev.biophys.27.1.447 10.1038/nn1444 10.1038/nrn1931 10.1016/S0022-5371(73)80014-3 10.1073/pnas.1001028107 10.1016/j.neuroimage.2013.03.039 10.1111/nyas.12156 10.1006/jmps.1999.1300 10.1073/pnas.95.3.811 10.1016/0166-2236(94)90055-8 10.1016/j.tics.2005.12.004 10.1016/j.neuroimage.2010.07.073 10.1093/cercor/bhn244 10.1126/science.1063736 10.1016/S1053-8119(03)00049-1 10.1016/j.neuropsychologia.2011.11.007 10.1016/j.neuroimage.2013.02.062 10.1093/cercor/bhr379 10.1016/j.neuroimage.2011.01.044 10.3758/BF03196750 10.3758/s13415-013-0186-2 10.1016/j.neuroimage.2012.08.005 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 15, 2014 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 15, 2014 – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2014.04.037 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 283 |
ExternalDocumentID | PMC4115449 3336046371 24768930 28580616 10_1016_j_neuroimage_2014_04_037 S1053811914003061 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH076932 – fundername: NIMH NIH HHS grantid: MH076932 – fundername: NIMH NIH HHS grantid: MH069456 – fundername: NIMH NIH HHS grantid: R01 MH069456 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c693t-64f379bcdc801e22133f14b497afd6c75b28b9d65dc039f4bf8134b34bed748c3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:08:05 EDT 2025 Fri Jul 11 15:31:45 EDT 2025 Fri Jul 11 10:16:29 EDT 2025 Wed Aug 13 10:03:55 EDT 2025 Mon Jul 21 06:00:48 EDT 2025 Wed Apr 02 07:24:40 EDT 2025 Tue Jul 01 02:14:53 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:36:04 EST 2024 Tue Aug 26 16:31:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Distributed representations Dimensionality Voxel-level variability fMRI analysis MVPA Human Nuclear magnetic resonance imaging Functional imaging |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-64f379bcdc801e22133f14b497afd6c75b28b9d65dc039f4bf8134b34bed748c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Denotes co-first authors |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4115449 |
PMID | 24768930 |
PQID | 1536166319 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115449 proquest_miscellaneous_1555012582 proquest_miscellaneous_1539714320 proquest_journals_1536166319 pubmed_primary_24768930 pascalfrancis_primary_28580616 crossref_primary_10_1016_j_neuroimage_2014_04_037 crossref_citationtrail_10_1016_j_neuroimage_2014_04_037 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_04_037 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_04_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-15 |
PublicationDateYYYYMMDD | 2014-08-15 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Poldrack (bb0125) 2006; 10 Jimura, Poldrack (bb0070) 2012; 50 Naselaris, Kay, Nishimoto, Gallant (bb0105) 2011; 56 Davis, Poldrack (bb0030) 2013 Davis, Poldrack (bb0025) 2013; 1296 Diedrichsen, Wiestler, Ejaz (bb0040) 2013; 76 Cox, Savoy (bb0020) 2003; 19 Smith, Kosillo, Williams (bb0150) 2011; 56 LaRocque, Smith, Carr, Witthoft, Grill-Spector, Wagner (bb0085) 2013; 33 Kriegeskorte, Mur, Bandettini (bb0080) 2008; 2 Todd, Nystrom, Cohen (bb0155) 2013; 77 Drucker, Aguirre (bb0045) 2009; 19 Raudenbush, Bryk (bb0135) 2002; vol. 1 Poldrack, Mumford, Nichols (bb0130) 2011 Rouder, Lu (bb0145) 2005; 12 Weber, Thompson-Schill, Osherson, Haxby, Parsons (bb0175) 2009; 47 Haynes, Rees (bb0060) 2006; 7 Kamitani, Tong (bb0075) 2005; 8 Coutanche (bb0015) 2013; 13 Haxby, Gobbini, Furey, Ishai, Schouten, Pietrini (bb0055) 2001; 293 Ogawa, Menon, Kim, Ugurbil (bb0115) 1998; 27 Mitchell, Shinkareva, Carlson, Chang, Malave, Mason, Just (bb0100) 2008; 320 Diedrichsen, Ridgway, Friston, Wiestler (bb0035) 2011; 55 Pinheiro, Bates (bb0120) 2000 Liang, Wagner, Preston (bb0090) 2013; 23 Tong, Harrison, Dewey, Kamitani (bb0165) 2012; 63 Cohen, Bookheimer (bb0010) 1994; 17 Norman, Polyn, Detre, Haxby (bb0110) 2006; 10 Tootell, Hadjikhani, Vanduffel, Liu, Mendola, Sereno, Dale (bb0170) 1998; 95 Clark (bb0005) 1973; 12 Jäncke, Shah, Posse, Grosse-Ryuken, Müller-Gärtner (bb0065) 1998; 36 Lee (bb0095) 2001; 45 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0050) 1994; 2 Rissman, Greely, Wagner (bb0140) 2010; 107 Drucker (10.1016/j.neuroimage.2014.04.037_bb0045) 2009; 19 Lee (10.1016/j.neuroimage.2014.04.037_bb0095) 2001; 45 Kriegeskorte (10.1016/j.neuroimage.2014.04.037_bb0080) 2008; 2 Davis (10.1016/j.neuroimage.2014.04.037_bb0030) 2013 Friston (10.1016/j.neuroimage.2014.04.037_bb0050) 1994; 2 Tong (10.1016/j.neuroimage.2014.04.037_bb0165) 2012; 63 Liang (10.1016/j.neuroimage.2014.04.037_bb0090) 2013; 23 Raudenbush (10.1016/j.neuroimage.2014.04.037_bb0135) 2002; vol. 1 Tootell (10.1016/j.neuroimage.2014.04.037_bb0170) 1998; 95 Mitchell (10.1016/j.neuroimage.2014.04.037_bb0100) 2008; 320 Norman (10.1016/j.neuroimage.2014.04.037_bb0110) 2006; 10 Weber (10.1016/j.neuroimage.2014.04.037_bb0175) 2009; 47 Coutanche (10.1016/j.neuroimage.2014.04.037_bb0015) 2013; 13 Haxby (10.1016/j.neuroimage.2014.04.037_bb0055) 2001; 293 Naselaris (10.1016/j.neuroimage.2014.04.037_bb0105) 2011; 56 Todd (10.1016/j.neuroimage.2014.04.037_bb0155) 2013; 77 Diedrichsen (10.1016/j.neuroimage.2014.04.037_bb0035) 2011; 55 Diedrichsen (10.1016/j.neuroimage.2014.04.037_bb0040) 2013; 76 Poldrack (10.1016/j.neuroimage.2014.04.037_bb0125) 2006; 10 Kamitani (10.1016/j.neuroimage.2014.04.037_bb0075) 2005; 8 Rissman (10.1016/j.neuroimage.2014.04.037_bb0140) 2010; 107 Rouder (10.1016/j.neuroimage.2014.04.037_bb0145) 2005; 12 Pinheiro (10.1016/j.neuroimage.2014.04.037_bb0120) 2000 Davis (10.1016/j.neuroimage.2014.04.037_bb0025) 2013; 1296 Cox (10.1016/j.neuroimage.2014.04.037_bb0020) 2003; 19 Poldrack (10.1016/j.neuroimage.2014.04.037_bb0130) 2011 Smith (10.1016/j.neuroimage.2014.04.037_bb0150) 2011; 56 LaRocque (10.1016/j.neuroimage.2014.04.037_bb0085) 2013; 33 Jäncke (10.1016/j.neuroimage.2014.04.037_bb0065) 1998; 36 Cohen (10.1016/j.neuroimage.2014.04.037_bb0010) 1994; 17 Haynes (10.1016/j.neuroimage.2014.04.037_bb0060) 2006; 7 Jimura (10.1016/j.neuroimage.2014.04.037_bb0070) 2012; 50 Clark (10.1016/j.neuroimage.2014.04.037_bb0005) 1973; 12 Ogawa (10.1016/j.neuroimage.2014.04.037_bb0115) 1998; 27 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4 21256225 - Neuroimage. 2011 Apr 15;55(4):1665-78 9448245 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7 19162048 - Neuropsychologia. 2009 Feb;47(3):859-68 7524210 - Trends Neurosci. 1994 Jul;17(7):268-77 16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30 18511683 - Science. 2008 May 30;320(5880):1191-5 23536062 - J Neurosci. 2013 Mar 27;33(13):5466-74 9646874 - Annu Rev Biophys Biomol Struct. 1998;27:447-74 9740361 - Neuropsychologia. 1998 Sep;36(9):875-83 16406760 - Trends Cogn Sci. 2006 Feb;10(2):59-63 15852014 - Nat Neurosci. 2005 May;8(5):679-85 11178927 - J Math Psychol. 2001 Feb;45(1):149-166 23442348 - Cereb Cortex. 2014 Jul;24(7):1720-37 22100534 - Neuropsychologia. 2012 Mar;50(4):544-52 22917989 - Neuroimage. 2012 Nov 15;63(3):1212-22 23558095 - Neuroimage. 2013 Aug 15;77:157-65 20566321 - Neuroimage. 2011 May 15;56(2):525-30 23857415 - Cogn Affect Behav Neurosci. 2013 Sep;13(3):667-73 23738883 - Ann N Y Acad Sci. 2013 Aug;1296:108-34 20457911 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9849-54 23523802 - Neuroimage. 2013 Aug 1;76:225-35 22275474 - Cereb Cortex. 2013 Jan;23(1):80-96 20691790 - Neuroimage. 2011 May 15;56(2):400-10 16791142 - Nat Rev Neurosci. 2006 Jul;7(7):523-34 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70 19176637 - Cereb Cortex. 2009 Oct;19(10):2269-80 16447374 - Psychon Bull Rev. 2005 Aug;12(4):573-604 11577229 - Science. 2001 Sep 28;293(5539):2425-30 |
References_xml | – volume: 33 start-page: 5466 year: 2013 end-page: 5474 ident: bb0085 article-title: Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory publication-title: J. Neurosci. – volume: 56 start-page: 525 year: 2011 end-page: 530 ident: bb0150 article-title: The confounding effect of response amplitude on MVPA performance measures publication-title: Neuroimage – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: bb0020 article-title: Functional magnetic resonance imaging (fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage – volume: 107 start-page: 9849 year: 2010 end-page: 9854 ident: bb0140 article-title: Detecting individual memories through the neural decoding of memory states and past experience publication-title: Proc. Natl. Acad. Sci. – volume: 293 start-page: 2425 year: 2001 end-page: 2430 ident: bb0055 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science – volume: 77 start-page: 157 year: 2013 end-page: 165 ident: bb0155 article-title: Confounds in multivariate pattern analysis: theory and rule representation case study publication-title: Neuroimage – volume: 320 start-page: 1191 year: 2008 end-page: 1195 ident: bb0100 article-title: Predicting human brain activity associated with the meanings of nouns publication-title: Science – volume: 55 start-page: 1665 year: 2011 end-page: 1678 ident: bb0035 article-title: Comparing the similarity and spatial structure of neural representations: a pattern-component model publication-title: Neuroimage – volume: 1296 start-page: 108 year: 2013 end-page: 134 ident: bb0025 article-title: Measuring neural representations with fMRI: practices and pitfalls publication-title: Ann. N. Y. Acad. Sci. – volume: 23 start-page: 80 year: 2013 end-page: 96 ident: bb0090 article-title: Content representation in the human medial temporal lobe publication-title: Cereb. Cortex – year: 2011 ident: bb0130 article-title: Handbook of Functional MRI Data Analysis – volume: 2 year: 2008 ident: bb0080 article-title: Representational similarity analysis—connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – volume: 36 start-page: 875 year: 1998 end-page: 883 ident: bb0065 article-title: Intensity coding of auditory stimuli: an fMRI study publication-title: Neuropsychologia – volume: 10 start-page: 59 year: 2006 end-page: 63 ident: bb0125 article-title: Can cognitive processes be inferred from neuroimaging data? publication-title: Trends Cogn. Sci. – volume: vol. 1 year: 2002 ident: bb0135 publication-title: Hierarchical Linear Models: Applications and Data Analysis Methods – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: bb0060 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 2269 year: 2009 end-page: 2280 ident: bb0045 article-title: Different spatial scales of shape similarity representation in lateral and ventral LOC publication-title: Cereb. Cortex – volume: 95 start-page: 811 year: 1998 end-page: 817 ident: bb0170 article-title: Functional analysis of primary visual cortex (V1) in humans publication-title: Proc. Natl. Acad. Sci. – volume: 76 start-page: 225 year: 2013 end-page: 235 ident: bb0040 article-title: A multivariate method to determine the dimensionality of neural representation from population activity publication-title: Neuroimage – volume: 50 start-page: 544 year: 2012 end-page: 552 ident: bb0070 article-title: Analyses of regional-average activation and multivoxel pattern information tell complementary stories publication-title: Neuropsychologia – volume: 10 start-page: 424 year: 2006 end-page: 430 ident: bb0110 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. – volume: 13 start-page: 667 year: 2013 end-page: 673 ident: bb0015 article-title: Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us? publication-title: Cogn. Affect. Behav. Neurosci. – volume: 17 start-page: 268 year: 1994 end-page: 277 ident: bb0010 article-title: Localization of brain function using magnetic resonance imaging publication-title: Trends Neurosci. – volume: 12 start-page: 573 year: 2005 end-page: 604 ident: bb0145 article-title: An introduction to Bayesian hierarchical models with an application in the theory of signal detection publication-title: Psychon. Bull. Rev. – volume: 56 start-page: 400 year: 2011 end-page: 410 ident: bb0105 article-title: Encoding and decoding in fMRI publication-title: Neuroimage – volume: 47 start-page: 859 year: 2009 end-page: 868 ident: bb0175 article-title: Predicting judged similarity of natural categories from their neural representations publication-title: Neuropsychologia – volume: 8 start-page: 679 year: 2005 end-page: 685 ident: bb0075 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. – volume: 2 start-page: 189 year: 1994 end-page: 210 ident: bb0050 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – year: 2000 ident: bb0120 article-title: Mixed-effects models in S and S-PLUS publication-title: Statistics and Computing – volume: 27 start-page: 447 year: 1998 end-page: 474 ident: bb0115 article-title: On the characteristics of functional magnetic resonance imaging of the brain publication-title: Annu. Rev. Biophys. Biomol. Struct. – year: 2013 ident: bb0030 article-title: Quantifying the internal structure of categories using a neural typicality measure publication-title: Cereb. Cortex – volume: 45 start-page: 149 year: 2001 end-page: 166 ident: bb0095 article-title: Determining the dimensionality of multidimensional scaling representations for cognitive modeling publication-title: J. Math. Psychol. – volume: 63 start-page: 1212 year: 2012 end-page: 1222 ident: bb0165 article-title: Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex publication-title: Neuroimage – volume: 12 start-page: 335 year: 1973 end-page: 359 ident: bb0005 article-title: The language-as-fixed-effect fallacy: a critique of language statistics in psychological research publication-title: J. Verbal Learn. Verbal Behav. – volume: 2 start-page: 189 issue: 4 year: 1994 ident: 10.1016/j.neuroimage.2014.04.037_bb0050 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 10 start-page: 424 issue: 9 year: 2006 ident: 