Symmetric cross-entropy multi-threshold color image segmentation based on improved pelican optimization algorithm

To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 6; p. e0287573
Main Authors Zhang, Chuang, Pei, Yue-Han, Wang, Xiao-Xue, Hou, Hong-Yu, Fu, Li-Hua
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.06.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm’s search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm’s ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks.
AbstractList To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm’s search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm’s ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks.
To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm's search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm's ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks.To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel thresholding image segmentation method (MSIPOA) with multi-strategy improved pelican optimization algorithm is proposed for global optimization and image segmentation tasks. First, Sine chaotic mapping is used to improve the quality and distribution uniformity of the initial population. A spiral search mechanism incorporating a sine cosine optimization algorithm improves the algorithm's search diversity, local pioneering ability, and convergence accuracy. A levy flight strategy further improves the algorithm's ability to jump out of local minima. In this paper, 12 benchmark test functions and 8 other newer swarm intelligence algorithms are compared in terms of convergence speed and convergence accuracy to evaluate the performance of the MSIPOA algorithm. By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. According to different performance metrics and Fridman test, MSIPOA algorithm outperforms similar algorithms in global optimization and image segmentation, and the symmetric cross entropy of MSIPOA algorithm for multilevel thresholding image segmentation method can be effectively applied to multilevel thresholding image segmentation tasks.
Audience Academic
Author Zhang, Chuang
Wang, Xiao-Xue
Fu, Li-Hua
Pei, Yue-Han
Hou, Hong-Yu
AuthorAffiliation 2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China
3 Chao Yang Iron & Steel Construction., Ltd. of An steel Group Corporation, Anshan, China
Universidad de Guadalajara, MEXICO
1 School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, China
AuthorAffiliation_xml – name: 3 Chao Yang Iron & Steel Construction., Ltd. of An steel Group Corporation, Anshan, China
– name: Universidad de Guadalajara, MEXICO
– name: 2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China
– name: 1 School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, China
Author_xml – sequence: 1
  givenname: Chuang
  surname: Zhang
  fullname: Zhang, Chuang
– sequence: 2
  givenname: Yue-Han
  surname: Pei
  fullname: Pei, Yue-Han
– sequence: 3
  givenname: Xiao-Xue
  surname: Wang
  fullname: Wang, Xiao-Xue
– sequence: 4
  givenname: Hong-Yu
  surname: Hou
  fullname: Hou, Hong-Yu
– sequence: 5
  givenname: Li-Hua
  orcidid: 0009-0007-8488-8623
  surname: Fu
  fullname: Fu, Li-Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37384625$$D View this record in MEDLINE/PubMed
BookMark eNqNk22L1DAQx4uceA_6DUQLguiLrmnSNum9kePwYeHgwFPfhjRNuznSppekh-und3a3K9vjEOmLDtPf_KfzZ-Y0Ouptr6LoZYoWKaHph1s7ul6YxQDpBcKM5pQ8iU7SkuCkwIgcHcTH0an3twjlhBXFs-iYUMKyAucn0d3NuutUcFrG0lnvE9UHZ4d13I0m6CSsnPIra-pYWmNdrDvRqtirtgNOBG37uBJe1TEEuhucvYd4UEZL0cd2CLrTv3eYMK11Oqy659HTRhivXkzvs-jH50_fL78mV9dflpcXV4ksShISXKO6ylRJUI4ky2WBGsVQIYq8ZFVJZU5xKlGZ1QCWiNWowRinKSoFYRUDL86i1zvdwVjPJ7c8x4ykGDrQHIjljqituOWDg-Hcmluh-TZhXcuFC1oaxWlZZDhDhMpMZrQpWUEZbVAtVUWwUgq0Pk7dxqpTkAcbhZmJzr_0esVbe89TRBCII1B4Nyk4ezcqH3invVTGiF7ZcfvjOKcZZRjQNw_Qx8ebqFbABLpvLDSWG1F-QfM8pQiTDKjFIxQ8teq0hN1qNORnBe9nBcAE9Su0YvSeL2--_T97_XPOvj1gV0qYsPLWjJvt8XPw1aHVfz3eLzUA5ztgu9FONVzq3bLCaNqA5XxzQXvT-OaC-HRBUJw9KN7r_7PsD0VdIC8
CitedBy_id crossref_primary_10_1007_s11042_024_19056_4
crossref_primary_10_4018_IJSIR_348970
crossref_primary_10_1093_jcde_qwad095
crossref_primary_10_1371_journal_pone_0306283
crossref_primary_10_3390_electronics12194091
crossref_primary_10_3390_biomimetics9050277
crossref_primary_10_1016_j_iswa_2024_200445
crossref_primary_10_2478_jsiot_2023_0008
Cites_doi 10.1016/j.knosys.2023.110297
10.1038/s41598-022-07137-z
10.1016/j.advengsoft.2016.01.008
10.1016/j.apm.2017.02.015
10.1007/s11554-020-01021-7
10.1016/j.engappai.2022.104960
10.1007/s00500-021-06401-0
10.1016/j.measurement.2022.111414
10.1016/j.conbuildmat.2021.126162
10.1016/j.eswa.2021.116158
10.3390/e25010178
10.3390/s22030855
10.1016/j.eswa.2022.118267
10.1016/j.compbiomed.2022.106075
10.1007/s10462-022-10157-w
10.1016/j.compbiomed.2022.105810
10.1016/j.bspc.2022.103960
10.1016/j.eswa.2022.117118
10.1007/s00521-022-07718-z
10.3390/e24060831
10.1007/s11227-021-04281-7
ContentType Journal Article
Copyright Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Zhang et al 2023 Zhang et al
2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Zhang et al 2023 Zhang et al
– notice: 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0287573
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Symmetric cross-entropy multi-threshold image segmentation based on improved pelican optimization algorithm
EISSN 1932-6203
ExternalDocumentID 2831269375
oai_doaj_org_article_796424037c4c47f986787f0dceb32eee
PMC10309640
A755170234
37384625
10_1371_journal_pone_0287573
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ESTFP
ID FETCH-LOGICAL-c693t-2d0db4e93050c85c60fe806a6598b97c5721c094d2d0908d0f2221109a38b8573
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:21:01 EDT 2023
Wed Aug 27 01:31:45 EDT 2025
Thu Aug 21 18:37:44 EDT 2025
Fri Jul 11 11:57:05 EDT 2025
Fri Jul 25 11:16:39 EDT 2025
Tue Jun 17 21:23:24 EDT 2025
Tue Jun 10 20:08:52 EDT 2025
Fri Jun 27 05:49:33 EDT 2025
Fri Jun 27 06:10:35 EDT 2025
Thu May 22 21:07:38 EDT 2025
Wed Feb 19 02:22:53 EST 2025
Tue Jul 01 04:17:29 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-2d0db4e93050c85c60fe806a6598b97c5721c094d2d0908d0f2221109a38b8573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0007-8488-8623
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0287573
PMID 37384625
PQID 2831269375
PQPubID 1436336
PageCount e0287573
ParticipantIDs plos_journals_2831269375
doaj_primary_oai_doaj_org_article_796424037c4c47f986787f0dceb32eee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10309640
proquest_miscellaneous_2832574782
proquest_journals_2831269375
gale_infotracmisc_A755170234
gale_infotracacademiconefile_A755170234
gale_incontextgauss_ISR_A755170234
gale_incontextgauss_IOV_A755170234
gale_healthsolutions_A755170234
pubmed_primary_37384625
crossref_citationtrail_10_1371_journal_pone_0287573
crossref_primary_10_1371_journal_pone_0287573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-29
PublicationDateYYYYMMDD 2023-06-29
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Y Wang (pone.0287573.ref017) 2022; 78
H Houssein E (pone.0287573.ref024) 2022; 149
Laith Abualigah (pone.0287573.ref034); 157
Y Jiang (pone.0287573.ref020) 2023; 25
S Ray (pone.0287573.ref035)
Y Li (pone.0287573.ref002) 2022; 198
J Han (pone.0287573.ref008) 2017; 44
I Naruei (pone.0287573.ref031) 2022; 26
D Zhu (pone.0287573.ref012) 2022
G Ma (pone.0287573.ref018) 2022; 113
I Hafez A (pone.0287573.ref027); 2016
T. Wu M (pone.0287573.ref016) 2022; 12
S Chen (pone.0287573.ref001) 2022; 78
P Trojovský (pone.0287573.ref026) 2022; 22
M Hosny K (pone.0287573.ref023) 2023; 35
MohamedAbdelBasset· RedaMohamed· MohamedAbouhawwash, 3 (pone.0287573.ref013) 2022; 55
S Rani B M (pone.0287573.ref007) 2021; 38
M Hilal (pone.0287573.ref015) 2022; 24
Laith Abualigah (pone.0287573.ref033); 376
L Xiao (pone.0287573.ref011) 2022
N Kheradmandi (pone.0287573.ref005) 2022; 321
A Qi (pone.0287573.ref019) 2022; 148
X Li (pone.0287573.ref004) 2021
S Mazouzi (pone.0287573.ref006) 2021; 18
K Fazilov S (pone.0287573.ref010) 2022; 3
R Ahmed (pone.0287573.ref032) 2023
Laith Abualigah (pone.0287573.ref009) 2022
S Mahajan (pone.0287573.ref014) 2022
X Yu (pone.0287573.ref025) 2022; 209
S Mirjalili (pone.0287573.ref028) 2016; 95
G Hussien A (pone.0287573.ref022) 2022
D Chen (pone.0287573.ref021) 2022; 200
A Seyyedabbasi (pone.0287573.ref029) 2022
Laith Abualigah (pone.0287573.ref003)
J Xue (pone.0287573.ref030) 2022
References_xml – volume: 157
  start-page: 107250
  issue: 2021
  ident: pone.0287573.ref034
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
– start-page: 110297
  year: 2023
  ident: pone.0287573.ref032
  article-title: Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique[J].
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110297
– volume: 12
  start-page: 3095
  issue: 1
  year: 2022
  ident: pone.0287573.ref016
  article-title: Confusion matrix and minimum cross-entropy metrics based motion recognition system in the classroom[J]
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-07137-z
– start-page: 4217
  year: 2021
  ident: pone.0287573.ref004
  article-title: Pointflow: Flowing semantics through points for aerial image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
– volume: 3
  start-page: 196
  issue: 8
  year: 2022
  ident: pone.0287573.ref010
  article-title: Mammography image segmentation in breast cancer identification using the otsu method[J].
  publication-title: Web of Scientist: International Scientific Research Journal
– volume: 38
  issue: 5
  year: 2021
  ident: pone.0287573.ref007
  article-title: Road Identification Through Efficient Edge Segmentation Based on Morphological Operations[J]
  publication-title: Traitement du Signal
– volume: 95
  start-page: 51
  year: 2016
  ident: pone.0287573.ref028
  article-title: The whale optimization algorithm[J].
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 44
  start-page: 588
  issue: Apr.
  year: 2017
  ident: pone.0287573.ref008
  article-title: A new multi-threshold image segmentation approach using state transition algorithm[J]
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2017.02.015
– volume: 376
  start-page: 113609
  issue: 2021
  ident: pone.0287573.ref033
  article-title: The arithmetic optimization algorithm
  publication-title: Computer methods in applied mechanics and engineering
– start-page: 1
  year: 2022
  ident: pone.0287573.ref012
  article-title: Kapur’s entropy underwater image segmentation based on multi-strategy Manta ray foraging optimization[J]
  publication-title: Multimedia Tools and Applications
– volume: 18
  start-page: 793
  issue: 3)
  year: 2021
  ident: pone.0287573.ref006
  article-title: A fast and fully distributed method for region-based image segmentation: Fast distributed region-based image segmentation[J]
  publication-title: Journal of Real-Time Image Processing
  doi: 10.1007/s11554-020-01021-7
– start-page: 1
  year: 2022
  ident: pone.0287573.ref011
  article-title: Adaptive trapezoid region intercept histogram based Otsu method for brain MR image segmentation[J].
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 113
  start-page: 104960
  year: 2022
  ident: pone.0287573.ref018
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method[J]
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.104960
– volume: 26
  start-page: 1279
  issue: 3
  year: 2022
  ident: pone.0287573.ref031
  article-title: Hunter–prey optimization: Algorithm and applications[J].
  publication-title: Soft Computing
  doi: 10.1007/s00500-021-06401-0
– volume: 198
  start-page: 111414
  year: 2022
  ident: pone.0287573.ref002
  article-title: Remote sensing image segmentation by combining manifold projection and persistent homology[J].
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111414
– volume: 321
  start-page: 126162
  year: 2022
  ident: pone.0287573.ref005
  article-title: A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J]
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2021.126162
– start-page: 116158
  year: 2022
  ident: pone.0287573.ref009
  article-title: "Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer.
  publication-title: Expert Systems with Applications191
  doi: 10.1016/j.eswa.2021.116158
– volume: 25
  start-page: 178
  issue: 1
  year: 2023
  ident: pone.0287573.ref020
  article-title: Multi-Level Thresholding Image Segmentation Based on Improved Slime Mould Algorithm and Symmetric Cross-Entropy[J].
  publication-title: Entropy
  doi: 10.3390/e25010178
– volume: 22
  start-page: 855
  issue: 3
  year: 2022
  ident: pone.0287573.ref026
  article-title: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications[J].
  publication-title: Sensors
  doi: 10.3390/s22030855
– start-page: 1
  year: 2022
  ident: pone.0287573.ref030
  article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]
  publication-title: The Journal of Supercomputing
– volume: 209
  start-page: 118267
  year: 2022
  ident: pone.0287573.ref025
  article-title: Ensemble grey wolf Optimizer and its application for image segmentation[J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118267
– volume: 149
  start-page: 106075
  year: 2022
  ident: pone.0287573.ref024
  article-title: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm[J]
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.106075
– volume: 2016
  start-page: 1
  ident: pone.0287573.ref027
  article-title: Sine cosine optimization algorithm for feature selection[C]//2016 international symposium on innovations in intelligent systems and applications (INISTA)
  publication-title: IEEE
– start-page: 25532
  issue: 2021
  ident: pone.0287573.ref003
  article-title: "Applications, deployments, and integration of internet of drones (iod): a review."
  publication-title: IEEE Sensors Journal 21.22
– volume: 55
  start-page: 6389
  issue: 8
  year: 2022
  ident: pone.0287573.ref013
  article-title: a new fusion of wha1e optimizer a1gorithm with kapur s entropy for mu1ti thresho1d image segmentation ana1ysis and va1idations[J].
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-022-10157-w
– start-page: 1
  year: 2022
  ident: pone.0287573.ref029
  article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J].
  publication-title: Engineering with Computers
– volume: 148
  start-page: 105810
  year: 2022
  ident: pone.0287573.ref019
  article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation[J]
  publication-title: Computers in biology and medicine
  doi: 10.1016/j.compbiomed.2022.105810
– year: 2022
  ident: pone.0287573.ref014
  article-title: An efficient adaptive salp swarm algorithm using type II fuzzy entropy for multilevel thresholding image segmentation[J].
  publication-title: Computational and Mathematical Methods in Medicine, 2022
– volume: 78
  start-page: 103960
  year: 2022
  ident: pone.0287573.ref001
  article-title: Combining edge guidance and feature pyramid for medical image segmentation[J].
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103960
– start-page: 445
  volume-title: Superpixel Image Clustering Using Particle Swarm Optimizer for Nucleus Segmentation[M]//Soft Computing for Problem Solving: Proceedings of the SocProS 2022.
  ident: pone.0287573.ref035
– volume: 200
  start-page: 117118
  year: 2022
  ident: pone.0287573.ref021
  article-title: Poplar optimization algorithm: A new meta-heuristic optimization technique for numerical optimization and image segmentation[J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117118
– volume: 35
  start-page: 855
  issue: 1
  year: 2023
  ident: pone.0287573.ref023
  article-title: Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function[J]
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07718-z
– volume: 24
  start-page: 831
  issue: 6
  year: 2022
  ident: pone.0287573.ref015
  article-title: Colored texture analysis fuzzy entropy methods with a dermoscopic application[J].
  publication-title: Entropy
  doi: 10.3390/e24060831
– start-page: 1
  year: 2022
  ident: pone.0287573.ref022
  article-title: Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method[J].
  publication-title: Engineering with Computers,
– volume: 78
  start-page: 11580
  issue: 9
  year: 2022
  ident: pone.0287573.ref017
  article-title: An adaptive firefly algorithm for multilevel image thresholding based on minimum cross-entropy[J]
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-04281-7
SSID ssj0053866
Score 2.482205
Snippet To address the problems of low accuracy and slow convergence of traditional multilevel image segmentation methods, a symmetric cross-entropy multilevel...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0287573
SubjectTerms Accuracy
Adaptation
Algorithms
Analysis
Asexual reproduction
Aviation
Biology and Life Sciences
Color imagery
Computer and Information Sciences
Convergence
Coronaviruses
Ecology and Environmental Sciences
Entropy
Entropy (Information theory)
Evaluation
Global optimization
Image processing
Image segmentation
Mathematical optimization
Methods
Multilevel
Optimization
Optimization algorithms
Performance evaluation
Performance measurement
Physical Sciences
Research and Analysis Methods
Statistical analysis
Swarm intelligence
Trigonometric functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0eTh2fCyIqiABEqWoNytx7O1Kmweb7KH_nhnHGzWoUjlwi-JJlMzLM8nMN4S8ibSxNq2SEHONkOVgc0VZlGGsWZXFVhrtutK-fuOn5-zLRXZxbdQX1oSN8MAj446wVRIx44Rmmgkrc_CuwkaVhiwwMcag94U9b5dMjT4YrJhz3yiXivjIy-WwaxtzCDuqyEQ624gcXv_klRfduu1vCjn_rpy8thWd3Cf3fAxJj8dn3yN3TPOA7Hkr7ek7DyX9_iH5fXZV1zgzS1P3FCHesO2uqKsjDAcQZI__nyhiV2_oqgbvQnuzrH1HUkNxl6soHKzc1wc47gx-52toC86m9l2ctFgv281quKwfkfOTTz8_noZ-yEKouUyHMKmiqmRGgt1HOs80j6zJI17wTOalFDqDFFFDDlgBoYzyKrIQUSBMaZHmZQ58fEwWDbB1n1AuZMU4ZLw8q5gtWRlLExcplya31hYyIOmO40p7BHIchLFW7reagExkZKBCOSkvp4CE01XdiMBxC_0HFOZEi_jZ7gRolfJapW7TqoC8RFVQYzPq5AXUsYAIU0CcwwLy2lEghkaDRTrLYtv36vP3X_9AdPZjRvTWE9kW2KEL3xgB74TYXDPKgxkleAI9W95Hxd1xpVcQOsYJSFlkcOVOmW9efjUt402x8K4x7dbRgFNnEEcG5Mmo-xNnERSLQf4ckHxmFTPWz1ea1aWDMMfhdiCC6On_ENYzcjeB98cCvkQekMWw2ZrnECoO5QvnFf4AQ4BpCQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdTWjAICTikzcOx4xMqiKogARKlaG9R4tjblTaPbrKH_vvOON5AUAXcongSJTOelz3zmZBXgdLGxGXkY67hsxR0Li_ywg8VK5PQSK1sV9qXr_z0nH2eJ3O34Na5ssqtTbSGumwUrpEfgRsMIw7ONHnXXvp4ahTurrojNG6TOwhdhiVdYj4mXKDLnLt2uViER046h21T60PwqyIR8cQdWdT-0TbP2lXT3RR4_lk_-ZtDOrlP7rlIkh4Pot8ht3T9gOw4Xe3oGwco_fYhuTy7qio8OUtR-xU-vrBpr6itJvR7EGeHu1AUEazXdFmBjaGdXlSuL6mm6OtKChdLuwYB163G1b6aNmByKtfLSfPVAljWX1SPyPnJxx8fTn131IKvgKe9H5VBWTAtQfsDlSaKB0anAc95ItNCCpVAoqggEyyBUAZpGRiIKxCsNI_TIgU-PiazGti6SygXsmQc8l6elMwUrAilDvOYS50aY3LpkXjL8Uw5HHI8DmOV2c01AfnIwMAM5ZQ5OXnEH59qBxyOf9C_R2GOtIiibW8060XmlDLDNlzEIxSKKSaMTMFzCxOAXIs40lp75DlOhWxoSR1tQXYsIM4UEO0wj7y0FIikUWOpziLfdF326dvP_yA6-z4heu2ITAPsULlrj4B_QoSuCeX-hBLsgZoM7-LE3XKly35pDjy5ncw3D78Yh_GlWH5X62ZjacC0M4gmPfJkmPsjZxEai0EW7ZF0ohUT1k9H6uWFBTLHI-5ABMHe37_rKbkbwZ9hgV4k98msX2_0AYSCffHM6vs1SmJgrA
  priority: 102
  providerName: ProQuest
Title Symmetric cross-entropy multi-threshold color image segmentation based on improved pelican optimization algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/37384625
https://www.proquest.com/docview/2831269375
https://www.proquest.com/docview/2832574782
https://pubmed.ncbi.nlm.nih.gov/PMC10309640
https://doaj.org/article/796424037c4c47f986787f0dceb32eee
http://dx.doi.org/10.1371/journal.pone.0287573
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYBSDkICHVPlw4vgBoW1qGUgbaKOob1Hi2F2lNumaVqIv_O3cuW5EUCd4iaL4HCV3vvOd7fsdIW88qbQOi8DFWMNlCehclme560tWRL4WSpqstIvL-HzIvoyi0R7Z1my1DKx3hnZYT2q4mPZ-3q4_gsJ_MFUbuL_t1JtXperBfMkjHu6TA5ibOKrqBWv2FUC749gm0N3VszVBGRz_xlp35tOq3uWK_n2i8o8pavCA3Le-JT3ZDIZDsqfKh-TQam9N31mI6fePyO31ejbDWlqSmq9w8YXVfE3N-UJ3CQKucV-KIqb1gk5mYHVorcYzm6lUUpz9Cgo3E7MqAfdzhet_Ja3ACM1sdifNpuNqMVnezB6T4aD__ezctcUXXBmLcOkGhVfkTAmwB55MIhl7WiVenMWRSHLBZQSho4TYsABC4SWFp8HTQPjSLEzyBPj4hHRKYOsRoTEXBYshEo6jgumc5b5QfhbGQiVa60w4JNxyPJUWmRwLZExTs93GIULZMDBFOaVWTg5xm17zDTLHP-hPUZgNLeJqmwfVYpxaNU0xMRcRCrlkknEtEpjLufZArnkYKKUc8hKHQrpJUm2sQ3rCwfPk4P8wh7w2FIitUeLhnXG2quv089cf_0F0fdUiemuJdAXskJlNmIB_QsyuFuVxixIshGw1H-HA3XKlTsGl9AOQMo-g53Yw725-1TTjS_FAXqmqlaEBY8_Av3TI083YbziLYFkM4mqHJC2taLG-3VJObgy0ORa9AxF4z-7-5OfkXgB_hcf1AnFMOsvFSr0Ax3CZd8k-H3G4Jmc-XgefuuTgtH_57aprllq6xhbg9Vf_N1EuaxA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0CrLA7wgytVAoQaBgIe0OZw4eUCoHFWXHki0RfsWEsferrQ5utkV2p_iG5nxOoGgCnjpWxSPrWRmPIc9ByHPHSGV8nPPRl_DZhHsuTRLM9sVLA9cFUuhs9KOjsP9M_ZpFIzWyI82FwbDKluZqAV1Xgk8I98BNeh6ISjT4G19YWPXKLxdbVtorNjiQC6_g8vWvBl-APq-8Ly9j6fv923TVcAWMH1ue7mTZ0zGwOiOiAIROkpGTpiGQRxlMRcB-EQCnJ4cAGMnyh0FKhTrcqZ-lEUB92Hda-Q6KF4HdxQfdQ4eyI4wNOl5Pnd3DDds11Upt0GP84D7PfWnuwR0umBQT6vmMkP3z3jN3xTg3m1yy1iudHfFautkTZZ3yLqRDQ19ZQpYv75LLk6WRYGdugTVX2HjglW9pDp60Z4D-zR460WxYvaMTgqQabSR48LkQZUUdWtO4WGizzzguZZ4uljSCkRcYXJHaTodA4nm58U9cnYlRLhPBiWgdYPQkMc5C8HPDoOcqYxlbizd1A9jGSml0tgifovxRJi659h-Y5royzwO_s8KgQnSKTF0sojdzapXdT_-Af8OidnBYtVu_aKajRMjBBJM-8X6h1wwwbiKI7AUuHKArpnvSSktsoWskKxSYDvZk-xysGs5WFfMIs80BFbuKDE0aJwumiYZfv76H0AnX3pALw2QqgAdIjXpGPBPWBGsB7nZgwT5I3rDG8i4LVaa5NdOhZktM18-_LQbxkUx3K-U1ULDgCphYL1a5MGK9zvMYikuBl67RaLeruihvj9STs514XRsqQckcB7-_bu2yI3906PD5HB4fPCI3PTgLzE40Is3yWA-W8jHYIbOsyd671Py7aqFzU-EUZsP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWChLggyquGQhcEAg5u_Fh77QNChRI1FAqiLcrN2OvdNFL8aJwI5df4OmbstcGoAi69Wd7xyp73rOdByFNLSKXc1DEx1jBZADIXJ3Fi2oKlnq1CKeqqtI9H_sEpez_xJhvkR1sLg2mVrU6sFXVaCDwjH4IZtB0fjKk3VDot4vP-6HV5buIEKfzT2o7TaFjkUK6_Q_hWvRrvA62fOc7o3cnbA1NPGDAFbLU0ndRKEyZDYHpLBJ7wLSUDy499LwySkAsP4iMBAVAKgKEVpJYCc4o9OmM3SAKPu7DvFXKVu56NMsYnXbAHesT3damey-2h5ozdssjlLth07nG3ZwrriQGdXRiU86K6yOn9M3fzN2M4ukluaC-W7jVst0k2ZH6LbGo9UdEXupn1y9vk_HidZTi1S9D6LUzcsCjXtM5kNJfAShX-AaPYPXtBZxnoN1rJaaZronKKdjalcDGrzz_gupR40pjTAtRdputIaTyfAomWZ9kdcnopRLhLBjmgdYtQn4cp8yHm9r2UqYQldijt2PVDGSil4tAgbovxSOge6DiKYx7VP_Y4xEINAiOkU6TpZBCze6pseoD8A_4NErODxQ7e9Y1iMY20QoiwBBh7IXLBBOMqDMBr4MoCuiauI6U0yA6yQtSUw3Z6KNrj4ONy8LSYQZ7UENjFI0d5mMarqorGn77-B9Dxlx7Qcw2kCkCHiHVpBnwTdgfrQW73IEEXid7yFjJui5Uq-iW18GTLzBcvP-6WcVNM_ctlsaphwKww8GQNcq_h_Q6z2JaLQQRvkKAnFT3U91fy2VndRB3H6wEJrPt_f68dcg3UTPRhfHT4gFx34CMxT9AJt8lguVjJh-CRLpNHtehT8u2ydc1P1iSfRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetric+cross-entropy+multi-threshold+color+image+segmentation+based+on+improved+pelican+optimization+algorithm&rft.jtitle=PloS+one&rft.au=Zhang%2C+Chuang&rft.au=Yue-Han%2C+Pei&rft.au=Xiao-Xue%2C+Wang&rft.au=Hong-Yu%2C+Hou&rft.date=2023-06-29&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0287573&rft.externalDocID=2831269375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon