TagSeq: Malicious behavior discovery using dynamic analysis

In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 5; p. e0263644
Main Authors Huang, Yi-Ting, Sun, Yeali S., Chen, Meng Chang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.05.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level semantic descriptions. We develop a sequence-to-sequence (seq2seq) neural network, called TagSeq, to investigate a sequence of Windows API calls recorded from malware execution, and produce tags to label their malicious behavior. We propose embedding modules to transform Windows API function parameters, registry, filenames, and URLs into low-dimension vectors, while still preserving the closeness property. Moreover, we utilize an attention mechanism to capture the relations between generated tags and certain API invocation calls. Results show that the most possible malicious actions are identified by TagSeq. Examples and a case study demonstrate that the proposed embedding modules preserve semantic-physical relations and that the predicted tags reflect malicious intentions. We believe this work is suitable as a tool to help security analysts recognize malicious behavior and intent with easy-to-understand tags.
AbstractList In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level semantic descriptions. We develop a sequence-to-sequence (seq2seq) neural network, called TagSeq, to investigate a sequence of Windows API calls recorded from malware execution, and produce tags to label their malicious behavior. We propose embedding modules to transform Windows API function parameters, registry, filenames, and URLs into low-dimension vectors, while still preserving the closeness property. Moreover, we utilize an attention mechanism to capture the relations between generated tags and certain API invocation calls. Results show that the most possible malicious actions are identified by TagSeq. Examples and a case study demonstrate that the proposed embedding modules preserve semantic-physical relations and that the predicted tags reflect malicious intentions. We believe this work is suitable as a tool to help security analysts recognize malicious behavior and intent with easy-to-understand tags.
In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level semantic descriptions. We develop a sequence-to-sequence (seq2seq) neural network, called TagSeq, to investigate a sequence of Windows API calls recorded from malware execution, and produce tags to label their malicious behavior. We propose embedding modules to transform Windows API function parameters, registry, filenames, and URLs into low-dimension vectors, while still preserving the closeness property. Moreover, we utilize an attention mechanism to capture the relations between generated tags and certain API invocation calls. Results show that the most possible malicious actions are identified by TagSeq. Examples and a case study demonstrate that the proposed embedding modules preserve semantic-physical relations and that the predicted tags reflect malicious intentions. We believe this work is suitable as a tool to help security analysts recognize malicious behavior and intent with easy-to-understand tags.In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level semantic descriptions. We develop a sequence-to-sequence (seq2seq) neural network, called TagSeq, to investigate a sequence of Windows API calls recorded from malware execution, and produce tags to label their malicious behavior. We propose embedding modules to transform Windows API function parameters, registry, filenames, and URLs into low-dimension vectors, while still preserving the closeness property. Moreover, we utilize an attention mechanism to capture the relations between generated tags and certain API invocation calls. Results show that the most possible malicious actions are identified by TagSeq. Examples and a case study demonstrate that the proposed embedding modules preserve semantic-physical relations and that the predicted tags reflect malicious intentions. We believe this work is suitable as a tool to help security analysts recognize malicious behavior and intent with easy-to-understand tags.
Audience Academic
Author Sun, Yeali S.
Chen, Meng Chang
Huang, Yi-Ting
AuthorAffiliation 1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Department of Information Management, National Taiwan University, Taipei, Taiwan
Politechnika Slaska, POLAND
AuthorAffiliation_xml – name: Politechnika Slaska, POLAND
– name: 1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
– name: 2 Department of Information Management, National Taiwan University, Taipei, Taiwan
Author_xml – sequence: 1
  givenname: Yi-Ting
  orcidid: 0000-0002-6315-8927
  surname: Huang
  fullname: Huang, Yi-Ting
– sequence: 2
  givenname: Yeali S.
  surname: Sun
  fullname: Sun, Yeali S.
– sequence: 3
  givenname: Meng Chang
  surname: Chen
  fullname: Chen, Meng Chang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35576222$$D View this record in MEDLINE/PubMed
BookMark eNqNk2tr2zAUhs3oWC_bPxiboTC2D8lk3dXBoJRdAh2FtdtXIcuyo6BYqWSH5d9PWZwRlzKGPlgcP-97dI50TrOj1rcmy14WYFogVrxf-D60yk1XKTwFkCKK8ZPspBAITigE6Ohgf5ydxrgAgCBO6bPsGBHCKITwJPtwp5pbc3-Rf1POauv7mJdmrtbWh7yyUfu1CZu8j7Zt8mrTqqXVuUppN9HG59nTWrloXgzfs-zH5093V18n1zdfZleX1xNNBewmGmkgMNO1KBVGpqwNUkQoUWPGOCYQMVAKqhmrACWVKTXhAiEOWUkIRaBCZ9nrne_K-SiHuqOElFOIOSUsEbMdUXm1kKtglypspFdW_gn40EgVOqudkTXHpoK4UgWk2x3HCDAOtObGGIho8vo4ZOvLpam0abug3Mh0_Ke1c9n4tRQFEAKiZPB2MAj-vjexk8vUSOOcak3qbzo3JQktIE_o-QP08eoGqlGpANvWPuXVW1N5yQASjKMCJGr6CJVWZdKlpUdS2xQfCd6NBInpzK-uUX2Mcnb7_f_Zm59j9s0BOzfKdfPoXd9Z38Yx-Oqw039bvH-dCbjYATr4GIOppbad2vqk0qyTBZDbUdg3TW5HQQ6jkMT4gXjv_0_Zb4JpC1w
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3210386
crossref_primary_10_3390_electronics13173553
Cites_doi 10.3390/app10072373
10.1109/64.511768
10.1007/978-3-319-40667-1_20
10.1016/j.cose.2019.101592
10.1109/ACCESS.2019.2946392
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2016.319
10.1109/MALWARE.2015.7413680
10.1109/ICASSP.2013.6638293
10.1109/ICASSP.2015.7178304
10.1145/2089125.2089126
10.1007/978-3-030-01234-2_49
10.5120/6194-8715
10.1109/ICASSP.2017.7952603
10.4156/ijipm.vol4.issue5.7
10.1109/ICASSP.2019.8682899
10.3390/electronics10040485
10.18653/v1/D15-1166
10.1109/ICASSP.2017.7953075
10.1007/978-3-319-45719-2_11
10.1016/j.cose.2018.11.001
10.1109/MSR.2017.57
10.1016/j.cose.2020.101760
10.1007/978-3-030-21548-4_38
10.1109/CyberSecPODS.2019.8885196
10.1109/TPAMI.2016.2644615
10.1109/TIFS.2020.2969514
10.1155/2019/2317976
10.23919/EECSI50503.2020.9251304
10.1016/j.cose.2020.101775
10.1198/tech.2003.s783
10.1109/TIFS.2019.2947861
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Huang et al 2022 Huang et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Huang et al 2022 Huang et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0263644
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



CrossRef
PubMed
Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: 开放获取期刊(Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A malware semantic tagging system
EISSN 1932-6203
ExternalDocumentID 2686248657
oai_doaj_org_article_f84ed24da1264ed28430780cc8eee236
PMC9109923
A703978310
35576222
10_1371_journal_pone_0263644
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: ;
  grantid: 109-2221-E-001-010-MY3
– fundername: ;
  grantid: 108-2218-E-002-045
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-c3c0947cf9ba43ebfe3a59a9f4778452370b96c77d065debc58933827b55630d3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 31 00:47:56 EDT 2022
Wed Aug 27 01:30:05 EDT 2025
Thu Aug 21 18:26:27 EDT 2025
Fri Jul 11 07:31:44 EDT 2025
Fri Jul 25 11:20:28 EDT 2025
Tue Jun 17 21:04:29 EDT 2025
Tue Jun 10 20:50:31 EDT 2025
Fri Jun 27 03:39:39 EDT 2025
Fri Jun 27 03:39:50 EDT 2025
Thu May 22 21:13:42 EDT 2025
Mon Jul 21 05:46:38 EDT 2025
Tue Jul 01 01:41:54 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-c3c0947cf9ba43ebfe3a59a9f4778452370b96c77d065debc58933827b55630d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have read the journal’s policy and declare that no competing interests exist.
ORCID 0000-0002-6315-8927
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0263644
PMID 35576222
PQID 2686248657
PQPubID 1436336
PageCount e0263644
ParticipantIDs plos_journals_2686248657
doaj_primary_oai_doaj_org_article_f84ed24da1264ed28430780cc8eee236
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9109923
proquest_miscellaneous_2665109128
proquest_journals_2686248657
gale_infotracmisc_A703978310
gale_infotracacademiconefile_A703978310
gale_incontextgauss_ISR_A703978310
gale_incontextgauss_IOV_A703978310
gale_healthsolutions_A703978310
pubmed_primary_35576222
crossref_citationtrail_10_1371_journal_pone_0263644
crossref_primary_10_1371_journal_pone_0263644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220516
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 5
  year: 2022
  text: 20220516
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References GJ Tesauro (pone.0263644.ref013) 1996; 11
Y Zhang (pone.0263644.ref019) 2019; 15
D Čeponis (pone.0263644.ref026) 2019; 2019
F Pedregosa (pone.0263644.ref045) 2011; 12
pone.0263644.ref025
pone.0263644.ref024
pone.0263644.ref023
pone.0263644.ref022
pone.0263644.ref020
W Lee (pone.0263644.ref021) 1998
E Gandotra (pone.0263644.ref002) 2014; 2014
S Sebastio (pone.0263644.ref006) 2020; 93
D Ucci (pone.0263644.ref003) 2019; 81
R Damaševičius (pone.0263644.ref028) 2021; 10
H Yakura (pone.0263644.ref011) 2019; 87
pone.0263644.ref017
pone.0263644.ref015
pone.0263644.ref014
pone.0263644.ref012
pone.0263644.ref010
C Ravi (pone.0263644.ref016) 2012; 43
pone.0263644.ref009
pone.0263644.ref008
I Sutskever (pone.0263644.ref034) 2014; 27
S Hochreiter (pone.0263644.ref039) 1997; 9
pone.0263644.ref005
pone.0263644.ref004
pone.0263644.ref047
SW Hsiao (pone.0263644.ref033) 2020; 15
V Badrinarayanan (pone.0263644.ref037) 2017; 39
pone.0263644.ref046
I Jolliffe (pone.0263644.ref048) 2003; 45
pone.0263644.ref044
pone.0263644.ref043
pone.0263644.ref042
pone.0263644.ref041
pone.0263644.ref040
E Amer (pone.0263644.ref007) 2020; 92
O Sornil (pone.0263644.ref018) 2013; 4
J Qiu (pone.0263644.ref029) 2019; 7
L Van der Maaten (pone.0263644.ref049) 2008; 9
M Egele (pone.0263644.ref001) 2008; 44
pone.0263644.ref038
pone.0263644.ref036
pone.0263644.ref035
pone.0263644.ref032
pone.0263644.ref031
pone.0263644.ref030
D Čeponis (pone.0263644.ref027) 2020; 10
References_xml – volume: 10
  start-page: 2373
  issue: 7
  year: 2020
  ident: pone.0263644.ref027
  article-title: Investigation of dual-flow deep learning models LSTM-FCN and GRU-FCN efficiency against single-flow CNN models for the host-based intrusion and malware detection task on univariate times series data
  publication-title: Applied Sciences
  doi: 10.3390/app10072373
– volume: 27
  start-page: 3104
  year: 2014
  ident: pone.0263644.ref034
  article-title: Sequence to Sequence Learning with Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 5
  issue: 4
  year: 1996
  ident: pone.0263644.ref013
  article-title: Neural networks for computer virus recognition
  publication-title: IEEE expert
  doi: 10.1109/64.511768
– ident: pone.0263644.ref008
  doi: 10.1007/978-3-319-40667-1_20
– volume: 2014
  year: 2014
  ident: pone.0263644.ref002
  article-title: Malware analysis and classification: A survey
  publication-title: Journal of Information Security
– volume: 87
  start-page: 101592
  year: 2019
  ident: pone.0263644.ref011
  article-title: Neural malware analysis with attention mechanism
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2019.101592
– volume: 7
  start-page: 147156
  year: 2019
  ident: pone.0263644.ref029
  article-title: A3CM: automatic capability annotation for android malware
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946392
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: pone.0263644.ref039
  article-title: Long short-term memory
  publication-title: Neural computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: pone.0263644.ref040
  doi: 10.1109/CVPR.2016.319
– ident: pone.0263644.ref009
  doi: 10.1109/MALWARE.2015.7413680
– ident: pone.0263644.ref022
  doi: 10.1109/ICASSP.2013.6638293
– ident: pone.0263644.ref014
– ident: pone.0263644.ref012
  doi: 10.1109/ICASSP.2015.7178304
– volume: 44
  start-page: 1
  issue: 2
  year: 2008
  ident: pone.0263644.ref001
  article-title: A survey on automated dynamic malware-analysis techniques and tools
  publication-title: ACM computing surveys (CSUR)
  doi: 10.1145/2089125.2089126
– ident: pone.0263644.ref038
  doi: 10.1007/978-3-030-01234-2_49
– ident: pone.0263644.ref020
– ident: pone.0263644.ref024
– volume: 43
  start-page: 12
  issue: 17
  year: 2012
  ident: pone.0263644.ref016
  article-title: Malware detection using windows api sequence and machine learning
  publication-title: International Journal of Computer Applications
  doi: 10.5120/6194-8715
– ident: pone.0263644.ref043
– ident: pone.0263644.ref010
  doi: 10.1109/ICASSP.2017.7952603
– volume: 9
  issue: 11
  year: 2008
  ident: pone.0263644.ref049
  article-title: Visualizing data using t-SNE
  publication-title: Journal of machine learning research
– volume: 4
  start-page: 59
  issue: 5
  year: 2013
  ident: pone.0263644.ref018
  article-title: Malware Classification Using N-grams Sequential Pattern Features
  publication-title: Journal of Information Processing and Management
  doi: 10.4156/ijipm.vol4.issue5.7
– ident: pone.0263644.ref025
  doi: 10.1109/ICASSP.2019.8682899
– volume: 10
  start-page: 485
  issue: 4
  year: 2021
  ident: pone.0263644.ref028