10.1016/j.neuroimage.2014.04.037_bb0110 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 56 start-page: 525 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2014.04.037_bb0150 article-title: The confounding effect of response amplitude on MVPA performance measures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.079 – volume: 33 start-page: 5466 issue: 13 year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0085 article-title: Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4293-12.2013 – volume: 47 start-page: 859 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2014.04.037_bb0175 article-title: Predicting judged similarity of natural categories from their neural representations publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.12.029 – volume: 320 start-page: 1191 issue: 5880 year: 2008 ident: 10.1016/j.neuroimage.2014.04.037_bb0100 article-title: Predicting human brain activity associated with the meanings of nouns publication-title: Science doi: 10.1126/science.1152876 – volume: 36 start-page: 875 issue: 9 year: 1998 ident: 10.1016/j.neuroimage.2014.04.037_bb0065 article-title: Intensity coding of auditory stimuli: an fMRI study publication-title: Neuropsychologia doi: 10.1016/S0028-3932(98)00019-0 – volume: 27 start-page: 447 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2014.04.037_bb0115 article-title: On the characteristics of functional magnetic resonance imaging of the brain publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.27.1.447 – volume: 8 start-page: 679 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2014.04.037_bb0075 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. doi: 10.1038/nn1444 – volume: 7 start-page: 523 issue: 7 year: 2006 ident: 10.1016/j.neuroimage.2014.04.037_bb0060 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1931 – volume: 12 start-page: 335 issue: 4 year: 1973 ident: 10.1016/j.neuroimage.2014.04.037_bb0005 article-title: The language-as-fixed-effect fallacy: a critique of language statistics in psychological research publication-title: J. Verbal Learn. Verbal Behav. doi: 10.1016/S0022-5371(73)80014-3 – volume: 107 start-page: 9849 issue: 21 year: 2010 ident: 10.1016/j.neuroimage.2014.04.037_bb0140 article-title: Detecting individual memories through the neural decoding of memory states and past experience publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1001028107 – volume: 77 start-page: 157 year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0155 article-title: Confounds in multivariate pattern analysis: theory and rule representation case study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.039 – volume: 1296 start-page: 108 year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0025 article-title: Measuring neural representations with fMRI: practices and pitfalls publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12156 – volume: 45 start-page: 149 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2014.04.037_bb0095 article-title: Determining the dimensionality of multidimensional scaling representations for cognitive modeling publication-title: J. Math. Psychol. doi: 10.1006/jmps.1999.1300 – volume: 95 start-page: 811 issue: 3 year: 1998 ident: 10.1016/j.neuroimage.2014.04.037_bb0170 article-title: Functional analysis of primary visual cortex (V1) in humans publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.3.811 – volume: 17 start-page: 268 issue: 7 year: 1994 ident: 10.1016/j.neuroimage.2014.04.037_bb0010 article-title: Localization of brain function using magnetic resonance imaging publication-title: Trends Neurosci. doi: 10.1016/0166-2236(94)90055-8 – volume: 2 year: 2008 ident: 10.1016/j.neuroimage.2014.04.037_bb0080 article-title: Representational similarity analysis—connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – volume: 10 start-page: 59 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2014.04.037_bb0125 article-title: Can cognitive processes be inferred from neuroimaging data? publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2005.12.004 – volume: 56 start-page: 400 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2014.04.037_bb0105 article-title: Encoding and decoding in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.073 – volume: 19 start-page: 2269 issue: 10 year: 2009 ident: 10.1016/j.neuroimage.2014.04.037_bb0045 article-title: Different spatial scales of shape similarity representation in lateral and ventral LOC publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn244 – volume: 293 start-page: 2425 issue: 5539 year: 2001 ident: 10.1016/j.neuroimage.2014.04.037_bb0055 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – year: 2011 ident: 10.1016/j.neuroimage.2014.04.037_bb0130 – volume: 19 start-page: 261 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2014.04.037_bb0020 article-title: Functional magnetic resonance imaging (fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00049-1 – volume: 50 start-page: 544 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2014.04.037_bb0070 article-title: Analyses of regional-average activation and multivoxel pattern information tell complementary stories publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.11.007 – volume: 76 start-page: 225 year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0040 article-title: A multivariate method to determine the dimensionality of neural representation from population activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.062 – year: 2000 ident: 10.1016/j.neuroimage.2014.04.037_bb0120 article-title: Mixed-effects models in S and S-PLUS – volume: 23 start-page: 80 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0090 article-title: Content representation in the human medial temporal lobe publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr379 – volume: 55 start-page: 1665 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2014.04.037_bb0035 article-title: Comparing the similarity and spatial structure of neural representations: a pattern-component model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.044 – volume: 12 start-page: 573 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2014.04.037_bb0145 article-title: An introduction to Bayesian hierarchical models with an application in the theory of signal detection publication-title: Psychon. Bull. Rev. doi: 10.3758/BF03196750 – volume: 13 start-page: 667 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0015 article-title: Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us? publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-013-0186-2 – year: 2013 ident: 10.1016/j.neuroimage.2014.04.037_bb0030 article-title: Quantifying the internal structure of categories using a neural typicality measure publication-title: Cereb. Cortex – volume: 63 start-page: 1212 year: 2012 ident: 10.1016/j.neuroimage.2014.04.037_bb0165 article-title: Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.005 – volume: vol. 1 year: 2002 ident: 10.1016/j.neuroimage.2014.04.037_bb0135 – reference: 20691790 - Neuroimage. 2011 May 15;56(2):400-10 – reference: 23523802 - Neuroimage. 2013 Aug 1;76:225-35 – reference: 19162048 - Neuropsychologia. 2009 Feb;47(3):859-68 – reference: 11178927 - J Math Psychol. 2001 Feb;45(1):149-166 – reference: 16406760 - Trends Cogn Sci. 2006 Feb;10(2):59-63 – reference: 23536062 - J Neurosci. 2013 Mar 27;33(13):5466-74 – reference: 23558095 - Neuroimage. 2013 Aug 15;77:157-65 – reference: 18511683 - Science. 2008 May 30;320(5880):1191-5 – reference: 23738883 - Ann N Y Acad Sci. 2013 Aug;1296:108-34 – reference: 15852014 - Nat Neurosci. 2005 May;8(5):679-85 – reference: 7524210 - Trends Neurosci. 1994 Jul;17(7):268-77 – reference: 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70 – reference: 20566321 - Neuroimage. 2011 May 15;56(2):525-30 – reference: 23442348 - Cereb Cortex. 2014 Jul;24(7):1720-37 – reference: 16791142 - Nat Rev Neurosci. 2006 Jul;7(7):523-34 – reference: 19176637 - Cereb Cortex. 2009 Oct;19(10):2269-80 – reference: 21256225 - Neuroimage. 2011 Apr 15;55(4):1665-78 – reference: 23857415 - Cogn Affect Behav Neurosci. 2013 Sep;13(3):667-73 – reference: 22917989 - Neuroimage. 2012 Nov 15;63(3):1212-22 – reference: 20457911 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9849-54 – reference: 22100534 - Neuropsychologia. 2012 Mar;50(4):544-52 – reference: 16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30 – reference: 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4 – reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30 – reference: 9740361 - Neuropsychologia. 1998 Sep;36(9):875-83 – reference: 9448245 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7 – reference: 9646874 - Annu Rev Biophys Biomol Struct. 1998;27:447-74 – reference: 16447374 - Psychon Bull Rev. 2005 Aug;12(4):573-604 – reference: 22275474 - Cereb Cortex. 2013 Jan;23(1):80-96 |
SSID | ssj0009148 |
Score | 2.5459752 |
Snippet | Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 271 |
SubjectTerms | Animals Biological and medical sciences Codes Computer Simulation Dimensionality Distributed representations Experiments fMRI analysis Fundamental and applied biological sciences. Psychology Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods MVPA Neuroimaging - methods Simulation Species Specificity Variables Vertebrates: nervous system and sense organs Voxel-level variability |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBelhzEYY9_z1hUNdpwX25Ilix1KKSvZIDtsK_QmLEtiLqkdlqTbqff-13v6sLOMMgID42BLL3Gkp_ee5J9-D6E3ghihWEZSldVlSiuqYUhZOLFG6NwyrbRbGph9ZtMz-um8PN9DJ8NeGAerjLY_2HRvreOdSWzNyaJtJ18hMgB34_jJfODrd7BT7rT83fUG5gHFYTtcSVJXO6J5AsbLc0a2lzByHciLetJTlxH9dhd1b1EvoeFsyHhxW0j6N7LyD1d1-gDdjzEmPg5_4yHaM90jdGcW36I_RjeOrxvrHg_ZUcBW4AjYwh5hmF71v8wc153G6669gvk0hKRwGQhM8KWpuyM87X_i5Vq5hZz0LfYS8OlkfCqQdO7wSNgLwy_gsB8T29mXj-M3PUFnpx--nUzTmJIhbZggq5RRS7hQjW7As5migBmuzamigtdWs4aXqqiU0KzUTUaEpcpWOaEKDqM5rRryFO13fWeeI1yXgjIIB3VhDeW0rhQz1uZaMUW4FipBfOgF2US-cpc2Yy4HYNqF3PSfdP0nMzgIT1A-Si4CZ8cOMmLoaDnsSQUrKsGx7CD7fpTd0t0dpQ-39Gp85KIqK1BrlqCDQdFkNDBLCY4KihgY0AS9HovBNLj3PXVn-rWvI1x6-yL7Vx2YokKQWxUJehZ0d_MAMJognAVpvqXVYwVHTb5d0rXfPUU59SxP4sV_tcxLdNdduRX8vDxA-6sfa_MKQsCVOvRj_DcSPV87 priority: 102 providerName: Elsevier |
Title | What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914003061 https://dx.doi.org/10.1016/j.neuroimage.2014.04.037 https://www.ncbi.nlm.nih.gov/pubmed/24768930 https://www.proquest.com/docview/1536166319 https://www.proquest.com/docview/1539714320 https://www.proquest.com/docview/1555012582 https://pubmed.ncbi.nlm.nih.gov/PMC4115449 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdrC2NQxr7nrQsa7HHeIkuWLPZQutKSbksoYYW8GcuSWEZqp0vS7Wnv-693kmVnGaUEjIWxLhHWfel0-h1CbyQ1UvE-jVW_SGOWMQ0iZeHGS6mJ5VppFxoYjvjggn2apJMQcFuEtMpWJ3pFrevSxcjfg2RyAuaRyMP5VeyqRrnd1VBCYwftOegyl9IlJmINuktYcxQupXEGHUImT5Pf5fEip5cgtS7Bi3nAU1cN_WbztD8vFvDRbFPt4iZ39P-syn_M1OkDdD_4l_ioYYiH6I6pHqG7w7CD_hj9cVjdWNe4rYwCegKHZC3sswvj6_qXmeGi0nhVTa9hLQ3uKDw24CX40hTVIR7UP_FipVwQJ36LPQW0jsaXAYlnLhcJe2L4B9ycxcR2OD7rfukJujg9-Xo8iEM5hrjkki5jziwVUpW6BKtmkgRWt5YwxaQorOalSFWSKal5qss-lZYpmxHKFFxGC5aV9CnarerKPEe4SCXj4ArqxBomWJEpbqwlWnFFhZYqQqKdhbwMWOWuZMYsb5PSvufr-cvd_OV9uKiIEOko5w1exxY0sp3ovD2PCho0B6OyBe2Hjjb4LI0vsiV1b4OvuiEnWZqBp8UjdNAyWh6UyyJfi0KEXnevQS24vZ6iMvXK95GutH3Sv60PLE_Bwc2SCD1reHc9AAbrUEmBWmxwddfBwZJvvqmm3zw8OfMIT_LF7UN_ie65D-HC8yQ9QLvLHyvzCvy7peqhnXe_Sc-Lcg_tHR2Pv5y79uzzYATtx5PR-fgvt8JZoA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9swED66FLbBGHtftq7TYPs2M8uSZYsxyl5akrUJo7TQb65lSTQltbMlabefsD-z37iT37KMUvKlYBKCdbbInU7PSafnAF5LZqQSPvOUn4Yej7nGIWXxQ2RSUyu00m5pYDAUvUP-9Sg8WoM_zVkYl1bZ-MTSUesic2vk73BkCorTI5Vbk--eqxrldlebEhqVWeyaXxcYsk0_9L-gft8Ewc72weeeV1cV8DIh2cwT3LJIqkxn6JxNEGCQZilXXEap1SKLQhXESmoR6sxn0nJlY8q4wsvoiMcZw-fegHXOMJTpwPqn7eG3_QXNL-XV4buQeTGlss4dqjLKSobK0Rn6CZdSxkuKVVd__fIJ8c4knaKabFVf4zIA_H8e5z8T4849uFsjWvKxMsH7sGbyB3BzUO_ZP4Tfjh2c6II0tVjQM5E6PYyU-YzeefHTjEmaazLPR-cYvSMAxp8VXQo5M2m-RXrFBZnOlVs28t6SUgK_nUxZeMQbu-wnUgrjG0h1-pPYwX6_fdIjOLwWVT2GTl7k5imQNJRcIPjUgTU84mmshLGWaiUUi7RUXYgaLSRZzY7uinSMkyYN7jRZ6C9x-kt8vFjUBdpKTiqGkBVkZKPopDkBiz47wWlsBdn3rWyNkir0s6L05pJdtV0O4jBGbCe6sNEYWlK7s2myGHxdeNXeRkfkdpfS3BTzso2MEH0H_lVtMCBGSB0HXXhS2e6iAxwjX8lQOlqy6raBI0JfvpOPTkpCdF5ySslnV3f9JdzqHQz2kr3-cPc53HZ_itscoOEGdGY_5uYFosuZ2qyHNIHj6_YifwHCaZJo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkCYkhHgdgTGMBN-IFseOHQuhCTGqltEJISb1W4hjWxR1Sbe2G_wE_hK_jrPzUoqmqV8mRa2q-BKrd358Z5-fQ-ilpEYqHtFQRXkSspRpGFIWPnghNbFcK-2WBoZHvH_MPo6S0Qb6056FcWmVLSZ6oNZV4dbI92BkcgLTI5F7tkmL-HzQ25-ehq6ClNtpbctp1CZyaH5dQPg2ezs4AF2_iuPeh6_v-2FTYSAsuKTzkDNLhVSFLgCoTRxDwGYJU0yK3GpeiETFqZKaJ7qIqLRM2ZRQpuAyWrC0oPDcG-imoAlxY0yMxJLwl7D6GF5Cw5QQ2WQR1bllnqtyfAKI4ZLLmCdbdZXYL58ab0_zGSjM1pU2LnOF_8_o_GeK7N1FdxrfFr-rjfEe2jDlfbQ1bHbvH6Dfjicc6wq3VVkAo3CTKIZ9ZmN4Xv00E5yXGi_K8TnE8eAKw8-aOAWfmLzcx_3qAs8Wyi0gha-xl4BvJ-NLkIQTlweFvTC8AdfnQLEdfhl0T3qIjq9FUY_QZlmV5jHCeSIZBzdUx9YwwfJUcWMt0YorKrRUARKtFrKi4Ul35TomWZsQ9yNb6i9z-ssiuKgIEOkkpzVXyBoyslV01p6FBfTOYEJbQ_ZNJ9v4S7UftKb07opddV2O0yQFL48HaKc1tKwBtlm2HIYBetHdBkhy-0x5aaqFbyMF-OFxdFUbCI3BuU7jAG3XtrvsAIMYWFKQFitW3TVwlOird8rxd0-Nzjy7lHxyddefoy3AjuzT4OjwKbrl_hO3S0CSHbQ5P1uYZ-BmztWuH88YfbtuAPkLp8GVOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+do+differences+between+multi-voxel+and+univariate+analysis+mean%3F+How+subject-%2C+voxel-%2C+and+trial-level+variance+impact+fMRI+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=DAVIS%2C+Tyler&rft.au=LAROCQUE%2C+Karen+F&rft.au=MUMFORD%2C+Jeanette+A&rft.au=NORMAN%2C+Kenneth+A&rft.date=2014-08-15&rft.pub=Elsevier&rft.issn=1053-8119&rft.volume=97&rft.spage=271&rft.epage=283&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.04.037&rft.externalDBID=n%2Fa&rft.externalDocID=28580616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |