Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification

Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorpor...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 6; p. e0286915
Main Authors Liu, Tao, Ke, Zunwang, Li, Yanbing, Silamu, Wushour
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.06.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model’s ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model’s ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model.
AbstractList Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model's ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model.
Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model's ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model.Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model's ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model.
Audience Academic
Author Ke, Zunwang
Liu, Tao
Silamu, Wushour
Li, Yanbing
AuthorAffiliation 1 College of Software, Xinjiang University, Urumqi, China
3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, Urumqi, China
2 Xinjiang Multilingual Information Technology Laboratory, Xinjiang University, Urumqi, China
Anhui University, CANADA
AuthorAffiliation_xml – name: 2 Xinjiang Multilingual Information Technology Laboratory, Xinjiang University, Urumqi, China
– name: 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, Urumqi, China
– name: Anhui University, CANADA
– name: 1 College of Software, Xinjiang University, Urumqi, China
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0009-0000-6141-3472
  surname: Liu
  fullname: Liu, Tao
– sequence: 2
  givenname: Zunwang
  surname: Ke
  fullname: Ke, Zunwang
– sequence: 3
  givenname: Yanbing
  orcidid: 0000-0001-5368-6921
  surname: Li
  fullname: Li, Yanbing
– sequence: 4
  givenname: Wushour
  surname: Silamu
  fullname: Silamu, Wushour
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37289767$$D View this record in MEDLINE/PubMed
BookMark eNqNk2uL1DAUhousuBf9B6IFQfTDjLk0TesXWRYvgwsL3r6GND2ZyZppZpPUcf-96UxHZpZFpJA2p895k_Nyzml21LkOsuwpRlNMOX5z7XrfSTtdpfAUkaqsMXuQneCakklJED3a-z7OTkO4RojRqiwfZceUk6rmJT_J2s-dW1to5zCBbiE7BW2-8i66eLsyStq8g7h2_me-NnGRKytDSGsfIvjcurTRzuca1pOwcDH3YGU0rtuCRieFYfs4e6ilDfBkfJ9l3z-8_3bxaXJ59XF2cX45UWVN4wRrKeuaa4YpYN7gFrdQpUWzhqGmKiQH0AxYoxAAZQzrlihoGtXolmmK6Vn2fKu7SlcTo0FBkIrQmnNKWSJmW6J18lqsvFlKfyucNGITcH4upI9GWRAFRxVSssYYsULzumkIR4UiqJCoQZwkrXfjaX2zhFZBF720B6KHfzqzEHP3S2BEirqiVVJ4NSp4d9NDiGJpggJrZQeu31y8KCuOeJ3QF3fQ-8sbqblMFZhOu3SwGkTFOWeE1IgWg03Te6j0tLA0KrWTNil-kPD6ICExEX7HuexDELOvX_6fvfpxyL7cYxcgbVwEZ_uhZ8Ih-Gzf6r8e7_o4AW-3gPKpKT1ooUzc9F4qzdhkuRiGZmeaGIZGjEOTkos7yTv9f6b9AW10HUE
CitedBy_id crossref_primary_10_3390_plants12183280
Cites_doi 10.3115/1690219.1690287
10.18653/v1/2021.emnlp-main.212
10.18653/v1/2021.emnlp-main.204
10.1109/ACCESS.2022.3147588
10.18653/v1/2020.emnlp-main.298
10.1145/3340531.3412153
10.1145/3357384.3358100
10.1371/journal.pone.0272974
10.1038/nmeth.3968
10.1609/aaai.v33i01.33016407
10.18653/v1/2020.coling-main.510
10.18653/v1/D18-1514
10.1109/TPAMI.2021.3079209
10.18653/v1/D19-1045
10.1109/CVPR.2017.145
10.18653/v1/P16-1123
10.18653/v1/D19-1649
10.18653/v1/2021.acl-short.124
10.18653/v1/2020.coling-main.140
10.1007/978-3-030-87199-4_26
10.18653/v1/P19-1277
10.1007/978-3-031-16443-9_9
10.1371/journal.pone.0225426
10.23919/IFIPNetworking52078.2021.9472814
ContentType Journal Article
Copyright Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Liu et al 2023 Liu et al
2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Liu et al 2023 Liu et al
– notice: 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0286915
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Databases
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed



Agricultural Science Database
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Knowledge-enhanced prototypical network for few-shot relation classification
EISSN 1932-6203
ExternalDocumentID 2823977335
oai_doaj_org_article_47080ca911054f79bb2704c204a0b072
PMC10249838
A752290341
37289767
10_1371_journal_pone_0286915
Genre Journal Article
GeographicLocations China
Bulgaria
GeographicLocations_xml – name: China
– name: Bulgaria
GrantInformation_xml – fundername: ;
  grantid: 61433012
– fundername: ;
  grantid: U1603262
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
BBORY
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c693t-1faa997f513e17b1d1de8d1df5b50b84a7eef5e5bc0ee3551fd2cebbcbfd5f313
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:18 EDT 2023
Wed Aug 27 01:26:58 EDT 2025
Thu Aug 21 18:37:54 EDT 2025
Fri Jul 11 00:31:51 EDT 2025
Fri Jul 25 09:21:37 EDT 2025
Tue Jun 17 20:34:24 EDT 2025
Tue Jun 10 20:34:08 EDT 2025
Fri Jun 27 06:12:57 EDT 2025
Fri Jun 27 06:09:01 EDT 2025
Thu May 22 21:24:13 EDT 2025
Thu Apr 03 07:03:13 EDT 2025
Tue Jul 01 02:06:32 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-1faa997f513e17b1d1de8d1df5b50b84a7eef5e5bc0ee3551fd2cebbcbfd5f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5368-6921
0009-0000-6141-3472
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0286915
PMID 37289767
PQID 2823977335
PQPubID 1436336
PageCount e0286915
ParticipantIDs plos_journals_2823977335
doaj_primary_oai_doaj_org_article_47080ca911054f79bb2704c204a0b072
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249838
proquest_miscellaneous_2824687079
proquest_journals_2823977335
gale_infotracmisc_A752290341
gale_infotracacademiconefile_A752290341
gale_incontextgauss_ISR_A752290341
gale_incontextgauss_IOV_A752290341
gale_healthsolutions_A752290341
pubmed_primary_37289767
crossref_citationtrail_10_1371_journal_pone_0286915
crossref_primary_10_1371_journal_pone_0286915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-08
PublicationDateYYYYMMDD 2023-06-08
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0286915.ref030
J Snell (pone.0286915.ref021) 2017
pone.0286915.ref031
pone.0286915.ref032
pone.0286915.ref011
pone.0286915.ref033
pone.0286915.ref012
pone.0286915.ref034
pone.0286915.ref013
pone.0286915.ref035
pone.0286915.ref014
M Mozafari (pone.0286915.ref024) 2022; 10
pone.0286915.ref015
pone.0286915.ref016
pone.0286915.ref017
pone.0286915.ref018
pone.0286915.ref019
O Vinyals (pone.0286915.ref020) 2016
M Wang (pone.0286915.ref004) 2022; 17
J Lever (pone.0286915.ref010) 2016; 13
pone.0286915.ref022
RW Mee (pone.0286915.ref036) 1991; 45
pone.0286915.ref023
pone.0286915.ref002
pone.0286915.ref003
pone.0286915.ref025
pone.0286915.ref026
pone.0286915.ref027
pone.0286915.ref006
pone.0286915.ref028
pone.0286915.ref007
pone.0286915.ref029
pone.0286915.ref008
pone.0286915.ref009
Y Zhang (pone.0286915.ref005) 2019; 14
J Liu (pone.0286915.ref001) 2021; 16
References_xml – ident: pone.0286915.ref003
  doi: 10.3115/1690219.1690287
– ident: pone.0286915.ref027
  doi: 10.18653/v1/2021.emnlp-main.212
– ident: pone.0286915.ref009
  doi: 10.18653/v1/2021.emnlp-main.204
– volume: 16
  start-page: 1
  issue: 9
  year: 2021
  ident: pone.0286915.ref001
  article-title: Relation classification via BERT with piecewise convolution and focal loss
  publication-title: Plos one
– volume: 10
  start-page: 14880
  year: 2022
  ident: pone.0286915.ref024
  article-title: Cross-lingual few-shot hate speech and offensive language detection using meta learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147588
– ident: pone.0286915.ref035
  doi: 10.18653/v1/2020.emnlp-main.298
– ident: pone.0286915.ref008
  doi: 10.1145/3340531.3412153
– ident: pone.0286915.ref011
  doi: 10.1145/3357384.3358100
– volume: 17
  start-page: 1
  issue: 8
  year: 2022
  ident: pone.0286915.ref004
  article-title: Study on the evolution of Chinese characters based on few-shot learning: From oracle bone inscriptions to regular script
  publication-title: Plos one
  doi: 10.1371/journal.pone.0272974
– volume: 13
  start-page: 703
  issue: 9
  year: 2016
  ident: pone.0286915.ref010
  article-title: Points of significance: model selection and overfitting
  publication-title: Nature methods
  doi: 10.1038/nmeth.3968
– ident: pone.0286915.ref019
– volume: 45
  start-page: 39
  issue: 1
  year: 1991
  ident: pone.0286915.ref036
  article-title: Regression toward the mean and the paired sample t test
  publication-title: The American Statistician
– ident: pone.0286915.ref025
  doi: 10.1609/aaai.v33i01.33016407
– ident: pone.0286915.ref034
  doi: 10.18653/v1/2020.coling-main.510
– ident: pone.0286915.ref032
  doi: 10.18653/v1/D18-1514
– ident: pone.0286915.ref030
  doi: 10.1109/TPAMI.2021.3079209
– ident: pone.0286915.ref015
– ident: pone.0286915.ref006
  doi: 10.18653/v1/D19-1045
– ident: pone.0286915.ref013
  doi: 10.1109/CVPR.2017.145
– ident: pone.0286915.ref002
  doi: 10.18653/v1/P16-1123
– ident: pone.0286915.ref033
  doi: 10.18653/v1/D19-1649
– ident: pone.0286915.ref026
  doi: 10.18653/v1/2021.acl-short.124
– ident: pone.0286915.ref017
  doi: 10.18653/v1/2020.coling-main.140
– ident: pone.0286915.ref029
– year: 2017
  ident: pone.0286915.ref021
  article-title: Prototypical networks for few-shot learning
  publication-title: Advances in neural information processing systems
– ident: pone.0286915.ref028
  doi: 10.1007/978-3-030-87199-4_26
– ident: pone.0286915.ref007
  doi: 10.18653/v1/P19-1277
– year: 2016
  ident: pone.0286915.ref020
  article-title: Matching networks for one shot learning
  publication-title: Advances in neural information processing systems
– ident: pone.0286915.ref022
  doi: 10.1007/978-3-031-16443-9_9
– ident: pone.0286915.ref014
– volume: 14
  start-page: 1
  issue: 12
  year: 2019
  ident: pone.0286915.ref005
  article-title: Channel-spatial attention network for fewshot classification
  publication-title: Plos one
  doi: 10.1371/journal.pone.0225426
– ident: pone.0286915.ref012
– ident: pone.0286915.ref018
– ident: pone.0286915.ref031
– ident: pone.0286915.ref016
– ident: pone.0286915.ref023
  doi: 10.23919/IFIPNetworking52078.2021.9472814
SSID ssj0053866
Score 2.4260585
Snippet Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0286915
SubjectTerms Biology and Life Sciences
Classification
Clusters
Computational linguistics
Computer and Information Sciences
Data mining
Data visualization
Datasets
Design
Engineering and Technology
Evaluation
Graph neural networks
Labeling
Language processing
Metric space
Modelling
Natural language
Natural language interfaces
Natural language processing
Neural networks
Optimization algorithms
Outliers (statistics)
Physical Sciences
Prototypes
Representations
Semantics
Similarity
Social Sciences
Training
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBBQxCAg5p4zixnWNBVAUkkICi3iLbsVmkKlk1WaH--8443miDKpUDl0hZT3az8_B8k4w_E_KKOc2tLps0s0qkhc5FqosCmx201pVqEPJit8UXcXJafDorz3a2-sKesJEeeFTcYSEB01gNMQngwsvKmFxmhc2zQmcmk2H2hZy3LabGORiiWIi4UI5LdhjtcrDuWncAGVVUuA3uTiIKfP3TrLxYn3f9dZDz787JnVR0fJfciRiSHo33vkduufYe2YtR2tM3kUr67X3SfN4-Mktduwov-ykyM3TD5RqtQ9uxC5zi41hqEUnDcYPkCRRurqcAaal3f9J-1Q30IjbOjYLYYxROH5DT4w8_3p-kcV-F1IqKDynzYIZK-pJxx6RhDWucgoMvTZkZVWjpnC9daWzmHOAR5pvcOmOs8U3pOeMPyaIFTe4T6nzmeS6rykFdpUuhjckqa5xWHH4r9wnhWyXXNpKO494X53V4kyah-Bh1VqNp6miahKTTVeuRdOMG-Xdov0kWKbPDB-BIdXSk-iZHSshztH49rj-dAr8-kiVy4kO2T8jLIIG0GS325fzSm76vP379-Q9C37_NhF5HId-BOqyOayHgPyEd10xyOZOE4Lez4X301a1W-hoqaIT0nINSllv_vX74xTSMX4q9dq3rNkGmEAqZExPyaHT3SbNcQoEuhUyImgXCTPXzkfb3KrCWMySnVFw9_h_GekJu54A2Q8-eWpLFcLFxTwEdDuZZmAiuAM0BZF8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVguXBBlK8GChiEBBzSxnESOydUEEsBCSSgqLfIduwuUpWEza4Q_54ZxwkNqoBLpF1PNtkZz8yzPX4m5AmzihuV13FiZBFnKi1ilWVY7KCUKmWNkBerLT4UR8fZu5P8JEy49aGscoyJPlDXrcE58gMYGiBW4Tx_0X2P8dQoXF0NR2hcJlcYZBos6ZLLN2MkBl8uirBdjgt2EKyz37WN3Ye8WpR4GO65dORZ-6fYvOjO2v4i4Pln_eS5hLS8Tq4FJEkPB9PvkEu2uUF2gq_29FkglH5-k9Tvx4mz2DYrv-RPkZ-h3fzs0Ea0GWrBKU7KUoN4Gq5bpFCg8HI9BWBLnf0R96t2Q9ehfG4QxEoj__EWOV6-_vLqKA6nK8SmKPkmZg6MUQqXM26Z0KxmtZVwcbnOEy0zJax1uc21SawFVMJcnRqrtdGuzh1n_DZZNKDJXUKtSxxPRVlaGF2pvFBaJ6XRVkkOz0pdRPio5MoE6nE8AeOs8utpAoYgg84qNE0VTBOReLqrG6g3_iH_Eu03ySJxtv-iXZ9WwQ-rTABENgpCPGBVJ0qtU5FkJk0ylehEpBF5iNavhl2ok_tXhyJHZnzI-RF57CWQPKPB6pxTte376u3Hr_8h9PnTTOhpEHItqMOosCMC_hOScs0k92aSEALMrHkX--qolb767Sxw59h_L25-NDXjj2LFXWPbrZfJCon8iRG5M3T3SbNcwDBdFCIicuYIM9XPW5pvK89dzpCiUnJ59-_vdY9cTQFN-po8uUcWm_XW3gf0t9EPvIv_AkbpXYs
  priority: 102
  providerName: ProQuest
Title Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification
URI https://www.ncbi.nlm.nih.gov/pubmed/37289767
https://www.proquest.com/docview/2823977335
https://www.proquest.com/docview/2824687079
https://pubmed.ncbi.nlm.nih.gov/PMC10249838
https://doaj.org/article/47080ca911054f79bb2704c204a0b072
http://dx.doi.org/10.1371/journal.pone.0286915
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW7oULYnltllICQgIOqZI4iZMDQrurlgXEghaKeotsx94iVUlpWsFe-O3MOE5EUBEcuFhqPe5jxmN_44y_IeRJoDiVPC48X6aJF_Ew8XgUYbID5zxLC4S8mG1xnpzNojfzeL5H2pqtVoH1ztAO60nN1svx969XL8HhX5iqDSxoB41XVanGsF8mGd4634e9iWFNg3dR91wBvDtJ7AW6P43sbVCGx79brQerZVXvgqK_Z1T-skVNb5IbFlu6x81kOCB7qrxFDqz31u4zSzH9_DYp3rZHaZ4qFyYJwEXGhmpztUKruWWTHe7iMa0rEWFDu0VSBRd-XO0C1HW1-ubVi2rjrm1CXSOIuUfm5R0ym04-nZ55tt6CJ5OMbrxAg3kypuOAqoCJoAgKlUKjYxH7Io04U0rHKhbSVwpwSqCLUCohpNBFrGlA75JBCZo8JK7SvqYhyzIF8RaPEy6En0mheErhu0LtENoqOZeWjBxrYixz84SNQVDS6CxH0-TWNA7xulGrhozjL_InaL9OFqm0zRvV-jK3nplHDECz5LDoA3rVLBMiZH4kQz_ivvBZ6JCHaP28uZfaLQj5MYuRKx9QgEMeGwmk0ygxX-eSb-s6f_3-8z8IfbzoCT21QroCdUhu70jAf0Karp7ksCcJi4LsdR_iXG21UucQWSPUpxSUMmzn7-7uR103fijm4JWq2hqZKEmRUdEh95rp3mmWMgjcWcIckvYcoaf6fk_5ZWHYzAMkrUxpevQ_jHWfXA8BhZpcvnRIBpv1Vj0A1LgRI3KNzRm06WmA7fTViOyfTM4_XIzMOczILBTY_pj8BNPedeQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXtPG1sMEMAgEP2ZI4iZMHhMZHaekYEmzT3oLt2CvSlJSm1bR_ir-Ru8QJC5qAl71Ean1J3fP57mfn_DtCnvpaMCWi3PVUEruhCGJXhCEmOwgh0iRHyIvZFvvx6DD8eBwdr5Cf7VkYTKtsfWLtqPNS4R75DiwNEKswFr2e_XCxahS-XW1LaDRmMdHnZ7Bkq16N38H4PguC4fuDtyPXVhVwVZyyhesb6ETKTeQz7XPp536uE7iYSEaeTELBtTaRjqTytIZo7Js8UFpKJU0eGeYzeO41cj1k0B08mT780Hp-8B1xbI_nMe7vWGvYnpWF3oY4HqdYfPdC-KurBHSxYDA7LavLgO6f-ZoXAuBwldyyyJXuNqa2RlZ0cZusWd9Q0ReWwPrlHZJP2o06VxfTOsWAIh9EuTifoU3Qosk9p7gJTBXid7gukbKBQucqCkCaGn3mVtNyQec2Xa8RxMym-uNdcngler9HBgVocp1QbTzDAp6mGlZzIoqFlF6qpBYJg98KjENYq-RMWapzrLhxmtXv7zgseRqdZTg0mR0ah7jdXbOG6uMf8m9w_DpZJOquvyjnJ5md91nIAZIrASEFsLHhqZQB90IVeKHwpMcDh2zh6GfNqdfO3WS7PEImfsAYDnlSSyBZR4HZQCdiWVXZ-PPRfwh9_dITem6FTAnqUMKewID_hCRgPcnNniS4HNVrXkdbbbVSZb8nJ9zZ2u_lzY-7ZnwoZvgVulzWMmGcIF-jQ-435t5plvEgAdjMHZL0JkJP9f2W4vu05kr3kRIzYcmDv_dri9wYHXzay_bG-5MNcjMAJFvnAyabZLCYL_VDQJ4L-aie7pR8u2r_8gtAnp3t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrhcEMAgEPWZM4iZ0HhMZGtVI0EDC0t2A79oo0JaVpNe1f46_jLnHCgibgZS-RWl9S93y---ycvyPkaWAk0zLOPV-LxItkmHgyijDZQUqZihwhL2ZbHCT7h9G7o_hojfxsz8JgWmXrE2tHnZca98hHsDRArMJYPLIuLeLj3vj1_IeHFaTwTWtbTqMxkak5O4XlW_Vqsgdj_SwMx2-_7O57rsKAp5OULb3AQodSbuOAmYCrIA9yI-BiYxX7SkSSG2NjEyvtGwORObB5qI1SWtk8tixg8Nwr5CpnXOAcE7tdegn4kSRxR_UYD0bOMrbnZWG2IaYnKRbiPRcK64oBXVwYzE_K6iLQ-2fu5rlgOL5JbjgUS3cas1sna6a4Rdadn6joC0dm_fI2yaftpp1nilmdbkCRG6Jcns3RPmjR5KFT3BCmGrE8XFdI30ChcxUFUE2tOfWqWbmkC5e61whillP98Q45vBS93yWDAjS5QaixvmUhT1MDKzsZJ1IpP9XKSMHgt0I7JKxVcqYd7TlW3zjJ6nd5HJY_jc4yHJrMDc2QeN1d84b24x_yb3D8Olkk7a6_KBfHmfMBWcQBnmsJ4QVwsuWpUiH3Ix36kfSVz8Mh2cLRz5oTsJ3ryXZ4jKz8gDeG5EktgcQdBU6BY7mqqmzy4et_CH3-1BN67oRsCerQ0p3GgP-EhGA9yc2eJLgf3WveQFtttVJlvycq3Nna78XNj7tmfChm-xWmXNUyUSKQu3FI7jXm3mmW8VAAhOZDInoToaf6fkvxfVbzpgdIjymYuP_3fm2Ra-BZsveTg-kDcj0EUFunBopNMlguVuYhgNClelTPdkq-XbZ7-QXPcaHu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-enhanced+prototypical+network+with+class+cluster+loss+for+few-shot+relation+classification&rft.jtitle=PloS+one&rft.au=Tao+Liu&rft.au=Zunwang+Ke&rft.au=Yanbing+Li&rft.au=Wushour+Silamu&rft.date=2023-06-08&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=18&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0286915&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47080ca911054f79bb2704c204a0b072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon