Timed hazard networks: Incorporating temporal difference for oncogenetic analysis

Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not a...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 3; p. e0283004
Main Author Chen, Jian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.03.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN
AbstractList Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN
Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN
Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN.Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN.
Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at
Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN.
Audience Academic
Author Chen, Jian
AuthorAffiliation Vinnytsia National Technical University, UKRAINE
Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America
AuthorAffiliation_xml – name: Vinnytsia National Technical University, UKRAINE
– name: Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-1999-1137
  surname: Chen
  fullname: Chen, Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36928529$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tv1DAQhSNURC_wDxBEQkLwsIsviS99QVXFZaVKFVB4tVxnkvWStRc7Acqvx-mm1aaqEMpDrPF3zoyP7MNsz3kHWfYUozmmHL9Z-T443c43qTxHRFCEigfZAZaUzBhBdG9nvZ8dxrhCqKSCsUfZPmWSiJLIg-zThV1DlS_1Hx2q3EH3y4fv8ThfOOPDxgfdWdfkHayHdZtXtq4hgDOQ1z7kPlENJJU1uU7DXEUbH2cPa91GeDL-j7Kv799dnH6cnZ1_WJyenM0Mk7SblehSM6kNJ0IwQTWtcQHACQYOQlcMVbTgXGtRYsoE48ZoiTnThREAwCp6lD3f-m5aH9WYRlSEC14yIQuciMWWqLxeqU2wax2ulNdWXRd8aJQOafQWlCCmKEGimhRlUae5SoQlr6rS4Eqmdsnr7ditv0yBGXBdymNiOt1xdqka_1NhNDiRIjm8Gh2C_9FD7NTaRgNtqx34_npwIRDBchj8xR30_uONVKPTCayrfWpsBlN1wgtc0nLbdn4Plb4K1taku1PbVJ8IXk8Eiengd9foPka1-PL5_9nzb1P25Q67BN12y-jbvrPexSn4bDfq24xvLm0Cii1ggo8xQH2LYKSGt3ETlxrehhrfRpId35EZ2-mhfUrEtv8W_wWgfRSO
CitedBy_id crossref_primary_10_1093_bib_bbae520
crossref_primary_10_1089_cmb_2024_0666
crossref_primary_10_1007_s11222_024_10480_y
Cites_doi 10.1038/nature11412
10.1371/journal.pcbi.1008379
10.1101/gad.973602
10.1016/0092-8674(90)90186-I
10.1093/bioinformatics/btw035
10.1093/bioinformatics/bti274
10.1038/nature10762
10.1016/j.jtbi.2004.02.021
10.1371/journal.pone.0108358
10.1038/s41588-018-0078-z
10.1111/j.2517-6161.1995.tb02031.x
10.1007/BF00994016
10.1093/bioinformatics/btz513
10.1089/cmb.2006.13.853
10.1093/bioinformatics/btv296
10.1038/nrg.2016.170
10.1038/nrclinonc.2013.124
10.1201/9780203756348
10.1137/0714065
10.1038/nature12912
10.1093/bioinformatics/btp505
10.18632/oncotarget.15381
10.1371/journal.pone.0065773
10.1089/cmb.1999.6.37
10.1093/bioinformatics/btu319
10.3389/fgene.2015.00309
10.1016/S0024-3795(00)00042-2
10.1093/sysbio/syu081
10.1126/science.959840
10.7150/ijbs.38672
10.1038/nature11143
10.1038/s41587-019-0071-9
10.1016/B978-0-12-741252-8.50010-8
10.1186/s13059-021-02504-x
10.1038/s42003-022-03560-0
10.1086/430005
ContentType Journal Article
Copyright Copyright: © 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Jian Chen 2023 Jian Chen
2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Jian Chen 2023 Jian Chen
– notice: 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0283004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic




MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Timed hazard networks: Incorporating temporal difference for oncogenetic analysis
EISSN 1932-6203
ExternalDocumentID 2787568941
oai_doaj_org_article_82c45e90f2454f69a50197dd5c1d9ee6
PMC10019724
A741535724
36928529
10_1371_journal_pone_0283004
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c693t-50ba69ac7288683a3f14ee721e7e8ad60d3477aa85136867cca9176a4c8eee6d3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun May 07 16:28:32 EDT 2023
Wed Aug 27 01:26:12 EDT 2025
Thu Aug 21 18:37:31 EDT 2025
Thu Jul 10 17:35:49 EDT 2025
Fri Jul 25 11:20:47 EDT 2025
Tue Jun 17 21:35:48 EDT 2025
Tue Jun 10 20:50:11 EDT 2025
Fri Jun 27 06:08:37 EDT 2025
Fri Jun 27 05:59:34 EDT 2025
Thu May 22 21:19:43 EDT 2025
Mon Jul 21 06:03:29 EDT 2025
Tue Jul 01 00:51:56 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright: © 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-50ba69ac7288683a3f14ee721e7e8ad60d3477aa85136867cca9176a4c8eee6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-1999-1137
OpenAccessLink https://www.proquest.com/docview/2787568941?pq-origsite=%requestingapplication%
PMID 36928529
PQID 2787568941
PQPubID 1436336
ParticipantIDs plos_journals_2787568941
doaj_primary_oai_doaj_org_article_82c45e90f2454f69a50197dd5c1d9ee6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10019724
proquest_miscellaneous_2788802191
proquest_journals_2787568941
gale_infotracmisc_A741535724
gale_infotracacademiconefile_A741535724
gale_incontextgauss_ISR_A741535724
gale_incontextgauss_IOV_A741535724
gale_healthsolutions_A741535724
pubmed_primary_36928529
crossref_primary_10_1371_journal_pone_0283004
crossref_citationtrail_10_1371_journal_pone_0283004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-16
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L De Sano (pone.0283004.ref029) 2016; 32
MS Lawrence (pone.0283004.ref031) 2014; 505
B Singh (pone.0283004.ref033) 2002; 16
D Heckerman (pone.0283004.ref015) 1995; 20
Y Benjamini (pone.0283004.ref032) 1995; 57
C Van Loan (pone.0283004.ref027) 1977; 14
H Shahrabi Farahani (pone.0283004.ref009) 2013; 8
D Ramazzotti (pone.0283004.ref012) 2015; 31
L Dieci (pone.0283004.ref028) 2000; 308
LO Loohuis (pone.0283004.ref007) 2014; 9
K Balakrishnan (pone.0283004.ref026) 2019
ER Fearon (pone.0283004.ref003) 1990; 61
G Schwarz (pone.0283004.ref014) 1978
M Greaves (pone.0283004.ref002) 2012; 481
J Armenia (pone.0283004.ref023) 2018; 50
D Hong (pone.0283004.ref036) 2017; 8
N Beerenwinkel (pone.0283004.ref041) 2005; 191
M Gerstung (pone.0283004.ref008) 2009; 25
Y Sun (pone.0283004.ref020) 2017; 45
H Mohsen (pone.0283004.ref024) 2021; 22
N Beerenwinkel (pone.0283004.ref040) 2015; 64
M Ignatiadis (pone.0283004.ref025) 2013; 10
MJ Ellis (pone.0283004.ref034) 2012; 486
PC Nowell (pone.0283004.ref001) 1976; 194
R Schwartz (pone.0283004.ref038) 2017; 18
S Miura (pone.0283004.ref039) 2022; 5
AM Carvalho (pone.0283004.ref016) 2009; 12
TCGA Network (pone.0283004.ref030) 2012; 490
T Ye (pone.0283004.ref035) 2020; 16
N Misra (pone.0283004.ref010) 2014; 30
R Hecht-Nielsen (pone.0283004.ref022) 1992
J Marsman (pone.0283004.ref037) 2014; 1839
J Williamson (pone.0283004.ref013) 2009
R Schill (pone.0283004.ref018) 2020; 36
N Beerenwinkel (pone.0283004.ref006) 2005; 21
R Desper (pone.0283004.ref004) 1999; 6
P Lecca (pone.0283004.ref011) 2015; 6
M Hjelm (pone.0283004.ref017) 2006; 13
X Sun (pone.0283004.ref021) 2021; 17
R Desper (pone.0283004.ref005) 2004; 228
W Saelens (pone.0283004.ref019) 2019; 37
References_xml – volume: 490
  start-page: 61
  issue: 7418
  year: 2012
  ident: pone.0283004.ref030
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 17
  start-page: e1008379
  issue: 3
  year: 2021
  ident: pone.0283004.ref021
  article-title: Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1008379
– volume: 16
  start-page: 984
  issue: 8
  year: 2002
  ident: pone.0283004.ref033
  article-title: p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas
  publication-title: Genes & development
  doi: 10.1101/gad.973602
– volume: 61
  start-page: 759
  issue: 5
  year: 1990
  ident: pone.0283004.ref003
  article-title: A genetic model for colorectal tumorigenesis
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90186-I
– volume: 32
  start-page: 1911
  issue: 12
  year: 2016
  ident: pone.0283004.ref029
  article-title: TRONCO: an R package for the inference of cancer progression models from heterogeneous genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw035
– volume: 21
  start-page: 2106
  issue: 9
  year: 2005
  ident: pone.0283004.ref006
  article-title: Mtreemix: a software package for learning and using mixture models of mutagenetic trees
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti274
– volume: 481
  start-page: 306
  issue: 7381
  year: 2012
  ident: pone.0283004.ref002
  article-title: Clonal evolution in cancer
  publication-title: Nature
  doi: 10.1038/nature10762
– volume: 228
  start-page: 477
  issue: 4
  year: 2004
  ident: pone.0283004.ref005
  article-title: Tumor classification using phylogenetic methods on expression data
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2004.02.021
– volume: 9
  start-page: e108358
  issue: 10
  year: 2014
  ident: pone.0283004.ref007
  article-title: Inferring tree causal models of cancer progression with probability raising
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0108358
– volume: 50
  start-page: 645
  issue: 5
  year: 2018
  ident: pone.0283004.ref023
  article-title: The long tail of oncogenic drivers in prostate cancer
  publication-title: Nature genetics
  doi: 10.1038/s41588-018-0078-z
– volume: 12
  start-page: 1
  year: 2009
  ident: pone.0283004.ref016
  article-title: Scoring functions for learning Bayesian networks
  publication-title: Inesc-id Tec Rep
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: pone.0283004.ref032
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal statistical society: series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 20
  start-page: 197
  issue: 3
  year: 1995
  ident: pone.0283004.ref015
  article-title: Learning Bayesian networks: The combination of knowledge and statistical data
  publication-title: Machine Learning
  doi: 10.1007/BF00994016
– volume: 36
  start-page: 241
  issue: 1
  year: 2020
  ident: pone.0283004.ref018
  article-title: Modelling cancer progression using Mutual Hazard Networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz513
– volume: 13
  start-page: 853
  issue: 4
  year: 2006
  ident: pone.0283004.ref017
  article-title: New probabilistic network models and algorithms for oncogenesis
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2006.13.853
– volume: 31
  start-page: 3016
  issue: 18
  year: 2015
  ident: pone.0283004.ref012
  article-title: CAPRI: efficient inference of cancer progression models from cross-sectional data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv296
– start-page: 461
  year: 1978
  ident: pone.0283004.ref014
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 18
  start-page: 213
  issue: 4
  year: 2017
  ident: pone.0283004.ref038
  article-title: The evolution of tumour phylogenetics: principles and practice
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg.2016.170
– volume: 10
  start-page: 494
  issue: 9
  year: 2013
  ident: pone.0283004.ref025
  article-title: Luminal breast cancer: from biology to treatment
  publication-title: Nature Reviews Clinical Oncology
  doi: 10.1038/nrclinonc.2013.124
– volume: 45
  start-page: e69
  issue: 9
  year: 2017
  ident: pone.0283004.ref020
  article-title: Computational approach for deriving cancer progression roadmaps from static sample data
  publication-title: Nucleic Acids Research
– volume-title: Exponential distribution: theory, methods and applications
  year: 2019
  ident: pone.0283004.ref026
  doi: 10.1201/9780203756348
– volume: 14
  start-page: 971
  issue: 6
  year: 1977
  ident: pone.0283004.ref027
  article-title: The Sensitivity of the Matrix Exponential
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0714065
– volume: 505
  start-page: 495
  issue: 7484
  year: 2014
  ident: pone.0283004.ref031
  article-title: Discovery and saturation analysis of cancer genes across 21 tumour types
  publication-title: Nature
  doi: 10.1038/nature12912
– volume: 25
  start-page: 2809
  issue: 21
  year: 2009
  ident: pone.0283004.ref008
  article-title: Quantifying cancer progression with conjunctive Bayesian networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp505
– volume: 8
  start-page: 17610
  issue: 11
  year: 2017
  ident: pone.0283004.ref036
  article-title: Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15381
– volume: 8
  start-page: e65773
  issue: 6
  year: 2013
  ident: pone.0283004.ref009
  article-title: Learning oncogenetic networks by reducing to mixed integer linear programming
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0065773
– volume: 6
  start-page: 37
  issue: 1
  year: 1999
  ident: pone.0283004.ref004
  article-title: Inferring tree models for oncogenesis from comparative genome hybridization data
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.1999.6.37
– volume: 30
  start-page: 2456
  issue: 17
  year: 2014
  ident: pone.0283004.ref010
  article-title: Inferring the paths of somatic evolution in cancer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu319
– volume: 6
  start-page: 309
  year: 2015
  ident: pone.0283004.ref011
  article-title: Defining order and timing of mutations during cancer progression: the TO-DAG probabilistic graphical model
  publication-title: Frontiers in Genetics
  doi: 10.3389/fgene.2015.00309
– start-page: 185
  year: 2009
  ident: pone.0283004.ref013
  article-title: Probabilistic theories of causality
  publication-title: The Oxford handbook of causation
– volume: 308
  start-page: 183
  issue: 1-3
  year: 2000
  ident: pone.0283004.ref028
  article-title: Padé approximation for the exponential of a block triangular matrix
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/S0024-3795(00)00042-2
– volume: 64
  start-page: e1
  issue: 1
  year: 2015
  ident: pone.0283004.ref040
  article-title: Cancer evolution: mathematical models and computational inference
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syu081
– volume: 194
  start-page: 23
  issue: 4260
  year: 1976
  ident: pone.0283004.ref001
  article-title: The Clonal Evolution of Tumor Cell Populations: Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression
  publication-title: Science
  doi: 10.1126/science.959840
– volume: 16
  start-page: 447
  issue: 3
  year: 2020
  ident: pone.0283004.ref035
  article-title: Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways
  publication-title: International Journal of Biological Sciences
  doi: 10.7150/ijbs.38672
– volume: 486
  start-page: 353
  issue: 7403
  year: 2012
  ident: pone.0283004.ref034
  article-title: Whole-genome analysis informs breast cancer response to aromatase inhibition
  publication-title: Nature
  doi: 10.1038/nature11143
– volume: 37
  start-page: 547
  issue: 5
  year: 2019
  ident: pone.0283004.ref019
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-019-0071-9
– start-page: 65
  volume-title: Neural networks for perception
  year: 1992
  ident: pone.0283004.ref022
  doi: 10.1016/B978-0-12-741252-8.50010-8
– volume: 1839
  start-page: 50
  issue: 1
  year: 2014
  ident: pone.0283004.ref037
  publication-title: Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0283004.ref024
  article-title: Network propagation-based prioritization of long tail genes in 17 cancer types
  publication-title: Genome Biology
  doi: 10.1186/s13059-021-02504-x
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: pone.0283004.ref039
  article-title: A phylogenetic approach to study the evolution of somatic mutational processes in cancer
  publication-title: Communications Biology
  doi: 10.1038/s42003-022-03560-0
– volume: 191
  start-page: 1953
  issue: 11
  year: 2005
  ident: pone.0283004.ref041
  article-title: Estimating HIV evolutionary pathways and the genetic barrier to drug resistance
  publication-title: The Journal of Infectious Diseases
  doi: 10.1086/430005
SSID ssj0053866
Score 2.4417632
Snippet Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0283004
SubjectTerms Accumulation
Algorithms
Back propagation
Biology and Life Sciences
Breast cancer
Breast Neoplasms - genetics
Cancer
Carcinogenesis
Cell Transformation, Neoplastic
Computer Simulation
DNA methylation
Ecology and Environmental Sciences
Female
Genetic aspects
Humans
Markov analysis
Markov chains
Mathematical models
Medicine and Health Sciences
Methods
Modelling
Mutation
Oncogenes
Optimization
Performance evaluation
Physical Sciences
Playgrounds
Reproducibility of Results
Research and Analysis Methods
Statistical analysis
Statistical models
Temporal variations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyqsLBQxCAg5pE7_NrSCqFgkQj6LeLMdxWqRVsiK7F349M4kTNahSOXCNv2yyM2PPZ2XmMyEvrPDMFmXIpIosE6XNMy_qPBOWV8bbWiiPDc4fP6njU_HhTJ5dOuoLa8IGeeDBcAeGBSGjzWsmpKiV9RJIia4qGYrKxtiLbUPOGzdTwxoMs1ip1CjHdXGQ_LK_bpu4jxk1TwezjYmo1-ufVuXFetV2V1HOvysnL6Wio9vkVuKQ9HB49x1yIzZ3yE6apR19laSkX98lX7DDo6IX_jcEAm2Gku_uDT1B9cpewRgyF03yVCs6npYSIgUuS1tAQXxhmyP1SbzkHjk9ev_93XGWDlHIgrJ8k8m89GC1oJkxynDP60LECPu-qKPxlcorLrT2HpgXV0Zp8Cjs4JQXwUQwb8Xvk0UDZtslVIQ6BmBcsgTeVUrg5iZaKYSGDbmveVgSPlrUhaQwjgddrFz_2UzDTmMwkEM_uOSHJcmmu9aDwsY1-LforAmL-tj9BYgal6LGXRc1S_IUXe2GZtNplrtDJFhcagaPed4jUCOjwSKcc7_tOnfy-cc_gL59nYFeJlDdgjmCT40P8J9Qe2uG3JshYaaH2fAuBuZolc4xWG2lMlYUcOcYrFcPP5uG8UexsK6J7bbHwAoOaQswD4bYnizLlWVGMrskZhb1M9PPR5qfF71EOSp7WXjlh__DWY_ITQbUEiv_CrVHFptf2_gYqOCmfNLP-j-zMVzo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJn6bCyqIqkUCxKNob5HjOC3SKtk2uxd-fWcSJxBUAdf1JBvPw_6czHxDyDMrHLNZ4ROpAktEYdPEiSpNhOWlcbYSymGB84eP6vBYvF_IRXzh1sa0ymFN7BbqsvH4jnyPgWdJZazIXq_OEuwahV9XYwuNq-QaUpdhSpdejAcuiGWlYrkc19letM7uqqnDLu6raWzPNmxHHWv_uDbPVsumvQx4_pk_-duGdHCT3IhIku73pt8iV0J9i2zFWG3pi0go_fI2-Yx1HiU9dT_BHWjdJ363r-gRclh2PMawf9FIUrWkQ88UHyggWtqAFHgZFjtSFylM7pDjg3ff3h4msZVC4pXl60SmhVPWec2MUYY7XmUiBDj9BR2MK1VacqG1c4C_uDJKg13hHKec8CaEoEp-l8xqUNs2ocJXwQPukgWgr0ICQjfBSiE0HMtdxf2c8EGjuY8849juYpl3H880nDd6BeVohzzaYU6S8apVz7PxD_k3aKxRFlmyux-a85M8Bl1umBcy2LRiQooK5i8B0OqylD4rLUxrTh6jqfO-5HSM9XwfYRaXmsHfPO0kkCmjxlScE7dp2_zo0_f_EPr6ZSL0PApVDajDu1j-AHNCBq6J5M5EEuLdT4a30TEHrbT5r8iAKwdnvXz4yTiMN8X0ujo0m04G1nHYvEDmXu_bo2a5ssxIZufETLx-ovrpSP3jtCMqR34vC498_-_P9YBcZwAdMbMvUztktj7fhIcA9dbFoy6eLwAp51Sv
  priority: 102
  providerName: ProQuest
Title Timed hazard networks: Incorporating temporal difference for oncogenetic analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/36928529
https://www.proquest.com/docview/2787568941
https://www.proquest.com/docview/2788802191
https://pubmed.ncbi.nlm.nih.gov/PMC10019724
https://doaj.org/article/82c45e90f2454f69a50197dd5c1d9ee6
http://dx.doi.org/10.1371/journal.pone.0283004
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytY5SAkICHTEn8jYTQNrVsSBswKOpb5DjOhlQlpWkl4IG_nbPjRAQVsZc81Oe0Pp_vfq59v0PomSQqkXGmQ8pMEpJMRqEiRRQSiXOhZEGYsgnOZ-fsZErezehsC7U1W70C641bO1tParqcH3z_9uMNLPjXrmoDj9tOB4uqNAc2XjqC0G2ITdwu1TPSnSvA6nanlxa1hCyJsE-m-9dbesHKcfp3nnuwmFf1Jlj69-3KP8LV5Da65XFmcNgYxg7aMuUdtONXch288HTTL--ijzYLJA-u1E8wlqBsroXXr4JTy3DpWI4hugWewmoetBVVtAkA7wYVSIEN2lTIQHmCk3toOhl_Pj4JfaGFUDOJVyGNMsWk0jwRggmscBETY2BvaLgRKmdRjgnnSgE6w0wwDrMOuzymiBbGGJbj-2hQgtp2UUB0YTSgMpoBNsso4HdhJCWEw6ZdFVgPEW41mmrPQm6LYcxTd7TGYTfSKCi185D6eRiisOu1aFg4_iN_ZCerk7Uc2u6DanmZ-iWZikQTamRUJISSAsZPAe7yPKc6ziUMa4ge26lOm4TUzhOkhxaEYcoT-JqnTsLyaJT2os6lWtd1evr-yzWEPl30hJ57oaICdWjlkyNgTJafqye535MEb6B7zbvWMFut1GkCHpkyIUkMPVtj3dz8pGu2L7WX70pTrZ0MeHkIbSDzoLHtTrOYyUTQRA6R6Fl9T_X9lvLrlaMxt-xfEn7y3nW0-BDdTABe2tt_MdtHg9VybR4BHFxlI3SDzzg8xXFsn5O3I7R9ND7_cDFyf7CMnAewz1_j3zYXZJA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UGhAIOCQNutXbCSEyqPq0geCtmhvwXGcFmmVLM2uEPwofiMziRMIqoBLr-tJNp4ZzyOZ-YaQh5obqkepDYV0NOSpjkLD8yjkmmXK6JxLgw3Oe_ty-4i_nYjJEvnR9sJgWWVrE2tDnZUW35FvUNAsIZXmoxezLyFOjcKvq-0IjUYtdty3r5CyVc_Hr0G-jyjdenP4ajv0UwVCKzWbhyJKjdTGxlQpqZhh-Yg7B4mQi50ymYwyxuPYGAhFmFQyhi1CSiMNt8o5JzMG971ALoLjjfBExZMuwQPbIaVvz2PxaMNrw_qsLNw6-vHIj4Nr3V89JaDzBYPZtKzOCnT_rNf8zQFuXSVXfOQabDaqtkyWXHGNLHvbUAVPPID10-vkPfaVZMGJ-Q7qFxRNoXn1LBgjZmaNmwz-MvCgWNOgndFiXQARdFACFWg1NlcGxkOm3CBH58Lkm2RQANtWSMBt7izEeSKFaC8VkBEopwXnsUuZyZkdEtZyNLEe1xzHa0yT-mNdDPlNw6AE5ZB4OQxJ2F01a3A9_kH_EoXV0SIqd_1DeXqc-EOeKGq5cDrKKRc8h_0LCKDjLBN2lGnY1pCsoaiTpsW1sy3JJoZ1TMQU_uZBTYHIHAWW_hybRVUl43cf_4Po4EOP6LEnyktghzW-3QL2hIhfPcrVHiXYF9tbXkHFbLlSJb9OIlzZKuvZy_e7ZbwplvMVrlzUNOA3wFkCza1GtzvOMqmpElQPieppfY_1_ZXi80kNjI54Yhoe-fbfn2uNXNo-3NtNdsf7O3fIZQphK1YVjuQqGcxPF-4uhJnz9F59tgPy6byNyU-hxJGE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqQqEGgYBDuhu_jYRQoVRdCuVZtLfgOE6LtEqWZlcIfhq_jnHiBIIq4NLrziQbj8fzSGa-QeiuZoboOLURF45ELNXjyLB8HDFNM2V0zoTxDc6v9sXuAXsx5dMV9KPthfFlla1NrA11Vlr_jnxEQLO4UJrFozyURbzZ3nky_xL5CVL-S2s7TqNRkT337Sukb9XjyTbs9T1Cdp5_eLYbhQkDkRWaLiI-To3QxkqilFDU0DxmzkFS5KRTJhPjjDIpjYGwhAolJCwX0hthmFXOOZFRuO8ZdFZSoMNZktMu2QM7IkRo1aMyHgXN2JyXhdv0Pn0cRsO1rrCeGND5hcF8VlYnBb1_1m7-5gx3LqILIYrFW43araIVV1xCq8FOVPhBALN-eBm99T0mGT4y30EVcdEUnVeP8MTjZ9YYyuA7cQDImuF2Xot1GKJpXAIXaLhvtMQmwKdcQQenIuSraFCA2NYQZjZ3FmI-nkLkl3LIDpTTnDHpUmpyaoeIthJNbMA496M2Zkn94U5CrtMIKPH7kIR9GKKou2reYHz8g_-p36yO1yN01z-Ux4dJOPCJIpZxp8c5YZzlsH4OwbTMMm7jTMOyhmjDb3XStLt2dibZ8iEe5ZLA39ypOTxKR-H1_dAsqyqZvP74H0zv3_WY7gemvARxWBNaL2BNHv2rx7ne4wRbY3vkNa-YrVSq5NephCtbZT2ZfLsj-5v60r7ClcuaB3wIOE7gudbodidZKjRRnOghUj2t74m-Tyk-H9Ug6R5bTMMjX__7c22gc2BGkpeT_b0b6DyBCNYXGMZiHQ0Wx0t3EyLORXqrPtoYfTptW_ITaNiVug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Timed+hazard+networks%3A+Incorporating+temporal+difference+for+oncogenetic+analysis&rft.jtitle=PloS+one&rft.au=Chen%2C+Jian&rft.date=2023-03-16&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pone.0283004&rft.externalDBID=IOV&rft.externalDocID=A741535724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon