NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N‐methyl‐d‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their res...
Saved in:
Published in | The European journal of neuroscience Vol. 13; no. 7; pp. 1420 - 1428 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.04.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N‐methyl‐d‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA‐induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA‐induced Ca2+ transients. The phase of this rhythm was determined by the light–dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ‐Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA‐evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA‐evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. |
---|---|
AbstractList | A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the
N
-methyl-
D
-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca
2+
) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca
2+
transients. The phase of this rhythm was determined by the light—dark cycle to which the rats were exposed with the Ca
2+
transients peaking during the night. This rhythm continued when animals were held in DD. γ-Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca
2+
transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl-d-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca super(2+)) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca super(2+) transients. The phase of this rhythm was determined by the light-dark cycle to which the rats were exposed with the Ca super(2+) transients peaking during the night. This rhythm continued when animals were held in DD. gamma -Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca super(2+) transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. Abstract A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N ‐methyl‐ d ‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA‐induced calcium (Ca 2+ ) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA‐induced Ca 2+ transients. The phase of this rhythm was determined by the light–dark cycle to which the rats were exposed with the Ca 2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ‐Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA‐evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA‐evoked Ca 2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N‐methyl‐d‐aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA‐induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA‐induced Ca2+ transients. The phase of this rhythm was determined by the light–dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. γ‐Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA‐evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA‐evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl- D-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca2+ transients. The phase of this rhythm was determined by the light-dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. gamma-Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light. |
Author | Colwell, Christopher S. |
Author_xml | – sequence: 1 givenname: Christopher S. surname: Colwell fullname: Colwell, Christopher S. organization: Mental Retardation Research Center, Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11298803$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1v0zAUhi00xLrBX0C-Qtwk80f8ESSQpjEG0ygXfE3cWI7rtO4Sp7OTrf33OG0ZcIO4so_9vMfHeo7Age-8BQBilGNU8JNljkpGM4n5OicI4RxhhkW-fgQmuOAoKxmXB2DyC7o-BEcxLhFCkhfsCTjEmJRSIjoBy-nHt6eZvetu7Awa3Rg3tLAP2kdnfR-h9ul4CGFbOA_7hYVxWAVtFk7HVvfOQD-Yxg7xFZyn0s9htdlixgWjZ057GDext-1T8LjWTbTP9usx-Pru_MvZ--zq08WHs9OrzPCSiozWoixIPaNSCMq5tRUWwhgtClQRo-uCMl5rInUxE5jIUrIaUYtQRXXCmKDH4M2u72qoWjszafSgG7UKrtVhozrt1N833i3UvLtThKUXUZkavNg3CN3tYGOvWheNbRrtbTdERTCijEqWwJf_BLFEUhAkaZFQuUNN6GIMtn6YByM1OlVLNepSo1M1OlVbp2qdos___M_v4F5iAl7vgHvX2M1_N1bnl9Nxl_LZLu-SpvVDXocbxQUVTH2fXqgf-PO3a3IpFaU_Aebkw7s |
CitedBy_id | crossref_primary_10_1007_s00018_012_1241_9 crossref_primary_10_1016_S0006_8993_02_03168_2 crossref_primary_10_1152_jn_00332_2003 crossref_primary_10_1101_sqb_2007_72_037 crossref_primary_10_3389_fnsys_2014_00164 crossref_primary_10_1111_ejn_15312 crossref_primary_10_1007_s11906_020_01063_z crossref_primary_10_1016_j_ceca_2013_07_006 crossref_primary_10_1016_j_neubiorev_2014_01_007 crossref_primary_10_1073_pnas_0708877104 crossref_primary_10_1002_jnr_20893 crossref_primary_10_1016_j_neuint_2004_03_023 crossref_primary_10_1177_10738584031262149 crossref_primary_10_1038_nrn3086 crossref_primary_10_1046_j_1365_2982_2001_00293_x crossref_primary_10_1007_s11154_009_9121_9 crossref_primary_10_1038_s41386_021_01251_8 crossref_primary_10_1111_ejn_12919 crossref_primary_10_1016_S0092_8674_02_00737_7 crossref_primary_10_1016_j_pneurobio_2007_05_002 crossref_primary_10_1111_ejn_13549 crossref_primary_10_1177_0748730403018003006 crossref_primary_10_1152_physrev_00009_2009 crossref_primary_10_1073_pnas_0703388104 crossref_primary_10_3389_fnsyn_2022_833449 crossref_primary_10_1111_j_1460_9568_2006_04972_x crossref_primary_10_1016_S0006_8993_03_03329_8 crossref_primary_10_1111_j_1471_4159_2009_06086_x crossref_primary_10_1111_ejn_15043 crossref_primary_10_1016_j_arr_2021_101533 crossref_primary_10_1016_j_arr_2024_102401 crossref_primary_10_1002_neu_10080 crossref_primary_10_1152_ajpregu_00200_2003 crossref_primary_10_1111_j_1460_9568_2005_03950_x crossref_primary_10_1002_glia_20020 crossref_primary_10_1038_s41467_020_17978_9 crossref_primary_10_1111_j_1460_9568_2008_06144_x crossref_primary_10_1097_00001756_200303240_00024 crossref_primary_10_1152_jn_01069_2009 crossref_primary_10_1096_fj_202200478R crossref_primary_10_1523_JNEUROSCI_1840_07_2007 crossref_primary_10_1371_journal_pone_0037121 crossref_primary_10_1038_npp_2014_326 crossref_primary_10_1523_JNEUROSCI_5792_10_2011 crossref_primary_10_1016_j_neuroscience_2004_04_018 crossref_primary_10_1152_jn_01078_2003 crossref_primary_10_1177_1759091420984920 crossref_primary_10_1016_j_ygcen_2006_07_004 crossref_primary_10_1081_CBI_120019311 crossref_primary_10_1152_jn_00695_2009 crossref_primary_10_1152_ajpregu_00179_2005 crossref_primary_10_1152_physrev_00027_2019 crossref_primary_10_1186_1471_2202_7_15 crossref_primary_10_1371_journal_pcbi_1000706 crossref_primary_10_1016_j_semcdb_2006_03_006 crossref_primary_10_1152_jn_00670_2009 crossref_primary_10_1111_j_1460_9568_2009_07011_x crossref_primary_10_1177_0748730409343767 crossref_primary_10_1016_j_neuroscience_2011_11_050 crossref_primary_10_1111_j_1460_9568_2007_05548_x crossref_primary_10_1152_jn_2002_88_2_817 crossref_primary_10_1007_s11154_009_9116_6 crossref_primary_10_1111_j_1471_4159_2010_06941_x crossref_primary_10_1016_j_jtbi_2011_08_010 crossref_primary_10_1016_S0166_4328_01_00471_5 crossref_primary_10_1523_JNEUROSCI_2211_05_2005 crossref_primary_10_1523_JNEUROSCI_5750_07_2008 crossref_primary_10_1016_j_neuint_2003_09_005 crossref_primary_10_1016_j_neuroscience_2009_01_016 crossref_primary_10_3390_ijms20092363 crossref_primary_10_1111_j_1460_9568_2010_07119_x |
Cites_doi | 10.1523/JNEUROSCI.17-12-04785.1997 10.1016/0361-9230(93)90134-W 10.1016/0006-8993(93)91171-N 10.1046/j.1460-9568.2000.00939.x 10.1097/00001756-199811160-00028 10.1016/0006-8993(94)90923-7 10.1016/S0074-7696(08)60381-2 10.1016/0306-4522(85)90254-4 10.1016/0006-8993(93)91118-C 10.1016/S0021-9258(19)83641-4 10.1016/S0896-6273(00)80983-6 10.1016/0896-6273(93)90277-X 10.1113/jphysiol.1997.sp021917 10.1016/s0301-0082(96)00032-9 10.1016/s0006-8993(98)01025-7 10.1152/jn.1995.74.3.1343 10.1016/s0006-8993(96)01127-4 10.1523/JNEUROSCI.15-12-07940.1995 10.1016/0896-6273(95)90214-7 10.1016/S0079-6123(08)60403-3 10.1113/jphysiol.1996.sp021782 10.1523/JNEUROSCI.01-11-01289.1981 10.1523/JNEUROSCI.18-21-09078.1998 10.1038/76609 10.1016/0165-3806(87)90220-3 10.1016/s0006-8993(96)01091-8 10.1016/s0169-328x(97)00309-4 10.1016/0006-8993(91)91396-I 10.1016/0304-3940(94)90286-0 10.1007/BF00603959 10.1016/0304-3940(94)90488-X 10.1016/s0006-8993(96)01220-6 10.1038/42468 10.1016/0006-8993(94)90713-7 10.1126/science.7527589 10.1006/phrs.1996.0016 10.1113/jphysiol.1991.sp018877 10.1016/s0006-8993(97)00199-6 10.1006/frne.1999.0180 10.1177/074873099129000515 10.1016/0006-8993(94)91863-5 10.1007/BF00199249 10.1016/0165-3806(94)90113-9 10.1523/JNEUROSCI.04-07-01677.1984 10.1113/jphysiol.1996.sp021505 10.3109/07420529209064528 |
ContentType | Journal Article |
Copyright | Federation of European Neuroscience Societies |
Copyright_xml | – notice: Federation of European Neuroscience Societies |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7TK 5PM |
DOI | 10.1046/j.0953-816x.2001.01517.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 1428 |
ExternalDocumentID | 10_1046_j_0953_816x_2001_01517_x 11298803 EJN1517 ark_67375_WNG_Z1SVX2J8_3 |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH59186 – fundername: NHLBI NIH HHS grantid: R01 HL064582 – fundername: NHLBI NIH HHS grantid: HL64582 – fundername: NHLBI NIH HHS grantid: R01 HL064582-03 – fundername: NHLBI NIH HHS grantid: R01 HL064582-04 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7TK 5PM |
ID | FETCH-LOGICAL-c6937-3f7942fd3877366eeb177cca740b2caf4356fa28a4d7128985f03e00b3a7cc573 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Tue Sep 17 21:26:27 EDT 2024 Fri Aug 16 00:48:56 EDT 2024 Fri Aug 16 06:24:03 EDT 2024 Fri Aug 23 02:59:25 EDT 2024 Sat Sep 28 08:39:25 EDT 2024 Sat Aug 24 01:02:08 EDT 2024 Wed Oct 30 09:50:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6937-3f7942fd3877366eeb177cca740b2caf4356fa28a4d7128985f03e00b3a7cc573 |
Notes | ArticleID:EJN1517 ark:/67375/WNG-Z1SVX2J8-3 istex:692658F1BBA69A7F15D0DFE1066FCA5E979DD41B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://europepmc.org/articles/pmc2577309?pdf=render |
PMID | 11298803 |
PQID | 1808720834 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2577309 proquest_miscellaneous_21035385 proquest_miscellaneous_1808720834 crossref_primary_10_1046_j_0953_816x_2001_01517_x pubmed_primary_11298803 wiley_primary_10_1046_j_0953_816x_2001_01517_x_EJN1517 istex_primary_ark_67375_WNG_Z1SVX2J8_3 |
PublicationCentury | 2000 |
PublicationDate | April 2001 |
PublicationDateYYYYMMDD | 2001-04-01 |
PublicationDate_xml | – month: 04 year: 2001 text: April 2001 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2001 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | Cepeda, C., Chandler, S.H., Shumate, L.W., Levine, M.S. (1995) A persistent Na+ conductance in medium-size neostriatal neurons: characterization using infrared videomicroscopy and whole-cell patch clamp recordings. J. Neurophysiol., 74, 1343-1348. Neher, D. (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron, 20, 389-399. Schmahl, C. & Bohwer, G. (1997) Effects of excitatory amino acids and neuropeptide Y on the discharge activity of suprachiasmatic neurons in rat brain slices. Brain Res., 746, 151-163.DOI: 10.1016/s0006-8993(96)01220-6 Alberi, S., Dauphin, M.D., Dreifuss, J.J., Raggenbass, M. (1997) Whole-cell NMDA-evoked current in suprachiasmatic neurones of the rat: modulation by extracellular calcium ions. Brain Res., 745, 55-66.DOI: 10.1016/s0006-8993(96)01127-4 Prosser, R.A. & Gillette, M.U. (1991) Cyclic changes in cAMP concentration and phsophodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res., 568, 185-192. Van Den Pol, A.N. & Tsujimoto, K.L. (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 15, 1049-1086. Meijer, J.H., Watanabe, K., Detari, L., Schaap, J. (1996) Circadian rhythm in light response in suprachiasmtic nucleus neurons of freely moving rats. Brain Res., 741, 352-355.DOI: 10.1016/s0006-8993(96)01091-8 Shirakawa, T. & Moore, R.Y. (1994) Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci. Lett., 178, 47-50. Arendt, J. (1998) Biological rhythms: the science of chronobiology. J. Royal College Physicians London, 32, 27-35. Yamazaki, S., Maruyama, M., Cagampang, F.R.A., Inouye, S.I.T. (1994) Circadian fluctuation of cAMP in the suprachiasmatic nucleus and anterior hypothalamus of the rat. Brain Res., 651, 329-331. Cui, L.N. & Dyball, R.E.J. (1996) Synaptic input from the retina to the suprachiasmatic nucleus changes with the light-dark cycle in the Syrian hamster. J. Physiol. (Lond.), 497, 485-493. Minors, D.S. & Waterhouse, J.M. (1981) Circadian Rhythms and the Human. Wright, London. Ebling, F.J.P. (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol., 50, 109-132.DOI: 10.1016/s0301-0082(96)00032-9 Block, G.D., Khalsa, S.B., McMahon, D.G., Michel, S., Guesz, M. (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int. Rev. Cytology, 146, 83-144. Gribkoff, V.K., Pieschl, R.L., Wisialowski, T.A., Park, W.K., Strecker, G.J., De Jeu, M.T., Pennartz, C.M., Dudek, F.E. (1999) A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus. J. Biol. Rhythms, 14, 126-130. Schneggenburger, R., Zhou, Z., Konnerth, A., Neher, E. (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron, 11, 133-143. Shibata, S. & Moore, R.Y. (1987) Development of neural activity in the rat suprachiasmatic nucleus. Brain Res., 431, 311-315. Colwell, C.S., Cepeda, C., Crawford, C., Levine, M.S. (1998) Postnatal development of NMDA evoked responses in the neostriatum. J. Dev. Neurobiol., 20, 154-163. Card, J.P., Brecha, N., Karten, H.J., Moore, R.Y. (1981) Immunocytochemical localization of vasoactive intestinal peptide-containing cells and processes in the suprachiasmatic nucleus of the rat. J. Neurosci., 1, 1289-1303. Shibata, S., Watanabe, A., Hamada, T., Ono, M., Watanabe, S. (1994) N-methyl-d-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am. J. Physiol., 267, R360-R364. Chen, G., Trombley, P.Q., Van Den Pol, A.N. (1996) Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.), 494, 451-464. Ding, J.M., Chen, D., Iber, E.T., Faiman, L.E., Rea, M.A., Gillette, M.U. (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and no. Science, 266, 1713-1717. Obrietan, K. & Van Den Pol, A.N. (1997) GABA activity mediating cytosolic Ca2+ rises in developing neurons is modulated by cAMP-dependent signal transduction. J. Neurosci., 17, 4785-4799. Tank, D.W., Regehr, W.G., Delaney, K.R. (1995) A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J. Neurosci., 15, 7940-7952. Welsh, D.K., Logothetis, D.E., Weister, M., Reppert, S.M. (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phase circadian firing patterns. Neuron, 14, 697-706. Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440-3450. Colwell, C.S., Whitmore, D., Michel, S., Block, G.D. (1994) Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia. J. Comp. Physiol., 175, 415-423. McMahon, D.G. & Block, G.D. (1987) The Bulla ocular circadian pacemaker. J. Comp. Physiol., 161, 335-346. Kim, Y.I. & Dudek, F.E. (1991) Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms. J. Physiol. (Lond), 444, 269-287. Meijer, J.H., Watanabe, K., Schaap, J., Albus, H., Détári, L. (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J. Neurosci., 18, 9078-9087. Mikkelsen, J.D., Larsen, P.J., Ebling, F.J.P. (1993) Distribution of N-methyl-d-aspartate (NMDA) receptor mRNAs in the rat suprachiasmatic nucleus. Brain Res., 632, 329-332. De Vries, M.J., Treep, J.A., De Pauw, E.S.D., Weijer, J.H. (1994) The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids. Brain Res., 642, 206-212. Cagampang, F.R., Rattray, M., Campbell, I.C., Powell, J.F., Coen, C.W. (1998) Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex. Mol. Brain Res., 53, 277-284.DOI: 10.1016/s0169-328x(97)00309-4 Colwell, C.S. (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur. J. Neurosci., 12, 571-576.DOI: 10.1046/j.1460-9568.2000.00939.x Schaap, J., Bos, N.P., De Jeu, M.T., Geurtsen, A.M., Meijer, J.H., Pennartz, C.M. (1999) Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res., 815, 154-166.DOI: 10.1016/s0006-8993(98)01025-7 De Jeu, M., Hermes, M., Pennartz, C. (1998) Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport, 9, 3725-3729. Lemmer, B. (1996) The clinical relevance of chronopharmacology in therapeutics. Pharmacol. Res., 33, 107-115.DOI: 10.1006/phrs.1996.0016 Yuste, R., Majewska, A., Holthoff, K. (2000) From form to function: calcium compartmentalization in dendritic spines. Nature Neurosci., 3, 653-659. Burgard, E.C. & Hablitz, J.J. (1994) Developmental changes in the voltage-dependence of neocortical NMDA responses. Dev. Brain Res., 80, 275-278. Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y., Ibata, Y. (1993) The direct retinal projection to VIP neuronal elewents in the rat SCN. Brain Res. Bull., 31, 637-640. Hartgraves, M.D. & Fuchs, J.L. (1994) NMDA receptor binding in the rodent suprachiasmatic nucleus. Brain Res., 640, 113-115. Moore, R.Y. (1996) Entrainment pathways and the functional organization of circadian. Prog. Brain Res., 111, 103-119. Ibata, Y., Okamura, H., Tanaka, M., Tamada, Y., Hayashi, S., Iijima, N., Matsuda, T., Munekawa, K., Takamatsu, T., Hisa, Y., Shigeyoshi, Y., Amaya, F. (1999) Functional morphology of the suprachiasmatic nucleus. Frontiers Neuroendocrinol., 20, 241-268. Ishida, N., Matsui, M., Mitsui, Y., Mishina, M. (1994) Circadian expression of NMDA receptor mRNAs in the suprachiasmatic nucleus of the rat brain. Neurosci. Lett., 166, 211-214. Jiang, Z.G., Yang, Y., Liu, Z.P., Allen, C.N. (1997) Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J. Physiol. (Lond.), 499, 141-159. Stamp, J.A., Piggins, H.D., Rusak, B., Semba, K. (1997) Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster. Brain Res., 756, 215-224.DOI: 10.1016/s0006-8993(97)00199-6 Dingledine, R., Borges, K., Bowie, D., Traynelis, S.F. (1999) The glutamate receptor ion channels. Pharmacol. Rev., 51, 7-61. Colwell, C.S., Khalsa, S.B.S., Block, G.D. (1992) Cellular mechanisms of entrainment. Chronobiol. Intern., 9, 163-179. Shibata, S. & Moore, R.Y. (1993) Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Res., 615, 95-100. Reppert, S.M. & Schwartz, W.J. (1984) The suprachiasmatic nuclei of the fetal rat: Characterization of a functional circadian clock using 2-deoxyglucose. J. Neurosci., 4, 1677-1682. Wagner, S., Castel, M., Gainer, H., Yarom, Y. (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 387, 598-603. 1994; 178 1994; 651 1995; 74 1997; 756 2000; 3 1994; 175 1996; 741 1996; 33 1994; 266 1994; 267 1998; 18 1992; 9 1987; 431 1997; 745 1997; 746 1993; 615 2000; 12 1993; 31 1999; 14 1997; 387 1997; 17 1996; 494 1999; 51 1981 1998; 53 1996; 497 1985; 15 1999; 815 1997; 499 1987; 161 1981; 1 1995; 15 1995; 14 1996; 50 1996 1999; 20 1991 1993; 146 1994; 80 1985; 260 1998; 20 1994; 640 1994; 166 1991; 444 1994; 642 1984; 4 1993; 11 1996; 111 1991; 568 1998; 32 1993; 632 1998; 9 e_1_2_6_51_1 Colwell C.S. (e_1_2_6_11_1) 1998; 20 e_1_2_6_53_1 e_1_2_6_30_1 Card J.P. (e_1_2_6_7_1) 1981; 1 e_1_2_6_19_1 Shibata S. (e_1_2_6_45_1) 1994; 267 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 Obrietan K. (e_1_2_6_35_1) 1997; 17 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 Arendt J. (e_1_2_6_3_1) 1998; 32 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Colwell C.S. (e_1_2_6_13_1) 1996 Van Den Pol A.N. (e_1_2_6_36_1) 1991 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Minors D.S. (e_1_2_6_32_1) 1981 e_1_2_6_8_1 Dingledine R. (e_1_2_6_17_1) 1999; 51 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 3 start-page: 653 year: 2000 end-page: 659 article-title: From form to function: calcium compartmentalization in dendritic spines publication-title: Nature Neurosci. – volume: 50 start-page: 109 year: 1996 end-page: 132 article-title: The role of glutamate in the photic regulation of the suprachiasmatic nucleus publication-title: Prog. Neurobiol. – volume: 166 start-page: 211 year: 1994 end-page: 214 article-title: Circadian expression of NMDA receptor mRNAs in the suprachiasmatic nucleus of the rat brain publication-title: Neurosci. Lett. – year: 1981 – volume: 615 start-page: 95 year: 1993 end-page: 100 article-title: Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro publication-title: Brain Res. – volume: 642 start-page: 206 year: 1994 end-page: 212 article-title: The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids publication-title: Brain Res. – volume: 161 start-page: 335 year: 1987 end-page: 346 article-title: The ocular circadian pacemaker publication-title: J. Comp. Physiol. – volume: 15 start-page: 1049 year: 1985 end-page: 1086 article-title: Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens publication-title: Neuroscience – volume: 640 start-page: 113 year: 1994 end-page: 115 article-title: NMDA receptor binding in the rodent suprachiasmatic nucleus publication-title: Brain Res. – volume: 17 start-page: 4785 year: 1997 end-page: 4799 article-title: GABA activity mediating cytosolic Ca rises in developing neurons is modulated by cAMP‐dependent signal transduction publication-title: J. Neurosci. – volume: 815 start-page: 154 year: 1999 end-page: 166 article-title: Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole‐cell recording publication-title: Brain Res. – volume: 494 start-page: 451 year: 1996 end-page: 464 article-title: Excitatory actions of GABA in developing rat hypothalamic neurones publication-title: J. Physiol. (Lond.) – volume: 4 start-page: 1677 year: 1984 end-page: 1682 article-title: The suprachiasmatic nuclei of the fetal rat: Characterization of a functional circadian clock using 2‐deoxyglucose publication-title: J. Neurosci. – volume: 651 start-page: 329 year: 1994 end-page: 331 article-title: Circadian fluctuation of cAMP in the suprachiasmatic nucleus and anterior hypothalamus of the rat publication-title: Brain Res. – start-page: 17 year: 1991 end-page: 50 – volume: 745 start-page: 55 year: 1997 end-page: 66 article-title: Whole‐cell NMDA‐evoked current in suprachiasmatic neurones of the rat: modulation by extracellular calcium ions publication-title: Brain Res. – volume: 497 start-page: 485 year: 1996 end-page: 493 article-title: Synaptic input from the retina to the suprachiasmatic nucleus changes with the light‐dark cycle in the Syrian hamster publication-title: J. Physiol. (Lond.) – volume: 11 start-page: 133 year: 1993 end-page: 143 article-title: Fractional contribution of calcium to the cation current through glutamate receptor channels publication-title: Neuron – volume: 51 start-page: 7 year: 1999 end-page: 61 article-title: The glutamate receptor ion channels publication-title: Pharmacol. Rev. – start-page: 223 year: 1996 end-page: 252 – volume: 431 start-page: 311 year: 1987 end-page: 315 article-title: Development of neural activity in the rat suprachiasmatic nucleus publication-title: Brain Res. – volume: 1 start-page: 1289 year: 1981 end-page: 1303 article-title: Immunocytochemical localization of vasoactive intestinal peptide‐containing cells and processes in the suprachiasmatic nucleus of the rat publication-title: J. Neurosci. – volume: 80 start-page: 275 year: 1994 end-page: 278 article-title: Developmental changes in the voltage‐dependence of neocortical NMDA responses publication-title: Dev. Brain Res. – volume: 15 start-page: 7940 year: 1995 end-page: 7952 article-title: A quantitative analysis of presynaptic calcium dynamics that contribute to short‐term enhancement publication-title: J. Neurosci. – volume: 9 start-page: 163 year: 1992 end-page: 179 article-title: Cellular mechanisms of entrainment publication-title: Chronobiol. Intern. – volume: 260 start-page: 3440 year: 1985 end-page: 3450 article-title: A new generation of Ca indicators with greatly improved fluorescence properties publication-title: J. Biol. Chem. – volume: 74 start-page: 1343 year: 1995 end-page: 1348 article-title: A persistent Na conductance in medium‐size neostriatal neurons: characterization using infrared videomicroscopy and whole‐cell patch clamp recordings publication-title: J. Neurophysiol. – volume: 444 start-page: 269 year: 1991 end-page: 287 article-title: Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms publication-title: J. Physiol. (Lond) – volume: 175 start-page: 415 year: 1994 end-page: 423 article-title: Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia publication-title: J. Comp. Physiol. – volume: 20 start-page: 241 year: 1999 end-page: 268 article-title: Functional morphology of the suprachiasmatic nucleus publication-title: Frontiers Neuroendocrinol. – volume: 9 start-page: 3725 year: 1998 end-page: 3729 article-title: Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus publication-title: Neuroreport – volume: 568 start-page: 185 year: 1991 end-page: 192 article-title: Cyclic changes in cAMP concentration and phsophodiesterase activity in a mammalian circadian clock studied in vitro publication-title: Brain Res. – volume: 12 start-page: 571 year: 2000 end-page: 576 article-title: Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus publication-title: Eur. J. Neurosci. – volume: 20 start-page: 389 year: 1998 end-page: 399 article-title: Vesicle pools and Ca microdomains: new tools for understanding their roles in neurotransmitter release publication-title: Neuron – volume: 756 start-page: 215 year: 1997 end-page: 224 article-title: Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster publication-title: Brain Res. – volume: 746 start-page: 151 year: 1997 end-page: 163 article-title: Effects of excitatory amino acids and neuropeptide Y on the discharge activity of suprachiasmatic neurons in rat brain slices publication-title: Brain Res. – volume: 178 start-page: 47 year: 1994 end-page: 50 article-title: Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro publication-title: Neurosci. Lett. – volume: 18 start-page: 9078 year: 1998 end-page: 9087 article-title: Light responsiveness of the suprachiasmatic nucleus: long‐term multiunit and single‐unit recordings in freely moving rats publication-title: J. Neurosci. – volume: 53 start-page: 277 year: 1998 end-page: 284 article-title: Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex publication-title: Mol. Brain Res. – volume: 267 start-page: R360 year: 1994 end-page: R364 article-title: N‐methyl‐d‐aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro publication-title: Am. J. Physiol. – volume: 14 start-page: 126 year: 1999 end-page: 130 article-title: A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus publication-title: J. Biol. Rhythms – volume: 499 start-page: 141 year: 1997 end-page: 159 article-title: Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices publication-title: J. Physiol. (Lond.) – volume: 266 start-page: 1713 year: 1994 end-page: 1717 article-title: Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and no publication-title: Science – volume: 31 start-page: 637 year: 1993 end-page: 640 article-title: The direct retinal projection to VIP neuronal elewents in the rat SCN publication-title: Brain Res. Bull. – volume: 387 start-page: 598 year: 1997 end-page: 603 article-title: GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity publication-title: Nature – volume: 146 start-page: 83 year: 1993 end-page: 144 article-title: Biological clocks in the retina: cellular mechanisms of biological timekeeping publication-title: Int. Rev. Cytology – volume: 32 start-page: 27 year: 1998 end-page: 35 article-title: Biological rhythms: the science of chronobiology publication-title: J. Royal College Physicians London – volume: 20 start-page: 154 year: 1998 end-page: 163 article-title: Postnatal development of NMDA evoked responses in the neostriatum publication-title: J. Dev. Neurobiol. – volume: 33 start-page: 107 year: 1996 end-page: 115 article-title: The clinical relevance of chronopharmacology in therapeutics publication-title: Pharmacol. Res. – volume: 14 start-page: 697 year: 1995 end-page: 706 article-title: Individual neurons dissociated from rat suprachiasmatic nucleus express independently phase circadian firing patterns publication-title: Neuron – volume: 741 start-page: 352 year: 1996 end-page: 355 article-title: Circadian rhythm in light response in suprachiasmtic nucleus neurons of freely moving rats publication-title: Brain Res. – volume: 632 start-page: 329 year: 1993 end-page: 332 article-title: Distribution of N‐methyl‐d‐aspartate (NMDA) receptor mRNAs in the rat suprachiasmatic nucleus publication-title: Brain Res. – volume: 111 start-page: 103 year: 1996 end-page: 119 article-title: Entrainment pathways and the functional organization of circadian publication-title: Prog. Brain Res. – volume: 17 start-page: 4785 year: 1997 ident: e_1_2_6_35_1 article-title: GABA activity mediating cytosolic Ca2+ rises in developing neurons is modulated by cAMP‐dependent signal transduction publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-12-04785.1997 contributor: fullname: Obrietan K. – ident: e_1_2_6_48_1 doi: 10.1016/0361-9230(93)90134-W – ident: e_1_2_6_31_1 doi: 10.1016/0006-8993(93)91171-N – ident: e_1_2_6_10_1 doi: 10.1046/j.1460-9568.2000.00939.x – volume: 51 start-page: 7 year: 1999 ident: e_1_2_6_17_1 article-title: The glutamate receptor ion channels publication-title: Pharmacol. Rev. contributor: fullname: Dingledine R. – ident: e_1_2_6_24_1 doi: 10.1097/00001756-199811160-00028 – start-page: 17 volume-title: Suprachiasmatic Nucleus: the Mind's Clock. year: 1991 ident: e_1_2_6_36_1 contributor: fullname: Van Den Pol A.N. – ident: e_1_2_6_50_1 doi: 10.1016/0006-8993(94)90923-7 – ident: e_1_2_6_4_1 doi: 10.1016/S0074-7696(08)60381-2 – ident: e_1_2_6_37_1 doi: 10.1016/0306-4522(85)90254-4 – ident: e_1_2_6_44_1 doi: 10.1016/0006-8993(93)91118-C – start-page: 223 volume-title: Excitatory Amino Acids: Their Role in Neuroendocrine Function. year: 1996 ident: e_1_2_6_13_1 contributor: fullname: Colwell C.S. – ident: e_1_2_6_20_1 doi: 10.1016/S0021-9258(19)83641-4 – ident: e_1_2_6_34_1 doi: 10.1016/S0896-6273(00)80983-6 – ident: e_1_2_6_42_1 doi: 10.1016/0896-6273(93)90277-X – ident: e_1_2_6_25_1 doi: 10.1113/jphysiol.1997.sp021917 – ident: e_1_2_6_18_1 doi: 10.1016/s0301-0082(96)00032-9 – ident: e_1_2_6_40_1 doi: 10.1016/s0006-8993(98)01025-7 – volume: 20 start-page: 154 year: 1998 ident: e_1_2_6_11_1 article-title: Postnatal development of NMDA evoked responses in the neostriatum publication-title: J. Dev. Neurobiol. contributor: fullname: Colwell C.S. – volume: 32 start-page: 27 year: 1998 ident: e_1_2_6_3_1 article-title: Biological rhythms: the science of chronobiology publication-title: J. Royal College Physicians London contributor: fullname: Arendt J. – ident: e_1_2_6_8_1 doi: 10.1152/jn.1995.74.3.1343 – ident: e_1_2_6_2_1 doi: 10.1016/s0006-8993(96)01127-4 – ident: e_1_2_6_49_1 doi: 10.1523/JNEUROSCI.15-12-07940.1995 – ident: e_1_2_6_52_1 doi: 10.1016/0896-6273(95)90214-7 – ident: e_1_2_6_33_1 doi: 10.1016/S0079-6123(08)60403-3 – ident: e_1_2_6_15_1 doi: 10.1113/jphysiol.1996.sp021782 – volume: 1 start-page: 1289 year: 1981 ident: e_1_2_6_7_1 article-title: Immunocytochemical localization of vasoactive intestinal peptide‐containing cells and processes in the suprachiasmatic nucleus of the rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.01-11-01289.1981 contributor: fullname: Card J.P. – ident: e_1_2_6_30_1 doi: 10.1523/JNEUROSCI.18-21-09078.1998 – ident: e_1_2_6_54_1 doi: 10.1038/76609 – ident: e_1_2_6_43_1 doi: 10.1016/0165-3806(87)90220-3 – ident: e_1_2_6_29_1 doi: 10.1016/s0006-8993(96)01091-8 – ident: e_1_2_6_6_1 doi: 10.1016/s0169-328x(97)00309-4 – ident: e_1_2_6_38_1 doi: 10.1016/0006-8993(91)91396-I – ident: e_1_2_6_46_1 doi: 10.1016/0304-3940(94)90286-0 – ident: e_1_2_6_28_1 doi: 10.1007/BF00603959 – ident: e_1_2_6_23_1 doi: 10.1016/0304-3940(94)90488-X – ident: e_1_2_6_41_1 doi: 10.1016/s0006-8993(96)01220-6 – ident: e_1_2_6_51_1 doi: 10.1038/42468 – volume-title: Circadian Rhythms and the Human year: 1981 ident: e_1_2_6_32_1 contributor: fullname: Minors D.S. – ident: e_1_2_6_53_1 doi: 10.1016/0006-8993(94)90713-7 – ident: e_1_2_6_16_1 doi: 10.1126/science.7527589 – ident: e_1_2_6_27_1 doi: 10.1006/phrs.1996.0016 – ident: e_1_2_6_26_1 doi: 10.1113/jphysiol.1991.sp018877 – ident: e_1_2_6_47_1 doi: 10.1016/s0006-8993(97)00199-6 – ident: e_1_2_6_22_1 doi: 10.1006/frne.1999.0180 – ident: e_1_2_6_19_1 doi: 10.1177/074873099129000515 – ident: e_1_2_6_21_1 doi: 10.1016/0006-8993(94)91863-5 – ident: e_1_2_6_14_1 doi: 10.1007/BF00199249 – volume: 267 start-page: R360 year: 1994 ident: e_1_2_6_45_1 article-title: N‐methyl‐d‐aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro publication-title: Am. J. Physiol. contributor: fullname: Shibata S. – ident: e_1_2_6_5_1 doi: 10.1016/0165-3806(94)90113-9 – ident: e_1_2_6_39_1 doi: 10.1523/JNEUROSCI.04-07-01677.1984 – ident: e_1_2_6_9_1 doi: 10.1113/jphysiol.1996.sp021505 – ident: e_1_2_6_12_1 doi: 10.3109/07420529209064528 |
SSID | ssj0008645 |
Score | 2.0096543 |
Snippet | A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the... A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl-... Abstract A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N... A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N -methyl- D... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1420 |
SubjectTerms | 2-Amino-5-phosphonovalerate - pharmacology Animals Bicuculline - pharmacology calcium Calcium - metabolism Circadian Rhythm - physiology circadian rhythms Darkness Excitatory Amino Acid Agonists - pharmacology Excitatory Amino Acid Antagonists - pharmacology Fluorescent Dyes Fura-2 fura2 GABA Antagonists - pharmacology gamma-Aminobutyric Acid - pharmacology Lighting Membrane Potentials - drug effects Membrane Potentials - physiology N-Methylaspartate - pharmacology NMDA Organ Culture Techniques Patch-Clamp Techniques Rats Rats, Sprague-Dawley Rattus rattus SCN suprachiasmatic nucleus Suprachiasmatic Nucleus - drug effects Suprachiasmatic Nucleus - physiology Tetrodotoxin - pharmacology |
Title | NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system |
URI | https://api.istex.fr/ark:/67375/WNG-Z1SVX2J8-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.0953-816x.2001.01517.x https://www.ncbi.nlm.nih.gov/pubmed/11298803 https://search.proquest.com/docview/1808720834 https://search.proquest.com/docview/21035385 https://pubmed.ncbi.nlm.nih.gov/PMC2577309 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQeIAXLhuXjJuR0N5SJXFiu7xVuzBVWh-AQcWL5Tj2FsrSqWlQxxM_gd_IL-Ecp-koDAkh3qLGjuLTz-d8jo-_Q8iL1MCdyPGQOePCtB-7UEubh0mR6LgonGRep_toxA-P0-E4Gy_zn_AsTKsPsfrghjPD-2uc4Dpvq5BEXt32Yw-l0kIZ8wUu8-IeBLZY9JBPxkxgdtfe60slKcl9veKuy3iZ1NNucF79oLVIdR2NvriKhv6eTfkzy_Vh6uA2mXQDbLNTJr1mnvfMl1-0H_-PBe6QW0s2Swct_O6Sa7baJFuDClbyZxd0h_r8Uv_hfpPc2O1qy22RT6OjvcH3r9_s5-nEFhRwYsrmjM4xcOIBzZrqCn5utaNqWlYUeCqtGzzTdVrq2uvM0gq1mJv6JUWVkOqE5he-mSlnxisu0Fam-h45Pth_u3sYLus-hIYDWwLYgJNIXMGkEIxza1EiC5Am0ihPjHbA8LjTidRpISC89mXmImajKGcammWC3Scb1bSyDwnVLDWwwjScS5uKyMkM-BxuXRa5Ac_UD0jc_cfqvJX3UH5bPsUjbGhehebFYp2x8uZVi4DseDCsOujZBNPjRKbej16pD_Gbd-NkKBULyPMOLQrsizsxurLTplaxjKRIgP2mAXn2hzawFmcQjbKAPGjxdfmCwNHA7cLzxRryVg1QMnz9TlWeeulwcNDg0mHY3APrr8es9ocjvNr-146PyM02ew9znh6TjfmssU-Azs3zp36i_gB7JUBN |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQ9jBeuGxcwoAZCe0tJYkTx-Wt2oVS1j7ABhUvluM4LOqWTk2DOp74CfxGfgnnOElHYUgI8VY1dlSfnstnn-PvEPI81PDEy7jLMp25YdfPXCVM4gZpoPw0zQSzPN3DEe-fhINxNG7aAeFdmJofYnnghpZh_TUaOB5Iv2jSktbKkSvNFT5f4D7P70Bk8-MOAMp1sH6GfRz2315xSQluOxa3c8ZNWU-d4rz-TSuxah3FvrgOiP5eT_kzzrWB6vA2OWuXWNenTDrVPOnoL7-wP_4nGdwhtxpAS3u1Bt4lN0yxSbZ6BWzmzy_pLrUlpvbsfpNs7LXt5bbI2Wi43_v-9Zv5PJ2YlIKq6Lw6p3OMnXhHs6SqgK9r-qiS5gUFqErLCq91neaqtFSztEA65qp8SZEopPhEk0s7TOczbUkXaM1UfY-cHB4c7_XdpvWDqzkAJtAc8BNBljIRx4xzY5AlC5QtDr0k0CoDkMczFQgVpjFE2K6IMo8Zz0uYgmFRzO6TtWJamIeEKhZq2GRqzoUJYy8TEUA6zF6miQbn1HWI3_7J8qJm-JA2Mx_iLTYUr0TxYr9OX1rxyoVDdq02LCeo2QQr5OJIfhi9kh_9d-_HwUBI5pBnrbpIkC8mY1RhplUpfeGJOAAAHDpk5w9jYDvOICBFDnlQK9jVDwSYBp4X3h-vqN5yALKGrz4p8lPLHg4-GowDls2tZv31muXBYISfHv3rxB2y0T8eHsmj16M32-RmXcyHJVCPydp8VpkngO7myVNrtT8AWMlEZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJgEvXDYu4TYjob2l5Oq4vFXbyigsQsCg2ovlODaLytKpaVDHEz-B38gv4Rwn6SgMCSHeosaO4tPP53zOOf5MyJNIwR3PMDc0yrhR3zeu5DpzgzyQfp4bHlqd7oOU7R9Go3E8buufcC9Mow-x_OCGM8P6a5zgp7l52mYl7SRHqTSX-2yByzy_B4HNT3rAJ9cjBkQYCdKbcykpzuyBxV2fcVvV02Q4L37SSqhaR6svLuKhv5dT_kxzbZwaXieTboRNecqkV8-znvryi_jj_zHBDXKtpbN00ODvJrmkyw2yOShhKX9yRrepLTC1X-43yJWd7nC5TfIpPdgdfP_6TX-eTnROASiqqE_oHCMn7tCsqCzh50Y8qqJFSYGo0qrGTV3Hhays0CwtUYy5rp5RlAkpP9LszDZTxUxZyQXa6FTfIofDvXc7-2578IOrGNAlwA14icDkIU-SkDGtUSMLoJZEXhYoaYDiMSMDLqM8gfja57HxQu15WSihWZyEt8laOS31XUJlGClYYirGuI4Sz_AYCB3mLvNMgWvqO8Tv_mNx2uh7CJuXj3APG5pXoHnxtE5fWPOKhUO2LRiWHeRsgvVxSSw-pM_Fkf_2_TgYcRE65HGHFgH2xVSMLPW0roTPPZ4EQH8jh2z9oQ0sxkMIR7FD7jT4On9BIGngd-H5yQrylg1QM3z1TlkcW-1w8NDg02HYzALrr8cs9kYpXt37145b5PLr3aF49SJ9eZ9cbSr5sP7pAVmbz2r9EKjdPHtk5-wPT4ZDFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMDA%E2%80%90evoked+calcium+transients+and+currents+in+the+suprachiasmatic+nucleus%3A+gating+by+the+circadian+system&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Colwell%2C+Christopher+S.&rft.date=2001-04-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=13&rft.issue=7&rft.spage=1420&rft.epage=1428&rft_id=info:doi/10.1046%2Fj.0953-816x.2001.01517.x&rft.externalDBID=10.1046%252Fj.0953-816x.2001.01517.x&rft.externalDocID=EJN1517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |