The exploratory value of cross-sectional partial correlation networks: Predicting relationships between change trajectories in borderline personality disorder

Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such explorato...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 7; p. e0254496
Main Authors von Klipstein, Lino, Borsboom, Denny, Arntz, Arnoud
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.07.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0254496

Cover

Loading…
Abstract Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms. To investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms. Across multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories. By confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
AbstractList Objective Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms. Method To investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms. Results Across multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories. Conclusions By confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms. To investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms. Across multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories. By confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
ObjectiveWithin the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms.MethodTo investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms.ResultsAcross multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories.ConclusionsBy confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
Objective Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms. Method To investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms. Results Across multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories. Conclusions By confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms. To investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms. Across multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories. By confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms.OBJECTIVEWithin the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between symptoms. The resulting relationships have been used to generate hypotheses about causal links between symptoms. In order to justify such exploratory use of partial correlation networks, one needs to assume that the between-subjects relationships in the network approximate systematic within-subjects relationships, which are in turn the results of some within-subjects causal mechanism. If this assumption holds, relationships in the network should be mirrored by relationships between symptom changes; if links in networks approximate systematic within-subject relationships, change in a symptom should relate to change in connected symptoms.To investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms.METHODTo investigate this implication, we combined longitudinal data on the Borderline Personality Disorder Severity Index from four samples of borderline personality disorder patients (N = 683). We related parameters from baseline partial correlation networks of symptoms to relationships between change trajectories of these symptoms.Across multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories.RESULTSAcross multiple levels of analysis, our results showed that parameters from baseline partial correlation networks are strongly predictive of relationships between change trajectories.By confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.CONCLUSIONSBy confirming its implication, our results support the idea that cross-sectional partial correlation networks hold a relevant amount of information about systematic within-subjects relationships and thereby have exploratory value to generate hypotheses about the causal dynamics between symptoms.
Audience Academic
Author Arntz, Arnoud
von Klipstein, Lino
Borsboom, Denny
AuthorAffiliation 2 Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
1 Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
University of Pennsylvania Perelman School of Medicine, UNITED STATES
3 Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
AuthorAffiliation_xml – name: University of Pennsylvania Perelman School of Medicine, UNITED STATES
– name: 1 Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
– name: 3 Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
– name: 2 Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Lino
  orcidid: 0000-0002-5098-0372
  surname: von Klipstein
  fullname: von Klipstein, Lino
– sequence: 2
  givenname: Denny
  surname: Borsboom
  fullname: Borsboom, Denny
– sequence: 3
  givenname: Arnoud
  surname: Arntz
  fullname: Arntz, Arnoud
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34329316$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QDgujFjE3Spu1eCMvix8DCig7ehjQ9mcmYSWrSrrt_xt9q2pmRmWURKTTpyXPe07ycc5ocWWchSZ7jdIppgd-tXO-tMNM2hqcpybOsYo-SE1xRMmEkpUd7--PkNIRVmua0ZOxJckwzSiqK2Unye74EBLetcV50zt-hG2F6QE4h6V0IkwCy0y7WQa3wnY6rdN6DEUMUWeh-Of8jnKMvHhodUbtAu9Ow1G1AdUQALJJLYReAOi9WUdJ5DQFpi2rnG_BGW0At-DBU0t0danQYD54mj5UwAZ5t17Nk_vHD_PLz5Or60-zy4moiWUW6CVR5WZUFJQ0DCkrFL1KCLEhRyTy-slpVWS5VneV1WjOhVFZSCWkJFFeyoWfJy41s9CHwrbOBkzxnJc1TTCIx2xCNEyveer0W_o47ofkYcH7BB3-kAU4rgnFDmjSjKiN1LTDDlFVFQZkqgLGo9X5bra_X0Eiw0RVzIHp4YvWSL9wNLykZxKPAm62Adz97CB1f6yDBGGHB9eN_F4RkZVlF9NU99OHbbamFiBfQVrlYVw6i_IIVKS7KYiw7fYCKTwNrLWMbKh3jBwlvDxIi08FttxB9CHz27ev_s9ffD9nXe-wShOmWwZl-7LpD8MW-038t3vV_BM43wNjtHhSXuhu7N15NG45TPgzbzjQ-DBvfDltMzu4l7_T_mfYHczcx9w
CitedBy_id crossref_primary_10_1007_s11469_021_00707_8
crossref_primary_10_1016_j_jad_2024_04_034
crossref_primary_10_3389_fpsyg_2022_1095365
crossref_primary_10_1007_s11482_024_10363_4
crossref_primary_10_1002_pmh_1559
crossref_primary_10_1080_13811118_2021_1993398
crossref_primary_10_1016_j_schres_2022_12_046
crossref_primary_10_3390_jcm10235622
crossref_primary_10_1103_PhysRevE_111_014127
crossref_primary_10_1016_j_heliyon_2022_e10712
crossref_primary_10_1016_j_jpsychores_2022_111139
crossref_primary_10_3390_ijerph192215104
crossref_primary_10_1007_s11469_022_00995_8
crossref_primary_10_1186_s40479_022_00206_9
crossref_primary_10_1016_j_jad_2024_03_125
crossref_primary_10_1016_j_jadr_2024_100756
crossref_primary_10_1001_jamapsychiatry_2022_0010
crossref_primary_10_1016_j_jad_2025_01_031
crossref_primary_10_1080_28324765_2024_2313869
crossref_primary_10_1080_15299732_2024_2323974
crossref_primary_10_1080_20008066_2022_2114260
crossref_primary_10_1371_journal_pone_0289101
crossref_primary_10_2147_PRBM_S483231
crossref_primary_10_1038_s41598_023_34399_y
crossref_primary_10_1016_j_beth_2022_09_006
crossref_primary_10_1016_j_jsp_2023_101255
crossref_primary_10_1177_00332941241308800
crossref_primary_10_1017_S0033291723001368
crossref_primary_10_1007_s12144_024_07001_5
crossref_primary_10_1016_j_beth_2021_12_005
crossref_primary_10_1017_S0033291724000023
crossref_primary_10_1080_20008066_2022_2115635
crossref_primary_10_1016_j_brat_2024_104678
crossref_primary_10_3390_jcm13061814
crossref_primary_10_1093_schbul_sbac131
crossref_primary_10_3390_healthcare12181802
crossref_primary_10_1017_S0033291722000095
crossref_primary_10_1038_s41398_021_01686_z
crossref_primary_10_1016_j_jad_2022_09_106
crossref_primary_10_1038_s44159_022_00062_y
crossref_primary_10_3389_fpsyg_2022_838093
crossref_primary_10_1002_mpr_2028
Cites_doi 10.3389/fpsyg.2013.00513
10.1037/abn0000181
10.1093/acprof:oso/9780195152968.001.0001
10.1177/2167702618769560
10.1159/000441458
10.1016/j.paid.2010.03.023
10.1093/schbul/sbw055
10.1001/jamapsychiatry.2017.3561
10.1037/met0000167
10.1186/s12888-014-0319-3
10.1037/abn0000446
10.1016/j.jbtep.2013.11.004
10.1001/archpsyc.63.6.649
10.1093/biomet/asn034
10.1037/a0035628
10.1001/jamapsychiatry.2015.2079
10.1007/s10597-015-9866-4
10.1371/journal.pone.0186695
10.1111/j.1467-8721.2009.01619.x
10.18637/jss.v048.i04
10.1371/journal.pone.0060188
10.1073/pnas.1323672111
10.1177/2167702614553230
10.1111/j.2517-6161.1996.tb02080.x
10.1159/000453583
10.1146/annurev-clinpsy-050212-185608
10.1159/000442001
10.1080/00273171.2017.1379379
10.1073/pnas.1312114110
10.1521/pedi.17.1.45.24053
10.21105/joss.02111
10.1017/S0140525X09991567
10.1002/spe.4380211102
10.18637/jss.v033.i02
10.1038/srep05918
10.1037/abn0000002
10.1016/j.jad.2015.09.005
10.1001/jamapsychiatry.2015.3103
10.1007/s00127-016-1319-z
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 von Klipstein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 von Klipstein et al 2021 von Klipstein et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 von Klipstein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 von Klipstein et al 2021 von Klipstein et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0254496
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ND)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE






MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ND)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate The exploratory value of cross-sectional partial correlation networks
EISSN 1932-6203
ExternalDocumentID 2556835012
oai_doaj_org_article_39211d2d043f42bba1613697736f7e66
PMC8323921
A670178721
34329316
10_1371_journal_pone_0254496
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: ;
  grantid: 647209
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-e95898732d6e3eff58928ec7279c52794bf945cfb45b0b6aff483ce08e319cd3
IEDL.DBID DOA
ISSN 1932-6203
IngestDate Sun Sep 03 00:14:14 EDT 2023
Wed Aug 27 01:27:07 EDT 2025
Thu Aug 21 14:12:26 EDT 2025
Thu Jul 10 18:40:54 EDT 2025
Fri Jul 25 10:40:33 EDT 2025
Tue Jun 17 21:30:37 EDT 2025
Tue Jun 10 20:35:30 EDT 2025
Fri Jun 27 03:36:46 EDT 2025
Fri Jun 27 04:44:31 EDT 2025
Thu May 22 21:22:08 EDT 2025
Mon Jul 21 06:06:09 EDT 2025
Tue Jul 01 03:43:49 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-e95898732d6e3eff58928ec7279c52794bf945cfb45b0b6aff483ce08e319cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-5098-0372
OpenAccessLink https://doaj.org/article/39211d2d043f42bba1613697736f7e66
PMID 34329316
PQID 2556835012
PQPubID 1436336
PageCount e0254496
ParticipantIDs plos_journals_2556835012
doaj_primary_oai_doaj_org_article_39211d2d043f42bba1613697736f7e66
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8323921
proquest_miscellaneous_2557224889
proquest_journals_2556835012
gale_infotracmisc_A670178721
gale_infotracacademiconefile_A670178721
gale_incontextgauss_ISR_A670178721
gale_incontextgauss_IOV_A670178721
gale_healthsolutions_A670178721
pubmed_primary_34329316
crossref_citationtrail_10_1371_journal_pone_0254496
crossref_primary_10_1371_journal_pone_0254496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-30
PublicationDateYYYYMMDD 2021-07-30
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SA Baldwin (pone.0254496.ref032) 2014; 82
DJ Robinaugh (pone.0254496.ref010) 2016; 125
L Schweren (pone.0254496.ref042) 2018; 75
DJ Robinaugh (pone.0254496.ref012) 2014; 123
P Wetzelaer (pone.0254496.ref024) 2014; 14
S Epskamp (pone.0254496.ref007) 2018; 23
RJ McNally (pone.0254496.ref011) 2014; 3
S Epskamp (pone.0254496.ref029) 2012; 48
DR Williams (pone.0254496.ref036); 2021
CD van Borkulo (pone.0254496.ref043) 2015; 72
RA Kievit (pone.0254496.ref013) 2013; 4
LF Bringmann (pone.0254496.ref003) 2013; 8
JE Young (pone.0254496.ref048) 2003
J Giesen-Bloo (pone.0254496.ref022) 2006; 63
CD van Borkulo (pone.0254496.ref005) 2014; 4
EH Bos (pone.0254496.ref016) 2016; 73
FM Bos (pone.0254496.ref039) 2017; 86
D Borsboom (pone.0254496.ref001) 2013; 9
JD Hadfield (pone.0254496.ref033) 2010; 33
H Liu (pone.0254496.ref026) 2009; 10
J Chen (pone.0254496.ref028) 2008; 95
MM Linehan (pone.0254496.ref049) 1993
MW Southward (pone.0254496.ref047) 2018; 6
V Dickhaut (pone.0254496.ref021) 2014; 45
L Boschloo (pone.0254496.ref041) 2016; 85
EH Bos (pone.0254496.ref038) 2014; 111
LF Bringmann (pone.0254496.ref040) 2019; 128
G Costantini (pone.0254496.ref004) 2014
PCM Molenaar (pone.0254496.ref014) 2004; 2
IA van de Leemput (pone.0254496.ref044) 2014; 111
EL Hamaker (pone.0254496.ref018) 2012
DL Fairclough (pone.0254496.ref035) 2011
JD Singer (pone.0254496.ref031) 2003
GEP Box (pone.0254496.ref034) 1973
DR Williams (pone.0254496.ref037) 2020; 5
TMJ Fruchterman (pone.0254496.ref030) 1991; 21
PCM Molenaar (pone.0254496.ref015) 2009; 18
S Epskamp (pone.0254496.ref006) 2018
AOJ Cramer (pone.0254496.ref002) 2010; 33
A Arntz (pone.0254496.ref020) 2003; 17
M Marsman (pone.0254496.ref019) 2017; 53
V Leppänen (pone.0254496.ref023) 2015; 52
EI Fried (pone.0254496.ref008) 2016; 189
R Tibshirani (pone.0254496.ref027) 1996; 58
M Wichers (pone.0254496.ref045) 2016; 85
EI Fried (pone.0254496.ref017) 2016; 52
A-M Isvoranu (pone.0254496.ref009) 2016; 43
J Richetin (pone.0254496.ref046) 2017; 12
JH Giesen-Bloo (pone.0254496.ref025) 2010; 49
References_xml – start-page: 13
  issue: 54
  year: 2014
  ident: pone.0254496.ref004
  article-title: State of the aRt personality research: A tutorial on network analysis of personality data in R
  publication-title: J Res Pers
– volume: 4
  start-page: 513
  year: 2013
  ident: pone.0254496.ref013
  article-title: Simpson’s paradox in psychological science: a practical guide
  publication-title: Front Psychol.
  doi: 10.3389/fpsyg.2013.00513
– volume-title: Schema Therapy: A Practitioner’s Guide
  year: 2003
  ident: pone.0254496.ref048
– volume: 125
  start-page: 747
  issue: 6
  year: 2016
  ident: pone.0254496.ref010
  article-title: Identifying Highly Influential Nodes in the Complicated Grief Network
  publication-title: J Abnorm Psychol
  doi: 10.1037/abn0000181
– volume-title: Applied Longitudinal Data Analysis
  year: 2003
  ident: pone.0254496.ref031
  doi: 10.1093/acprof:oso/9780195152968.001.0001
– volume: 6
  start-page: 685
  issue: 5
  year: 2018
  ident: pone.0254496.ref047
  article-title: Identifying Core Deficits in a Dimensional Model of Borderline Personality Disorder Features: A Network Analysis.
  publication-title: Clin Psychol Sci
  doi: 10.1177/2167702618769560
– start-page: 43
  volume-title: Handbook of Research Methods for Studying Daily Life:
  year: 2012
  ident: pone.0254496.ref018
– volume: 85
  start-page: 114
  issue: 2
  year: 2016
  ident: pone.0254496.ref045
  article-title: Critical Slowing Down as a Personalized Early Warning Signal for Depression
  publication-title: Psychother Psychosom
  doi: 10.1159/000441458
– volume: 49
  start-page: 136
  issue: 2
  year: 2010
  ident: pone.0254496.ref025
  article-title: The Borderline Personality Disorder Severity Index-IV: Psychometric evaluation and dimensional structure
  publication-title: Pers Individ Dif
  doi: 10.1016/j.paid.2010.03.023
– volume: 43
  start-page: 187
  issue: 1
  year: 2016
  ident: pone.0254496.ref009
  article-title: Network Approach to Psychosis: Pathways Between Childhood Trauma and Psychotic Symptoms
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbw055
– volume: 75
  start-page: 98
  issue: 1
  year: 2018
  ident: pone.0254496.ref042
  article-title: Assessment of Symptom Network Density as a Prognostic Marker of Treatment Response in Adolescent Depression
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2017.3561
– volume: 23
  start-page: 617
  issue: 4
  year: 2018
  ident: pone.0254496.ref007
  article-title: A tutorial on regularized partial correlation networks.
  publication-title: Psychol Methods
  doi: 10.1037/met0000167
– volume-title: The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development
  year: 2018
  ident: pone.0254496.ref006
– volume: 14
  start-page: 1
  issue: 1
  year: 2014
  ident: pone.0254496.ref024
  article-title: Design of an international multicentre RCT on group schema therapy for borderline personality disorder
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-014-0319-3
– volume: 128
  start-page: 892
  issue: 8
  year: 2019
  ident: pone.0254496.ref040
  article-title: What do centrality measures measure in psychological networks?
  publication-title: J Abnorm Psychol
  doi: 10.1037/abn0000446
– volume: 45
  start-page: 242
  issue: 2
  year: 2014
  ident: pone.0254496.ref021
  article-title: Combined group and individual schema therapy for borderline personality disorder: A pilot study
  publication-title: J Behav Ther Exp Psychiatry
  doi: 10.1016/j.jbtep.2013.11.004
– volume: 63
  start-page: 649
  issue: 6
  year: 2006
  ident: pone.0254496.ref022
  article-title: Outpatient Psychotherapy for Borderline Personality Disorder: Randomized Trial of Schema-Focused Therapy vs Transference-Focused Psychotherapy
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.63.6.649
– volume: 95
  start-page: 759
  issue: 3
  year: 2008
  ident: pone.0254496.ref028
  article-title: Extended Bayesian information criteria for model selection with large model spaces
  publication-title: Biometrika
  doi: 10.1093/biomet/asn034
– volume: 2021
  start-page: 1
  ident: pone.0254496.ref036
  article-title: Bayesian Estimation for Gaussian Graphical Models: Structure Learning, Predictability, and Network Comparisons
  publication-title: ariate Behav Res
– volume: 82
  start-page: 920
  issue: 5
  year: 2014
  ident: pone.0254496.ref032
  article-title: Analyzing multiple outcomes in clinical research using multivariate multilevel models
  publication-title: J Consult Clin Psychol
  doi: 10.1037/a0035628
– volume: 72
  start-page: 1219
  issue: 12
  year: 2015
  ident: pone.0254496.ref043
  article-title: Association of Symptom Network Structure With the Course of Depression
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.2079
– volume: 52
  start-page: 216
  issue: 2
  year: 2015
  ident: pone.0254496.ref023
  article-title: Comparing Effectiveness of Treatments for Borderline Personality Disorder in Communal Mental Health Care: The Oulu BPD Study
  publication-title: Community Ment Health J
  doi: 10.1007/s10597-015-9866-4
– volume: 12
  start-page: e0186695
  issue: 10
  year: 2017
  ident: pone.0254496.ref046
  article-title: The centrality of affective instability and identity in Borderline Personality Disorder: Evidence from network analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0186695
– volume-title: Cognitive-behavioral Treatment of Borderline Personality Disorder
  year: 1993
  ident: pone.0254496.ref049
– volume: 18
  start-page: 112
  issue: 2
  year: 2009
  ident: pone.0254496.ref015
  article-title: The New Person-Specific Paradigm in Psychology
  publication-title: Curr Dir Psychol Sci
  doi: 10.1111/j.1467-8721.2009.01619.x
– volume: 2
  start-page: 201
  issue: 4
  year: 2004
  ident: pone.0254496.ref014
  article-title: A Manifesto on Psychology as Idiographic Science: Bringing the Person Back Into Scientific Psychology, This Time Forever
  publication-title: Measurement: Interdisciplinary Research and Perspective
– volume: 48
  start-page: 1
  issue: 4
  year: 2012
  ident: pone.0254496.ref029
  article-title: Qgraph: Network visualizations of relationships in psychometric data
  publication-title: J Stat Softw
  doi: 10.18637/jss.v048.i04
– volume: 8
  start-page: e60188
  issue: 4
  year: 2013
  ident: pone.0254496.ref003
  article-title: A network approach to psychopathology: new insights into clinical longitudinal data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060188
– volume: 111
  start-page: E878
  issue: 10
  year: 2014
  ident: pone.0254496.ref038
  article-title: “Critical slowing down in depression” is a great idea that still needs empirical proof
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1323672111
– volume: 3
  start-page: 836
  issue: 6
  year: 2014
  ident: pone.0254496.ref011
  article-title: Mental Disorders as Causal Systems: A Network Approach to Posttraumatic Stress Disorder
  publication-title: Clin Psychol Sci
  doi: 10.1177/2167702614553230
– volume: 58
  start-page: 267
  year: 1996
  ident: pone.0254496.ref027
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B (Methodological).
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 86
  start-page: 175
  issue: 3
  year: 2017
  ident: pone.0254496.ref039
  article-title: Can We Jump from Cross-Sectional to Dynamic Interpretations of Networks? Implications for the Network Perspective in Psychiatry
  publication-title: Psychother Psychosom
  doi: 10.1159/000453583
– volume: 9
  start-page: 91
  issue: 1
  year: 2013
  ident: pone.0254496.ref001
  article-title: Network Analysis: An Integrative Approach to the Structure of Psychopathology.
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-050212-185608
– volume-title: Bayesian Inference in Statistical Analysis
  year: 1973
  ident: pone.0254496.ref034
– volume: 85
  start-page: 183
  issue: 3
  year: 2016
  ident: pone.0254496.ref041
  article-title: A Prospective Study on How Symptoms in a Network Predict the Onset of Depression
  publication-title: chother Psychosom
  doi: 10.1159/000442001
– volume: 53
  start-page: 15
  issue: 1
  year: 2017
  ident: pone.0254496.ref019
  article-title: An Introduction to Network Psychometrics: Relating Ising Network Models to Item Response Theory Models
  publication-title: Multivariate Behav Res
  doi: 10.1080/00273171.2017.1379379
– volume: 111
  start-page: 87
  issue: 1
  year: 2014
  ident: pone.0254496.ref044
  article-title: Critical slowing down as early warning for the onset and termination of depression
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1312114110
– volume: 17
  start-page: 45
  issue: 1
  year: 2003
  ident: pone.0254496.ref020
  article-title: Reliability and Validity of the Borderline Personality Disorder Severity Index
  publication-title: J Pers Disord
  doi: 10.1521/pedi.17.1.45.24053
– volume: 5
  start-page: 2111
  issue: 51
  year: 2020
  ident: pone.0254496.ref037
  article-title: BGGM: Bayesian Gaussian Graphical Models in R
  publication-title: J Open Source Softw
  doi: 10.21105/joss.02111
– volume: 33
  start-page: 137
  issue: 2–3
  year: 2010
  ident: pone.0254496.ref002
  article-title: Comorbidity: a network perspective
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X09991567
– volume: 21
  start-page: 1129
  issue: 11
  year: 1991
  ident: pone.0254496.ref030
  article-title: Graph drawing by force‐directed placement
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.4380211102
– volume: 33
  start-page: 1
  issue: 2
  year: 2010
  ident: pone.0254496.ref033
  article-title: MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i02
– volume: 4
  start-page: 5918
  year: 2014
  ident: pone.0254496.ref005
  article-title: A new method for constructing networks from binary data.
  publication-title: Sci Rep
  doi: 10.1038/srep05918
– volume: 10
  start-page: 2295
  year: 2009
  ident: pone.0254496.ref026
  article-title: The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs.
  publication-title: J Mach Learn Res
– volume: 123
  start-page: 510
  issue: 3
  year: 2014
  ident: pone.0254496.ref012
  article-title: Network analysis of persistent complex bereavement disorder in conjugally bereaved adults
  publication-title: J Abnorm Psychol
  doi: 10.1037/abn0000002
– volume-title: Designs for Clinical Trials: Perspectives on Current Issues
  year: 2011
  ident: pone.0254496.ref035
– volume: 189
  start-page: 314
  year: 2016
  ident: pone.0254496.ref008
  article-title: What are ’good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2015.09.005
– volume: 73
  start-page: 411
  issue: 4
  year: 2016
  ident: pone.0254496.ref016
  article-title: Group-Level Symptom Networks in Depression.
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.3103
– volume: 52
  start-page: 1
  issue: 1
  year: 2016
  ident: pone.0254496.ref017
  article-title: Mental disorders as networks of problems: a review of recent insights
  publication-title: Soc Psychiatry Psychiatr Epidemiol
  doi: 10.1007/s00127-016-1319-z
SSID ssj0053866
Score 2.537371
Snippet Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships between...
Objective Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships...
ObjectiveWithin the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships...
Objective Within the network approach to psychopathology, cross-sectional partial correlation networks have frequently been used to estimate relationships...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0254496
SubjectTerms Adolescent
Adult
Borderline personality disorder
Borderline Personality Disorder - psychology
Computer and Information Sciences
Correlation
Cross-Sectional Studies
Female
Humans
Hypotheses
Male
Medicine and Health Sciences
Mental disorders
Methods
Networks
Parameters
Pathology
Personality
Personality disorders
Physical Sciences
Psychiatric research
Psychological manifestations of general diseases
Psychology, Pathological
Psychopathology
Research and Analysis Methods
SummonAdditionalLinks – databaseName: Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJrbjBxdUKqqCxENQUG9R7DhtUZWEze7f4bcy43jTBlXAZVcbTyyvxzMeez5_JuSZt2nFRVUmuQYjF8KbxORplRgFE4JlwnOLG_ofPsqDb-L9UX4UN9z6CKtc-8TgqKvW4R75TqDKwiwYe939TPDWKMyuxis0rpJrGfhg5M7XeyPEA2xZynhcjqtsJ2pnu2sbvx24uZCq_8J0FFj7R988687a_rLA80_85IUJaf8muREjSbo7qH6DXPHNLbIRbbWnLyKh9Mvb5BeMBeoD2C7k1CkyfHva1jQ0KukDHAsr63AgwbfDOzsGlBxtBqB4_4p-XmBWB3HSdF2KWK-eRrAXHU4RU2jtj5AMgFU4PW2oDfyeGM_S7jz2p1Uk_rxDDvffHu4dJPFehsRJw5aJN7k2WnFWSc99XcMvpr2DSMi4HD6ErY3IXW1FblMry7oWmjufag_27ip-l8waUMEmoYpbbaSWeD5YMFWCay7TKodVFvdMWzUnfK2dwkXOcrw646wIiTgFa5ehswvUaRF1OifJ-FY3cHb8Q_4NKn6URcbt8KBdHBfRgAuII7OsYlUqeC2YtSWEylxC9MxlrbyESh7jsCmG46uj3yh2pQKnp2GhPSdPgwSybjQI6zkuV31fvPv0_T-Evn6ZCD2PQnUL3eHKeJQC_hOyeU0ktyaS4DvcpHgTB_m6V_ri3MrgzfXAv7z4yViMlSJUr_HtKsgoiAu1NnNyb7CTsWfxFLPhGXSWmljQpOunJc3pSSA9h5kHVXD_7816QK4zBB3h5nu6RWbLxco_hKhxaR8F1_AbeuBwNw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGeeEFMb5WGGAQEvCQKo0dfyAhNBDTQBog2NDeothxtqEqCU0rwT_D38qd4wSCiuCBl1aNz1F6Xz7Hd78j5KEzccF4kUepAiPn3OlIp3ERaQkLgkm4YwZf6B--FQfH_M1JerJF-p6tgYHtxq0d9pM6Xi5mX798ew4G_8x3bZDzftKsqSs385hbWlwgF2FtktjM4ZAP5wpg3UKEAro_zRwtUB7Hf_DWk2ZRt5tC0d8zKn9ZovavkMshtqR7nTJsky1XXSXbwXpb-jhATD-5Rr6DdlDn0-_8KTtFzG9H65L6h4pan6CFN2tQteDbYhePLm-OVl3qePuUvl_iOQ9mTtN-FLO_WhrSv2hXV0zhaT_74wHYl9PzihqP-IkRLm1-7gZoEaBAr5Oj_VdHLw-i0KkhskInq8jpVGklWVIIx1xZwq9EOQuxkbYpfHBTap7a0vDUxEbkZckVsy5WDjyALdgNMqlABDuESmaUFkpgxTBPZA7OOo-LFPZdzCXKyClhvXQyG1DMsZnGIvNHcxJ2Mx2zM5RpFmQ6JdEwq-lQPP5C_wIFP9AiBre_UC9Ps2DSGUSW83mRFDFnJU-MySF4ZgLiaSZK6QTc5B6qTdYVtA6eJNsTEtyggq33lDzwFIjDUWGiz2m-btvs9btP_0D08cOI6FEgKmtgh81DcQX8J8T3GlHujijBm9jR8A4qec-VNvMQdXj6nMDMXvE3D98fhvGmmLxXuXrtaSREikrpKbnZ2cnAWaxr1mwOzJIjCxqxfjxSnZ95GHRYi1AEt_6HrG6TSwkmK-FL-3iXTFbLtbsD0ebK3PUO5Afl9YKk
  priority: 102
  providerName: Scholars Portal
Title The exploratory value of cross-sectional partial correlation networks: Predicting relationships between change trajectories in borderline personality disorder
URI https://www.ncbi.nlm.nih.gov/pubmed/34329316
https://www.proquest.com/docview/2556835012
https://www.proquest.com/docview/2557224889
https://pubmed.ncbi.nlm.nih.gov/PMC8323921
https://doaj.org/article/39211d2d043f42bba1613697736f7e66
http://dx.doi.org/10.1371/journal.pone.0254496
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLegXLggxtcKoxiEBByypbHjD27btDKQNqYxUG9RnDgwNCXR0v47-1v3nu2GBk0aBy6uWr9E6ft2_N7PhLy1Ji4ZL_MoVWDknFsd6TQuIy0hIJiEW2bwhf7RsTj8zr_M0_naUV9YE-bhgT3jdiB-T6dlUsacVTwxJocUhQnIWpiopBUObBti3mox5X0wWLEQoVGOyelOkMt229R226FyIUj_WiByeP29Vx61F013U8r5d-XkWiiaPSQPQg5Jd_2zb5A7tn5ENoKVdvR9gJL-8JhcgRZQ68rs3G46RWxvS5uKuoeKOleIhTdrkRPwWeBpHb4-jta-RLz7SE8ucT8HK6TpaharvDoayryo7x-m8LS_3TYArL_peU2NQ_bETJa2f7J-WgbIzyfkbHZwtn8YhRMZokLoZBFZnSqtJEtKYZmtKviWKFtADqSLFAZuKs3TojI8NbEReVVxxQobKwuWXpTsKRnVIIJNQiUzSgslsDOYJzIHp5zHZQrrK2YTZeSYsJV0siKgleOhGReZ24KTsGrxzM5QplmQ6ZhE_VWtR-u4hX4PBd_TIta2-wE0MAsamN2mgWPyCtUm842rvcfIdoUEd6dgiT0mbxwF4m3UWNDzM192Xfb5649_IPp2OiB6F4iqBthR5KGJAv4T4ngNKLcGlOA1isH0Jir5iitd5qDocJc5gStXin_z9Ot-Gm-KRXq1bZaORkJGqJQek2feTnrOYv-yZlNglhxY0ID1w5n6_JeDO4eYgyJ4_j9k9YLcT7AoCV_Ox1tktLhc2peQVS7MhNyVcwmj2p_iOPs0Iff2Do5PTifOtcB4xNU1Lzt8pA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNms7ToKEUClUu_QBogvqzYoTpxRVSdjsCvFn-Af8R2YcJ21QBVx62dXGEyvrGc8jnvmGkMdG-xkXWeIFEWxyIUzsxYGfeXEIBkEzYbjGF_p7-3L8Sbw7DA6XyK-2FgbTKludaBV1Vqb4jnzDQmXhKRh7VX3zsGsUnq62LTQasdgxP75DyFa_nLwB_j5hbPvtdGvsua4CXipjNvdMHEQQaHOWScNNnsMvFpkU7HicBvAhdB6LIM21CLSvZZLnIuKp8SMD0ppmHKa9RC4LzkOE6o-2uowSUB1Suuo8Ho42nDCsV2Vh1i0UGHYGOGP9bJOAzhQMqpOyPs_P_TNd84z9275OrjnHlW42krZMlkxxgyw71VDTZw6_-vlN8hNEjxqb22eP8CkCihta5tQ-lFfb7C-crEK5he8UW4Q0SXm0aPLS6xf0wwwPkTAtm7ajmFpWU5dbRpuiZQpP-9WePUDQT48Lqi2cKLrPtDoNNWjmcEZvkelFMOw2GRTAghVCQ66jWEYSy5EFCxOwBImfBRDUccMiHQ4Jb7mjUgeRjp06TpQ99wshVGoWWyFPlePpkHjdXVUDEfIP-tfI-I4WAb7thXJ2pJy-UOC2jkYZy3zBc8G0TsAz5xKcdS7z0EiYZA3FRjXVsp2aUpsyBB0bQVw_JI8sBYJ8FJhFdJQs6lpN3n_-D6KDjz2ip44oL2E50sRVbsB_QvCwHuVqjxJUVdobXkEhb1elVqebGu5sBf_84YfdME6KmYGFKReWJgQ3NIriIbnT7JNuZbFoOuYjWKywt4N6S98fKY6_WIx1MHTIgrt_f6w1cmU83dtVu5P9nXvkKsN8J3zv76-SwXy2MPfBYZ3rB1ZNUKIuWC39BiNrrPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpFQrwgxtcKgxkEAh6yprbjJEgIDUa1MhgTDNQ3K06cUTQlYWmF-DP8D_4dd46TLWgCXvbSqvXVcu_O95H7IuSh0X7GRZZ4QQSXXAgTe3HgZ14cgkLQTBiu8YH-uz2580m8mQWzFfKrrYXBtMpWJlpBnZUpPiMf2VZZGAVjo9ylRexvT15U3zycIIWR1nacRsMiu-bHd3Df6ufTbaD1I8Ymrw9e7XhuwoCXypgtPBMHETjdnGXScJPn8IlFJgWdHqcBvAidxyJIcy0C7WuZ5LmIeGr8yADnphmHbS-QiyEHrQlXKZx1vh6IESldpR4PxyPHGJtVWZhN2xYMpwSc0oR2YECnFgbVUVmfZfP-mbp5ShdOrpIrzoilWw3XrZIVU1wjq05M1PSJ62X99Dr5CWxIjc3zs-F8is3FDS1zag_l1TYTDDerkIfhPcVxIU2CHi2aHPX6Gd0_xoASpmjTdhXTzGrq8sxoU8BM4bRfbRxiDueYF1Tb1qJoStPqxO2gmes5eoMcnAfBbpJBASRYIzTkOoplJLE0WbAwAa2Q-FkADh43LNLhkPCWOip17dJxaseRsjHAENymBtkKaaocTYfE635VNe1C_gH_EgnfwWKzb_tFeXyonOxQYMKOxxnLfMFzwbROwErnEgx3LvPQSNhkA9lGNZWznchSWzIEeRuBjz8kDywENvwo8OocJsu6VtP3n_8D6OOHHtBjB5SXgI40cVUc8J-wkVgPcr0HCWIr7S2vIZO3WKnVyQWHX7aMf_by_W4ZN8UswcKUSwsTgkkaRfGQ3GruSYdZLKCO-RiQFfZuUA_1_ZVi_sX2WwelhyS4_fdjbZBLIJDU2-ne7h1ymWHqE4YA_HUyWBwvzV2wXRf6npUSlKhzlkq_AXJAsVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+exploratory+value+of+cross-sectional+partial+correlation+networks%3A+Predicting+relationships+between+change+trajectories+in+borderline+personality+disorder&rft.jtitle=PloS+one&rft.au=Lino+von+Klipstein&rft.au=Denny+Borsboom&rft.au=Arnoud+Arntz&rft.date=2021-07-30&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft.spage=e0254496&rft_id=info:doi/10.1371%2Fjournal.pone.0254496&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39211d2d043f42bba1613697736f7e66
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon