Adding fuel to the fire: the impacts of non-native grass invasion on fire management at a regional scale

Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agenci...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 5; p. e59144
Main Authors Setterfield, Samantha A, Rossiter-Rachor, Natalie A, Douglas, Michael M, Wainger, Lisa, Petty, Aaron M, Barrow, Piers, Shepherd, Ian J, Ferdinands, Keith B
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.05.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: SAS NAR MMD PB KBF. Performed the experiments: SAS NAR PB KBF. Analyzed the data: SAS NAR IJS AMP. Contributed reagents/materials/analysis tools: IJS. Wrote the paper: SAS NAR MMD LW IJS. Provided meteorological data and analysis: IJS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0059144