Luminance contrast of a visual stimulus modulates the BOLD response more than the cerebral blood flow response in the human brain
The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in response to changes in neural activity. This response is strongly modulated by...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 64; pp. 104 - 111 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.01.2013
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2012.08.077 |
Cover
Loading…
Abstract | The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO2 coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction—independent of details of the model—that if the CBF/CMRO2 coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23±0.13, mean±SD; CBF response: 0.42±0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO2 response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes.
Increasing stimulus contrast increases the coupling ratio of CBF and CMRO2 responses to a visual stimulus. [Display omitted] |
---|---|
AbstractList | The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO2 coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction—independent of details of the model—that if the CBF/CMRO2 coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23±0.13, mean±SD; CBF response: 0.42±0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO2 response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes.
Increasing stimulus contrast increases the coupling ratio of CBF and CMRO2 responses to a visual stimulus. [Display omitted] The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction-independent of details of the model-that if the CBF/CMRO(2) coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO(2) response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes.The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction-independent of details of the model-that if the CBF/CMRO(2) coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO(2) response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes. The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction-independent of details of the model-that if the CBF/CMRO(2) coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO(2) response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes. The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO 2 coupling relationship with activation, defined as n , the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction—independent of details of the model—that if the CBF/CMRO 2 coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO 2 response (~1.7-fold) compared to the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes. The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO2coupling relationship with activation, defined asn, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability ofnin response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction--independent of details of the model--that if the CBF/CMRO2coupling rationremains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23±0.13, mean±SD; CBF response: 0.42±0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO2response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase ofnfrom 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes. The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO2 coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust predictionaindependent of details of the modelathat if the CBF/CMRO2 coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 A- 0.13, mean A- SD; CBF response: 0.42 A- 0.18; p = 0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO2 response (~ 1.7-fold) compared to that of the CBF response (~ 2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes. |
Author | Ances, Beau M. Moradi, Farshad Buracas, Giedrius T. Liau, Joy Perthen, Joanna E. Buxton, Richard B. Hopkins, Susan R. Liang, Christine L. |
AuthorAffiliation | 2 Department of Neurology, Washington University in St. Louis, MO, USA 1 Department of Radiology, University of California, San Diego, CA, USA 3 Department of Bioengineering, University of California, San Diego, CA, USA 4 Department of Medicine, University of California, San Diego, CA, USA |
AuthorAffiliation_xml | – name: 2 Department of Neurology, Washington University in St. Louis, MO, USA – name: 3 Department of Bioengineering, University of California, San Diego, CA, USA – name: 1 Department of Radiology, University of California, San Diego, CA, USA – name: 4 Department of Medicine, University of California, San Diego, CA, USA |
Author_xml | – sequence: 1 givenname: Christine L. surname: Liang fullname: Liang, Christine L. organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 2 givenname: Beau M. surname: Ances fullname: Ances, Beau M. organization: Department of Neurology, Washington University in St. Louis, MO, USA – sequence: 3 givenname: Joanna E. surname: Perthen fullname: Perthen, Joanna E. organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 4 givenname: Farshad surname: Moradi fullname: Moradi, Farshad organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 5 givenname: Joy surname: Liau fullname: Liau, Joy organization: Department of Bioengineering, University of California, San Diego, CA, USA – sequence: 6 givenname: Giedrius T. surname: Buracas fullname: Buracas, Giedrius T. organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 7 givenname: Susan R. surname: Hopkins fullname: Hopkins, Susan R. organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 8 givenname: Richard B. surname: Buxton fullname: Buxton, Richard B. email: rbuxton@ucsd.edu organization: Department of Radiology, University of California, San Diego, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110688$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22963855$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P0zAQhiO0iN0t_AVkCSFxabCdOHYuCHb5lCrtBc6W40y2Lo5d7Lhoj_xz3G1pYS_0FCvz-JFn5r0szpx3UBSI4JJg0rxelQ5S8GZUt1BSTGiJRYk5f1RcENyyecs4PdueWTUXhLTnxWWMK4xxS2rxpDintG0qwdhF8WuRRuOU04C0d1NQcUJ-QAptTEzKojiZMdkU0ej7ZNUEEU1LQFc3i_coQFx7FyHXAuTfyt3XNAToQr7bWe97NFj_84iaHbNMY6YzZdzT4vGgbIRn---s-Pbxw9frz_PFzacv1-8Wc9201TQnquuwFtCyrqnZ0FUKOK-4AEUI65uatrpuhlpoPTDVCaCDGrpOtR3kI9GkmhVvdt516kboNWy7tXId8hTDnfTKyH8rzizlrd_IitUs-7Pg1V4Q_I8EcZKjiRqsVQ58ipIwjHmDGW_-j1KKq4a3ubNZ8eIBuvIpuDyJLGQUU8wZz9Tzvx9_ePWfRWbg5R5QUSs7hLxSE48cJwQ3QmRO7DgdfIwBhgNCsNxmS67kMVtymy2JhczZOg7wcFWbSU3mPjbGniK42gkgr3ljIMioDeTo9SaAnmTvzSmStw8k2hpncs_f4e40xW-wfAq1 |
CitedBy_id | crossref_primary_10_1002_glia_23259 crossref_primary_10_1002_jmri_24786 crossref_primary_10_1016_j_neuroimage_2025_121069 crossref_primary_10_1371_journal_pone_0068122 crossref_primary_10_1016_j_neuroimage_2015_03_080 crossref_primary_10_1016_j_neuroimage_2013_05_110 crossref_primary_10_1016_j_neuroimage_2021_118658 crossref_primary_10_1523_JNEUROSCI_0106_21_2021 crossref_primary_10_3389_fnint_2022_818685 crossref_primary_10_1016_j_neuroimage_2012_11_050 crossref_primary_10_1371_journal_pone_0205325 crossref_primary_10_1093_cercor_bhac057 crossref_primary_10_1371_journal_pone_0117706 crossref_primary_10_1016_j_neuroimage_2019_116323 crossref_primary_10_1016_j_neuroimage_2019_06_009 crossref_primary_10_1117_1_JBO_21_9_091315 crossref_primary_10_1038_s41598_020_62165_x crossref_primary_10_1002_mrm_30015 crossref_primary_10_3389_fnins_2014_00139 crossref_primary_10_1098_rstb_2019_0624 crossref_primary_10_1016_j_pneurobio_2021_102174 crossref_primary_10_53841_bpspag_2020_1_114_9 crossref_primary_10_1016_j_neuroimage_2014_11_041 crossref_primary_10_1016_j_neuroimage_2014_10_003 crossref_primary_10_1016_j_neuroimage_2015_10_023 crossref_primary_10_1016_j_neuroimage_2016_10_024 crossref_primary_10_1152_jn_00729_2013 crossref_primary_10_3389_fnhum_2017_00419 crossref_primary_10_1016_j_brainres_2016_04_040 crossref_primary_10_1016_j_neuroimage_2017_06_020 |
Cites_doi | 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5 10.1038/jcbfm.2010.226 10.1073/pnas.1100428108 10.1016/j.neuroimage.2010.08.070 10.1161/01.STR.5.5.630 10.1097/00004647-199906000-00012 10.1016/j.neuroimage.2011.05.077 10.1002/mrm.1910390506 10.1152/jn.1998.79.4.2204 10.1002/(SICI)1522-2594(199906)41:6<1152::AID-MRM11>3.0.CO;2-T 10.1016/j.neuroimage.2006.10.044 10.1163/156856897X00366 10.1016/j.neuroimage.2006.08.033 10.1073/pnas.96.16.9403 10.1016/j.neuroimage.2006.12.034 10.1002/mrm.20377 10.1006/cbmr.1996.0014 10.1016/j.neuroimage.2007.10.049 10.1006/nimg.2001.0931 10.1016/j.neuroimage.2004.07.013 10.1016/j.neuroimage.2006.01.026 10.1523/JNEUROSCI.16-13-04207.1996 10.1016/j.neuroimage.2005.05.038 10.1038/sj.jcbfm.9600429 10.1002/mrm.21171 10.1006/nimg.1999.0443 10.1002/mrm.21655 10.1016/j.neuroimage.2004.01.036 10.1016/j.neuroimage.2004.09.047 10.1097/00004647-200004000-00012 10.1002/nbm.1411 10.1073/pnas.95.4.1834 10.1006/nimg.2001.0916 10.1016/j.neuroimage.2006.05.040 10.1002/hbm.20574 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1016/j.neuroimage.2011.07.078 10.1002/jmri.10155 10.1163/156856897X00357 10.1161/01.STR.31.3.680 10.1016/j.neuroimage.2007.11.015 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. 2014 INIST-CNRS Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 1, 2013 2012 Elsevier Inc. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2013 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2012.08.077 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 111 |
ExternalDocumentID | PMC3545642 3396563101 22963855 27110688 10_1016_j_neuroimage_2012_08_077 S1053811912008865 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINR NIH HHS grantid: R01 NR012657 – fundername: NINDS NIH HHS grantid: NS-36722 – fundername: NINR NIH HHS grantid: R01 NR012907 – fundername: NINDS NIH HHS grantid: R01 NS036722 – fundername: NIMH NIH HHS grantid: 1K23MH081786 – fundername: NIBIB NIH HHS grantid: R01 EB000790 – fundername: NIMH NIH HHS grantid: K23 MH081786 – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS036722 || NS |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c693t-1abb0c8e95b645fb3ae77378ea115d6429c46f48ccf5ab8e2fafbba9bee2f1c13 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:13:05 EDT 2025 Fri Jul 11 15:48:37 EDT 2025 Fri Jul 11 10:37:03 EDT 2025 Wed Aug 13 08:33:59 EDT 2025 Thu Apr 03 07:03:34 EDT 2025 Mon Jul 21 09:10:51 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Tue Jul 01 02:14:48 EDT 2025 Fri Feb 23 02:45:59 EST 2024 Tue Aug 26 16:31:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cerebral metabolic rate of oxygen consumption (CMRO2) Visual contrast Visual cortex Arterial spin labeling (ASL) Functional magnetic resonance imaging (fMRI) Cerebral blood flow (CBF) Blood oxygen level dependent (BOLD) effect Central nervous system Stimulus luminance Encephalon Visual pathway Functional magnetic resonance imaging Coupling Human Regional blood flow Oxygen Cerebral metabolic rate of oxygen consumption (CMRO ) Contrast Nuclear magnetic resonance imaging fMRI Visual stimulus Vision Perception Hemodynamics Oxygenation Functional imaging |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c693t-1abb0c8e95b645fb3ae77378ea115d6429c46f48ccf5ab8e2fafbba9bee2f1c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3545642 |
PMID | 22963855 |
PQID | 1552020757 |
PQPubID | 2031077 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3545642 proquest_miscellaneous_1500760576 proquest_miscellaneous_1220367969 proquest_journals_1552020757 pubmed_primary_22963855 pascalfrancis_primary_27110688 crossref_primary_10_1016_j_neuroimage_2012_08_077 crossref_citationtrail_10_1016_j_neuroimage_2012_08_077 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_08_077 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_08_077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Glover, Li, Ress (bb9020) 2000; 44 Buxton (bb0020) 2010; 2 Stefanovic, Warnking, Kobayashi, Bagshaw, Hawco, Dubeau, Gotman, Pike (bb0150) 2005; 28 Burock, Dale (bb9035) 2000; 11 Chalela, Alsop, Gonzalez-Atavales, Maldjian, Kasner, Detre (bb0030) 2000; 31 Brainard (bb9040) 1997; 10 Moradi, Buracas, Buxton (bb0140) 2012; 59 Kim, Hendrich, Masamoto, Kim (bb0095) 2007; 27 Goodyear, Menon (bb0065) 1998; 79 Boynton, Engel, Glover, Heeger (bb0015) 1996; 16 Lin, Fox, Yang, Lu, Tan, Gao (bb0115) 2008; 60 Mark, Fisher, Pike (bb0130) 2011; 54 Restom, Behzadi, Liu (bb9015) 2006; 31 Ances, Leontiev, Perthen, Liang, Lansing, Buxton (bb0005) 2008; 39 Hoge, Atkinson, Gill, Crelier, Marrett, Pike (bb0075) 1999; 96 Wong, Buxton, Frank (bb9005) 1998; 39 Liu, Wong (bb0120) 2005; 24 Perthen, Lansing, Liau, Liu, Buxton (bb0145) 2008; 40 Grubb, Raichle, Eichling, Ter-Pogossian (bb9010) 1974; 5 Woolrich, Ripley, Brady, Smith (bb9000) 2001; 14 Ances, Liang, Leontiev, Perthen, Fleisher, Lansing, Buxton (bb0010) 2009; 30 Mohamed, Pinus, Faro, Patel, Tracy (bb0135) 2002; 16 Drew, Shih, Kleinfeld (bb0060) 2011; 108 Davis, Kwong, Weisskoff, Rosen (bb0055) 1998; 95 Mumford, Hernandez-Garcia, Lee, Nichols (bb9030) 2006; 33 Vafaee, Gjedde (bb0160) 2000; 20 Chiarelli, Bulte, Piechnik, Jezzard (bb0045) 2007; 34 Kim, Rostrup, Larsson, Ogawa, Paulson (bb0090) 1999; 41 Stefanovic, Warnking, Pike (bb0155) 2004; 22 Leontiev, Buxton (bb0105) 2007; 35 Griffeth, Buxton (bb0070) 2011; 58 Kastrup, Kruger, Neumann-Haefelin, Glover, Moseley (bb0085) 2002; 15 Leontiev, Dubowitz, Buxton (bb0110) 2007; 36 Cox (bb0050) 1996; 29 Kim, Kim (bb0100) 2011; 31 Hoge, Atkinson, Gill, Crelier, Marrett, Pike (bb0080) 1999; 9 Pelli (bb9025) 1997; 10 Mandeville, Marota, Ayata, Zaharchuk, Moskowitz, Rosen, Weisskoff (bb0125) 1999; 19 Wang, Qiu, Constable (bb0165) 2005; 53 Buxton, Uludag, Dubowitz, Liu (bb0025) 2004; 23 Chiarelli, Bulte, Gallichan, Piechnik, Wise, Jezzard (bb0040) 2007; 57 Chen, Pike (bb0035) 2009; 22 Mandeville (10.1016/j.neuroimage.2012.08.077_bb0125) 1999; 19 Ances (10.1016/j.neuroimage.2012.08.077_bb0005) 2008; 39 Mohamed (10.1016/j.neuroimage.2012.08.077_bb0135) 2002; 16 Kim (10.1016/j.neuroimage.2012.08.077_bb0100) 2011; 31 Drew (10.1016/j.neuroimage.2012.08.077_bb0060) 2011; 108 Mark (10.1016/j.neuroimage.2012.08.077_bb0130) 2011; 54 Wong (10.1016/j.neuroimage.2012.08.077_bb9005) 1998; 39 Wang (10.1016/j.neuroimage.2012.08.077_bb0165) 2005; 53 Hoge (10.1016/j.neuroimage.2012.08.077_bb0075) 1999; 96 Pelli (10.1016/j.neuroimage.2012.08.077_bb9025) 1997; 10 Grubb (10.1016/j.neuroimage.2012.08.077_bb9010) 1974; 5 Chen (10.1016/j.neuroimage.2012.08.077_bb0035) 2009; 22 Woolrich (10.1016/j.neuroimage.2012.08.077_bb9000) 2001; 14 Stefanovic (10.1016/j.neuroimage.2012.08.077_bb0155) 2004; 22 Buxton (10.1016/j.neuroimage.2012.08.077_bb0020) 2010; 2 Hoge (10.1016/j.neuroimage.2012.08.077_bb0080) 1999; 9 Burock (10.1016/j.neuroimage.2012.08.077_bb9035) 2000; 11 Kim (10.1016/j.neuroimage.2012.08.077_bb0095) 2007; 27 Leontiev (10.1016/j.neuroimage.2012.08.077_bb0110) 2007; 36 Cox (10.1016/j.neuroimage.2012.08.077_bb0050) 1996; 29 Chiarelli (10.1016/j.neuroimage.2012.08.077_bb0040) 2007; 57 Buxton (10.1016/j.neuroimage.2012.08.077_bb0025) 2004; 23 Kastrup (10.1016/j.neuroimage.2012.08.077_bb0085) 2002; 15 Leontiev (10.1016/j.neuroimage.2012.08.077_bb0105) 2007; 35 Liu (10.1016/j.neuroimage.2012.08.077_bb0120) 2005; 24 Mumford (10.1016/j.neuroimage.2012.08.077_bb9030) 2006; 33 Restom (10.1016/j.neuroimage.2012.08.077_bb9015) 2006; 31 Lin (10.1016/j.neuroimage.2012.08.077_bb0115) 2008; 60 Goodyear (10.1016/j.neuroimage.2012.08.077_bb0065) 1998; 79 Moradi (10.1016/j.neuroimage.2012.08.077_bb0140) 2012; 59 Kim (10.1016/j.neuroimage.2012.08.077_bb0090) 1999; 41 Glover (10.1016/j.neuroimage.2012.08.077_bb9020) 2000; 44 Boynton (10.1016/j.neuroimage.2012.08.077_bb0015) 1996; 16 Griffeth (10.1016/j.neuroimage.2012.08.077_bb0070) 2011; 58 Brainard (10.1016/j.neuroimage.2012.08.077_bb9040) 1997; 10 Vafaee (10.1016/j.neuroimage.2012.08.077_bb0160) 2000; 20 Ances (10.1016/j.neuroimage.2012.08.077_bb0010) 2009; 30 Davis (10.1016/j.neuroimage.2012.08.077_bb0055) 1998; 95 Chalela (10.1016/j.neuroimage.2012.08.077_bb0030) 2000; 31 Stefanovic (10.1016/j.neuroimage.2012.08.077_bb0150) 2005; 28 Chiarelli (10.1016/j.neuroimage.2012.08.077_bb0045) 2007; 34 Perthen (10.1016/j.neuroimage.2012.08.077_bb0145) 2008; 40 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 17208013 - Neuroimage. 2007 Mar;35(1):175-84 12203759 - J Magn Reson Imaging. 2002 Aug;16(2):128-36 21536897 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8473-8 10334901 - Neuroimage. 1999 Jun;9(6 Pt 1):573-85 18465743 - Hum Brain Mapp. 2009 Apr;30(4):1120-32 11771975 - Neuroimage. 2002 Jan;15(1):74-82 15193606 - Neuroimage. 2004 Jun;22(2):771-8 8753882 - J Neurosci. 1996 Jul 1;16(13):4207-21 18164629 - Neuroimage. 2008 Feb 15;39(4):1510-21 17029987 - Neuroimage. 2007 Jan 1;34(1):35-43 9535979 - J Neurophysiol. 1998 Apr;79(4):2204-7 20828623 - Neuroimage. 2011 Jan 15;54(2):1102-11 10371447 - Magn Reson Med. 1999 Jun;41(6):1152-61 10779019 - J Cereb Blood Flow Metab. 2000 Apr;20(4):747-54 21839179 - Neuroimage. 2012 Jan 2;59(1):601-7 16000253 - Neuroimage. 2005 Oct 15;28(1):205-15 15588612 - Neuroimage. 2005 Jan 1;24(1):207-15 20616882 - Front Neuroenergetics. 2010 Jun 17;2:8 10700504 - Stroke. 2000 Mar;31(3):680-7 10430955 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9403-8 10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89 17326178 - Magn Reson Med. 2007 Mar;57(3):538-47 15723397 - Magn Reson Med. 2005 Mar;53(3):666-74 19598180 - NMR Biomed. 2009 Dec;22(10):1054-62 21179068 - J Cereb Blood Flow Metab. 2011 May;31(5):1211-22 18191583 - Neuroimage. 2008 Mar 1;40(1):237-47 18666102 - Magn Reson Med. 2008 Aug;60(2):380-9 17180136 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1235-47 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33 21669292 - Neuroimage. 2011 Sep 1;58(1):198-212 17524665 - Neuroimage. 2007 Jul 15;36(4):1110-22 |
References_xml | – volume: 10 start-page: 433 year: 1997 end-page: 436 ident: bb9040 article-title: The psychophysics toolbox publication-title: Spat. Vis. – volume: 54 start-page: 1102 year: 2011 end-page: 1111 ident: bb0130 article-title: Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli publication-title: Neuroimage – volume: 5 start-page: 630 year: 1974 end-page: 639 ident: bb9010 article-title: The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time publication-title: Stroke – volume: 39 start-page: 1510 year: 2008 end-page: 1521 ident: bb0005 article-title: Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI publication-title: Neuroimage – volume: 23 start-page: S220 year: 2004 end-page: S233 ident: bb0025 article-title: Modeling the hemodynamic response to brain activation publication-title: Neuroimage – volume: 58 start-page: 198 year: 2011 end-page: 212 ident: bb0070 article-title: A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal publication-title: Neuroimage – volume: 31 start-page: 1211 year: 2011 end-page: 1222 ident: bb0100 article-title: Temporal dynamics and spatial specificity of arterial and venous blood volume changes during visual stimulation: implication for BOLD quantification publication-title: J. Cereb. Blood Flow Metab. – volume: 57 start-page: 538 year: 2007 end-page: 547 ident: bb0040 article-title: Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 53 start-page: 666 year: 2005 end-page: 674 ident: bb0165 article-title: In vivo method for correcting transmit/receive nonuniformities with phased array coils publication-title: Magn. Reson. Med. – volume: 35 start-page: 175 year: 2007 end-page: 184 ident: bb0105 article-title: Reproducibility of BOLD, perfusion, and CMRO(2) measurements with calibrated-BOLD fMRI publication-title: Neuroimage – volume: 96 start-page: 9403 year: 1999 end-page: 9408 ident: bb0075 article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 1104 year: 2006 end-page: 1115 ident: bb9015 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: Neuroimage – volume: 16 start-page: 128 year: 2002 end-page: 136 ident: bb0135 article-title: BOLD fMRI of the visual cortex: quantitative responses measured with a graded stimulus at 1.5 Tesla publication-title: J. Magn. Reson. Imaging – volume: 20 start-page: 747 year: 2000 end-page: 754 ident: bb0160 article-title: Model of blood–brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex publication-title: J. Cereb. Blood Flow Metab. – volume: 15 start-page: 74 year: 2002 end-page: 82 ident: bb0085 article-title: Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation publication-title: Neuroimage – volume: 24 start-page: 207 year: 2005 end-page: 215 ident: bb0120 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: Neuroimage – volume: 22 start-page: 771 year: 2004 end-page: 778 ident: bb0155 article-title: Hemodynamic and metabolic responses to neuronal inhibition publication-title: Neuroimage – volume: 30 start-page: 1120 year: 2009 end-page: 1132 ident: bb0010 article-title: Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation publication-title: Hum. Brain Mapp. – volume: 108 start-page: 8473 year: 2011 end-page: 8478 ident: bb0060 article-title: Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 start-page: 679 year: 1999 end-page: 689 ident: bb0125 article-title: Evidence of a cerebrovascular post-arteriole Windkessel with delayed compliance publication-title: J. Cereb. Blood Flow Metab. – volume: 59 start-page: 601 year: 2012 end-page: 607 ident: bb0140 article-title: Attention strongly increases oxygen metabolic response to stimulus in primary visual cortex publication-title: Neuroimage – volume: 95 start-page: 1834 year: 1998 end-page: 1839 ident: bb0055 article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 249 year: 2000 end-page: 260 ident: bb9035 article-title: Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach publication-title: Hum. Brain Mapp. – volume: 41 start-page: 1152 year: 1999 end-page: 1161 ident: bb0090 article-title: Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation publication-title: Magn. Reson. Med. – volume: 39 start-page: 702 year: 1998 end-page: 708 ident: bb9005 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn. Reson. Med. – volume: 40 start-page: 237 year: 2008 end-page: 247 ident: bb0145 article-title: Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study publication-title: Neuroimage – volume: 2 start-page: 8 year: 2010 ident: bb0020 article-title: Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism publication-title: Front. Neuroenergetics – volume: 14 start-page: 1370 year: 2001 end-page: 1386 ident: bb9000 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: Neuroimage – volume: 36 start-page: 1110 year: 2007 end-page: 1122 ident: bb0110 article-title: CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias publication-title: Neuroimage – volume: 31 start-page: 680 year: 2000 end-page: 687 ident: bb0030 article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling publication-title: Stroke – volume: 33 start-page: 103 year: 2006 end-page: 114 ident: bb9030 article-title: Estimation efficiency and statistical power in arterial spin labeling fMRI publication-title: Neuroimage – volume: 22 start-page: 1054 year: 2009 end-page: 1062 ident: bb0035 article-title: BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans publication-title: NMR Biomed. – volume: 34 start-page: 35 year: 2007 end-page: 43 ident: bb0045 article-title: Sources of systematic bias in hypercapnia-calibrated functional MRI estimation of oxygen metabolism publication-title: Neuroimage – volume: 10 start-page: 437 year: 1997 end-page: 442 ident: bb9025 article-title: The VideoToolbox software for visual psychophysics: transforming numbers into movies publication-title: Spat. Vis. – volume: 79 start-page: 2204 year: 1998 end-page: 2207 ident: bb0065 article-title: Effect of luminance contrast on BOLD fMRI response in human primary visual areas publication-title: J. Neurophysiol. – volume: 9 start-page: 573 year: 1999 end-page: 585 ident: bb0080 article-title: Stimulus-dependent BOLD and perfusion dynamics in human V1 publication-title: Neuroimage – volume: 16 start-page: 4207 year: 1996 end-page: 4221 ident: bb0015 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J. Neurosci. – volume: 60 start-page: 380 year: 2008 end-page: 389 ident: bb0115 article-title: Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF publication-title: Magn. Reson. Med. – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bb0050 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – volume: 44 start-page: 162 year: 2000 end-page: 167 ident: bb9020 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. – volume: 28 start-page: 205 year: 2005 end-page: 215 ident: bb0150 article-title: Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges publication-title: Neuroimage – volume: 27 start-page: 1235 year: 2007 end-page: 1247 ident: bb0095 article-title: Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI publication-title: J. Cereb. Blood Flow Metab. – volume: 11 start-page: 249 year: 2000 ident: 10.1016/j.neuroimage.2012.08.077_bb9035 article-title: Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5 – volume: 31 start-page: 1211 year: 2011 ident: 10.1016/j.neuroimage.2012.08.077_bb0100 article-title: Temporal dynamics and spatial specificity of arterial and venous blood volume changes during visual stimulation: implication for BOLD quantification publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2010.226 – volume: 2 start-page: 8 year: 2010 ident: 10.1016/j.neuroimage.2012.08.077_bb0020 article-title: Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism publication-title: Front. Neuroenergetics – volume: 108 start-page: 8473 year: 2011 ident: 10.1016/j.neuroimage.2012.08.077_bb0060 article-title: Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1100428108 – volume: 54 start-page: 1102 year: 2011 ident: 10.1016/j.neuroimage.2012.08.077_bb0130 article-title: Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.070 – volume: 5 start-page: 630 year: 1974 ident: 10.1016/j.neuroimage.2012.08.077_bb9010 article-title: The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time publication-title: Stroke doi: 10.1161/01.STR.5.5.630 – volume: 19 start-page: 679 year: 1999 ident: 10.1016/j.neuroimage.2012.08.077_bb0125 article-title: Evidence of a cerebrovascular post-arteriole Windkessel with delayed compliance publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199906000-00012 – volume: 58 start-page: 198 year: 2011 ident: 10.1016/j.neuroimage.2012.08.077_bb0070 article-title: A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.05.077 – volume: 39 start-page: 702 year: 1998 ident: 10.1016/j.neuroimage.2012.08.077_bb9005 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390506 – volume: 79 start-page: 2204 year: 1998 ident: 10.1016/j.neuroimage.2012.08.077_bb0065 article-title: Effect of luminance contrast on BOLD fMRI response in human primary visual areas publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.79.4.2204 – volume: 41 start-page: 1152 year: 1999 ident: 10.1016/j.neuroimage.2012.08.077_bb0090 article-title: Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199906)41:6<1152::AID-MRM11>3.0.CO;2-T – volume: 35 start-page: 175 year: 2007 ident: 10.1016/j.neuroimage.2012.08.077_bb0105 article-title: Reproducibility of BOLD, perfusion, and CMRO(2) measurements with calibrated-BOLD fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.044 – volume: 10 start-page: 437 year: 1997 ident: 10.1016/j.neuroimage.2012.08.077_bb9025 article-title: The VideoToolbox software for visual psychophysics: transforming numbers into movies publication-title: Spat. Vis. doi: 10.1163/156856897X00366 – volume: 34 start-page: 35 year: 2007 ident: 10.1016/j.neuroimage.2012.08.077_bb0045 article-title: Sources of systematic bias in hypercapnia-calibrated functional MRI estimation of oxygen metabolism publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.033 – volume: 96 start-page: 9403 year: 1999 ident: 10.1016/j.neuroimage.2012.08.077_bb0075 article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.16.9403 – volume: 36 start-page: 1110 year: 2007 ident: 10.1016/j.neuroimage.2012.08.077_bb0110 article-title: CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.12.034 – volume: 53 start-page: 666 year: 2005 ident: 10.1016/j.neuroimage.2012.08.077_bb0165 article-title: In vivo method for correcting transmit/receive nonuniformities with phased array coils publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20377 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2012.08.077_bb0050 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 40 start-page: 237 year: 2008 ident: 10.1016/j.neuroimage.2012.08.077_bb0145 article-title: Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.049 – volume: 14 start-page: 1370 year: 2001 ident: 10.1016/j.neuroimage.2012.08.077_bb9000 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: Neuroimage doi: 10.1006/nimg.2001.0931 – volume: 23 start-page: S220 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2012.08.077_bb0025 article-title: Modeling the hemodynamic response to brain activation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.013 – volume: 31 start-page: 1104 year: 2006 ident: 10.1016/j.neuroimage.2012.08.077_bb9015 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.026 – volume: 16 start-page: 4207 year: 1996 ident: 10.1016/j.neuroimage.2012.08.077_bb0015 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-13-04207.1996 – volume: 28 start-page: 205 year: 2005 ident: 10.1016/j.neuroimage.2012.08.077_bb0150 article-title: Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.038 – volume: 27 start-page: 1235 year: 2007 ident: 10.1016/j.neuroimage.2012.08.077_bb0095 article-title: Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600429 – volume: 57 start-page: 538 year: 2007 ident: 10.1016/j.neuroimage.2012.08.077_bb0040 article-title: Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21171 – volume: 9 start-page: 573 year: 1999 ident: 10.1016/j.neuroimage.2012.08.077_bb0080 article-title: Stimulus-dependent BOLD and perfusion dynamics in human V1 publication-title: Neuroimage doi: 10.1006/nimg.1999.0443 – volume: 60 start-page: 380 year: 2008 ident: 10.1016/j.neuroimage.2012.08.077_bb0115 article-title: Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21655 – volume: 22 start-page: 771 year: 2004 ident: 10.1016/j.neuroimage.2012.08.077_bb0155 article-title: Hemodynamic and metabolic responses to neuronal inhibition publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.01.036 – volume: 24 start-page: 207 year: 2005 ident: 10.1016/j.neuroimage.2012.08.077_bb0120 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.047 – volume: 20 start-page: 747 year: 2000 ident: 10.1016/j.neuroimage.2012.08.077_bb0160 article-title: Model of blood–brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200004000-00012 – volume: 22 start-page: 1054 year: 2009 ident: 10.1016/j.neuroimage.2012.08.077_bb0035 article-title: BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans publication-title: NMR Biomed. doi: 10.1002/nbm.1411 – volume: 95 start-page: 1834 year: 1998 ident: 10.1016/j.neuroimage.2012.08.077_bb0055 article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.4.1834 – volume: 15 start-page: 74 year: 2002 ident: 10.1016/j.neuroimage.2012.08.077_bb0085 article-title: Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation publication-title: Neuroimage doi: 10.1006/nimg.2001.0916 – volume: 33 start-page: 103 year: 2006 ident: 10.1016/j.neuroimage.2012.08.077_bb9030 article-title: Estimation efficiency and statistical power in arterial spin labeling fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.040 – volume: 30 start-page: 1120 year: 2009 ident: 10.1016/j.neuroimage.2012.08.077_bb0010 article-title: Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20574 – volume: 44 start-page: 162 year: 2000 ident: 10.1016/j.neuroimage.2012.08.077_bb9020 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – volume: 59 start-page: 601 year: 2012 ident: 10.1016/j.neuroimage.2012.08.077_bb0140 article-title: Attention strongly increases oxygen metabolic response to stimulus in primary visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.078 – volume: 16 start-page: 128 year: 2002 ident: 10.1016/j.neuroimage.2012.08.077_bb0135 article-title: BOLD fMRI of the visual cortex: quantitative responses measured with a graded stimulus at 1.5 Tesla publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10155 – volume: 10 start-page: 433 year: 1997 ident: 10.1016/j.neuroimage.2012.08.077_bb9040 article-title: The psychophysics toolbox publication-title: Spat. Vis. doi: 10.1163/156856897X00357 – volume: 31 start-page: 680 year: 2000 ident: 10.1016/j.neuroimage.2012.08.077_bb0030 article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling publication-title: Stroke doi: 10.1161/01.STR.31.3.680 – volume: 39 start-page: 1510 year: 2008 ident: 10.1016/j.neuroimage.2012.08.077_bb0005 article-title: Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.015 – reference: 20828623 - Neuroimage. 2011 Jan 15;54(2):1102-11 – reference: 19598180 - NMR Biomed. 2009 Dec;22(10):1054-62 – reference: 17208013 - Neuroimage. 2007 Mar;35(1):175-84 – reference: 21839179 - Neuroimage. 2012 Jan 2;59(1):601-7 – reference: 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33 – reference: 21179068 - J Cereb Blood Flow Metab. 2011 May;31(5):1211-22 – reference: 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 – reference: 8753882 - J Neurosci. 1996 Jul 1;16(13):4207-21 – reference: 17326178 - Magn Reson Med. 2007 Mar;57(3):538-47 – reference: 17180136 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1235-47 – reference: 18164629 - Neuroimage. 2008 Feb 15;39(4):1510-21 – reference: 18191583 - Neuroimage. 2008 Mar 1;40(1):237-47 – reference: 16000253 - Neuroimage. 2005 Oct 15;28(1):205-15 – reference: 17524665 - Neuroimage. 2007 Jul 15;36(4):1110-22 – reference: 10371447 - Magn Reson Med. 1999 Jun;41(6):1152-61 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 10334901 - Neuroimage. 1999 Jun;9(6 Pt 1):573-85 – reference: 11771975 - Neuroimage. 2002 Jan;15(1):74-82 – reference: 15723397 - Magn Reson Med. 2005 Mar;53(3):666-74 – reference: 18465743 - Hum Brain Mapp. 2009 Apr;30(4):1120-32 – reference: 15588612 - Neuroimage. 2005 Jan 1;24(1):207-15 – reference: 18666102 - Magn Reson Med. 2008 Aug;60(2):380-9 – reference: 21536897 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8473-8 – reference: 9535979 - J Neurophysiol. 1998 Apr;79(4):2204-7 – reference: 15193606 - Neuroimage. 2004 Jun;22(2):771-8 – reference: 10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89 – reference: 12203759 - J Magn Reson Imaging. 2002 Aug;16(2):128-36 – reference: 10700504 - Stroke. 2000 Mar;31(3):680-7 – reference: 20616882 - Front Neuroenergetics. 2010 Jun 17;2:8 – reference: 10430955 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9403-8 – reference: 10779019 - J Cereb Blood Flow Metab. 2000 Apr;20(4):747-54 – reference: 21669292 - Neuroimage. 2011 Sep 1;58(1):198-212 – reference: 17029987 - Neuroimage. 2007 Jan 1;34(1):35-43 |
SSID | ssj0009148 |
Score | 2.2349546 |
Snippet | The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Adult Arterial spin labeling (ASL) Biological and medical sciences Blood Blood oxygen level dependent (BOLD) effect Brain - physiology Brain mapping Brain Mapping - methods Cerebral blood flow (CBF) Cerebral metabolic rate of oxygen consumption (CMRO2) Cerebrovascular Circulation - physiology Eye and associated structures. Visual pathways and centers. Vision Female Functional magnetic resonance imaging (fMRI) Fundamental and applied biological sciences. Psychology Humans Magnetic Resonance Imaging - methods Male Medical imaging Oxygen - blood Oxygen Consumption - physiology Photic Stimulation - methods Reproducibility of Results Sensitivity and Specificity Standard deviation Studies Vertebrates: nervous system and sense organs Visual contrast Visual cortex Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96ggiH-G31PCL4WrRtmg98EL-OQ-70xYN9K0k2wZXddt1uz2f_c2fStHVFj6UvhcyU0Ekmv2R-mSHkhQaYy2EdSD1TPGWF5CmsiirNtMphOnGpPV5wPv_MTy_Yp1k5iwdubaRVDj4xOOp5Y_GM_CWmCgNoI0rxZv0jxapRGF2NJTSukxuYugw3X2ImpqS7GeuvwpVFKkEgMnl6flfIF7lYwaxFglceEnkK8b_l6XCtW_hpvq928S84-jer8o9l6uQOuR3xJX3bD4i75Jqr75Gb5zGCfp_8OusC-cU6Gljqut3SxlNNLxdtB4ow41fdsmvpqpljZS_XUoCI9N2Xsw900_NpHUVyLsUz99Bm3Qajz0saSPDUL5ufk-iilwmlAKnBehQPyMXJx6_vT9NYhiG1XBVbMJsxr6x0qjScld4U2glRCOk0oMk57F-UZdwzaa0vtZEu99obo5Vx8JrZrHhIDuqmdo8J1UzOXcEzKzLH4JPGCXhybcDtMnAtCRHD369szFGOpTKW1UBG-15NdqvQbhVW0RQiIdmoue7zdOyhowYDV8M9VPCcFSwme-i-HnUjVukxyJ7axzvjaexyLgCOcSkTcjQMsCo6lbaapkBCno_N4A4wxqNr13Qgk2NkWSiurpApQzwWdpoJedSP2akDOXrksgRL7IzmUQDTke-21ItvIS15gWCc5U-u7vpTcisPFUXwFOuIHGw3nXsGuG5rjsPk_Q31kVHX priority: 102 providerName: ProQuest |
Title | Luminance contrast of a visual stimulus modulates the BOLD response more than the cerebral blood flow response in the human brain |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912008865 https://dx.doi.org/10.1016/j.neuroimage.2012.08.077 https://www.ncbi.nlm.nih.gov/pubmed/22963855 https://www.proquest.com/docview/1552020757 https://www.proquest.com/docview/1220367969 https://www.proquest.com/docview/1500760576 https://pubmed.ncbi.nlm.nih.gov/PMC3545642 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-OE0QQ8dvqWVbwNdYkm_3Ap7t6R9VePU4P-hZ2txsu0jalafRN8D93ZvNRKyoFKTSlO1PSndmZ2cxvZwh5qSHM5eAHgowpHrBY8gC8ogpCrSJYTlzqDA84n0_46Iq9nybTAzJsz8IgrLKx_bVN99a6-WbQzOZgleeDTxAZgLuB_Qam8CXHg-ZYvQ50-tX3LcxDhaw-DpfEAVI3aJ4a4-VrRuYLWLkI8op8MU8h_uaibq90CROX1R0v_hSS_o6s_MVVnd0ld5oYkx7Xf-MeOXDL--TmeZNFf0B-jCsPgLGOeqS6Lje0yKimX_OyAkZY9YtqXpV0Ucywu5crKYSJ9OTj-C1d15haRxGgS_G5ux-zbo0Z6Dn1QHiazYtvW9K8pvHtAKnBnhQPydXZ6efhKGhaMQSWq3gDojPmtZVOJYazJDOxdkLEQjoNEeUM9jDKMp4xaW2WaCNdlOnMGK2Mg4-hDeNH5HBZLN0TQjWTMxfz0IrQMfhJ4wS8Im1AmgzMS4-IdvZT29Qpx3YZ87QFpH1Jt3JLUW4pdtIUokfCjnNV1-rYg0e1Ak7bs6hgPVNwKHvwvul4d3R2T-7-jj51txwJCMm4lD1y1CpY2hiWMsWKeRDhiwT4X3TDYBIwz6OXrqiAJsLsslBc_YMm8TlZ2G32yONaZ7c3EKFVThKQxI42dwRYknx3ZJlf-9LkMQbkLHr6XzPzjNyKfNMRfNB1RA4368o9h9BvY_p-bcO7mIo-uXE8vBxf4PXdh9EErienk4vLn8t2YvQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAAJIb4GhTGMBI8Ri-PYsRBCwJg61o6XTepbsF1HFLVNaRomHvmH-Bu5c74ogqkvU18q2RdZufPdL76f7wh5rgHmCogDQcaVCHiUiACiogpCrRhsJ5HoDC84D09E_4x_HMWjLfKruQuDtMrGJ3pHPc4tnpG_xFJhAG1kLN8svgXYNQqzq00Ljcosjt2Pc_hkK14fHYB-XzB2-OH0fT-ouwoEVqhoBaswZt8mTsVG8DgzkXZSRjJxGsDRGOC4slxkPLE2i7VJHMt0ZoxWxsHf0IYRPPcKuQqBdx8phHIkuyK_Ia-u3sVRkIShqplDFZ_M16eczMBLIKGM-cKhUv4vHN5c6AKUlFXdNf4Ff_9mcf4RFg9vk1s1nqVvKwO8Q7bc_C65Nqwz9vfIz0HpyTbWUc-K18WK5hnV9PukKEEQPMysnJYFneVj7CTmCgqQlL77NDigy4q_6yiSgSme8fsx65aY7Z5ST7qn2TQ_76ZOqjm-9SA12P_iPjm7FAXtkO15PncPCdU8GbtIhFaGjsMjjZPwY9qAm-fgynpENm8_tXVNdGzNMU0b8tvXtNNbinpLsWunlD0StpKLqi7IBjKqUXDa3HsFT51C8NpA9lUrW2OjCvNsKL23Zk_tkpkE-CeSpEd2GwNLaydWpN2W65Fn7TC4H8wp6bnLS5jDMJMtlVAXzIl9_he-bHvkQWWz3QIYRoA4Bk2sWXM7Acufr4_MJ198GfQIwT9njy5e-lNyvX86HKSDo5Pjx-QG891M8ARtl2yvlqV7AphyZfb8Rqbk82V7jt_esJF8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkCYkhPhNYQwjwWMEcRw7FkIIKNXGusEDk_oWbNcWndqmaxomHvm3-Ou4c5KWIpj6MvWlUnyRlTvfffZ9viPkmQaYKyAORJ4rEfEkExFERRXFWjFYTiLTHi84Hx2L_RP-cZAOtsiv9i4M0ipbnxgc9bCweEb-AkuFAbSRsIH3DS3ic7f3ZnYWYQcpzLS27TRqEzl0P85h-1a-PuiCrp8z1vvw5f1-1HQYiKxQyQJmZMxLmzmVGsFTbxLtpExk5jQApSFAc2W58Dyz1qfaZI557Y3Ryjj4G9s4gfdeIVdlAmET1pIcyFXB35jX1_DSJMriWDUsoppbFmpVjibgMZBcxkIRUSn_Fxqvz3QJCvN1p41_QeG_GZ1_hMjeTXKjwbb0bW2Mt8iWm94mO0dN9v4O-dmvAvHGOhoY8rpc0MJTTb-PygoEwdtMqnFV0kkxxK5irqQAT-m7T_0unddcXkeRGEzxvD88s26Ome8xDQR86sfF-WroqB4T2hBSg70w7pKTS1HQPbI9LabuAaGaZ0OXiNjK2HF4pXESfkwbcPkc3FqHyPbr57apj45tOsZ5S4Q7zVd6y1FvOXbwlLJD4qXkrK4RsoGMahWct3dgwWvnEMg2kH21lG1wUo1_NpTeW7On5ZSZBCgosqxDdlsDyxuHVuar5dchT5ePwRVhfklPXVHBGIZZbamEumBMGnLBsMvtkPu1za4mwDAapCloYs2alwOwFPr6k-noWyiJnuBGgLOHF0_9CdkBn5H3D44PH5FrLDQ2wcO0XbK9mFfuMcDLhdkL65iSr5ftOH4DSWWVsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Luminance+contrast+of+a+visual+stimulus+modulates+the+BOLD+response+more+than+the+cerebral+blood+flow+response+in+the+human+brain&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=LIANG%2C+Christine+L&rft.au=ANCES%2C+Beau+M&rft.au=PERTHEN%2C+Joanna+E&rft.au=MORADI%2C+Farshad&rft.date=2013-01-01&rft.pub=Elsevier&rft.issn=1053-8119&rft.volume=64&rft.spage=104&rft.epage=111&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.08.077&rft.externalDBID=n%2Fa&rft.externalDocID=27110688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |