Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification
Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorpor...
Saved in:
Published in | PloS one Vol. 18; no. 6; p. e0286915 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
08.06.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model’s ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model’s ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model. |
---|---|
AbstractList | Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model's ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model. Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model's ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model.Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model's ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model. |
Audience | Academic |
Author | Ke, Zunwang Liu, Tao Silamu, Wushour Li, Yanbing |
AuthorAffiliation | 1 College of Software, Xinjiang University, Urumqi, China 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, Urumqi, China 2 Xinjiang Multilingual Information Technology Laboratory, Xinjiang University, Urumqi, China Anhui University, CANADA |
AuthorAffiliation_xml | – name: 2 Xinjiang Multilingual Information Technology Laboratory, Xinjiang University, Urumqi, China – name: 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, Urumqi, China – name: Anhui University, CANADA – name: 1 College of Software, Xinjiang University, Urumqi, China |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0009-0000-6141-3472 surname: Liu fullname: Liu, Tao – sequence: 2 givenname: Zunwang surname: Ke fullname: Ke, Zunwang – sequence: 3 givenname: Yanbing orcidid: 0000-0001-5368-6921 surname: Li fullname: Li, Yanbing – sequence: 4 givenname: Wushour surname: Silamu fullname: Silamu, Wushour |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37289767$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk2uL1DAUhousuBf9B6IFQfTDjLk0TesXWRYvgwsL3r6GND2ZyZppZpPUcf-96UxHZpZFpJA2p895k_Nyzml21LkOsuwpRlNMOX5z7XrfSTtdpfAUkaqsMXuQneCakklJED3a-z7OTkO4RojRqiwfZceUk6rmJT_J2s-dW1to5zCBbiE7BW2-8i66eLsyStq8g7h2_me-NnGRKytDSGsfIvjcurTRzuca1pOwcDH3YGU0rtuCRieFYfs4e6ilDfBkfJ9l3z-8_3bxaXJ59XF2cX45UWVN4wRrKeuaa4YpYN7gFrdQpUWzhqGmKiQH0AxYoxAAZQzrlihoGtXolmmK6Vn2fKu7SlcTo0FBkIrQmnNKWSJmW6J18lqsvFlKfyucNGITcH4upI9GWRAFRxVSssYYsULzumkIR4UiqJCoQZwkrXfjaX2zhFZBF720B6KHfzqzEHP3S2BEirqiVVJ4NSp4d9NDiGJpggJrZQeu31y8KCuOeJ3QF3fQ-8sbqblMFZhOu3SwGkTFOWeE1IgWg03Te6j0tLA0KrWTNil-kPD6ICExEX7HuexDELOvX_6fvfpxyL7cYxcgbVwEZ_uhZ8Ih-Gzf6r8e7_o4AW-3gPKpKT1ooUzc9F4qzdhkuRiGZmeaGIZGjEOTkos7yTv9f6b9AW10HUE |
CitedBy_id | crossref_primary_10_3390_plants12183280 |
Cites_doi | 10.3115/1690219.1690287 10.18653/v1/2021.emnlp-main.212 10.18653/v1/2021.emnlp-main.204 10.1109/ACCESS.2022.3147588 10.18653/v1/2020.emnlp-main.298 10.1145/3340531.3412153 10.1145/3357384.3358100 10.1371/journal.pone.0272974 10.1038/nmeth.3968 10.1609/aaai.v33i01.33016407 10.18653/v1/2020.coling-main.510 10.18653/v1/D18-1514 10.1109/TPAMI.2021.3079209 10.18653/v1/D19-1045 10.1109/CVPR.2017.145 10.18653/v1/P16-1123 10.18653/v1/D19-1649 10.18653/v1/2021.acl-short.124 10.18653/v1/2020.coling-main.140 10.1007/978-3-030-87199-4_26 10.18653/v1/P19-1277 10.1007/978-3-031-16443-9_9 10.1371/journal.pone.0225426 10.23919/IFIPNetworking52078.2021.9472814 |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Liu et al 2023 Liu et al 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Liu et al 2023 Liu et al – notice: 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0286915 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Databases Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Knowledge-enhanced prototypical network for few-shot relation classification |
EISSN | 1932-6203 |
ExternalDocumentID | 2823977335 oai_doaj_org_article_47080ca911054f79bb2704c204a0b072 PMC10249838 A752290341 37289767 10_1371_journal_pone_0286915 |
Genre | Journal Article |
GeographicLocations | China Bulgaria |
GeographicLocations_xml | – name: China – name: Bulgaria |
GrantInformation_xml | – fundername: ; grantid: 61433012 – fundername: ; grantid: U1603262 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ BBORY IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c693t-1faa997f513e17b1d1de8d1df5b50b84a7eef5e5bc0ee3551fd2cebbcbfd5f313 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Aug 06 00:16:18 EDT 2023 Wed Aug 27 01:26:58 EDT 2025 Thu Aug 21 18:37:54 EDT 2025 Fri Jul 11 00:31:51 EDT 2025 Fri Jul 25 09:21:37 EDT 2025 Tue Jun 17 20:34:24 EDT 2025 Tue Jun 10 20:34:08 EDT 2025 Fri Jun 27 06:12:57 EDT 2025 Fri Jun 27 06:09:01 EDT 2025 Thu May 22 21:24:13 EDT 2025 Thu Apr 03 07:03:13 EDT 2025 Tue Jul 01 02:06:32 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-1faa997f513e17b1d1de8d1df5b50b84a7eef5e5bc0ee3551fd2cebbcbfd5f313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-5368-6921 0009-0000-6141-3472 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0286915 |
PMID | 37289767 |
PQID | 2823977335 |
PQPubID | 1436336 |
PageCount | e0286915 |
ParticipantIDs | plos_journals_2823977335 doaj_primary_oai_doaj_org_article_47080ca911054f79bb2704c204a0b072 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249838 proquest_miscellaneous_2824687079 proquest_journals_2823977335 gale_infotracmisc_A752290341 gale_infotracacademiconefile_A752290341 gale_incontextgauss_ISR_A752290341 gale_incontextgauss_IOV_A752290341 gale_healthsolutions_A752290341 pubmed_primary_37289767 crossref_citationtrail_10_1371_journal_pone_0286915 crossref_primary_10_1371_journal_pone_0286915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-08 |
PublicationDateYYYYMMDD | 2023-06-08 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0286915.ref030 J Snell (pone.0286915.ref021) 2017 pone.0286915.ref031 pone.0286915.ref032 pone.0286915.ref011 pone.0286915.ref033 pone.0286915.ref012 pone.0286915.ref034 pone.0286915.ref013 pone.0286915.ref035 pone.0286915.ref014 M Mozafari (pone.0286915.ref024) 2022; 10 pone.0286915.ref015 pone.0286915.ref016 pone.0286915.ref017 pone.0286915.ref018 pone.0286915.ref019 O Vinyals (pone.0286915.ref020) 2016 M Wang (pone.0286915.ref004) 2022; 17 J Lever (pone.0286915.ref010) 2016; 13 pone.0286915.ref022 RW Mee (pone.0286915.ref036) 1991; 45 pone.0286915.ref023 pone.0286915.ref002 pone.0286915.ref003 pone.0286915.ref025 pone.0286915.ref026 pone.0286915.ref027 pone.0286915.ref006 pone.0286915.ref028 pone.0286915.ref007 pone.0286915.ref029 pone.0286915.ref008 pone.0286915.ref009 Y Zhang (pone.0286915.ref005) 2019; 14 J Liu (pone.0286915.ref001) 2021; 16 |
References_xml | – ident: pone.0286915.ref003 doi: 10.3115/1690219.1690287 – ident: pone.0286915.ref027 doi: 10.18653/v1/2021.emnlp-main.212 – ident: pone.0286915.ref009 doi: 10.18653/v1/2021.emnlp-main.204 – volume: 16 start-page: 1 issue: 9 year: 2021 ident: pone.0286915.ref001 article-title: Relation classification via BERT with piecewise convolution and focal loss publication-title: Plos one – volume: 10 start-page: 14880 year: 2022 ident: pone.0286915.ref024 article-title: Cross-lingual few-shot hate speech and offensive language detection using meta learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147588 – ident: pone.0286915.ref035 doi: 10.18653/v1/2020.emnlp-main.298 – ident: pone.0286915.ref008 doi: 10.1145/3340531.3412153 – ident: pone.0286915.ref011 doi: 10.1145/3357384.3358100 – volume: 17 start-page: 1 issue: 8 year: 2022 ident: pone.0286915.ref004 article-title: Study on the evolution of Chinese characters based on few-shot learning: From oracle bone inscriptions to regular script publication-title: Plos one doi: 10.1371/journal.pone.0272974 – volume: 13 start-page: 703 issue: 9 year: 2016 ident: pone.0286915.ref010 article-title: Points of significance: model selection and overfitting publication-title: Nature methods doi: 10.1038/nmeth.3968 – ident: pone.0286915.ref019 – volume: 45 start-page: 39 issue: 1 year: 1991 ident: pone.0286915.ref036 article-title: Regression toward the mean and the paired sample t test publication-title: The American Statistician – ident: pone.0286915.ref025 doi: 10.1609/aaai.v33i01.33016407 – ident: pone.0286915.ref034 doi: 10.18653/v1/2020.coling-main.510 – ident: pone.0286915.ref032 doi: 10.18653/v1/D18-1514 – ident: pone.0286915.ref030 doi: 10.1109/TPAMI.2021.3079209 – ident: pone.0286915.ref015 – ident: pone.0286915.ref006 doi: 10.18653/v1/D19-1045 – ident: pone.0286915.ref013 doi: 10.1109/CVPR.2017.145 – ident: pone.0286915.ref002 doi: 10.18653/v1/P16-1123 – ident: pone.0286915.ref033 doi: 10.18653/v1/D19-1649 – ident: pone.0286915.ref026 doi: 10.18653/v1/2021.acl-short.124 – ident: pone.0286915.ref017 doi: 10.18653/v1/2020.coling-main.140 – ident: pone.0286915.ref029 – year: 2017 ident: pone.0286915.ref021 article-title: Prototypical networks for few-shot learning publication-title: Advances in neural information processing systems – ident: pone.0286915.ref028 doi: 10.1007/978-3-030-87199-4_26 – ident: pone.0286915.ref007 doi: 10.18653/v1/P19-1277 – year: 2016 ident: pone.0286915.ref020 article-title: Matching networks for one shot learning publication-title: Advances in neural information processing systems – ident: pone.0286915.ref022 doi: 10.1007/978-3-031-16443-9_9 – ident: pone.0286915.ref014 – volume: 14 start-page: 1 issue: 12 year: 2019 ident: pone.0286915.ref005 article-title: Channel-spatial attention network for fewshot classification publication-title: Plos one doi: 10.1371/journal.pone.0225426 – ident: pone.0286915.ref012 – ident: pone.0286915.ref018 – ident: pone.0286915.ref031 – ident: pone.0286915.ref016 – ident: pone.0286915.ref023 doi: 10.23919/IFIPNetworking52078.2021.9472814 |
SSID | ssj0053866 |
Score | 2.4260585 |
Snippet | Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0286915 |
SubjectTerms | Biology and Life Sciences Classification Clusters Computational linguistics Computer and Information Sciences Data mining Data visualization Datasets Design Engineering and Technology Evaluation Graph neural networks Labeling Language processing Metric space Modelling Natural language Natural language interfaces Natural language processing Neural networks Optimization algorithms Outliers (statistics) Physical Sciences Prototypes Representations Semantics Similarity Social Sciences Training |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBBQxCAg5p4zixnWNBVAUkkICi3iLbsVmkKlk1WaH--8443miDKpUDl0hZT3az8_B8k4w_E_KKOc2tLps0s0qkhc5FqosCmx201pVqEPJit8UXcXJafDorz3a2-sKesJEeeFTcYSEB01gNMQngwsvKmFxmhc2zQmcmk2H2hZy3LabGORiiWIi4UI5LdhjtcrDuWncAGVVUuA3uTiIKfP3TrLxYn3f9dZDz787JnVR0fJfciRiSHo33vkduufYe2YtR2tM3kUr67X3SfN4-Mktduwov-ykyM3TD5RqtQ9uxC5zi41hqEUnDcYPkCRRurqcAaal3f9J-1Q30IjbOjYLYYxROH5DT4w8_3p-kcV-F1IqKDynzYIZK-pJxx6RhDWucgoMvTZkZVWjpnC9daWzmHOAR5pvcOmOs8U3pOeMPyaIFTe4T6nzmeS6rykFdpUuhjckqa5xWHH4r9wnhWyXXNpKO494X53V4kyah-Bh1VqNp6miahKTTVeuRdOMG-Xdov0kWKbPDB-BIdXSk-iZHSshztH49rj-dAr8-kiVy4kO2T8jLIIG0GS325fzSm76vP379-Q9C37_NhF5HId-BOqyOayHgPyEd10xyOZOE4Lez4X301a1W-hoqaIT0nINSllv_vX74xTSMX4q9dq3rNkGmEAqZExPyaHT3SbNcQoEuhUyImgXCTPXzkfb3KrCWMySnVFw9_h_GekJu54A2Q8-eWpLFcLFxTwEdDuZZmAiuAM0BZF8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVguXBBlK8GChiEBBzSxnESOydUEEsBCSSgqLfIduwuUpWEza4Q_54ZxwkNqoBLpF1PNtkZz8yzPX4m5AmzihuV13FiZBFnKi1ilWVY7KCUKmWNkBerLT4UR8fZu5P8JEy49aGscoyJPlDXrcE58gMYGiBW4Tx_0X2P8dQoXF0NR2hcJlcYZBos6ZLLN2MkBl8uirBdjgt2EKyz37WN3Ye8WpR4GO65dORZ-6fYvOjO2v4i4Pln_eS5hLS8Tq4FJEkPB9PvkEu2uUF2gq_29FkglH5-k9Tvx4mz2DYrv-RPkZ-h3fzs0Ea0GWrBKU7KUoN4Gq5bpFCg8HI9BWBLnf0R96t2Q9ehfG4QxEoj__EWOV6-_vLqKA6nK8SmKPkmZg6MUQqXM26Z0KxmtZVwcbnOEy0zJax1uc21SawFVMJcnRqrtdGuzh1n_DZZNKDJXUKtSxxPRVlaGF2pvFBaJ6XRVkkOz0pdRPio5MoE6nE8AeOs8utpAoYgg84qNE0VTBOReLqrG6g3_iH_Eu03ySJxtv-iXZ9WwQ-rTABENgpCPGBVJ0qtU5FkJk0ylehEpBF5iNavhl2ok_tXhyJHZnzI-RF57CWQPKPB6pxTte376u3Hr_8h9PnTTOhpEHItqMOosCMC_hOScs0k92aSEALMrHkX--qolb767Sxw59h_L25-NDXjj2LFXWPbrZfJCon8iRG5M3T3SbNcwDBdFCIicuYIM9XPW5pvK89dzpCiUnJ59-_vdY9cTQFN-po8uUcWm_XW3gf0t9EPvIv_AkbpXYs priority: 102 providerName: ProQuest |
Title | Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37289767 https://www.proquest.com/docview/2823977335 https://www.proquest.com/docview/2824687079 https://pubmed.ncbi.nlm.nih.gov/PMC10249838 https://doaj.org/article/47080ca911054f79bb2704c204a0b072 http://dx.doi.org/10.1371/journal.pone.0286915 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW7oULYnltllICQgIOqZI4iZMDQrurlgXEghaKeotsx94iVUlpWsFe-O3MOE5EUBEcuFhqPe5jxmN_44y_IeRJoDiVPC48X6aJF_Ew8XgUYbID5zxLC4S8mG1xnpzNojfzeL5H2pqtVoH1ztAO60nN1svx969XL8HhX5iqDSxoB41XVanGsF8mGd4634e9iWFNg3dR91wBvDtJ7AW6P43sbVCGx79brQerZVXvgqK_Z1T-skVNb5IbFlu6x81kOCB7qrxFDqz31u4zSzH9_DYp3rZHaZ4qFyYJwEXGhmpztUKruWWTHe7iMa0rEWFDu0VSBRd-XO0C1HW1-ubVi2rjrm1CXSOIuUfm5R0ym04-nZ55tt6CJ5OMbrxAg3kypuOAqoCJoAgKlUKjYxH7Io04U0rHKhbSVwpwSqCLUCohpNBFrGlA75JBCZo8JK7SvqYhyzIF8RaPEy6En0mheErhu0LtENoqOZeWjBxrYixz84SNQVDS6CxH0-TWNA7xulGrhozjL_InaL9OFqm0zRvV-jK3nplHDECz5LDoA3rVLBMiZH4kQz_ivvBZ6JCHaP28uZfaLQj5MYuRKx9QgEMeGwmk0ygxX-eSb-s6f_3-8z8IfbzoCT21QroCdUhu70jAf0Karp7ksCcJi4LsdR_iXG21UucQWSPUpxSUMmzn7-7uR103fijm4JWq2hqZKEmRUdEh95rp3mmWMgjcWcIckvYcoaf6fk_5ZWHYzAMkrUxpevQ_jHWfXA8BhZpcvnRIBpv1Vj0A1LgRI3KNzRm06WmA7fTViOyfTM4_XIzMOczILBTY_pj8BNPedeQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXtPG1sMEMAgEP2ZI4iZMHhMZHaekYEmzT3oLt2CvSlJSm1bR_ir-Ru8QJC5qAl71Ean1J3fP57mfn_DtCnvpaMCWi3PVUEruhCGJXhCEmOwgh0iRHyIvZFvvx6DD8eBwdr5Cf7VkYTKtsfWLtqPNS4R75DiwNEKswFr2e_XCxahS-XW1LaDRmMdHnZ7Bkq16N38H4PguC4fuDtyPXVhVwVZyyhesb6ETKTeQz7XPp536uE7iYSEaeTELBtTaRjqTytIZo7Js8UFpKJU0eGeYzeO41cj1k0B08mT780Hp-8B1xbI_nMe7vWGvYnpWF3oY4HqdYfPdC-KurBHSxYDA7LavLgO6f-ZoXAuBwldyyyJXuNqa2RlZ0cZusWd9Q0ReWwPrlHZJP2o06VxfTOsWAIh9EuTifoU3Qosk9p7gJTBXid7gukbKBQucqCkCaGn3mVtNyQec2Xa8RxMym-uNdcngler9HBgVocp1QbTzDAp6mGlZzIoqFlF6qpBYJg98KjENYq-RMWapzrLhxmtXv7zgseRqdZTg0mR0ah7jdXbOG6uMf8m9w_DpZJOquvyjnJ5md91nIAZIrASEFsLHhqZQB90IVeKHwpMcDh2zh6GfNqdfO3WS7PEImfsAYDnlSSyBZR4HZQCdiWVXZ-PPRfwh9_dITem6FTAnqUMKewID_hCRgPcnNniS4HNVrXkdbbbVSZb8nJ9zZ2u_lzY-7ZnwoZvgVulzWMmGcIF-jQ-435t5plvEgAdjMHZL0JkJP9f2W4vu05kr3kRIzYcmDv_dri9wYHXzay_bG-5MNcjMAJFvnAyabZLCYL_VDQJ4L-aie7pR8u2r_8gtAnp3t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrhcEMAgEPWZM4iZ0HhMZGtVI0EDC0t2A79oo0JaVpNe1f46_jLnHCgibgZS-RWl9S93y---ycvyPkaWAk0zLOPV-LxItkmHgyijDZQUqZihwhL2ZbHCT7h9G7o_hojfxsz8JgWmXrE2tHnZca98hHsDRArMJYPLIuLeLj3vj1_IeHFaTwTWtbTqMxkak5O4XlW_Vqsgdj_SwMx2-_7O57rsKAp5OULb3AQodSbuOAmYCrIA9yI-BiYxX7SkSSG2NjEyvtGwORObB5qI1SWtk8tixg8Nwr5CpnXOAcE7tdegn4kSRxR_UYD0bOMrbnZWG2IaYnKRbiPRcK64oBXVwYzE_K6iLQ-2fu5rlgOL5JbjgUS3cas1sna6a4Rdadn6joC0dm_fI2yaftpp1nilmdbkCRG6Jcns3RPmjR5KFT3BCmGrE8XFdI30ChcxUFUE2tOfWqWbmkC5e61whillP98Q45vBS93yWDAjS5QaixvmUhT1MDKzsZJ1IpP9XKSMHgt0I7JKxVcqYd7TlW3zjJ6nd5HJY_jc4yHJrMDc2QeN1d84b24x_yb3D8Olkk7a6_KBfHmfMBWcQBnmsJ4QVwsuWpUiH3Ix36kfSVz8Mh2cLRz5oTsJ3ryXZ4jKz8gDeG5EktgcQdBU6BY7mqqmzy4et_CH3-1BN67oRsCerQ0p3GgP-EhGA9yc2eJLgf3WveQFtttVJlvycq3Nna78XNj7tmfChm-xWmXNUyUSKQu3FI7jXm3mmW8VAAhOZDInoToaf6fkvxfVbzpgdIjymYuP_3fm2Ra-BZsveTg-kDcj0EUFunBopNMlguVuYhgNClelTPdkq-XbZ7-QXPcaHu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-enhanced+prototypical+network+with+class+cluster+loss+for+few-shot+relation+classification&rft.jtitle=PloS+one&rft.au=Tao+Liu&rft.au=Zunwang+Ke&rft.au=Yanbing+Li&rft.au=Wushour+Silamu&rft.date=2023-06-08&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=18&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0286915&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47080ca911054f79bb2704c204a0b072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |