Symmetric cross-entropy multi-threshold color image segmentation based on improved pelican optimization algorithm
To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and...
Saved in:
Published in | PloS one Vol. 18; no. 6; p. e0287573 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
29.06.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm’s search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm’s ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks. |
---|---|
AbstractList | To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm’s search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm’s ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks. To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm's search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm's ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks.To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm's search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm's ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks. |
Audience | Academic |
Author | Zhang, Chuang Wang, Xiao-Xue Fu, Li-Hua Pei, Yue-Han Hou, Hong-Yu |
AuthorAffiliation | 2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China 3 Chao Yang Iron & Steel Construction., Ltd. of An steel Group Corporation, Anshan, China Universidad de Guadalajara, MEXICO 1 School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, China |
AuthorAffiliation_xml | – name: 3 Chao Yang Iron & Steel Construction., Ltd. of An steel Group Corporation, Anshan, China – name: Universidad de Guadalajara, MEXICO – name: 2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China – name: 1 School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, China |
Author_xml | – sequence: 1 givenname: Chuang surname: Zhang fullname: Zhang, Chuang – sequence: 2 givenname: Yue-Han surname: Pei fullname: Pei, Yue-Han – sequence: 3 givenname: Xiao-Xue surname: Wang fullname: Wang, Xiao-Xue – sequence: 4 givenname: Hong-Yu surname: Hou fullname: Hou, Hong-Yu – sequence: 5 givenname: Li-Hua orcidid: 0009-0007-8488-8623 surname: Fu fullname: Fu, Li-Hua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37384625$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk22L1DAQx4uceA_6DUQLguiLrmnSNum9kePwYeHgwFPfhjRNuznSppekh-und3a3K9vjEOmLDtPf_KfzZ-Y0Ouptr6LoZYoWKaHph1s7ul6YxQDpBcKM5pQ8iU7SkuCkwIgcHcTH0an3twjlhBXFs-iYUMKyAucn0d3NuutUcFrG0lnvE9UHZ4d13I0m6CSsnPIra-pYWmNdrDvRqtirtgNOBG37uBJe1TEEuhucvYd4UEZL0cd2CLrTv3eYMK11Oqy659HTRhivXkzvs-jH50_fL78mV9dflpcXV4ksShISXKO6ylRJUI4ky2WBGsVQIYq8ZFVJZU5xKlGZ1QCWiNWowRinKSoFYRUDL86i1zvdwVjPJ7c8x4ykGDrQHIjljqituOWDg-Hcmluh-TZhXcuFC1oaxWlZZDhDhMpMZrQpWUEZbVAtVUWwUgq0Pk7dxqpTkAcbhZmJzr_0esVbe89TRBCII1B4Nyk4ezcqH3invVTGiF7ZcfvjOKcZZRjQNw_Qx8ebqFbABLpvLDSWG1F-QfM8pQiTDKjFIxQ8teq0hN1qNORnBe9nBcAE9Su0YvSeL2--_T97_XPOvj1gV0qYsPLWjJvt8XPw1aHVfz3eLzUA5ztgu9FONVzq3bLCaNqA5XxzQXvT-OaC-HRBUJw9KN7r_7PsD0VdIC8 |
CitedBy_id | crossref_primary_10_1007_s11042_024_19056_4 crossref_primary_10_4018_IJSIR_348970 crossref_primary_10_1093_jcde_qwad095 crossref_primary_10_1371_journal_pone_0306283 crossref_primary_10_3390_electronics12194091 crossref_primary_10_3390_biomimetics9050277 crossref_primary_10_1016_j_iswa_2024_200445 crossref_primary_10_2478_jsiot_2023_0008 |
Cites_doi | 10.1016/j.knosys.2023.110297 10.1038/s41598-022-07137-z 10.1016/j.advengsoft.2016.01.008 10.1016/j.apm.2017.02.015 10.1007/s11554-020-01021-7 10.1016/j.engappai.2022.104960 10.1007/s00500-021-06401-0 10.1016/j.measurement.2022.111414 10.1016/j.conbuildmat.2021.126162 10.1016/j.eswa.2021.116158 10.3390/e25010178 10.3390/s22030855 10.1016/j.eswa.2022.118267 10.1016/j.compbiomed.2022.106075 10.1007/s10462-022-10157-w 10.1016/j.compbiomed.2022.105810 10.1016/j.bspc.2022.103960 10.1016/j.eswa.2022.117118 10.1007/s00521-022-07718-z 10.3390/e24060831 10.1007/s11227-021-04281-7 |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Zhang et al 2023 Zhang et al 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Zhang et al 2023 Zhang et al – notice: 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0287573 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Symmetric cross-entropy multi-threshold image segmentation based on improved pelican optimization algorithm |
EISSN | 1932-6203 |
ExternalDocumentID | 2831269375 oai_doaj_org_article_796424037c4c47f986787f0dceb32eee PMC10309640 A755170234 37384625 10_1371_journal_pone_0287573 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK ESTFP |
ID | FETCH-LOGICAL-c693t-2d0db4e93050c85c60fe806a6598b97c5721c094d2d0908d0f2221109a38b8573 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Nov 05 00:21:01 EDT 2023 Wed Aug 27 01:31:45 EDT 2025 Thu Aug 21 18:37:44 EDT 2025 Fri Jul 11 11:57:05 EDT 2025 Fri Jul 25 11:16:39 EDT 2025 Tue Jun 17 21:23:24 EDT 2025 Tue Jun 10 20:08:52 EDT 2025 Fri Jun 27 05:49:33 EDT 2025 Fri Jun 27 06:10:35 EDT 2025 Thu May 22 21:07:38 EDT 2025 Wed Feb 19 02:22:53 EST 2025 Tue Jul 01 04:17:29 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-2d0db4e93050c85c60fe806a6598b97c5721c094d2d0908d0f2221109a38b8573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0009-0007-8488-8623 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0287573 |
PMID | 37384625 |
PQID | 2831269375 |
PQPubID | 1436336 |
PageCount | e0287573 |
ParticipantIDs | plos_journals_2831269375 doaj_primary_oai_doaj_org_article_796424037c4c47f986787f0dceb32eee pubmedcentral_primary_oai_pubmedcentral_nih_gov_10309640 proquest_miscellaneous_2832574782 proquest_journals_2831269375 gale_infotracmisc_A755170234 gale_infotracacademiconefile_A755170234 gale_incontextgauss_ISR_A755170234 gale_incontextgauss_IOV_A755170234 gale_healthsolutions_A755170234 pubmed_primary_37384625 crossref_citationtrail_10_1371_journal_pone_0287573 crossref_primary_10_1371_journal_pone_0287573 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-29 |
PublicationDateYYYYMMDD | 2023-06-29 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Y Wang (pone.0287573.ref017) 2022; 78 H Houssein E (pone.0287573.ref024) 2022; 149 Laith Abualigah (pone.0287573.ref034); 157 Y Jiang (pone.0287573.ref020) 2023; 25 S Ray (pone.0287573.ref035) Y Li (pone.0287573.ref002) 2022; 198 J Han (pone.0287573.ref008) 2017; 44 I Naruei (pone.0287573.ref031) 2022; 26 D Zhu (pone.0287573.ref012) 2022 G Ma (pone.0287573.ref018) 2022; 113 I Hafez A (pone.0287573.ref027); 2016 T. Wu M (pone.0287573.ref016) 2022; 12 S Chen (pone.0287573.ref001) 2022; 78 P Trojovský (pone.0287573.ref026) 2022; 22 M Hosny K (pone.0287573.ref023) 2023; 35 MohamedAbdelBasset· RedaMohamed· MohamedAbouhawwash, 3 (pone.0287573.ref013) 2022; 55 S Rani B M (pone.0287573.ref007) 2021; 38 M Hilal (pone.0287573.ref015) 2022; 24 Laith Abualigah (pone.0287573.ref033); 376 L Xiao (pone.0287573.ref011) 2022 N Kheradmandi (pone.0287573.ref005) 2022; 321 A Qi (pone.0287573.ref019) 2022; 148 X Li (pone.0287573.ref004) 2021 S Mazouzi (pone.0287573.ref006) 2021; 18 K Fazilov S (pone.0287573.ref010) 2022; 3 R Ahmed (pone.0287573.ref032) 2023 Laith Abualigah (pone.0287573.ref009) 2022 S Mahajan (pone.0287573.ref014) 2022 X Yu (pone.0287573.ref025) 2022; 209 S Mirjalili (pone.0287573.ref028) 2016; 95 G Hussien A (pone.0287573.ref022) 2022 D Chen (pone.0287573.ref021) 2022; 200 A Seyyedabbasi (pone.0287573.ref029) 2022 Laith Abualigah (pone.0287573.ref003) J Xue (pone.0287573.ref030) 2022 |
References_xml | – volume: 157 start-page: 107250 issue: 2021 ident: pone.0287573.ref034 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Computers & Industrial Engineering – start-page: 110297 year: 2023 ident: pone.0287573.ref032 article-title: Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique[J]. publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110297 – volume: 12 start-page: 3095 issue: 1 year: 2022 ident: pone.0287573.ref016 article-title: Confusion matrix and minimum cross-entropy metrics based motion recognition system in the classroom[J] publication-title: Scientific Reports doi: 10.1038/s41598-022-07137-z – start-page: 4217 year: 2021 ident: pone.0287573.ref004 article-title: Pointflow: Flowing semantics through points for aerial image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – volume: 3 start-page: 196 issue: 8 year: 2022 ident: pone.0287573.ref010 article-title: Mammography image segmentation in breast cancer identification using the otsu method[J]. publication-title: Web of Scientist: International Scientific Research Journal – volume: 38 issue: 5 year: 2021 ident: pone.0287573.ref007 article-title: Road Identification Through Efficient Edge Segmentation Based on Morphological Operations[J] publication-title: Traitement du Signal – volume: 95 start-page: 51 year: 2016 ident: pone.0287573.ref028 article-title: The whale optimization algorithm[J]. publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 44 start-page: 588 issue: Apr. year: 2017 ident: pone.0287573.ref008 article-title: A new multi-threshold image segmentation approach using state transition algorithm[J] publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2017.02.015 – volume: 376 start-page: 113609 issue: 2021 ident: pone.0287573.ref033 article-title: The arithmetic optimization algorithm publication-title: Computer methods in applied mechanics and engineering – start-page: 1 year: 2022 ident: pone.0287573.ref012 article-title: Kapur’s entropy underwater image segmentation based on multi-strategy Manta ray foraging optimization[J] publication-title: Multimedia Tools and Applications – volume: 18 start-page: 793 issue: 3) year: 2021 ident: pone.0287573.ref006 article-title: A fast and fully distributed method for region-based image segmentation: Fast distributed region-based image segmentation[J] publication-title: Journal of Real-Time Image Processing doi: 10.1007/s11554-020-01021-7 – start-page: 1 year: 2022 ident: pone.0287573.ref011 article-title: Adaptive trapezoid region intercept histogram based Otsu method for brain MR image segmentation[J]. publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 113 start-page: 104960 year: 2022 ident: pone.0287573.ref018 article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method[J] publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.104960 – volume: 26 start-page: 1279 issue: 3 year: 2022 ident: pone.0287573.ref031 article-title: Hunter–prey optimization: Algorithm and applications[J]. publication-title: Soft Computing doi: 10.1007/s00500-021-06401-0 – volume: 198 start-page: 111414 year: 2022 ident: pone.0287573.ref002 article-title: Remote sensing image segmentation by combining manifold projection and persistent homology[J]. publication-title: Measurement doi: 10.1016/j.measurement.2022.111414 – volume: 321 start-page: 126162 year: 2022 ident: pone.0287573.ref005 article-title: A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J] publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2021.126162 – start-page: 116158 year: 2022 ident: pone.0287573.ref009 article-title: "Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. publication-title: Expert Systems with Applications191 doi: 10.1016/j.eswa.2021.116158 – volume: 25 start-page: 178 issue: 1 year: 2023 ident: pone.0287573.ref020 article-title: Multi-Level Thresholding Image Segmentation Based on Improved Slime Mould Algorithm and Symmetric Cross-Entropy[J]. publication-title: Entropy doi: 10.3390/e25010178 – volume: 22 start-page: 855 issue: 3 year: 2022 ident: pone.0287573.ref026 article-title: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications[J]. publication-title: Sensors doi: 10.3390/s22030855 – start-page: 1 year: 2022 ident: pone.0287573.ref030 article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J] publication-title: The Journal of Supercomputing – volume: 209 start-page: 118267 year: 2022 ident: pone.0287573.ref025 article-title: Ensemble grey wolf Optimizer and its application for image segmentation[J] publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118267 – volume: 149 start-page: 106075 year: 2022 ident: pone.0287573.ref024 article-title: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm[J] publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.106075 – volume: 2016 start-page: 1 ident: pone.0287573.ref027 article-title: Sine cosine optimization algorithm for feature selection[C]//2016 international symposium on innovations in intelligent systems and applications (INISTA) publication-title: IEEE – start-page: 25532 issue: 2021 ident: pone.0287573.ref003 article-title: "Applications, deployments, and integration of internet of drones (iod): a review." publication-title: IEEE Sensors Journal 21.22 – volume: 55 start-page: 6389 issue: 8 year: 2022 ident: pone.0287573.ref013 article-title: a new fusion of wha1e optimizer a1gorithm with kapur s entropy for mu1ti thresho1d image segmentation ana1ysis and va1idations[J]. publication-title: Artificial Intelligence Review doi: 10.1007/s10462-022-10157-w – start-page: 1 year: 2022 ident: pone.0287573.ref029 article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J]. publication-title: Engineering with Computers – volume: 148 start-page: 105810 year: 2022 ident: pone.0287573.ref019 article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation[J] publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2022.105810 – year: 2022 ident: pone.0287573.ref014 article-title: An efficient adaptive salp swarm algorithm using type II fuzzy entropy for multilevel thresholding image segmentation[J]. publication-title: Computational and Mathematical Methods in Medicine, 2022 – volume: 78 start-page: 103960 year: 2022 ident: pone.0287573.ref001 article-title: Combining edge guidance and feature pyramid for medical image segmentation[J]. publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103960 – start-page: 445 volume-title: Superpixel Image Clustering Using Particle Swarm Optimizer for Nucleus Segmentation[M]//Soft Computing for Problem Solving: Proceedings of the SocProS 2022. ident: pone.0287573.ref035 – volume: 200 start-page: 117118 year: 2022 ident: pone.0287573.ref021 article-title: Poplar optimization algorithm: A new meta-heuristic optimization technique for numerical optimization and image segmentation[J] publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117118 – volume: 35 start-page: 855 issue: 1 year: 2023 ident: pone.0287573.ref023 article-title: Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function[J] publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07718-z – volume: 24 start-page: 831 issue: 6 year: 2022 ident: pone.0287573.ref015 article-title: Colored texture analysis fuzzy entropy methods with a dermoscopic application[J]. publication-title: Entropy doi: 10.3390/e24060831 – start-page: 1 year: 2022 ident: pone.0287573.ref022 article-title: Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method[J]. publication-title: Engineering with Computers, – volume: 78 start-page: 11580 issue: 9 year: 2022 ident: pone.0287573.ref017 article-title: An adaptive firefly algorithm for multilevel image thresholding based on minimum cross-entropy[J] publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-04281-7 |
SSID | ssj0053866 |
Score | 2.482205 |
Snippet | To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0287573 |
SubjectTerms | Accuracy Adaptation Algorithms Analysis Asexual reproduction Aviation Biology and Life Sciences Color imagery Computer and Information Sciences Convergence Coronaviruses Ecology and Environmental Sciences Entropy Entropy (Information theory) Evaluation Global optimization Image processing Image segmentation Mathematical optimization Methods Multilevel Optimization Optimization algorithms Performance evaluation Performance measurement Physical Sciences Research and Analysis Methods Statistical analysis Swarm intelligence Trigonometric functions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0eTh2fCyIqiABEqWoNytx7O1Kmweb7KH_nhnHGzWoUjlwi-JJlMzLM8nMN4S8ibSxNq2SEHONkOVgc0VZlGGsWZXFVhrtutK-fuOn5-zLRXZxbdQX1oSN8MAj446wVRIx44Rmmgkrc_CuwkaVhiwwMcag94U9b5dMjT4YrJhz3yiXivjIy-WwaxtzCDuqyEQ624gcXv_klRfduu1vCjn_rpy8thWd3Cf3fAxJj8dn3yN3TPOA7Hkr7ek7DyX9_iH5fXZV1zgzS1P3FCHesO2uqKsjDAcQZI__nyhiV2_oqgbvQnuzrH1HUkNxl6soHKzc1wc47gx-52toC86m9l2ctFgv281quKwfkfOTTz8_noZ-yEKouUyHMKmiqmRGgt1HOs80j6zJI17wTOalFDqDFFFDDlgBoYzyKrIQUSBMaZHmZQ58fEwWDbB1n1AuZMU4ZLw8q5gtWRlLExcplya31hYyIOmO40p7BHIchLFW7reagExkZKBCOSkvp4CE01XdiMBxC_0HFOZEi_jZ7gRolfJapW7TqoC8RFVQYzPq5AXUsYAIU0CcwwLy2lEghkaDRTrLYtv36vP3X_9AdPZjRvTWE9kW2KEL3xgB74TYXDPKgxkleAI9W95Hxd1xpVcQOsYJSFlkcOVOmW9efjUt402x8K4x7dbRgFNnEEcG5Mmo-xNnERSLQf4ckHxmFTPWz1ea1aWDMMfhdiCC6On_ENYzcjeB98cCvkQekMWw2ZrnECoO5QvnFf4AQ4BpCQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdTWjAICTikzcOx4xMqiKogARKlaG9R4tjblTaPbrKH_vvOON5AUAXcongSJTOelz3zmZBXgdLGxGXkY67hsxR0Li_ywg8VK5PQSK1sV9qXr_z0nH2eJ3O34Na5ssqtTbSGumwUrpEfgRsMIw7ONHnXXvp4ahTurrojNG6TOwhdhiVdYj4mXKDLnLt2uViER046h21T60PwqyIR8cQdWdT-0TbP2lXT3RR4_lk_-ZtDOrlP7rlIkh4Pot8ht3T9gOw4Xe3oGwco_fYhuTy7qio8OUtR-xU-vrBpr6itJvR7EGeHu1AUEazXdFmBjaGdXlSuL6mm6OtKChdLuwYB163G1b6aNmByKtfLSfPVAljWX1SPyPnJxx8fTn131IKvgKe9H5VBWTAtQfsDlSaKB0anAc95ItNCCpVAoqggEyyBUAZpGRiIKxCsNI_TIgU-PiazGti6SygXsmQc8l6elMwUrAilDvOYS50aY3LpkXjL8Uw5HHI8DmOV2c01AfnIwMAM5ZQ5OXnEH59qBxyOf9C_R2GOtIiibW8060XmlDLDNlzEIxSKKSaMTMFzCxOAXIs40lp75DlOhWxoSR1tQXYsIM4UEO0wj7y0FIikUWOpziLfdF326dvP_yA6-z4heu2ITAPsULlrj4B_QoSuCeX-hBLsgZoM7-LE3XKly35pDjy5ncw3D78Yh_GlWH5X62ZjacC0M4gmPfJkmPsjZxEai0EW7ZF0ohUT1k9H6uWFBTLHI-5ABMHe37_rKbkbwZ9hgV4k98msX2_0AYSCffHM6vs1SmJgrA priority: 102 providerName: ProQuest |
Title | Symmetric cross-entropy multi-threshold color image segmentation based on improved pelican optimization algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37384625 https://www.proquest.com/docview/2831269375 https://www.proquest.com/docview/2832574782 https://pubmed.ncbi.nlm.nih.gov/PMC10309640 https://doaj.org/article/796424037c4c47f986787f0dceb32eee http://dx.doi.org/10.1371/journal.pone.0287573 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYBSDkICHVPlw4vgBoW1qGUgbaKOob1Hi2F2lNumaVqIv_O3cuW5EUCd4iaL4HCV3vvOd7fsdIW88qbQOi8DFWMNlCehclme560tWRL4WSpqstIvL-HzIvoyi0R7Z1my1DKx3hnZYT2q4mPZ-3q4_gsJ_MFUbuL_t1JtXperBfMkjHu6TA5ibOKrqBWv2FUC749gm0N3VszVBGRz_xlp35tOq3uWK_n2i8o8pavCA3Le-JT3ZDIZDsqfKh-TQam9N31mI6fePyO31ejbDWlqSmq9w8YXVfE3N-UJ3CQKucV-KIqb1gk5mYHVorcYzm6lUUpz9Cgo3E7MqAfdzhet_Ja3ACM1sdifNpuNqMVnezB6T4aD__ezctcUXXBmLcOkGhVfkTAmwB55MIhl7WiVenMWRSHLBZQSho4TYsABC4SWFp8HTQPjSLEzyBPj4hHRKYOsRoTEXBYshEo6jgumc5b5QfhbGQiVa60w4JNxyPJUWmRwLZExTs93GIULZMDBFOaVWTg5xm17zDTLHP-hPUZgNLeJqmwfVYpxaNU0xMRcRCrlkknEtEpjLufZArnkYKKUc8hKHQrpJUm2sQ3rCwfPk4P8wh7w2FIitUeLhnXG2quv089cf_0F0fdUiemuJdAXskJlNmIB_QsyuFuVxixIshGw1H-HA3XKlTsGl9AOQMo-g53Yw725-1TTjS_FAXqmqlaEBY8_Av3TI083YbziLYFkM4mqHJC2taLG-3VJObgy0ORa9AxF4z-7-5OfkXgB_hcf1AnFMOsvFSr0Ax3CZd8k-H3G4Jmc-XgefuuTgtH_57aprllq6xhbg9Vf_N1EuaxA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0CrLA7wgytVAoQaBgIe0OZw4eUCoHFWXHki0RfsWEsferrQ5utkV2p_iG5nxOoGgCnjpWxSPrWRmPIc9ByHPHSGV8nPPRl_DZhHsuTRLM9sVLA9cFUuhs9KOjsP9M_ZpFIzWyI82FwbDKluZqAV1Xgk8I98BNeh6ISjT4G19YWPXKLxdbVtorNjiQC6_g8vWvBl-APq-8Ly9j6fv923TVcAWMH1ue7mTZ0zGwOiOiAIROkpGTpiGQRxlMRcB-EQCnJ4cAGMnyh0FKhTrcqZ-lEUB92Hda-Q6KF4HdxQfdQ4eyI4wNOl5Pnd3DDds11Upt0GP84D7PfWnuwR0umBQT6vmMkP3z3jN3xTg3m1yy1iudHfFautkTZZ3yLqRDQ19ZQpYv75LLk6WRYGdugTVX2HjglW9pDp60Z4D-zR460WxYvaMTgqQabSR48LkQZUUdWtO4WGizzzguZZ4uljSCkRcYXJHaTodA4nm58U9cnYlRLhPBiWgdYPQkMc5C8HPDoOcqYxlbizd1A9jGSml0tgifovxRJi659h-Y5royzwO_s8KgQnSKTF0sojdzapXdT_-Af8OidnBYtVu_aKajRMjBBJM-8X6h1wwwbiKI7AUuHKArpnvSSktsoWskKxSYDvZk-xysGs5WFfMIs80BFbuKDE0aJwumiYZfv76H0AnX3pALw2QqgAdIjXpGPBPWBGsB7nZgwT5I3rDG8i4LVaa5NdOhZktM18-_LQbxkUx3K-U1ULDgCphYL1a5MGK9zvMYikuBl67RaLeruihvj9STs514XRsqQckcB7-_bu2yI3906PD5HB4fPCI3PTgLzE40Is3yWA-W8jHYIbOsyd671Py7aqFzU-EUZsP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWChLggyquGQhcEAg5u_Fh77QNChRI1FAqiLcrN2OvdNFL8aJwI5df4OmbstcGoAi69Wd7xyp73rOdByFNLSKXc1DEx1jBZADIXJ3Fi2oKlnq1CKeqqtI9H_sEpez_xJhvkR1sLg2mVrU6sFXVaCDwjH4IZtB0fjKk3VDot4vP-6HV5buIEKfzT2o7TaFjkUK6_Q_hWvRrvA62fOc7o3cnbA1NPGDAFbLU0ndRKEyZDYHpLBJ7wLSUDy499LwySkAsP4iMBAVAKgKEVpJYCc4o9OmM3SAKPu7DvFXKVu56NMsYnXbAHesT3damey-2h5ozdssjlLth07nG3ZwrriQGdXRiU86K6yOn9M3fzN2M4ukluaC-W7jVst0k2ZH6LbGo9UdEXupn1y9vk_HidZTi1S9D6LUzcsCjXtM5kNJfAShX-AaPYPXtBZxnoN1rJaaZronKKdjalcDGrzz_gupR40pjTAtRdputIaTyfAomWZ9kdcnopRLhLBjmgdYtQn4cp8yHm9r2UqYQldijt2PVDGSil4tAgbovxSOge6DiKYx7VP_Y4xEINAiOkU6TpZBCze6pseoD8A_4NErODxQ7e9Y1iMY20QoiwBBh7IXLBBOMqDMBr4MoCuiauI6U0yA6yQtSUw3Z6KNrj4ONy8LSYQZ7UENjFI0d5mMarqorGn77-B9Dxlx7Qcw2kCkCHiHVpBnwTdgfrQW73IEEXid7yFjJui5Uq-iW18GTLzBcvP-6WcVNM_ctlsaphwKww8GQNcq_h_Q6z2JaLQQRvkKAnFT3U91fy2VndRB3H6wEJrPt_f68dcg3UTPRhfHT4gFx34CMxT9AJt8lguVjJh-CRLpNHtehT8u2ydc1P1iSfRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetric+cross-entropy+multi-threshold+color+image+segmentation+based+on+improved+pelican+optimization+algorithm&rft.jtitle=PloS+one&rft.au=Zhang%2C+Chuang&rft.au=Yue-Han%2C+Pei&rft.au=Xiao-Xue%2C+Wang&rft.au=Hong-Yu%2C+Hou&rft.date=2023-06-29&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0287573&rft.externalDocID=2831269375 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |