Enzymatically produced pools of canonical and Dicer-substrate siRNA molecules display comparable gene silencing and antiviral activities against herpes simplex virus

RNA interference (RNAi)-based sequence-specific gene silencing is applied to identify gene function and also possesses great potential for inhibiting virus replication both in animals and plants. Small interfering RNA (siRNA) molecules are the inducers of gene silencing in the RNAi pathway but may a...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 11; p. e51019
Main Authors Romanovskaya, Alesia, Paavilainen, Henrik, Nygårdas, Michaela, Bamford, Dennis H, Hukkanen, Veijo, Poranen, Minna M
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.11.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:RNA interference (RNAi)-based sequence-specific gene silencing is applied to identify gene function and also possesses great potential for inhibiting virus replication both in animals and plants. Small interfering RNA (siRNA) molecules are the inducers of gene silencing in the RNAi pathway but may also display immunostimulatory activities and promote apoptosis. Canonical siRNAs are 21 nucleotides (nt) in length and are loaded to the RNA Induced Silencing Complex when introduced into the cells, while longer siRNA molecules are first processed by endogenous Dicer and thus termed Dicer-substrate siRNA (DsiRNA). We have applied RNA polymerases from bacteriophages T7 and phi6 to make high-quality double-stranded RNA molecules that are specific for the UL29 gene of herpes simplex virus (HSV). The 653 nt long double-stranded RNA molecules were converted to siRNA and DsiRNA pools using Dicer enzymes originating from human or Giardia intestinalis, producing siRNAs of approximately 21 and 27 nt in length, respectively. Chemically synthesised 21 and 27 nt single-site siRNA targeting the UL29 were used as references. The impact of these siRNAs on cell viability, inflammatory responses, gene silencing, and anti-HSV activity were assayed in cells derived from human nervous system and skin. Both pools and the canonical single-site siRNAs displayed substantial antiviral activity resulting in four orders of magnitude reduction in virus titer. Notably, the pool of DsiRNAs caused lower immunostimulation than the pool of canonical siRNAs, whereas the immunostimulation effect was in relation to the length with the single-site siRNAs. Our results also propose differences in the processivity of the two Dicers.
Bibliography:Conceived and designed the experiments: AR HP MN DHB VH MMP. Performed the experiments: AR HP MN. Analyzed the data: AR HP MN DHB VH MMP. Wrote the paper: AR HP DHB VH MMP.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0051019