NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system

A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N‐methyl‐d‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their res...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 13; no. 7; pp. 1420 - 1428
Main Author Colwell, Christopher S.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.04.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N‐methyl‐d‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA‐induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA‐induced Ca2+ transients. The phase of this rhythm was determined by the light–dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ‐Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA‐evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA‐evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
AbstractList A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N -methyl- D -aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca 2+ ) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca 2+ transients. The phase of this rhythm was determined by the light—dark cycle to which the rats were exposed with the Ca 2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ-Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca 2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl-d-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca super(2+)) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca super(2+) transients. The phase of this rhythm was determined by the light-dark cycle to which the rats were exposed with the Ca super(2+) transients peaking during the night. This rhythm continued when animals were held in DD. gamma -Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca super(2+) transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
Abstract A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N ‐methyl‐ d ‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA‐induced calcium (Ca 2+ ) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA‐induced Ca 2+ transients. The phase of this rhythm was determined by the light–dark cycle to which the rats were exposed with the Ca 2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ‐Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA‐evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA‐evoked Ca 2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N‐methyl‐d‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA‐induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA‐induced Ca2+ transients. The phase of this rhythm was determined by the light–dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ‐Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA‐evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA‐evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl- D-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca2+ transients. The phase of this rhythm was determined by the light-dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. gamma-Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
Author Colwell, Christopher S.
Author_xml – sequence: 1
  givenname: Christopher S.
  surname: Colwell
  fullname: Colwell, Christopher S.
  organization: Mental Retardation Research Center, Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11298803$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1v0zAUhi00xLrBX0C-Qtwk80f8ESSQpjEG0ygXfE3cWI7rtO4Sp7OTrf33OG0ZcIO4so_9vMfHeo7Age-8BQBilGNU8JNljkpGM4n5OicI4RxhhkW-fgQmuOAoKxmXB2DyC7o-BEcxLhFCkhfsCTjEmJRSIjoBy-nHt6eZvetu7Awa3Rg3tLAP2kdnfR-h9ul4CGFbOA_7hYVxWAVtFk7HVvfOQD-Yxg7xFZyn0s9htdlixgWjZ057GDext-1T8LjWTbTP9usx-Pru_MvZ--zq08WHs9OrzPCSiozWoixIPaNSCMq5tRUWwhgtClQRo-uCMl5rInUxE5jIUrIaUYtQRXXCmKDH4M2u72qoWjszafSgG7UKrtVhozrt1N833i3UvLtThKUXUZkavNg3CN3tYGOvWheNbRrtbTdERTCijEqWwJf_BLFEUhAkaZFQuUNN6GIMtn6YByM1OlVLNepSo1M1OlVbp2qdos___M_v4F5iAl7vgHvX2M1_N1bnl9Nxl_LZLu-SpvVDXocbxQUVTH2fXqgf-PO3a3IpFaU_Aebkw7s
CitedBy_id crossref_primary_10_1007_s00018_012_1241_9
crossref_primary_10_1016_S0006_8993_02_03168_2
crossref_primary_10_1152_jn_00332_2003
crossref_primary_10_1101_sqb_2007_72_037
crossref_primary_10_3389_fnsys_2014_00164
crossref_primary_10_1111_ejn_15312
crossref_primary_10_1007_s11906_020_01063_z
crossref_primary_10_1016_j_ceca_2013_07_006
crossref_primary_10_1016_j_neubiorev_2014_01_007
crossref_primary_10_1073_pnas_0708877104
crossref_primary_10_1002_jnr_20893
crossref_primary_10_1016_j_neuint_2004_03_023
crossref_primary_10_1177_10738584031262149
crossref_primary_10_1038_nrn3086
crossref_primary_10_1046_j_1365_2982_2001_00293_x
crossref_primary_10_1007_s11154_009_9121_9
crossref_primary_10_1038_s41386_021_01251_8
crossref_primary_10_1111_ejn_12919
crossref_primary_10_1016_S0092_8674_02_00737_7
crossref_primary_10_1016_j_pneurobio_2007_05_002
crossref_primary_10_1111_ejn_13549
crossref_primary_10_1177_0748730403018003006
crossref_primary_10_1152_physrev_00009_2009
crossref_primary_10_1073_pnas_0703388104
crossref_primary_10_3389_fnsyn_2022_833449
crossref_primary_10_1111_j_1460_9568_2006_04972_x
crossref_primary_10_1016_S0006_8993_03_03329_8
crossref_primary_10_1111_j_1471_4159_2009_06086_x
crossref_primary_10_1111_ejn_15043
crossref_primary_10_1016_j_arr_2021_101533
crossref_primary_10_1016_j_arr_2024_102401
crossref_primary_10_1002_neu_10080
crossref_primary_10_1152_ajpregu_00200_2003
crossref_primary_10_1111_j_1460_9568_2005_03950_x
crossref_primary_10_1002_glia_20020
crossref_primary_10_1038_s41467_020_17978_9
crossref_primary_10_1111_j_1460_9568_2008_06144_x
crossref_primary_10_1097_00001756_200303240_00024
crossref_primary_10_1152_jn_01069_2009
crossref_primary_10_1096_fj_202200478R
crossref_primary_10_1523_JNEUROSCI_1840_07_2007
crossref_primary_10_1371_journal_pone_0037121
crossref_primary_10_1038_npp_2014_326
crossref_primary_10_1523_JNEUROSCI_5792_10_2011
crossref_primary_10_1016_j_neuroscience_2004_04_018
crossref_primary_10_1152_jn_01078_2003
crossref_primary_10_1177_1759091420984920
crossref_primary_10_1016_j_ygcen_2006_07_004
crossref_primary_10_1081_CBI_120019311
crossref_primary_10_1152_jn_00695_2009
crossref_primary_10_1152_ajpregu_00179_2005
crossref_primary_10_1152_physrev_00027_2019
crossref_primary_10_1186_1471_2202_7_15
crossref_primary_10_1371_journal_pcbi_1000706
crossref_primary_10_1016_j_semcdb_2006_03_006
crossref_primary_10_1152_jn_00670_2009
crossref_primary_10_1111_j_1460_9568_2009_07011_x
crossref_primary_10_1177_0748730409343767
crossref_primary_10_1016_j_neuroscience_2011_11_050
crossref_primary_10_1111_j_1460_9568_2007_05548_x
crossref_primary_10_1152_jn_2002_88_2_817
crossref_primary_10_1007_s11154_009_9116_6
crossref_primary_10_1111_j_1471_4159_2010_06941_x
crossref_primary_10_1016_j_jtbi_2011_08_010
crossref_primary_10_1016_S0166_4328_01_00471_5
crossref_primary_10_1523_JNEUROSCI_2211_05_2005
crossref_primary_10_1523_JNEUROSCI_5750_07_2008
crossref_primary_10_1016_j_neuint_2003_09_005
crossref_primary_10_1016_j_neuroscience_2009_01_016
crossref_primary_10_3390_ijms20092363
crossref_primary_10_1111_j_1460_9568_2010_07119_x
Cites_doi 10.1523/JNEUROSCI.17-12-04785.1997
10.1016/0361-9230(93)90134-W
10.1016/0006-8993(93)91171-N
10.1046/j.1460-9568.2000.00939.x
10.1097/00001756-199811160-00028
10.1016/0006-8993(94)90923-7
10.1016/S0074-7696(08)60381-2
10.1016/0306-4522(85)90254-4
10.1016/0006-8993(93)91118-C
10.1016/S0021-9258(19)83641-4
10.1016/S0896-6273(00)80983-6
10.1016/0896-6273(93)90277-X
10.1113/jphysiol.1997.sp021917
10.1016/s0301-0082(96)00032-9
10.1016/s0006-8993(98)01025-7
10.1152/jn.1995.74.3.1343
10.1016/s0006-8993(96)01127-4
10.1523/JNEUROSCI.15-12-07940.1995
10.1016/0896-6273(95)90214-7
10.1016/S0079-6123(08)60403-3
10.1113/jphysiol.1996.sp021782
10.1523/JNEUROSCI.01-11-01289.1981
10.1523/JNEUROSCI.18-21-09078.1998
10.1038/76609
10.1016/0165-3806(87)90220-3
10.1016/s0006-8993(96)01091-8
10.1016/s0169-328x(97)00309-4
10.1016/0006-8993(91)91396-I
10.1016/0304-3940(94)90286-0
10.1007/BF00603959
10.1016/0304-3940(94)90488-X
10.1016/s0006-8993(96)01220-6
10.1038/42468
10.1016/0006-8993(94)90713-7
10.1126/science.7527589
10.1006/phrs.1996.0016
10.1113/jphysiol.1991.sp018877
10.1016/s0006-8993(97)00199-6
10.1006/frne.1999.0180
10.1177/074873099129000515
10.1016/0006-8993(94)91863-5
10.1007/BF00199249
10.1016/0165-3806(94)90113-9
10.1523/JNEUROSCI.04-07-01677.1984
10.1113/jphysiol.1996.sp021505
10.3109/07420529209064528
ContentType Journal Article
Copyright Federation of European Neuroscience Societies
Copyright_xml – notice: Federation of European Neuroscience Societies
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
5PM
DOI 10.1046/j.0953-816x.2001.01517.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
DatabaseTitleList
Calcium & Calcified Tissue Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 1428
ExternalDocumentID 10_1046_j_0953_816x_2001_01517_x
11298803
EJN1517
ark_67375_WNG_Z1SVX2J8_3
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH59186
– fundername: NHLBI NIH HHS
  grantid: R01 HL064582
– fundername: NHLBI NIH HHS
  grantid: HL64582
– fundername: NHLBI NIH HHS
  grantid: R01 HL064582-03
– fundername: NHLBI NIH HHS
  grantid: R01 HL064582-04
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
5PM
ID FETCH-LOGICAL-c6937-3f7942fd3877366eeb177cca740b2caf4356fa28a4d7128985f03e00b3a7cc573
IEDL.DBID DR2
ISSN 0953-816X
IngestDate Tue Sep 17 21:26:27 EDT 2024
Fri Aug 16 00:48:56 EDT 2024
Fri Aug 16 06:24:03 EDT 2024
Fri Aug 23 02:59:25 EDT 2024
Sat Sep 28 08:39:25 EDT 2024
Sat Aug 24 01:02:08 EDT 2024
Wed Oct 30 09:50:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6937-3f7942fd3877366eeb177cca740b2caf4356fa28a4d7128985f03e00b3a7cc573
Notes ArticleID:EJN1517
ark:/67375/WNG-Z1SVX2J8-3
istex:692658F1BBA69A7F15D0DFE1066FCA5E979DD41B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://europepmc.org/articles/pmc2577309?pdf=render
PMID 11298803
PQID 1808720834
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2577309
proquest_miscellaneous_21035385
proquest_miscellaneous_1808720834
crossref_primary_10_1046_j_0953_816x_2001_01517_x
pubmed_primary_11298803
wiley_primary_10_1046_j_0953_816x_2001_01517_x_EJN1517
istex_primary_ark_67375_WNG_Z1SVX2J8_3
PublicationCentury 2000
PublicationDate April 2001
PublicationDateYYYYMMDD 2001-04-01
PublicationDate_xml – month: 04
  year: 2001
  text: April 2001
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2001
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Cepeda, C., Chandler, S.H., Shumate, L.W., Levine, M.S. (1995) A persistent Na+ conductance in medium-size neostriatal neurons: characterization using infrared videomicroscopy and whole-cell patch clamp recordings. J. Neurophysiol., 74, 1343-1348.
Neher, D. (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron, 20, 389-399.
Schmahl, C. & Bohwer, G. (1997) Effects of excitatory amino acids and neuropeptide Y on the discharge activity of suprachiasmatic neurons in rat brain slices. Brain Res., 746, 151-163.DOI: 10.1016/s0006-8993(96)01220-6
Alberi, S., Dauphin, M.D., Dreifuss, J.J., Raggenbass, M. (1997) Whole-cell NMDA-evoked current in suprachiasmatic neurones of the rat: modulation by extracellular calcium ions. Brain Res., 745, 55-66.DOI: 10.1016/s0006-8993(96)01127-4
Prosser, R.A. & Gillette, M.U. (1991) Cyclic changes in cAMP concentration and phsophodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res., 568, 185-192.
Van Den Pol, A.N. & Tsujimoto, K.L. (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 15, 1049-1086.
Meijer, J.H., Watanabe, K., Detari, L., Schaap, J. (1996) Circadian rhythm in light response in suprachiasmtic nucleus neurons of freely moving rats. Brain Res., 741, 352-355.DOI: 10.1016/s0006-8993(96)01091-8
Shirakawa, T. & Moore, R.Y. (1994) Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci. Lett., 178, 47-50.
Arendt, J. (1998) Biological rhythms: the science of chronobiology. J. Royal College Physicians London, 32, 27-35.
Yamazaki, S., Maruyama, M., Cagampang, F.R.A., Inouye, S.I.T. (1994) Circadian fluctuation of cAMP in the suprachiasmatic nucleus and anterior hypothalamus of the rat. Brain Res., 651, 329-331.
Cui, L.N. & Dyball, R.E.J. (1996) Synaptic input from the retina to the suprachiasmatic nucleus changes with the light-dark cycle in the Syrian hamster. J. Physiol. (Lond.), 497, 485-493.
Minors, D.S. & Waterhouse, J.M. (1981) Circadian Rhythms and the Human. Wright, London.
Ebling, F.J.P. (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol., 50, 109-132.DOI: 10.1016/s0301-0082(96)00032-9
Block, G.D., Khalsa, S.B., McMahon, D.G., Michel, S., Guesz, M. (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int. Rev. Cytology, 146, 83-144.
Gribkoff, V.K., Pieschl, R.L., Wisialowski, T.A., Park, W.K., Strecker, G.J., De Jeu, M.T., Pennartz, C.M., Dudek, F.E. (1999) A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus. J. Biol. Rhythms, 14, 126-130.
Schneggenburger, R., Zhou, Z., Konnerth, A., Neher, E. (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron, 11, 133-143.
Shibata, S. & Moore, R.Y. (1987) Development of neural activity in the rat suprachiasmatic nucleus. Brain Res., 431, 311-315.
Colwell, C.S., Cepeda, C., Crawford, C., Levine, M.S. (1998) Postnatal development of NMDA evoked responses in the neostriatum. J. Dev. Neurobiol., 20, 154-163.
Card, J.P., Brecha, N., Karten, H.J., Moore, R.Y. (1981) Immunocytochemical localization of vasoactive intestinal peptide-containing cells and processes in the suprachiasmatic nucleus of the rat. J. Neurosci., 1, 1289-1303.
Shibata, S., Watanabe, A., Hamada, T., Ono, M., Watanabe, S. (1994) N-methyl-d-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am. J. Physiol., 267, R360-R364.
Chen, G., Trombley, P.Q., Van Den Pol, A.N. (1996) Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.), 494, 451-464.
Ding, J.M., Chen, D., Iber, E.T., Faiman, L.E., Rea, M.A., Gillette, M.U. (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and no. Science, 266, 1713-1717.
Obrietan, K. & Van Den Pol, A.N. (1997) GABA activity mediating cytosolic Ca2+ rises in developing neurons is modulated by cAMP-dependent signal transduction. J. Neurosci., 17, 4785-4799.
Tank, D.W., Regehr, W.G., Delaney, K.R. (1995) A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J. Neurosci., 15, 7940-7952.
Welsh, D.K., Logothetis, D.E., Weister, M., Reppert, S.M. (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phase circadian firing patterns. Neuron, 14, 697-706.
Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440-3450.
Colwell, C.S., Whitmore, D., Michel, S., Block, G.D. (1994) Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia. J. Comp. Physiol., 175, 415-423.
McMahon, D.G. & Block, G.D. (1987) The Bulla ocular circadian pacemaker. J. Comp. Physiol., 161, 335-346.
Kim, Y.I. & Dudek, F.E. (1991) Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms. J. Physiol. (Lond), 444, 269-287.
Meijer, J.H., Watanabe, K., Schaap, J., Albus, H., Détári, L. (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J. Neurosci., 18, 9078-9087.
Mikkelsen, J.D., Larsen, P.J., Ebling, F.J.P. (1993) Distribution of N-methyl-d-aspartate (NMDA) receptor mRNAs in the rat suprachiasmatic nucleus. Brain Res., 632, 329-332.
De Vries, M.J., Treep, J.A., De Pauw, E.S.D., Weijer, J.H. (1994) The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids. Brain Res., 642, 206-212.
Cagampang, F.R., Rattray, M., Campbell, I.C., Powell, J.F., Coen, C.W. (1998) Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex. Mol. Brain Res., 53, 277-284.DOI: 10.1016/s0169-328x(97)00309-4
Colwell, C.S. (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur. J. Neurosci., 12, 571-576.DOI: 10.1046/j.1460-9568.2000.00939.x
Schaap, J., Bos, N.P., De Jeu, M.T., Geurtsen, A.M., Meijer, J.H., Pennartz, C.M. (1999) Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res., 815, 154-166.DOI: 10.1016/s0006-8993(98)01025-7
De Jeu, M., Hermes, M., Pennartz, C. (1998) Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport, 9, 3725-3729.
Lemmer, B. (1996) The clinical relevance of chronopharmacology in therapeutics. Pharmacol. Res., 33, 107-115.DOI: 10.1006/phrs.1996.0016
Yuste, R., Majewska, A., Holthoff, K. (2000) From form to function: calcium compartmentalization in dendritic spines. Nature Neurosci., 3, 653-659.
Burgard, E.C. & Hablitz, J.J. (1994) Developmental changes in the voltage-dependence of neocortical NMDA responses. Dev. Brain Res., 80, 275-278.
Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y., Ibata, Y. (1993) The direct retinal projection to VIP neuronal elewents in the rat SCN. Brain Res. Bull., 31, 637-640.
Hartgraves, M.D. & Fuchs, J.L. (1994) NMDA receptor binding in the rodent suprachiasmatic nucleus. Brain Res., 640, 113-115.
Moore, R.Y. (1996) Entrainment pathways and the functional organization of circadian. Prog. Brain Res., 111, 103-119.
Ibata, Y., Okamura, H., Tanaka, M., Tamada, Y., Hayashi, S., Iijima, N., Matsuda, T., Munekawa, K., Takamatsu, T., Hisa, Y., Shigeyoshi, Y., Amaya, F. (1999) Functional morphology of the suprachiasmatic nucleus. Frontiers Neuroendocrinol., 20, 241-268.
Ishida, N., Matsui, M., Mitsui, Y., Mishina, M. (1994) Circadian expression of NMDA receptor mRNAs in the suprachiasmatic nucleus of the rat brain. Neurosci. Lett., 166, 211-214.
Jiang, Z.G., Yang, Y., Liu, Z.P., Allen, C.N. (1997) Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J. Physiol. (Lond.), 499, 141-159.
Stamp, J.A., Piggins, H.D., Rusak, B., Semba, K. (1997) Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster. Brain Res., 756, 215-224.DOI: 10.1016/s0006-8993(97)00199-6
Dingledine, R., Borges, K., Bowie, D., Traynelis, S.F. (1999) The glutamate receptor ion channels. Pharmacol. Rev., 51, 7-61.
Colwell, C.S., Khalsa, S.B.S., Block, G.D. (1992) Cellular mechanisms of entrainment. Chronobiol. Intern., 9, 163-179.
Shibata, S. & Moore, R.Y. (1993) Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Res., 615, 95-100.
Reppert, S.M. & Schwartz, W.J. (1984) The suprachiasmatic nuclei of the fetal rat: Characterization of a functional circadian clock using 2-deoxyglucose. J. Neurosci., 4, 1677-1682.
Wagner, S., Castel, M., Gainer, H., Yarom, Y. (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 387, 598-603.
1994; 178
1994; 651
1995; 74
1997; 756
2000; 3
1994; 175
1996; 741
1996; 33
1994; 266
1994; 267
1998; 18
1992; 9
1987; 431
1997; 745
1997; 746
1993; 615
2000; 12
1993; 31
1999; 14
1997; 387
1997; 17
1996; 494
1999; 51
1981
1998; 53
1996; 497
1985; 15
1999; 815
1997; 499
1987; 161
1981; 1
1995; 15
1995; 14
1996; 50
1996
1999; 20
1991
1993; 146
1994; 80
1985; 260
1998; 20
1994; 640
1994; 166
1991; 444
1994; 642
1984; 4
1993; 11
1996; 111
1991; 568
1998; 32
1993; 632
1998; 9
e_1_2_6_51_1
Colwell C.S. (e_1_2_6_11_1) 1998; 20
e_1_2_6_53_1
e_1_2_6_30_1
Card J.P. (e_1_2_6_7_1) 1981; 1
e_1_2_6_19_1
Shibata S. (e_1_2_6_45_1) 1994; 267
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
Obrietan K. (e_1_2_6_35_1) 1997; 17
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
Arendt J. (e_1_2_6_3_1) 1998; 32
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Colwell C.S. (e_1_2_6_13_1) 1996
Van Den Pol A.N. (e_1_2_6_36_1) 1991
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Minors D.S. (e_1_2_6_32_1) 1981
e_1_2_6_8_1
Dingledine R. (e_1_2_6_17_1) 1999; 51
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 3
  start-page: 653
  year: 2000
  end-page: 659
  article-title: From form to function: calcium compartmentalization in dendritic spines
  publication-title: Nature Neurosci.
– volume: 50
  start-page: 109
  year: 1996
  end-page: 132
  article-title: The role of glutamate in the photic regulation of the suprachiasmatic nucleus
  publication-title: Prog. Neurobiol.
– volume: 166
  start-page: 211
  year: 1994
  end-page: 214
  article-title: Circadian expression of NMDA receptor mRNAs in the suprachiasmatic nucleus of the rat brain
  publication-title: Neurosci. Lett.
– year: 1981
– volume: 615
  start-page: 95
  year: 1993
  end-page: 100
  article-title: Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro
  publication-title: Brain Res.
– volume: 642
  start-page: 206
  year: 1994
  end-page: 212
  article-title: The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids
  publication-title: Brain Res.
– volume: 161
  start-page: 335
  year: 1987
  end-page: 346
  article-title: The ocular circadian pacemaker
  publication-title: J. Comp. Physiol.
– volume: 15
  start-page: 1049
  year: 1985
  end-page: 1086
  article-title: Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens
  publication-title: Neuroscience
– volume: 640
  start-page: 113
  year: 1994
  end-page: 115
  article-title: NMDA receptor binding in the rodent suprachiasmatic nucleus
  publication-title: Brain Res.
– volume: 17
  start-page: 4785
  year: 1997
  end-page: 4799
  article-title: GABA activity mediating cytosolic Ca rises in developing neurons is modulated by cAMP‐dependent signal transduction
  publication-title: J. Neurosci.
– volume: 815
  start-page: 154
  year: 1999
  end-page: 166
  article-title: Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole‐cell recording
  publication-title: Brain Res.
– volume: 494
  start-page: 451
  year: 1996
  end-page: 464
  article-title: Excitatory actions of GABA in developing rat hypothalamic neurones
  publication-title: J. Physiol. (Lond.)
– volume: 4
  start-page: 1677
  year: 1984
  end-page: 1682
  article-title: The suprachiasmatic nuclei of the fetal rat: Characterization of a functional circadian clock using 2‐deoxyglucose
  publication-title: J. Neurosci.
– volume: 651
  start-page: 329
  year: 1994
  end-page: 331
  article-title: Circadian fluctuation of cAMP in the suprachiasmatic nucleus and anterior hypothalamus of the rat
  publication-title: Brain Res.
– start-page: 17
  year: 1991
  end-page: 50
– volume: 745
  start-page: 55
  year: 1997
  end-page: 66
  article-title: Whole‐cell NMDA‐evoked current in suprachiasmatic neurones of the rat: modulation by extracellular calcium ions
  publication-title: Brain Res.
– volume: 497
  start-page: 485
  year: 1996
  end-page: 493
  article-title: Synaptic input from the retina to the suprachiasmatic nucleus changes with the light‐dark cycle in the Syrian hamster
  publication-title: J. Physiol. (Lond.)
– volume: 11
  start-page: 133
  year: 1993
  end-page: 143
  article-title: Fractional contribution of calcium to the cation current through glutamate receptor channels
  publication-title: Neuron
– volume: 51
  start-page: 7
  year: 1999
  end-page: 61
  article-title: The glutamate receptor ion channels
  publication-title: Pharmacol. Rev.
– start-page: 223
  year: 1996
  end-page: 252
– volume: 431
  start-page: 311
  year: 1987
  end-page: 315
  article-title: Development of neural activity in the rat suprachiasmatic nucleus
  publication-title: Brain Res.
– volume: 1
  start-page: 1289
  year: 1981
  end-page: 1303
  article-title: Immunocytochemical localization of vasoactive intestinal peptide‐containing cells and processes in the suprachiasmatic nucleus of the rat
  publication-title: J. Neurosci.
– volume: 80
  start-page: 275
  year: 1994
  end-page: 278
  article-title: Developmental changes in the voltage‐dependence of neocortical NMDA responses
  publication-title: Dev. Brain Res.
– volume: 15
  start-page: 7940
  year: 1995
  end-page: 7952
  article-title: A quantitative analysis of presynaptic calcium dynamics that contribute to short‐term enhancement
  publication-title: J. Neurosci.
– volume: 9
  start-page: 163
  year: 1992
  end-page: 179
  article-title: Cellular mechanisms of entrainment
  publication-title: Chronobiol. Intern.
– volume: 260
  start-page: 3440
  year: 1985
  end-page: 3450
  article-title: A new generation of Ca indicators with greatly improved fluorescence properties
  publication-title: J. Biol. Chem.
– volume: 74
  start-page: 1343
  year: 1995
  end-page: 1348
  article-title: A persistent Na conductance in medium‐size neostriatal neurons: characterization using infrared videomicroscopy and whole‐cell patch clamp recordings
  publication-title: J. Neurophysiol.
– volume: 444
  start-page: 269
  year: 1991
  end-page: 287
  article-title: Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms
  publication-title: J. Physiol. (Lond)
– volume: 175
  start-page: 415
  year: 1994
  end-page: 423
  article-title: Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia
  publication-title: J. Comp. Physiol.
– volume: 20
  start-page: 241
  year: 1999
  end-page: 268
  article-title: Functional morphology of the suprachiasmatic nucleus
  publication-title: Frontiers Neuroendocrinol.
– volume: 9
  start-page: 3725
  year: 1998
  end-page: 3729
  article-title: Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus
  publication-title: Neuroreport
– volume: 568
  start-page: 185
  year: 1991
  end-page: 192
  article-title: Cyclic changes in cAMP concentration and phsophodiesterase activity in a mammalian circadian clock studied in vitro
  publication-title: Brain Res.
– volume: 12
  start-page: 571
  year: 2000
  end-page: 576
  article-title: Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus
  publication-title: Eur. J. Neurosci.
– volume: 20
  start-page: 389
  year: 1998
  end-page: 399
  article-title: Vesicle pools and Ca microdomains: new tools for understanding their roles in neurotransmitter release
  publication-title: Neuron
– volume: 756
  start-page: 215
  year: 1997
  end-page: 224
  article-title: Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster
  publication-title: Brain Res.
– volume: 746
  start-page: 151
  year: 1997
  end-page: 163
  article-title: Effects of excitatory amino acids and neuropeptide Y on the discharge activity of suprachiasmatic neurons in rat brain slices
  publication-title: Brain Res.
– volume: 178
  start-page: 47
  year: 1994
  end-page: 50
  article-title: Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro
  publication-title: Neurosci. Lett.
– volume: 18
  start-page: 9078
  year: 1998
  end-page: 9087
  article-title: Light responsiveness of the suprachiasmatic nucleus: long‐term multiunit and single‐unit recordings in freely moving rats
  publication-title: J. Neurosci.
– volume: 53
  start-page: 277
  year: 1998
  end-page: 284
  article-title: Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex
  publication-title: Mol. Brain Res.
– volume: 267
  start-page: R360
  year: 1994
  end-page: R364
  article-title: N‐methyl‐d‐aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro
  publication-title: Am. J. Physiol.
– volume: 14
  start-page: 126
  year: 1999
  end-page: 130
  article-title: A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus
  publication-title: J. Biol. Rhythms
– volume: 499
  start-page: 141
  year: 1997
  end-page: 159
  article-title: Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices
  publication-title: J. Physiol. (Lond.)
– volume: 266
  start-page: 1713
  year: 1994
  end-page: 1717
  article-title: Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and no
  publication-title: Science
– volume: 31
  start-page: 637
  year: 1993
  end-page: 640
  article-title: The direct retinal projection to VIP neuronal elewents in the rat SCN
  publication-title: Brain Res. Bull.
– volume: 387
  start-page: 598
  year: 1997
  end-page: 603
  article-title: GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity
  publication-title: Nature
– volume: 146
  start-page: 83
  year: 1993
  end-page: 144
  article-title: Biological clocks in the retina: cellular mechanisms of biological timekeeping
  publication-title: Int. Rev. Cytology
– volume: 32
  start-page: 27
  year: 1998
  end-page: 35
  article-title: Biological rhythms: the science of chronobiology
  publication-title: J. Royal College Physicians London
– volume: 20
  start-page: 154
  year: 1998
  end-page: 163
  article-title: Postnatal development of NMDA evoked responses in the neostriatum
  publication-title: J. Dev. Neurobiol.
– volume: 33
  start-page: 107
  year: 1996
  end-page: 115
  article-title: The clinical relevance of chronopharmacology in therapeutics
  publication-title: Pharmacol. Res.
– volume: 14
  start-page: 697
  year: 1995
  end-page: 706
  article-title: Individual neurons dissociated from rat suprachiasmatic nucleus express independently phase circadian firing patterns
  publication-title: Neuron
– volume: 741
  start-page: 352
  year: 1996
  end-page: 355
  article-title: Circadian rhythm in light response in suprachiasmtic nucleus neurons of freely moving rats
  publication-title: Brain Res.
– volume: 632
  start-page: 329
  year: 1993
  end-page: 332
  article-title: Distribution of N‐methyl‐d‐aspartate (NMDA) receptor mRNAs in the rat suprachiasmatic nucleus
  publication-title: Brain Res.
– volume: 111
  start-page: 103
  year: 1996
  end-page: 119
  article-title: Entrainment pathways and the functional organization of circadian
  publication-title: Prog. Brain Res.
– volume: 17
  start-page: 4785
  year: 1997
  ident: e_1_2_6_35_1
  article-title: GABA activity mediating cytosolic Ca2+ rises in developing neurons is modulated by cAMP‐dependent signal transduction
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-12-04785.1997
  contributor:
    fullname: Obrietan K.
– ident: e_1_2_6_48_1
  doi: 10.1016/0361-9230(93)90134-W
– ident: e_1_2_6_31_1
  doi: 10.1016/0006-8993(93)91171-N
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1460-9568.2000.00939.x
– volume: 51
  start-page: 7
  year: 1999
  ident: e_1_2_6_17_1
  article-title: The glutamate receptor ion channels
  publication-title: Pharmacol. Rev.
  contributor:
    fullname: Dingledine R.
– ident: e_1_2_6_24_1
  doi: 10.1097/00001756-199811160-00028
– start-page: 17
  volume-title: Suprachiasmatic Nucleus: the Mind's Clock.
  year: 1991
  ident: e_1_2_6_36_1
  contributor:
    fullname: Van Den Pol A.N.
– ident: e_1_2_6_50_1
  doi: 10.1016/0006-8993(94)90923-7
– ident: e_1_2_6_4_1
  doi: 10.1016/S0074-7696(08)60381-2
– ident: e_1_2_6_37_1
  doi: 10.1016/0306-4522(85)90254-4
– ident: e_1_2_6_44_1
  doi: 10.1016/0006-8993(93)91118-C
– start-page: 223
  volume-title: Excitatory Amino Acids: Their Role in Neuroendocrine Function.
  year: 1996
  ident: e_1_2_6_13_1
  contributor:
    fullname: Colwell C.S.
– ident: e_1_2_6_20_1
  doi: 10.1016/S0021-9258(19)83641-4
– ident: e_1_2_6_34_1
  doi: 10.1016/S0896-6273(00)80983-6
– ident: e_1_2_6_42_1
  doi: 10.1016/0896-6273(93)90277-X
– ident: e_1_2_6_25_1
  doi: 10.1113/jphysiol.1997.sp021917
– ident: e_1_2_6_18_1
  doi: 10.1016/s0301-0082(96)00032-9
– ident: e_1_2_6_40_1
  doi: 10.1016/s0006-8993(98)01025-7
– volume: 20
  start-page: 154
  year: 1998
  ident: e_1_2_6_11_1
  article-title: Postnatal development of NMDA evoked responses in the neostriatum
  publication-title: J. Dev. Neurobiol.
  contributor:
    fullname: Colwell C.S.
– volume: 32
  start-page: 27
  year: 1998
  ident: e_1_2_6_3_1
  article-title: Biological rhythms: the science of chronobiology
  publication-title: J. Royal College Physicians London
  contributor:
    fullname: Arendt J.
– ident: e_1_2_6_8_1
  doi: 10.1152/jn.1995.74.3.1343
– ident: e_1_2_6_2_1
  doi: 10.1016/s0006-8993(96)01127-4
– ident: e_1_2_6_49_1
  doi: 10.1523/JNEUROSCI.15-12-07940.1995
– ident: e_1_2_6_52_1
  doi: 10.1016/0896-6273(95)90214-7
– ident: e_1_2_6_33_1
  doi: 10.1016/S0079-6123(08)60403-3
– ident: e_1_2_6_15_1
  doi: 10.1113/jphysiol.1996.sp021782
– volume: 1
  start-page: 1289
  year: 1981
  ident: e_1_2_6_7_1
  article-title: Immunocytochemical localization of vasoactive intestinal peptide‐containing cells and processes in the suprachiasmatic nucleus of the rat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.01-11-01289.1981
  contributor:
    fullname: Card J.P.
– ident: e_1_2_6_30_1
  doi: 10.1523/JNEUROSCI.18-21-09078.1998
– ident: e_1_2_6_54_1
  doi: 10.1038/76609
– ident: e_1_2_6_43_1
  doi: 10.1016/0165-3806(87)90220-3
– ident: e_1_2_6_29_1
  doi: 10.1016/s0006-8993(96)01091-8
– ident: e_1_2_6_6_1
  doi: 10.1016/s0169-328x(97)00309-4
– ident: e_1_2_6_38_1
  doi: 10.1016/0006-8993(91)91396-I
– ident: e_1_2_6_46_1
  doi: 10.1016/0304-3940(94)90286-0
– ident: e_1_2_6_28_1
  doi: 10.1007/BF00603959
– ident: e_1_2_6_23_1
  doi: 10.1016/0304-3940(94)90488-X
– ident: e_1_2_6_41_1
  doi: 10.1016/s0006-8993(96)01220-6
– ident: e_1_2_6_51_1
  doi: 10.1038/42468
– volume-title: Circadian Rhythms and the Human
  year: 1981
  ident: e_1_2_6_32_1
  contributor:
    fullname: Minors D.S.
– ident: e_1_2_6_53_1
  doi: 10.1016/0006-8993(94)90713-7
– ident: e_1_2_6_16_1
  doi: 10.1126/science.7527589
– ident: e_1_2_6_27_1
  doi: 10.1006/phrs.1996.0016
– ident: e_1_2_6_26_1
  doi: 10.1113/jphysiol.1991.sp018877
– ident: e_1_2_6_47_1
  doi: 10.1016/s0006-8993(97)00199-6
– ident: e_1_2_6_22_1
  doi: 10.1006/frne.1999.0180
– ident: e_1_2_6_19_1
  doi: 10.1177/074873099129000515
– ident: e_1_2_6_21_1
  doi: 10.1016/0006-8993(94)91863-5
– ident: e_1_2_6_14_1
  doi: 10.1007/BF00199249
– volume: 267
  start-page: R360
  year: 1994
  ident: e_1_2_6_45_1
  article-title: N‐methyl‐d‐aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Shibata S.
– ident: e_1_2_6_5_1
  doi: 10.1016/0165-3806(94)90113-9
– ident: e_1_2_6_39_1
  doi: 10.1523/JNEUROSCI.04-07-01677.1984
– ident: e_1_2_6_9_1
  doi: 10.1113/jphysiol.1996.sp021505
– ident: e_1_2_6_12_1
  doi: 10.3109/07420529209064528
SSID ssj0008645
Score 2.0096543
Snippet A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the...
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl-...
Abstract A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N...
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N -methyl- D...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1420
SubjectTerms 2-Amino-5-phosphonovalerate - pharmacology
Animals
Bicuculline - pharmacology
calcium
Calcium - metabolism
Circadian Rhythm - physiology
circadian rhythms
Darkness
Excitatory Amino Acid Agonists - pharmacology
Excitatory Amino Acid Antagonists - pharmacology
Fluorescent Dyes
Fura-2
fura2
GABA Antagonists - pharmacology
gamma-Aminobutyric Acid - pharmacology
Lighting
Membrane Potentials - drug effects
Membrane Potentials - physiology
N-Methylaspartate - pharmacology
NMDA
Organ Culture Techniques
Patch-Clamp Techniques
Rats
Rats, Sprague-Dawley
Rattus rattus
SCN
suprachiasmatic nucleus
Suprachiasmatic Nucleus - drug effects
Suprachiasmatic Nucleus - physiology
Tetrodotoxin - pharmacology
Title NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system
URI https://api.istex.fr/ark:/67375/WNG-Z1SVX2J8-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.0953-816x.2001.01517.x
https://www.ncbi.nlm.nih.gov/pubmed/11298803
https://search.proquest.com/docview/1808720834
https://search.proquest.com/docview/21035385
https://pubmed.ncbi.nlm.nih.gov/PMC2577309
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQeIAXLhuXjJuR0N5SJXFiu7xVuzBVWh-AQcWL5Tj2FsrSqWlQxxM_gd_IL-Ecp-koDAkh3qLGjuLTz-d8jo-_Q8iL1MCdyPGQOePCtB-7UEubh0mR6LgonGRep_toxA-P0-E4Gy_zn_AsTKsPsfrghjPD-2uc4Dpvq5BEXt32Yw-l0kIZ8wUu8-IeBLZY9JBPxkxgdtfe60slKcl9veKuy3iZ1NNucF79oLVIdR2NvriKhv6eTfkzy_Vh6uA2mXQDbLNTJr1mnvfMl1-0H_-PBe6QW0s2Swct_O6Sa7baJFuDClbyZxd0h_r8Uv_hfpPc2O1qy22RT6OjvcH3r9_s5-nEFhRwYsrmjM4xcOIBzZrqCn5utaNqWlYUeCqtGzzTdVrq2uvM0gq1mJv6JUWVkOqE5he-mSlnxisu0Fam-h45Pth_u3sYLus-hIYDWwLYgJNIXMGkEIxza1EiC5Am0ihPjHbA8LjTidRpISC89mXmImajKGcammWC3Scb1bSyDwnVLDWwwjScS5uKyMkM-BxuXRa5Ac_UD0jc_cfqvJX3UH5bPsUjbGhehebFYp2x8uZVi4DseDCsOujZBNPjRKbej16pD_Gbd-NkKBULyPMOLQrsizsxurLTplaxjKRIgP2mAXn2hzawFmcQjbKAPGjxdfmCwNHA7cLzxRryVg1QMnz9TlWeeulwcNDg0mHY3APrr8es9ocjvNr-146PyM02ew9znh6TjfmssU-Azs3zp36i_gB7JUBN
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQ9jBeuGxcwoAZCe0tJYkTx-Wt2oVS1j7ABhUvluM4LOqWTk2DOp74CfxGfgnnOElHYUgI8VY1dlSfnstnn-PvEPI81PDEy7jLMp25YdfPXCVM4gZpoPw0zQSzPN3DEe-fhINxNG7aAeFdmJofYnnghpZh_TUaOB5Iv2jSktbKkSvNFT5f4D7P70Bk8-MOAMp1sH6GfRz2315xSQluOxa3c8ZNWU-d4rz-TSuxah3FvrgOiP5eT_kzzrWB6vA2OWuXWNenTDrVPOnoL7-wP_4nGdwhtxpAS3u1Bt4lN0yxSbZ6BWzmzy_pLrUlpvbsfpNs7LXt5bbI2Wi43_v-9Zv5PJ2YlIKq6Lw6p3OMnXhHs6SqgK9r-qiS5gUFqErLCq91neaqtFSztEA65qp8SZEopPhEk0s7TOczbUkXaM1UfY-cHB4c7_XdpvWDqzkAJtAc8BNBljIRx4xzY5AlC5QtDr0k0CoDkMczFQgVpjFE2K6IMo8Zz0uYgmFRzO6TtWJamIeEKhZq2GRqzoUJYy8TEUA6zF6miQbn1HWI3_7J8qJm-JA2Mx_iLTYUr0TxYr9OX1rxyoVDdq02LCeo2QQr5OJIfhi9kh_9d-_HwUBI5pBnrbpIkC8mY1RhplUpfeGJOAAAHDpk5w9jYDvOICBFDnlQK9jVDwSYBp4X3h-vqN5yALKGrz4p8lPLHg4-GowDls2tZv31muXBYISfHv3rxB2y0T8eHsmj16M32-RmXcyHJVCPydp8VpkngO7myVNrtT8AWMlEZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJgEvXDYu4TYjob2l5Oq4vFXbyigsQsCg2ovlODaLytKpaVDHEz-B38gv4Rwn6SgMCSHeosaO4tPP53zOOf5MyJNIwR3PMDc0yrhR3zeu5DpzgzyQfp4bHlqd7oOU7R9Go3E8buufcC9Mow-x_OCGM8P6a5zgp7l52mYl7SRHqTSX-2yByzy_B4HNT3rAJ9cjBkQYCdKbcykpzuyBxV2fcVvV02Q4L37SSqhaR6svLuKhv5dT_kxzbZwaXieTboRNecqkV8-znvryi_jj_zHBDXKtpbN00ODvJrmkyw2yOShhKX9yRrepLTC1X-43yJWd7nC5TfIpPdgdfP_6TX-eTnROASiqqE_oHCMn7tCsqCzh50Y8qqJFSYGo0qrGTV3Hhays0CwtUYy5rp5RlAkpP9LszDZTxUxZyQXa6FTfIofDvXc7-2578IOrGNAlwA14icDkIU-SkDGtUSMLoJZEXhYoaYDiMSMDLqM8gfja57HxQu15WSihWZyEt8laOS31XUJlGClYYirGuI4Sz_AYCB3mLvNMgWvqO8Tv_mNx2uh7CJuXj3APG5pXoHnxtE5fWPOKhUO2LRiWHeRsgvVxSSw-pM_Fkf_2_TgYcRE65HGHFgH2xVSMLPW0roTPPZ4EQH8jh2z9oQ0sxkMIR7FD7jT4On9BIGngd-H5yQrylg1QM3z1TlkcW-1w8NDg02HYzALrr8cs9kYpXt37145b5PLr3aF49SJ9eZ9cbSr5sP7pAVmbz2r9EKjdPHtk5-wPT4ZDFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMDA%E2%80%90evoked+calcium+transients+and+currents+in+the+suprachiasmatic+nucleus%3A+gating+by+the+circadian+system&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Colwell%2C+Christopher+S.&rft.date=2001-04-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=13&rft.issue=7&rft.spage=1420&rft.epage=1428&rft_id=info:doi/10.1046%2Fj.0953-816x.2001.01517.x&rft.externalDBID=10.1046%252Fj.0953-816x.2001.01517.x&rft.externalDocID=EJN1517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon