Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation

Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 12; p. e0187771
Main Authors Koparde, Vishal, Abdul Razzaq, Badar, Suntum, Tara, Sabo, Roy, Scalora, Allison, Serrano, Myrna, Jameson-Lee, Max, Hall, Charles, Kobulnicky, David, Sheth, Nihar, Feltz, Juliana, Contaifer, Daniel, Wijesinghe, Dayanjan, Reed, Jason, Roberts, Catherine, Qayyum, Rehan, Buck, Gregory, Neale, Michael, Toor, Amir
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (WES) was performed on 27 HLA matched related (MRD), & 50 unrelated donors (URD), to identify nonsynonymous single nucleotide polymorphisms (SNPs). An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01); resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0) and the tissue expression of proteins these were derived from determined (GTex). MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA) with an IC50 of <500 nM, and URD, had 5,386 (p<0.01). To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone's proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0187771