  article-title: Ensemble-Based Classification Using Neural Networks and Machine Learning Models for Windows PE Malware Detection
  publication-title: Electronics
  doi: 10.3390/electronics10040485
– ident: pone.0263644.ref035
  doi: 10.18653/v1/D15-1166
– ident: pone.0263644.ref036
  doi: 10.1109/ICASSP.2017.7953075
– ident: pone.0263644.ref004
  doi: 10.1007/978-3-319-45719-2_11
– volume: 81
  start-page: 123
  year: 2019
  ident: pone.0263644.ref003
  article-title: Survey of machine learning techniques for malware analysis
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.11.001
– ident: pone.0263644.ref017
– ident: pone.0263644.ref023
– ident: pone.0263644.ref044
– ident: pone.0263644.ref005
  doi: 10.1109/MSR.2017.57
– year: 1998
  ident: pone.0263644.ref021
  publication-title: Data mining approaches for intrusion detection
– ident: pone.0263644.ref031
– volume: 12
  start-page: 2825
  year: 2011
  ident: pone.0263644.ref045
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– ident: pone.0263644.ref041
– volume: 92
  start-page: 101760
  year: 2020
  ident: pone.0263644.ref007
  article-title: A dynamic Windows malware detection and prediction method based on contextual understanding of API call sequence
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2020.101760
– ident: pone.0263644.ref030
  doi: 10.1007/978-3-030-21548-4_38
– ident: pone.0263644.ref046
  doi: 10.1109/CyberSecPODS.2019.8885196
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: pone.0263644.ref037
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2016.2644615
– volume: 15
  start-page: 2402
  year: 2020
  ident: pone.0263644.ref033
  article-title: Hardware-Assisted MMU Redirection for In-Guest Monitoring and API Profiling
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.2969514
– ident: pone.0263644.ref032
– ident: pone.0263644.ref015
– volume: 2019
  year: 2019
  ident: pone.0263644.ref026
  article-title: Evaluation of deep learning methods efficiency for malicious and benign system calls classification on the AWSCTD
  publication-title: Security and Communication Networks
  doi: 10.1155/2019/2317976
– ident: pone.0263644.ref047
  doi: 10.23919/EECSI50503.2020.9251304
– volume: 93
  start-page: 101775
  year: 2020
  ident: pone.0263644.ref006
  article-title: Optimizing symbolic execution for malware behavior classification
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2020.101775
– volume: 45
  start-page: 276
  issue: 3
  year: 2003
  ident: pone.0263644.ref048
  article-title: Principal component analysis
  publication-title: Technometrics
  doi: 10.1198/tech.2003.s783
– volume: 15
  start-page: 3401
  year: 2019
  ident: pone.0263644.ref019
  article-title: Familial clustering for weakly-labeled android malware using hybrid representation learning
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2947861
– ident: pone.0263644.ref042
SSID ssj0053866
Score 2.4057488
Snippet In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0263644
SubjectTerms Analysis
Biology and Life Sciences
Computer and Information Sciences
Computer security
Computer viruses
Cybersecurity
Embedding
Engineering and Technology
Internet
Malware
Modules
Neural networks
Prevention
Safety and security measures
Security
Semantics
Social Sciences
Spyware
Tags
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0u7bjB5wKoipIBYm2qDcr8WNBqrIL2R7498w4TtSgSuXAbbWeRLvzsL9JZr4h5IVkUVb45L7W3pTgIaI0XgSIK5zzAIgiJDqGo8_y8FR8OqvOLo36wpqwnh64V9xe1CJ4Jny9gKMbPmkBXqnnzukQAuOJbBvOvCGZ6vdgiGIpc6McV4u9bJfd9aoNu5B1cEABk4Mo8fWPu_Jsfb7qroKcf1dOXjqKDm6TWxlD0v3-t2-RG6G9Q7ZylHb0VaaSfn2XvD2pl8fh5xt6BHDbYbkrHfryKfbjYv3mb4q170vq-9n0tM40JffI6cGHk_eHZR6XUDpp2KZ03EGuplw0TS14aGLgdWVqE4VSWkDCqeaNkU4pD7DDh8ZVgFW4ZqpJJGGe3yezFhS0TaiHSDXO8xgjF3A77ZqqCTKKKAEgyVAQPujOuswljiMtzm16QaYgp-hVYVHjNmu8IOV41brn0rhG_h2aZZRFJuz0BfiHzf5hr_OPgjxFo9q-rXSMZ7sPWx0-9lrMC_I8SSAbRovlNsv6ouvsxy_f_kHo-OtE6GUWiitQh6tziwP8J2TZmkjuTCQhpt1keRtdcNBKZ1lq5NGyUnDl4JZXLz8bl_GmWELXBnAvkJFoVcAjBXnQe_GoWQCdcCgyVhA18e-J6qcr7Y_viYzc4KtVxh_-D1s9IjcZdpcgOa7cIbPNr4vwGDDfpnmSwvsPktpTkA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdTCqQIiXJIu2s7tgMHVFCXglSQ-kC9WYkfC1KVbJvtgX_PjOMEgirgtlpPot3xzPizPfMNIS8E9SLHk_tS2SIDC-FZYbkDv8I-D4AoXKBjOPwsDk75p7P8LB64tTGtso-JIVDbxuAZ-S4NpQxK5PLt8iLDrlF4uxpbaNwkt2aw0mBKl5p_6CMx-LIQsVyOydlunJ2dZVO7Hdh7MMACo-UosPYPsXmyPG_a64Dnn_mTvy1I87vkTkSS6V439WvkhqvvkbXoq226HQmlX90nb07KxbG7eJ0eAug2mPSa9tX5KVblYhbnjxQz4Bep7TrUp2UkK3lATuf7J-8Pstg0ITOioKvMMAM7Nml8UZWcuco7VuZFWXgupeKw7ZTTqhBGSgvgw7rK5IBYmKKyClRhlj0kkxoUtE5SC_5aGMu894zD65Sp8soJz70AmCRcQlivO20iozg2tjjX4ZpMws6iU4VGjeuo8YRkw1PLjlHjH_LvcFoGWeTDDl80lwsd3Ut7xZ2l3JZgBvhJcYhdamqMcs5RJhLyDCdVd8Wlg1frPQh4ePg1mybkeZBATowak24W5VXb6o9fvv6H0PHRSOhlFPINqMOUsdAB_hNybY0kN0eS4NlmNLyOJthrpdW_fACe7M3y-uGtYRhfiol0tQPzAhmBswqoJCGPOiseNAvQE5ZGShMiR_Y9Uv14pP7-LVCSF3jBStnG33_WY3KbYvUIkt-KTTJZXV65J4DpVtXT4Lg_AVfySww
  priority: 102
  providerName: ProQuest
Title TagSeq: Malicious behavior discovery using dynamic analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/35576222
https://www.proquest.com/docview/2686248657
https://www.proquest.com/docview/2665109128
https://pubmed.ncbi.nlm.nih.gov/PMC9109923
https://doaj.org/article/f84ed24da1264ed28430780cc8eee236
http://dx.doi.org/10.1371/journal.pone.0263644
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhatlECQgIeUrW2YycghLapZSB1oG1FfYsSxy6TqrRrOom98Ldz5zgRQUXAi1XVZ0s539k_f9zvCHkhqBEhntynUR4HYCE8iHOuwa8wzwMgCm3pGMZn4nTCP03D6Rapc7Y6BZYbt3aYT2qymve-X9--B4d_Z7M2yEHdqLdcFLoHewoGa_w22YG1SWJOgzFv7hXAu-3tJaKWQNA-c8F0f-qltVhZTv9m5u4s54tyEyz9_XXlL8vV6B6563Cmf1QZxi7Z0sV9sus8ufRfObrp1w_I28t0dqGv3_hjgOQKn8T6dey-jzG7-Mbz1sf38TM_r_LX-6mjMnlIJqPh5clp4FIqBErEdB0opmA_J5WJs5QznRnN0jBOY8OljDhsSmU_i4WSMgdokutMhYBnWERlZonEcvaIdApQ0B7xc_DmWOXMGMM4dBepLMy0MNwIAFFCe4TVukuU4xvHtBfzxF6iSdh3VKpIUOOJ07hHgqbVsuLb-Iv8MQ5LI4ts2faPxWqWOOdLTMR1TnmeDgD-wa-Iw8wW9ZWKtNaUCY88xUFNqtDTxueTI5gO8Whs0PfIcyuBjBkFPsmZpTdlmXz8_PUfhC7OW0IvnZBZgDpU6sIg4JuQiaslediSBL9Xreo9NMFaK2VCbbBPJEIJLWuz3Fz9rKnGTvGZXaHBvEBG4KgCZvHI48qKG80CMIWFk1KPyJZ9t1TfrimuvlnC8hivXynb_8-xPSB3KAabIFeuOCSd9epGPwEIuM66ZFtOJZTRyQDL0Ycu2Tkenn0579pDla71eix_DH8C0vdfOA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPha2GABgYCHbK3t2AkIofFRWrYOaevQ3kxiO92kkXZLJ9R_ir-Ru8QJBE3Ay96q-hK15_Pvzvbd7wh5ImgmQjy5TyITB2AhPIgNt7CusM8DRBS2pGMY7YrBAf90GB4ukR91LQymVdaYWAK1mWo8I9-kZSlDJEL5ZnYaYNcovF2tW2hUZrFtF99hy1a8Hr6H-X1Kaf_D-N0gcF0FAi1iOg8007ClkTqL04Qzm2aWJWGcxBmXMuKwL5PdNBZaSgPe2dhUh9iRPqIyLbm0DIP3XiFXOQNPjpXp_Y818gN2COHK85jsbTpr2JhNc7sBex0GsUfL_ZVdAhpf0JmdTIuLAt0_8zV_c4D9m-SGi1z9rcrUlsmSzW-RZYcNhf_cEVi_uE1ejZPJvj196Y8gyNeYZOvXbAA-VgFj1ujCx4z7iW8WefLtWPuJI0e5Qw4uRZ13SScHBa0Q3wA-xNqwLMsYh9dFOg1TKzKeCQjLhPUIq3WntGMwx0YaJ6q8lpOwk6lUoVDjymncI0Hz1Kxi8PiH_FuclkYW-bfLL6ZnE-WWs8oibg3lJulBQAmfIg5YGXW1jqy1lAmPrOOkqqqYtUERtQUAi4dtva5HHpcSyMGRY5LPJDkvCjX8_OU_hPb3WkLPnFA2BXXoxBVWwH9Cbq-W5FpLEpBEt4ZX0ARrrRTq15qDJ2uzvHj4UTOML8XEvdyCeYGMwFmFKMgj9yorbjQLoS64Yko9Ilv23VJ9eyQ_Piop0GO80KXs_t9_1jq5NhiPdtTOcHd7lVynWLmCxLtijXTmZ-f2AcST8_RhuYh98vWyUeMnMemHOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wGABgYCHbK3t2AkIobFRrYwNxDa0N5P4o0waabd0Qv3X-Ou4S5xA0AS87K2qL1F7Pv98Z9_9jpDHgjoR48l9lpg0AgvhUWq4hXWFfR7Ao7AVHcPOrtg64O8O48MF8qOphcG0ygYTK6A2E41n5Gu0KmVIBATwzqdFfNwcvp6eRNhBCm9am3YatYls2_l3CN_KV6NNmOsnlA7f7m9sRb7DQKRFSmeRZhrCG6ldmmec2dxZlsVpljouZcIhRpP9PBVaSgM7tbG5jrE7fUJlXvFqGQbvvUQuSyYTXGPJRpteAjgihC_VY3Kw5i1jdTop7CrEPQz8kM5WWHUMaPeF3vR4Up7n9P6Zu_nbZji8Tq55LzZcr81ukSzY4gZZ9DhRhs88mfXzm-Tlfjbesycvwh1w-DUm3IYNM0CIFcGYQToPMft-HJp5kX070mHmiVJukYMLUedt0itAQUskNIAVqTbMOcc4vC7ReZxb4bgT4KIJGxDW6E5pz2aOTTWOVXVFJyGqqVWhUOPKazwgUfvUtGbz-If8G5yWVha5uKsvJqdj5Ze2cgm3hnKTDcC5hE8JB9xM-lon1lrKREBWcFJVXdjaIopaB7DFg7dBPyCPKgnk4yjQssfZWVmq0YfP_yG096kj9NQLuQmoQ2e-yAL-E_J8dSSXO5KAKrozvIQm2GilVL_WHzzZmOX5ww_bYXwpJvEVFswLZATOKnhEAblTW3GrWXB7YVumNCCyY98d1XdHiqOvFR16ipe7lN39-89aIVcAL9T70e72PXKVYhELcvCKZdKbnZ7Z--BazvIH1RoOyZeLBo2fD2qLOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TagSeq%3A+Malicious+behavior+discovery+using+dynamic+analysis&rft.jtitle=PloS+one&rft.au=Huang%2C+Yi-Ting&rft.au=Sun%2C+Yeali+S.&rft.au=Chen%2C+Meng+Chang&rft.date=2022-05-16&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=5&rft.spage=e0263644&rft_id=info:doi/10.1371%2Fjournal.pone.0263644&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0263644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon