Timed hazard networks: Incorporating temporal difference for oncogenetic analysis
Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not a...
Saved in:
Published in | PloS one Vol. 18; no. 3; p. e0283004 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
16.03.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at
https://github.com/puar-playground/TimedHN |
---|---|
AbstractList | Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at
https://github.com/puar-playground/TimedHN Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN.Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN. Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN. |
Audience | Academic |
Author | Chen, Jian |
AuthorAffiliation | Vinnytsia National Technical University, UKRAINE Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America |
AuthorAffiliation_xml | – name: Vinnytsia National Technical University, UKRAINE – name: Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-1999-1137 surname: Chen fullname: Chen, Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36928529$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk1tv1DAQhSNURC_wDxBEQkLwsIsviS99QVXFZaVKFVB4tVxnkvWStRc7Acqvx-mm1aaqEMpDrPF3zoyP7MNsz3kHWfYUozmmHL9Z-T443c43qTxHRFCEigfZAZaUzBhBdG9nvZ8dxrhCqKSCsUfZPmWSiJLIg-zThV1DlS_1Hx2q3EH3y4fv8ThfOOPDxgfdWdfkHayHdZtXtq4hgDOQ1z7kPlENJJU1uU7DXEUbH2cPa91GeDL-j7Kv799dnH6cnZ1_WJyenM0Mk7SblehSM6kNJ0IwQTWtcQHACQYOQlcMVbTgXGtRYsoE48ZoiTnThREAwCp6lD3f-m5aH9WYRlSEC14yIQuciMWWqLxeqU2wax2ulNdWXRd8aJQOafQWlCCmKEGimhRlUae5SoQlr6rS4Eqmdsnr7ditv0yBGXBdymNiOt1xdqka_1NhNDiRIjm8Gh2C_9FD7NTaRgNtqx34_npwIRDBchj8xR30_uONVKPTCayrfWpsBlN1wgtc0nLbdn4Plb4K1taku1PbVJ8IXk8Eiengd9foPka1-PL5_9nzb1P25Q67BN12y-jbvrPexSn4bDfq24xvLm0Cii1ggo8xQH2LYKSGt3ETlxrehhrfRpId35EZ2-mhfUrEtv8W_wWgfRSO |
CitedBy_id | crossref_primary_10_1093_bib_bbae520 crossref_primary_10_1089_cmb_2024_0666 crossref_primary_10_1007_s11222_024_10480_y |
Cites_doi | 10.1038/nature11412 10.1371/journal.pcbi.1008379 10.1101/gad.973602 10.1016/0092-8674(90)90186-I 10.1093/bioinformatics/btw035 10.1093/bioinformatics/bti274 10.1038/nature10762 10.1016/j.jtbi.2004.02.021 10.1371/journal.pone.0108358 10.1038/s41588-018-0078-z 10.1111/j.2517-6161.1995.tb02031.x 10.1007/BF00994016 10.1093/bioinformatics/btz513 10.1089/cmb.2006.13.853 10.1093/bioinformatics/btv296 10.1038/nrg.2016.170 10.1038/nrclinonc.2013.124 10.1201/9780203756348 10.1137/0714065 10.1038/nature12912 10.1093/bioinformatics/btp505 10.18632/oncotarget.15381 10.1371/journal.pone.0065773 10.1089/cmb.1999.6.37 10.1093/bioinformatics/btu319 10.3389/fgene.2015.00309 10.1016/S0024-3795(00)00042-2 10.1093/sysbio/syu081 10.1126/science.959840 10.7150/ijbs.38672 10.1038/nature11143 10.1038/s41587-019-0071-9 10.1016/B978-0-12-741252-8.50010-8 10.1186/s13059-021-02504-x 10.1038/s42003-022-03560-0 10.1086/430005 |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Jian Chen 2023 Jian Chen 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Jian Chen 2023 Jian Chen – notice: 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0283004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Timed hazard networks: Incorporating temporal difference for oncogenetic analysis |
EISSN | 1932-6203 |
ExternalDocumentID | 2787568941 oai_doaj_org_article_82c45e90f2454f69a50197dd5c1d9ee6 PMC10019724 A741535724 36928529 10_1371_journal_pone_0283004 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c693t-50ba69ac7288683a3f14ee721e7e8ad60d3477aa85136867cca9176a4c8eee6d3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun May 07 16:28:32 EDT 2023 Wed Aug 27 01:26:12 EDT 2025 Thu Aug 21 18:37:31 EDT 2025 Thu Jul 10 17:35:49 EDT 2025 Fri Jul 25 11:20:47 EDT 2025 Tue Jun 17 21:35:48 EDT 2025 Tue Jun 10 20:50:11 EDT 2025 Fri Jun 27 06:08:37 EDT 2025 Fri Jun 27 05:59:34 EDT 2025 Thu May 22 21:19:43 EDT 2025 Mon Jul 21 06:03:29 EDT 2025 Tue Jul 01 00:51:56 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright: © 2023 Jian Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-50ba69ac7288683a3f14ee721e7e8ad60d3477aa85136867cca9176a4c8eee6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-1999-1137 |
OpenAccessLink | https://www.proquest.com/docview/2787568941?pq-origsite=%requestingapplication% |
PMID | 36928529 |
PQID | 2787568941 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_2787568941 doaj_primary_oai_doaj_org_article_82c45e90f2454f69a50197dd5c1d9ee6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10019724 proquest_miscellaneous_2788802191 proquest_journals_2787568941 gale_infotracmisc_A741535724 gale_infotracacademiconefile_A741535724 gale_incontextgauss_ISR_A741535724 gale_incontextgauss_IOV_A741535724 gale_healthsolutions_A741535724 pubmed_primary_36928529 crossref_primary_10_1371_journal_pone_0283004 crossref_citationtrail_10_1371_journal_pone_0283004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-16 |
PublicationDateYYYYMMDD | 2023-03-16 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | L De Sano (pone.0283004.ref029) 2016; 32 MS Lawrence (pone.0283004.ref031) 2014; 505 B Singh (pone.0283004.ref033) 2002; 16 D Heckerman (pone.0283004.ref015) 1995; 20 Y Benjamini (pone.0283004.ref032) 1995; 57 C Van Loan (pone.0283004.ref027) 1977; 14 H Shahrabi Farahani (pone.0283004.ref009) 2013; 8 D Ramazzotti (pone.0283004.ref012) 2015; 31 L Dieci (pone.0283004.ref028) 2000; 308 LO Loohuis (pone.0283004.ref007) 2014; 9 K Balakrishnan (pone.0283004.ref026) 2019 ER Fearon (pone.0283004.ref003) 1990; 61 G Schwarz (pone.0283004.ref014) 1978 M Greaves (pone.0283004.ref002) 2012; 481 J Armenia (pone.0283004.ref023) 2018; 50 D Hong (pone.0283004.ref036) 2017; 8 N Beerenwinkel (pone.0283004.ref041) 2005; 191 M Gerstung (pone.0283004.ref008) 2009; 25 Y Sun (pone.0283004.ref020) 2017; 45 H Mohsen (pone.0283004.ref024) 2021; 22 N Beerenwinkel (pone.0283004.ref040) 2015; 64 M Ignatiadis (pone.0283004.ref025) 2013; 10 MJ Ellis (pone.0283004.ref034) 2012; 486 PC Nowell (pone.0283004.ref001) 1976; 194 R Schwartz (pone.0283004.ref038) 2017; 18 S Miura (pone.0283004.ref039) 2022; 5 AM Carvalho (pone.0283004.ref016) 2009; 12 TCGA Network (pone.0283004.ref030) 2012; 490 T Ye (pone.0283004.ref035) 2020; 16 N Misra (pone.0283004.ref010) 2014; 30 R Hecht-Nielsen (pone.0283004.ref022) 1992 J Marsman (pone.0283004.ref037) 2014; 1839 J Williamson (pone.0283004.ref013) 2009 R Schill (pone.0283004.ref018) 2020; 36 N Beerenwinkel (pone.0283004.ref006) 2005; 21 R Desper (pone.0283004.ref004) 1999; 6 P Lecca (pone.0283004.ref011) 2015; 6 M Hjelm (pone.0283004.ref017) 2006; 13 X Sun (pone.0283004.ref021) 2021; 17 R Desper (pone.0283004.ref005) 2004; 228 W Saelens (pone.0283004.ref019) 2019; 37 |
References_xml | – volume: 490 start-page: 61 issue: 7418 year: 2012 ident: pone.0283004.ref030 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 17 start-page: e1008379 issue: 3 year: 2021 ident: pone.0283004.ref021 article-title: Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1008379 – volume: 16 start-page: 984 issue: 8 year: 2002 ident: pone.0283004.ref033 article-title: p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas publication-title: Genes & development doi: 10.1101/gad.973602 – volume: 61 start-page: 759 issue: 5 year: 1990 ident: pone.0283004.ref003 article-title: A genetic model for colorectal tumorigenesis publication-title: Cell doi: 10.1016/0092-8674(90)90186-I – volume: 32 start-page: 1911 issue: 12 year: 2016 ident: pone.0283004.ref029 article-title: TRONCO: an R package for the inference of cancer progression models from heterogeneous genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw035 – volume: 21 start-page: 2106 issue: 9 year: 2005 ident: pone.0283004.ref006 article-title: Mtreemix: a software package for learning and using mixture models of mutagenetic trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti274 – volume: 481 start-page: 306 issue: 7381 year: 2012 ident: pone.0283004.ref002 article-title: Clonal evolution in cancer publication-title: Nature doi: 10.1038/nature10762 – volume: 228 start-page: 477 issue: 4 year: 2004 ident: pone.0283004.ref005 article-title: Tumor classification using phylogenetic methods on expression data publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2004.02.021 – volume: 9 start-page: e108358 issue: 10 year: 2014 ident: pone.0283004.ref007 article-title: Inferring tree causal models of cancer progression with probability raising publication-title: PloS ONE doi: 10.1371/journal.pone.0108358 – volume: 50 start-page: 645 issue: 5 year: 2018 ident: pone.0283004.ref023 article-title: The long tail of oncogenic drivers in prostate cancer publication-title: Nature genetics doi: 10.1038/s41588-018-0078-z – volume: 12 start-page: 1 year: 2009 ident: pone.0283004.ref016 article-title: Scoring functions for learning Bayesian networks publication-title: Inesc-id Tec Rep – volume: 57 start-page: 289 issue: 1 year: 1995 ident: pone.0283004.ref032 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal statistical society: series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 20 start-page: 197 issue: 3 year: 1995 ident: pone.0283004.ref015 article-title: Learning Bayesian networks: The combination of knowledge and statistical data publication-title: Machine Learning doi: 10.1007/BF00994016 – volume: 36 start-page: 241 issue: 1 year: 2020 ident: pone.0283004.ref018 article-title: Modelling cancer progression using Mutual Hazard Networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz513 – volume: 13 start-page: 853 issue: 4 year: 2006 ident: pone.0283004.ref017 article-title: New probabilistic network models and algorithms for oncogenesis publication-title: Journal of Computational Biology doi: 10.1089/cmb.2006.13.853 – volume: 31 start-page: 3016 issue: 18 year: 2015 ident: pone.0283004.ref012 article-title: CAPRI: efficient inference of cancer progression models from cross-sectional data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv296 – start-page: 461 year: 1978 ident: pone.0283004.ref014 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics – volume: 18 start-page: 213 issue: 4 year: 2017 ident: pone.0283004.ref038 article-title: The evolution of tumour phylogenetics: principles and practice publication-title: Nature Reviews Genetics doi: 10.1038/nrg.2016.170 – volume: 10 start-page: 494 issue: 9 year: 2013 ident: pone.0283004.ref025 article-title: Luminal breast cancer: from biology to treatment publication-title: Nature Reviews Clinical Oncology doi: 10.1038/nrclinonc.2013.124 – volume: 45 start-page: e69 issue: 9 year: 2017 ident: pone.0283004.ref020 article-title: Computational approach for deriving cancer progression roadmaps from static sample data publication-title: Nucleic Acids Research – volume-title: Exponential distribution: theory, methods and applications year: 2019 ident: pone.0283004.ref026 doi: 10.1201/9780203756348 – volume: 14 start-page: 971 issue: 6 year: 1977 ident: pone.0283004.ref027 article-title: The Sensitivity of the Matrix Exponential publication-title: SIAM Journal on Numerical Analysis doi: 10.1137/0714065 – volume: 505 start-page: 495 issue: 7484 year: 2014 ident: pone.0283004.ref031 article-title: Discovery and saturation analysis of cancer genes across 21 tumour types publication-title: Nature doi: 10.1038/nature12912 – volume: 25 start-page: 2809 issue: 21 year: 2009 ident: pone.0283004.ref008 article-title: Quantifying cancer progression with conjunctive Bayesian networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp505 – volume: 8 start-page: 17610 issue: 11 year: 2017 ident: pone.0283004.ref036 article-title: Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition publication-title: Oncotarget doi: 10.18632/oncotarget.15381 – volume: 8 start-page: e65773 issue: 6 year: 2013 ident: pone.0283004.ref009 article-title: Learning oncogenetic networks by reducing to mixed integer linear programming publication-title: PloS ONE doi: 10.1371/journal.pone.0065773 – volume: 6 start-page: 37 issue: 1 year: 1999 ident: pone.0283004.ref004 article-title: Inferring tree models for oncogenesis from comparative genome hybridization data publication-title: Journal of Computational Biology doi: 10.1089/cmb.1999.6.37 – volume: 30 start-page: 2456 issue: 17 year: 2014 ident: pone.0283004.ref010 article-title: Inferring the paths of somatic evolution in cancer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu319 – volume: 6 start-page: 309 year: 2015 ident: pone.0283004.ref011 article-title: Defining order and timing of mutations during cancer progression: the TO-DAG probabilistic graphical model publication-title: Frontiers in Genetics doi: 10.3389/fgene.2015.00309 – start-page: 185 year: 2009 ident: pone.0283004.ref013 article-title: Probabilistic theories of causality publication-title: The Oxford handbook of causation – volume: 308 start-page: 183 issue: 1-3 year: 2000 ident: pone.0283004.ref028 article-title: Padé approximation for the exponential of a block triangular matrix publication-title: Linear Algebra and its Applications doi: 10.1016/S0024-3795(00)00042-2 – volume: 64 start-page: e1 issue: 1 year: 2015 ident: pone.0283004.ref040 article-title: Cancer evolution: mathematical models and computational inference publication-title: Systematic Biology doi: 10.1093/sysbio/syu081 – volume: 194 start-page: 23 issue: 4260 year: 1976 ident: pone.0283004.ref001 article-title: The Clonal Evolution of Tumor Cell Populations: Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression publication-title: Science doi: 10.1126/science.959840 – volume: 16 start-page: 447 issue: 3 year: 2020 ident: pone.0283004.ref035 article-title: Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways publication-title: International Journal of Biological Sciences doi: 10.7150/ijbs.38672 – volume: 486 start-page: 353 issue: 7403 year: 2012 ident: pone.0283004.ref034 article-title: Whole-genome analysis informs breast cancer response to aromatase inhibition publication-title: Nature doi: 10.1038/nature11143 – volume: 37 start-page: 547 issue: 5 year: 2019 ident: pone.0283004.ref019 article-title: A comparison of single-cell trajectory inference methods publication-title: Nature Biotechnology doi: 10.1038/s41587-019-0071-9 – start-page: 65 volume-title: Neural networks for perception year: 1992 ident: pone.0283004.ref022 doi: 10.1016/B978-0-12-741252-8.50010-8 – volume: 1839 start-page: 50 issue: 1 year: 2014 ident: pone.0283004.ref037 publication-title: Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development – volume: 22 start-page: 1 issue: 1 year: 2021 ident: pone.0283004.ref024 article-title: Network propagation-based prioritization of long tail genes in 17 cancer types publication-title: Genome Biology doi: 10.1186/s13059-021-02504-x – volume: 5 start-page: 1 issue: 1 year: 2022 ident: pone.0283004.ref039 article-title: A phylogenetic approach to study the evolution of somatic mutational processes in cancer publication-title: Communications Biology doi: 10.1038/s42003-022-03560-0 – volume: 191 start-page: 1953 issue: 11 year: 2005 ident: pone.0283004.ref041 article-title: Estimating HIV evolutionary pathways and the genetic barrier to drug resistance publication-title: The Journal of Infectious Diseases doi: 10.1086/430005 |
SSID | ssj0053866 |
Score | 2.4417632 |
Snippet | Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0283004 |
SubjectTerms | Accumulation Algorithms Back propagation Biology and Life Sciences Breast cancer Breast Neoplasms - genetics Cancer Carcinogenesis Cell Transformation, Neoplastic Computer Simulation DNA methylation Ecology and Environmental Sciences Female Genetic aspects Humans Markov analysis Markov chains Mathematical models Medicine and Health Sciences Methods Modelling Mutation Oncogenes Optimization Performance evaluation Physical Sciences Playgrounds Reproducibility of Results Research and Analysis Methods Statistical analysis Statistical models Temporal variations |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyqsLBQxCAg5pE7_NrSCqFgkQj6LeLMdxWqRVsiK7F349M4kTNahSOXCNv2yyM2PPZ2XmMyEvrPDMFmXIpIosE6XNMy_qPBOWV8bbWiiPDc4fP6njU_HhTJ5dOuoLa8IGeeDBcAeGBSGjzWsmpKiV9RJIia4qGYrKxtiLbUPOGzdTwxoMs1ip1CjHdXGQ_LK_bpu4jxk1TwezjYmo1-ufVuXFetV2V1HOvysnL6Wio9vkVuKQ9HB49x1yIzZ3yE6apR19laSkX98lX7DDo6IX_jcEAm2Gku_uDT1B9cpewRgyF03yVCs6npYSIgUuS1tAQXxhmyP1SbzkHjk9ev_93XGWDlHIgrJ8k8m89GC1oJkxynDP60LECPu-qKPxlcorLrT2HpgXV0Zp8Cjs4JQXwUQwb8Xvk0UDZtslVIQ6BmBcsgTeVUrg5iZaKYSGDbmveVgSPlrUhaQwjgddrFz_2UzDTmMwkEM_uOSHJcmmu9aDwsY1-LforAmL-tj9BYgal6LGXRc1S_IUXe2GZtNplrtDJFhcagaPed4jUCOjwSKcc7_tOnfy-cc_gL59nYFeJlDdgjmCT40P8J9Qe2uG3JshYaaH2fAuBuZolc4xWG2lMlYUcOcYrFcPP5uG8UexsK6J7bbHwAoOaQswD4bYnizLlWVGMrskZhb1M9PPR5qfF71EOSp7WXjlh__DWY_ITQbUEiv_CrVHFptf2_gYqOCmfNLP-j-zMVzo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJn6bCyqIqkUCxKNob5HjOC3SKtk2uxd-fWcSJxBUAdf1JBvPw_6czHxDyDMrHLNZ4ROpAktEYdPEiSpNhOWlcbYSymGB84eP6vBYvF_IRXzh1sa0ymFN7BbqsvH4jnyPgWdJZazIXq_OEuwahV9XYwuNq-QaUpdhSpdejAcuiGWlYrkc19letM7uqqnDLu6raWzPNmxHHWv_uDbPVsumvQx4_pk_-duGdHCT3IhIku73pt8iV0J9i2zFWG3pi0go_fI2-Yx1HiU9dT_BHWjdJ363r-gRclh2PMawf9FIUrWkQ88UHyggWtqAFHgZFjtSFylM7pDjg3ff3h4msZVC4pXl60SmhVPWec2MUYY7XmUiBDj9BR2MK1VacqG1c4C_uDJKg13hHKec8CaEoEp-l8xqUNs2ocJXwQPukgWgr0ICQjfBSiE0HMtdxf2c8EGjuY8849juYpl3H880nDd6BeVohzzaYU6S8apVz7PxD_k3aKxRFlmyux-a85M8Bl1umBcy2LRiQooK5i8B0OqylD4rLUxrTh6jqfO-5HSM9XwfYRaXmsHfPO0kkCmjxlScE7dp2_zo0_f_EPr6ZSL0PApVDajDu1j-AHNCBq6J5M5EEuLdT4a30TEHrbT5r8iAKwdnvXz4yTiMN8X0ujo0m04G1nHYvEDmXu_bo2a5ssxIZufETLx-ovrpSP3jtCMqR34vC498_-_P9YBcZwAdMbMvUztktj7fhIcA9dbFoy6eLwAp51Sv priority: 102 providerName: ProQuest |
Title | Timed hazard networks: Incorporating temporal difference for oncogenetic analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36928529 https://www.proquest.com/docview/2787568941 https://www.proquest.com/docview/2788802191 https://pubmed.ncbi.nlm.nih.gov/PMC10019724 https://doaj.org/article/82c45e90f2454f69a50197dd5c1d9ee6 http://dx.doi.org/10.1371/journal.pone.0283004 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytY5SAkICHTEn8jYTQNrVsSBswKOpb5DjOhlQlpWkl4IG_nbPjRAQVsZc81Oe0Pp_vfq59v0PomSQqkXGmQ8pMEpJMRqEiRRQSiXOhZEGYsgnOZ-fsZErezehsC7U1W70C641bO1tParqcH3z_9uMNLPjXrmoDj9tOB4uqNAc2XjqC0G2ITdwu1TPSnSvA6nanlxa1hCyJsE-m-9dbesHKcfp3nnuwmFf1Jlj69-3KP8LV5Da65XFmcNgYxg7aMuUdtONXch288HTTL--ijzYLJA-u1E8wlqBsroXXr4JTy3DpWI4hugWewmoetBVVtAkA7wYVSIEN2lTIQHmCk3toOhl_Pj4JfaGFUDOJVyGNMsWk0jwRggmscBETY2BvaLgRKmdRjgnnSgE6w0wwDrMOuzymiBbGGJbj-2hQgtp2UUB0YTSgMpoBNsso4HdhJCWEw6ZdFVgPEW41mmrPQm6LYcxTd7TGYTfSKCi185D6eRiisOu1aFg4_iN_ZCerk7Uc2u6DanmZ-iWZikQTamRUJISSAsZPAe7yPKc6ziUMa4ge26lOm4TUzhOkhxaEYcoT-JqnTsLyaJT2os6lWtd1evr-yzWEPl30hJ57oaICdWjlkyNgTJafqye535MEb6B7zbvWMFut1GkCHpkyIUkMPVtj3dz8pGu2L7WX70pTrZ0MeHkIbSDzoLHtTrOYyUTQRA6R6Fl9T_X9lvLrlaMxt-xfEn7y3nW0-BDdTABe2tt_MdtHg9VybR4BHFxlI3SDzzg8xXFsn5O3I7R9ND7_cDFyf7CMnAewz1_j3zYXZJA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UGhAIOCQNutXbCSEyqPq0geCtmhvwXGcFmmVLM2uEPwofiMziRMIqoBLr-tJNp4ZzyOZ-YaQh5obqkepDYV0NOSpjkLD8yjkmmXK6JxLgw3Oe_ty-4i_nYjJEvnR9sJgWWVrE2tDnZUW35FvUNAsIZXmoxezLyFOjcKvq-0IjUYtdty3r5CyVc_Hr0G-jyjdenP4ajv0UwVCKzWbhyJKjdTGxlQpqZhh-Yg7B4mQi50ymYwyxuPYGAhFmFQyhi1CSiMNt8o5JzMG971ALoLjjfBExZMuwQPbIaVvz2PxaMNrw_qsLNw6-vHIj4Nr3V89JaDzBYPZtKzOCnT_rNf8zQFuXSVXfOQabDaqtkyWXHGNLHvbUAVPPID10-vkPfaVZMGJ-Q7qFxRNoXn1LBgjZmaNmwz-MvCgWNOgndFiXQARdFACFWg1NlcGxkOm3CBH58Lkm2RQANtWSMBt7izEeSKFaC8VkBEopwXnsUuZyZkdEtZyNLEe1xzHa0yT-mNdDPlNw6AE5ZB4OQxJ2F01a3A9_kH_EoXV0SIqd_1DeXqc-EOeKGq5cDrKKRc8h_0LCKDjLBN2lGnY1pCsoaiTpsW1sy3JJoZ1TMQU_uZBTYHIHAWW_hybRVUl43cf_4Po4EOP6LEnyktghzW-3QL2hIhfPcrVHiXYF9tbXkHFbLlSJb9OIlzZKuvZy_e7ZbwplvMVrlzUNOA3wFkCza1GtzvOMqmpElQPieppfY_1_ZXi80kNjI54Yhoe-fbfn2uNXNo-3NtNdsf7O3fIZQphK1YVjuQqGcxPF-4uhJnz9F59tgPy6byNyU-hxJGE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqQqEGgYBDuhu_jYRQoVRdCuVZtLfgOE6LtEqWZlcIfhq_jnHiBIIq4NLrziQbj8fzSGa-QeiuZoboOLURF45ELNXjyLB8HDFNM2V0zoTxDc6v9sXuAXsx5dMV9KPthfFlla1NrA11Vlr_jnxEQLO4UJrFozyURbzZ3nky_xL5CVL-S2s7TqNRkT337Sukb9XjyTbs9T1Cdp5_eLYbhQkDkRWaLiI-To3QxkqilFDU0DxmzkFS5KRTJhPjjDIpjYGwhAolJCwX0hthmFXOOZFRuO8ZdFZSoMNZktMu2QM7IkRo1aMyHgXN2JyXhdv0Pn0cRsO1rrCeGND5hcF8VlYnBb1_1m7-5gx3LqILIYrFW43araIVV1xCq8FOVPhBALN-eBm99T0mGT4y30EVcdEUnVeP8MTjZ9YYyuA7cQDImuF2Xot1GKJpXAIXaLhvtMQmwKdcQQenIuSraFCA2NYQZjZ3FmI-nkLkl3LIDpTTnDHpUmpyaoeIthJNbMA496M2Zkn94U5CrtMIKPH7kIR9GKKou2reYHz8g_-p36yO1yN01z-Ux4dJOPCJIpZxp8c5YZzlsH4OwbTMMm7jTMOyhmjDb3XStLt2dibZ8iEe5ZLA39ypOTxKR-H1_dAsqyqZvP74H0zv3_WY7gemvARxWBNaL2BNHv2rx7ne4wRbY3vkNa-YrVSq5NephCtbZT2ZfLsj-5v60r7ClcuaB3wIOE7gudbodidZKjRRnOghUj2t74m-Tyk-H9Ug6R5bTMMjX__7c22gc2BGkpeT_b0b6DyBCNYXGMZiHQ0Wx0t3EyLORXqrPtoYfTptW_ITaNiVug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Timed+hazard+networks%3A+Incorporating+temporal+difference+for+oncogenetic+analysis&rft.jtitle=PloS+one&rft.au=Chen%2C+Jian&rft.date=2023-03-16&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pone.0283004&rft.externalDBID=IOV&rft.externalDocID=A741535724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |