Evolution and impact of bias in human and machine learning algorithm interaction
Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born fro...
Saved in:
Published in | PloS one Vol. 15; no. 8; p. e0235502 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
13.08.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set. |
---|---|
AbstractList | Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human’s reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms’ performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set. Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set. |
Audience | Academic |
Author | Shafto, Patrick Sun, Wenlong Nasraoui, Olfa |
AuthorAffiliation | 1 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, United States of America 2 Department of Mathematics and Computer Science, Rutgers University - Newark, Newark, New Jersey, United States of America Shandong University of Science and Technology, CHINA |
AuthorAffiliation_xml | – name: Shandong University of Science and Technology, CHINA – name: 1 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, United States of America – name: 2 Department of Mathematics and Computer Science, Rutgers University - Newark, Newark, New Jersey, United States of America |
Author_xml | – sequence: 1 givenname: Wenlong orcidid: 0000-0003-0164-8733 surname: Sun fullname: Sun, Wenlong – sequence: 2 givenname: Olfa surname: Nasraoui fullname: Nasraoui, Olfa – sequence: 3 givenname: Patrick surname: Shafto fullname: Shafto, Patrick |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32790666$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuB_6D0QLgujFjGmSJqkXwrKsOrCw4tdtOE2TTpY2GZN20X9vxunIdFlEepFyzvO-J-dwcpodOe90lj0t0LIgvHhz48fgoFtuUniJMClLhB9kJ0VF8IJhRI4O_o-z0xhvECqJYOxRdkwwrxBj7CT7dHnru3Gw3uXgmtz2G1BD7k1eW4i5dfl67GGX60GtrdN5pyE469ocutYHO6z7xA06JGGyeZw9NNBF_WQ6z7Jv7y-_XnxcXF1_WF2cXy0Uq_CwqBujCTaqYjVGgpa0pkI1nAmB0x0bk_KGcGUwqwFqwUpeN0QAwzWtTI0MOcue73w3nY9yGkaUmBKKuMAlT8RqRzQebuQm2B7CL-nByj8BH1oJYbCq07KpQWDAnKtK0KZUoio411AyMIgShZLXu6naWPe6UdoNAbqZ6Tzj7Fq2_lZyikvBRDJ4NRkE_2PUcZC9jUp3HTjtx929KSeCsIS-uIPe391EtZAasM74VFdtTeU5I5giLOi27PIeKn2N7q1Km2Nsis8Er2eCxAz659DCGKNcffn8_-z19zn78oBda-iGdZw2L87BZ4eT_jvi_com4O0OUMHHGLSRyg6w9Umt2U4WSG7fx35ocvs-5PQ-kpjeEe_9_yn7DakWFB8 |
CitedBy_id | crossref_primary_10_1080_12460125_2022_2062849 crossref_primary_10_1080_10400435_2021_1930282 crossref_primary_10_3389_fdata_2021_660206 crossref_primary_10_3390_epigenomes6040034 crossref_primary_10_1097_JS9_0000000000000552 crossref_primary_10_1111_cns_13993 crossref_primary_10_1108_JBIM_02_2023_0073 crossref_primary_10_1016_j_neucom_2024_127436 crossref_primary_10_1016_j_ijbiomac_2024_136643 crossref_primary_10_1016_j_bprint_2023_e00321 crossref_primary_10_1097_OPX_0000000000001767 crossref_primary_10_2196_42262 crossref_primary_10_1016_j_japh_2023_10_018 crossref_primary_10_3828_tpr_2024_48 crossref_primary_10_3389_fpubh_2020_556789 crossref_primary_10_1057_s41599_024_03660_8 crossref_primary_10_2196_48009 crossref_primary_10_1371_journal_pone_0263954 crossref_primary_10_48143_rdai_29_valle crossref_primary_10_1016_j_ijinfomgt_2021_102387 crossref_primary_10_3390_app11146271 crossref_primary_10_2196_36395 crossref_primary_10_1177_20552076221109531 crossref_primary_10_1038_s43588_025_00769_x crossref_primary_10_1186_s12859_024_05695_9 crossref_primary_10_17150_2308_6203_2021_10_4__734_744 crossref_primary_10_1371_journal_pone_0268081 crossref_primary_10_3390_bdcc7010015 crossref_primary_10_1016_j_icarus_2024_116451 crossref_primary_10_1038_s41380_022_01635_2 crossref_primary_10_1053_j_ackd_2022_08_001 crossref_primary_10_1109_MC_2023_3321188 crossref_primary_10_1016_j_technovation_2023_102768 crossref_primary_10_1002_alz_13412 crossref_primary_10_1177_23780231241259659 crossref_primary_10_1186_s13643_022_01984_7 crossref_primary_10_1016_j_knosys_2023_110552 crossref_primary_10_3390_ai5010019 crossref_primary_10_53941_ijndi0101005 crossref_primary_10_1016_j_indmarman_2023_08_013 crossref_primary_10_2196_38482 crossref_primary_10_1007_s00784_022_04742_0 crossref_primary_10_3748_wjg_v29_i9_1427 crossref_primary_10_1016_j_jbusres_2022_01_083 |
Cites_doi | 10.1109/TIT.1967.1053964 10.1145/3240323.3240370 10.1145/371920.372071 10.1016/j.cognition.2010.12.001 10.1109/BigData.2017.8258231 10.1145/182.358466 10.1145/223904.223931 10.1073/pnas.0608222104 10.3386/w0172 10.1016/0167-8655(94)00074-D 10.1145/963770.963776 10.1038/44565 10.1109/TSMCB.2012.2223460 10.1023/A:1007369909943 10.1145/3109859.3109885 10.1023/A:1011196000674 10.1080/01621459.1952.10483441 10.1061/(ASCE)HE.1943-5584.0001902 10.4018/978-1-60960-842-2.ch002 10.1257/pandp.20181018 10.1093/biomet/52.3-4.591 10.1145/245108.245124 10.1108/eb026647 10.1145/2930238.2930283 10.1145/3052768 10.24963/ijcai.2017/654 10.1145/138859.138867 10.1073/pnas.0307752101 10.1371/journal.pone.0213246 10.3115/1687878.1687919 10.1007/s40547-019-00103-3 10.1162/106454603322694825 10.1111/1467-9868.00196 10.5220/0006938702820289 10.1145/176789.176792 10.1016/j.tics.2014.12.007 10.1016/B978-0-12-397919-3.00011-3 10.1109/TKDE.2005.99 10.1016/j.cogpsych.2013.12.004 10.1145/2959100.2959188 10.1145/336992.337035 10.1016/bs.plm.2015.03.006 10.1037/0033-295X.94.2.211 10.1023/A:1007413511361 10.5220/0006938301100118 10.1145/1060745.1060754 10.1145/3278721.3278722 10.1037/0033-295X.114.2.211 10.1145/2983270 10.4304/jetwi.2.4.272-281 10.1215/07402775-3813015 10.1145/2872427.2883090 10.1111/cogs.12102 10.1145/2939672.2945386 10.1109/ICALT.2008.198 10.1037/14396-000 10.1109/MIC.2003.1167344 10.1145/2908131.2908135 10.1037/h0042519 10.1371/journal.pone.0098914 10.1016/j.jhydrol.2019.06.045 10.1145/1015330.1015425 10.1037/h0032955 10.1145/1229179.1229181 10.1109/MC.2009.263 10.1145/963770.963772 10.1177/1745691612448481 10.1007/11899402_4 10.1145/2699667 10.1145/2484028.2484053 10.1007/978-3-319-90403-0_2 10.1613/jair.295 10.1007/978-3-540-72079-9_10 10.6028/NIST.SP.500-225.cornell 10.1145/1401890.1401959 10.5772/intechopen.73176 10.1145/245108.245121 10.1145/3178876.3186140 10.1145/2846092 10.1145/3182166 10.1073/pnas.0707835105 10.1145/2814815.2814821 10.1109/TKDE.2007.190667 10.1037/0033-295X.85.3.207 10.1371/journal.pone.0220129 10.1145/582415.582416 10.1371/journal.pcbi.1005399 10.1007/978-3-319-78105-1_37 10.1016/j.cognition.2010.10.001 10.1007/BF00994018 10.1145/1135777.1136004 10.1287/mnsc.2018.3093 10.1609/aaai.v34i01.5349 10.1016/j.conb.2014.07.014 10.2139/ssrn.2886526 10.1145/2641564 10.1111/j.1467-7687.2012.01135.x 10.1257/jel.44.3.631 10.1109/TSMC.1976.5408784 10.1145/3091478.3091483 10.1145/245108.245126 10.1145/3018661.3018699 10.3758/BF03194066 10.1016/j.procs.2014.05.339 10.1002/9781118548387 10.1108/eb026488 10.1145/3209581 10.1007/s10676-013-9321-6 10.1145/2615569.2615665 10.1145/3287560.3287589 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Sun et al 2020 Sun et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Sun et al 2020 Sun et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0235502 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Computer Science |
DocumentTitleAlternate | Evolution and impact of bias in human and machine learning algorithm interaction |
EISSN | 1932-6203 |
ExternalDocumentID | 2434078257 oai_doaj_org_article_dba82a277c984d5c89177ea56af043c0 PMC7425868 A632402848 32790666 10_1371_journal_pone_0235502 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | United States Louisville Kentucky United States--US |
GeographicLocations_xml | – name: United States – name: Louisville Kentucky – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: 1549981 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c692t-bdfe32fc96b208454b48cd76882386dfbdff37cf26baab8657bd38a62b49fb0f3 |
IEDL.DBID | 7X7 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:36 EST 2021 Wed Aug 27 01:28:17 EDT 2025 Thu Aug 21 18:20:12 EDT 2025 Fri Jul 11 04:10:27 EDT 2025 Fri Jul 25 10:24:38 EDT 2025 Tue Jun 17 21:29:56 EDT 2025 Tue Jun 10 20:26:58 EDT 2025 Fri Jun 27 04:15:40 EDT 2025 Fri Jun 27 05:05:18 EDT 2025 Thu May 22 21:22:48 EDT 2025 Wed Feb 19 02:01:57 EST 2025 Tue Jul 01 00:31:57 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-bdfe32fc96b208454b48cd76882386dfbdff37cf26baab8657bd38a62b49fb0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-0164-8733 |
OpenAccessLink | https://www.proquest.com/docview/2434078257?pq-origsite=%requestingapplication% |
PMID | 32790666 |
PQID | 2434078257 |
PQPubID | 1436336 |
PageCount | e0235502 |
ParticipantIDs | plos_journals_2434078257 doaj_primary_oai_doaj_org_article_dba82a277c984d5c89177ea56af043c0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7425868 proquest_miscellaneous_2434473836 proquest_journals_2434078257 gale_infotracmisc_A632402848 gale_infotracacademiconefile_A632402848 gale_incontextgauss_ISR_A632402848 gale_incontextgauss_IOV_A632402848 gale_healthsolutions_A632402848 pubmed_primary_32790666 crossref_citationtrail_10_1371_journal_pone_0235502 crossref_primary_10_1371_journal_pone_0235502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-13 |
PublicationDateYYYYMMDD | 2020-08-13 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Balabanović (pone.0235502.ref019) 1997; 40 H Yin (pone.0235502.ref023) 2015; 33 pone.0235502.ref117 G Linden (pone.0235502.ref028) 2003; 7 HB Mann (pone.0235502.ref153) 1947 pone.0235502.ref115 R Warner (pone.0235502.ref065) 2011 pone.0235502.ref112 pone.0235502.ref113 B Abdollahi (pone.0235502.ref129) 2018 pone.0235502.ref077 pone.0235502.ref110 pone.0235502.ref111 RS Sutton (pone.0235502.ref137) 1998 DD Lee (pone.0235502.ref033) 1999; 401 ME Tipping (pone.0235502.ref149) 1999; 61 pone.0235502.ref118 pone.0235502.ref119 S Barocas (pone.0235502.ref114) 2016; 104 B Eaves (pone.0235502.ref067) 2012; 43 pone.0235502.ref075 DW Hosmer (pone.0235502.ref144) 2013 WH Kruskal (pone.0235502.ref040) 1952; 47 A Moffat (pone.0235502.ref008) 2017; 35 A Sîrbu (pone.0235502.ref090) 2019; 14 pone.0235502.ref071 G Amati (pone.0235502.ref009) 2002; 20 pone.0235502.ref006 pone.0235502.ref127 A Sinha (pone.0235502.ref130) 2016 M Garcia (pone.0235502.ref085) 2016; 33 pone.0235502.ref004 pone.0235502.ref125 pone.0235502.ref126 J Li (pone.0235502.ref030) 2014; 31 pone.0235502.ref123 pone.0235502.ref003 pone.0235502.ref124 B Settles (pone.0235502.ref136) 2010; 52 pone.0235502.ref088 pone.0235502.ref121 E Bozdag (pone.0235502.ref109) 2013; 15 pone.0235502.ref122 SS Shapiro (pone.0235502.ref151) 1965; 52 S Kirby (pone.0235502.ref072) 2014; 28 F Rosenblatt (pone.0235502.ref079) 1958; 65 M Pazzani (pone.0235502.ref018) 2007 pone.0235502.ref087 pone.0235502.ref120 ML Kalish (pone.0235502.ref074) 2007; 14 FM Harper (pone.0235502.ref148) 2016; 5 K Crawford (pone.0235502.ref084) 2014; 8 pone.0235502.ref080 pone.0235502.ref058 pone.0235502.ref055 D Lian (pone.0235502.ref037) 2018; 36 K Durkin (pone.0235502.ref141) 2015 TL Griffiths (pone.0235502.ref041) 2004; 101 M Zook (pone.0235502.ref082) 2017; 13 R Forsati (pone.0235502.ref054) 2014; 32 JA Konstan (pone.0235502.ref026) 1997; 40 C Basu (pone.0235502.ref014) 1998 L Zhuhadar (pone.0235502.ref052) 2010; 2 MK Khribi (pone.0235502.ref051) 2012 TL Griffiths (pone.0235502.ref069) 2005 A Stuart (pone.0235502.ref142) 1994 D Goldberg (pone.0235502.ref010) 1992; 35 R Salakhutdinov (pone.0235502.ref035) 2007 pone.0235502.ref050 TL Griffiths (pone.0235502.ref042) 2007; 114 P Domingos (pone.0235502.ref143) 1997; 29 P Resnick (pone.0235502.ref013) 1997; 40 pone.0235502.ref105 pone.0235502.ref106 pone.0235502.ref103 Q Yuan (pone.0235502.ref021) 2015; 33 pone.0235502.ref104 pone.0235502.ref101 pone.0235502.ref102 R Baeza-Yates (pone.0235502.ref107) 2018; 61 P Maes (pone.0235502.ref011) 1994; 37 M Dudík (pone.0235502.ref094) 2006 DB Rubin (pone.0235502.ref139) 1976 J Rieskamp (pone.0235502.ref138) 2006; 44 pone.0235502.ref108 P Shafto (pone.0235502.ref064) 2014; 71 S Kirby (pone.0235502.ref070) 2007; 104 K Sparck Jones (pone.0235502.ref001) 1970; 26 J Cohen (pone.0235502.ref150) 1988 G Adomavicius (pone.0235502.ref016) 2005; 17 AR Landrum (pone.0235502.ref068) 2015; 19 J Klayman (pone.0235502.ref133) 1987; 94 R Baeza-Yates (pone.0235502.ref007) 1999 pone.0235502.ref061 K Lerman (pone.0235502.ref059) 2014; 9 O Nasraoui (pone.0235502.ref049) 2008; 20 pone.0235502.ref156 pone.0235502.ref036 K Smith (pone.0235502.ref076) 2003; 9 C Cortes (pone.0235502.ref145) 1995; 20 pone.0235502.ref154 pone.0235502.ref155 T Joachims (pone.0235502.ref045) 2007; 25 M Ayub (pone.0235502.ref100) 2019; 14 Y Koren (pone.0235502.ref034) 2009; 42 pone.0235502.ref152 N Manwani (pone.0235502.ref089) 2013; 43 G Salton (pone.0235502.ref005) 1983; 26 pone.0235502.ref048 pone.0235502.ref046 pone.0235502.ref047 M Deshpande (pone.0235502.ref024) 2004; 22 A Perfors (pone.0235502.ref078) 2014; 38 JL Herlocker (pone.0235502.ref029) 2004; 22 P Shafto (pone.0235502.ref060) 2012; 7 K Kirkpatrick (pone.0235502.ref083) 2016; 59 JD Williams (pone.0235502.ref128) 2019; 6 pone.0235502.ref043 P Shafto (pone.0235502.ref140) 2015; 63 pone.0235502.ref017 S Milano (pone.0235502.ref132) 2020 pone.0235502.ref015 D Buchsbaum (pone.0235502.ref063) 2011; 120 M Pazzani (pone.0235502.ref012) 1997; 27 pone.0235502.ref099 SE Robertson (pone.0235502.ref002) 1977; 33 KJ Rothman (pone.0235502.ref081) 2008 E Bonawitz (pone.0235502.ref062) 2011; 120 A Tversky (pone.0235502.ref057) 1972; 79 H Ma (pone.0235502.ref053) 2011; 29 SA Dudani (pone.0235502.ref032) 1976 RM Nosofsky (pone.0235502.ref039) 1984; 10 V Castelli (pone.0235502.ref135) 1995; 16 pone.0235502.ref097 pone.0235502.ref098 pone.0235502.ref131 pone.0235502.ref095 pone.0235502.ref096 pone.0235502.ref093 Z Cheng (pone.0235502.ref022) 2016; 34 T Cover (pone.0235502.ref031) 1967; 13 pone.0235502.ref091 RD Luce (pone.0235502.ref056) 2005 pone.0235502.ref092 H Yin (pone.0235502.ref020) 2016; 35 pone.0235502.ref027 S Kirby (pone.0235502.ref073) 2008; 105 pone.0235502.ref025 T Bolukbasi (pone.0235502.ref086) 2016 Zk Feng (pone.0235502.ref146) 2019; 576 DA Cohn (pone.0235502.ref134) 1996; 4 Y Li (pone.0235502.ref116) 2019; 14 Wj Niu (pone.0235502.ref147) 2020; 25 P Shafto (pone.0235502.ref066) 2012; 15 DL Medin (pone.0235502.ref038) 1978; 85 U Hanani (pone.0235502.ref044) 2001; 11 |
References_xml | – volume: 13 start-page: 21 issue: 1 year: 1967 ident: pone.0235502.ref031 article-title: Nearest neighbor pattern classification publication-title: IEEE transactions on information theory doi: 10.1109/TIT.1967.1053964 – ident: pone.0235502.ref111 doi: 10.1145/3240323.3240370 – ident: pone.0235502.ref126 – ident: pone.0235502.ref027 doi: 10.1145/371920.372071 – ident: pone.0235502.ref061 – volume: 120 start-page: 331 issue: 3 year: 2011 ident: pone.0235502.ref063 article-title: Children’s imitation of causal action sequences is influenced by statistical and pedagogical evidence publication-title: Cognition doi: 10.1016/j.cognition.2010.12.001 – ident: pone.0235502.ref122 doi: 10.1109/BigData.2017.8258231 – volume: 26 start-page: 1022 issue: 11 year: 1983 ident: pone.0235502.ref005 article-title: Extended Boolean information retrieval publication-title: Communications of the ACM doi: 10.1145/182.358466 – ident: pone.0235502.ref025 doi: 10.1145/223904.223931 – ident: pone.0235502.ref046 – volume: 104 start-page: 5241 issue: 12 year: 2007 ident: pone.0235502.ref070 article-title: Innateness and culture in the evolution of language publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0608222104 – ident: pone.0235502.ref075 – ident: pone.0235502.ref096 doi: 10.3386/w0172 – volume: 16 start-page: 105 issue: 1 year: 1995 ident: pone.0235502.ref135 article-title: On the exponential value of labeled samples publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(94)00074-D – volume: 22 start-page: 143 issue: 1 year: 2004 ident: pone.0235502.ref024 article-title: Item-based top-n recommendation algorithms publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/963770.963776 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: pone.0235502.ref033 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – start-page: 581 volume-title: Biometrika year: 1976 ident: pone.0235502.ref139 – volume-title: Distribution theory year: 1994 ident: pone.0235502.ref142 – volume: 43 start-page: 1146 issue: 3 year: 2013 ident: pone.0235502.ref089 article-title: Noise tolerance under risk minimization publication-title: IEEE transactions on cybernetics doi: 10.1109/TSMCB.2012.2223460 – volume: 27 start-page: 313 issue: 3 year: 1997 ident: pone.0235502.ref012 article-title: Learning and revising user profiles: The identification of interesting web sites publication-title: Machine learning doi: 10.1023/A:1007369909943 – volume: 14 issue: 7 year: 2019 ident: pone.0235502.ref116 article-title: Social recommendation model based on user interaction in complex social networks publication-title: PloS one – ident: pone.0235502.ref121 doi: 10.1145/3109859.3109885 – volume: 11 start-page: 203 issue: 3 year: 2001 ident: pone.0235502.ref044 article-title: Information filtering: Overview of issues, research and systems publication-title: User modeling and user-adapted interaction doi: 10.1023/A:1011196000674 – volume: 47 start-page: 583 issue: 260 year: 1952 ident: pone.0235502.ref040 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American statistical Association doi: 10.1080/01621459.1952.10483441 – volume: 25 start-page: 04020008 issue: 5 year: 2020 ident: pone.0235502.ref147 article-title: Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0001902 – start-page: 19 volume-title: Intelligent and Adaptive Learning Systems: Technology Enhanced Support for Learners and Teachers year: 2012 ident: pone.0235502.ref051 doi: 10.4018/978-1-60960-842-2.ch002 – ident: pone.0235502.ref104 doi: 10.1257/pandp.20181018 – ident: pone.0235502.ref006 – volume: 52 start-page: 591 issue: 3-4 year: 1965 ident: pone.0235502.ref151 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – volume: 40 start-page: 66 issue: 3 year: 1997 ident: pone.0235502.ref019 article-title: Fab: content-based, collaborative recommendation publication-title: Communications of the ACM doi: 10.1145/245108.245124 – volume: 33 start-page: 294 issue: 4 year: 1977 ident: pone.0235502.ref002 article-title: The probability ranking principle in IR publication-title: Journal of documentation doi: 10.1108/eb026647 – ident: pone.0235502.ref112 doi: 10.1145/2930238.2930283 – ident: pone.0235502.ref003 – volume: 35 start-page: 24 issue: 3 year: 2017 ident: pone.0235502.ref008 article-title: Incorporating user expectations and behavior into the measurement of search effectiveness publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/3052768 – ident: pone.0235502.ref095 doi: 10.24963/ijcai.2017/654 – volume: 35 start-page: 61 issue: 12 year: 1992 ident: pone.0235502.ref010 article-title: Using collaborative filtering to weave an information tapestry publication-title: Communications of the ACM doi: 10.1145/138859.138867 – volume: 101 start-page: 5228 issue: suppl 1 year: 2004 ident: pone.0235502.ref041 article-title: Finding scientific topics publication-title: Proceedings of the National academy of Sciences doi: 10.1073/pnas.0307752101 – volume: 14 issue: 3 year: 2019 ident: pone.0235502.ref090 article-title: Algorithmic bias amplifies opinion fragmentation and polarization: A bounded confidence model publication-title: PloS one doi: 10.1371/journal.pone.0213246 – ident: pone.0235502.ref087 doi: 10.3115/1687878.1687919 – volume: 6 start-page: 84 issue: 3-4 year: 2019 ident: pone.0235502.ref128 article-title: Technological workforce and its impact on algorithmic justice in politics publication-title: Customer Needs and Solutions doi: 10.1007/s40547-019-00103-3 – volume: 9 start-page: 371 issue: 4 year: 2003 ident: pone.0235502.ref076 article-title: Iterated learning: A framework for the emergence of language publication-title: Artificial life doi: 10.1162/106454603322694825 – ident: pone.0235502.ref093 – volume: 61 start-page: 611 issue: 3 year: 1999 ident: pone.0235502.ref149 article-title: Probabilistic principal component analysis publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00196 – ident: pone.0235502.ref120 – ident: pone.0235502.ref124 doi: 10.5220/0006938702820289 – volume: 37 start-page: 30 issue: 7 year: 1994 ident: pone.0235502.ref011 article-title: Agents that reduce work and information overload publication-title: Communications of the ACM doi: 10.1145/176789.176792 – volume: 19 start-page: 109 issue: 3 year: 2015 ident: pone.0235502.ref068 article-title: Learning to trust and trusting to learn: A theoretical framework publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2014.12.007 – volume: 104 start-page: 671 year: 2016 ident: pone.0235502.ref114 article-title: Big data’s disparate impact publication-title: Calif L Rev – ident: pone.0235502.ref048 – volume: 43 start-page: 295 year: 2012 ident: pone.0235502.ref067 article-title: Unifying pedagogical reasoning and epistemic trust publication-title: Advances in child development and behavior doi: 10.1016/B978-0-12-397919-3.00011-3 – ident: pone.0235502.ref077 – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: pone.0235502.ref150 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: pone.0235502.ref016 article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions publication-title: IEEE transactions on knowledge and data engineering doi: 10.1109/TKDE.2005.99 – volume: 71 start-page: 55 year: 2014 ident: pone.0235502.ref064 article-title: A rational account of pedagogical reasoning: Teaching by, and learning from, examples publication-title: Cognitive psychology doi: 10.1016/j.cogpsych.2013.12.004 – ident: pone.0235502.ref125 doi: 10.1145/2959100.2959188 – start-page: 323 volume-title: Advances in neural information processing systems year: 2006 ident: pone.0235502.ref094 – ident: pone.0235502.ref015 doi: 10.1145/336992.337035 – volume: 63 start-page: 115 year: 2015 ident: pone.0235502.ref140 article-title: Chapter Four-Choice from among Intentionally Selected Options publication-title: Psychology of Learning and Motivation doi: 10.1016/bs.plm.2015.03.006 – volume-title: Modern epidemiology year: 2008 ident: pone.0235502.ref081 – volume: 94 start-page: 211 issue: 2 year: 1987 ident: pone.0235502.ref133 article-title: Confirmation, disconfirmation, and information in hypothesis testing publication-title: Psychological review doi: 10.1037/0033-295X.94.2.211 – volume: 8 start-page: 10 year: 2014 ident: pone.0235502.ref084 article-title: Big Data| critiquing Big Data: Politics, ethics, epistemology| special section introduction publication-title: International Journal of Communication – volume: 29 start-page: 103 issue: 2-3 year: 1997 ident: pone.0235502.ref143 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Machine learning doi: 10.1023/A:1007413511361 – ident: pone.0235502.ref127 doi: 10.5220/0006938301100118 – ident: pone.0235502.ref156 – ident: pone.0235502.ref043 – ident: pone.0235502.ref155 doi: 10.1145/1060745.1060754 – ident: pone.0235502.ref102 doi: 10.1145/3278721.3278722 – volume: 114 start-page: 211 issue: 2 year: 2007 ident: pone.0235502.ref042 article-title: Topics in semantic representation publication-title: Psychological review doi: 10.1037/0033-295X.114.2.211 – volume-title: Reasoning in teaching and misleading situations year: 2011 ident: pone.0235502.ref065 – volume: 59 start-page: 16 issue: 10 year: 2016 ident: pone.0235502.ref083 article-title: Battling algorithmic bias: how do we ensure algorithms treat us fairly? publication-title: Communications of the ACM doi: 10.1145/2983270 – volume: 2 start-page: 272 issue: 4 year: 2010 ident: pone.0235502.ref052 article-title: A hybrid recommender system guided by semantic user profiles for search in the e-learning domain publication-title: Journal of Emerging Technologies in Web Intelligence doi: 10.4304/jetwi.2.4.272-281 – volume: 33 start-page: 111 issue: 4 year: 2016 ident: pone.0235502.ref085 article-title: Racist in the machine: The disturbing implications of algorithmic bias publication-title: World Policy Journal doi: 10.1215/07402775-3813015 – ident: pone.0235502.ref119 doi: 10.1145/2872427.2883090 – volume: 38 start-page: 775 issue: 4 year: 2014 ident: pone.0235502.ref078 article-title: Language evolution can be shaped by the structure of the world publication-title: Cognitive science doi: 10.1111/cogs.12102 – ident: pone.0235502.ref091 – volume: 52 start-page: 11 issue: 55-66 year: 2010 ident: pone.0235502.ref136 article-title: Active learning literature survey publication-title: University of Wisconsin, Madison – volume-title: Modern information retrieval year: 1999 ident: pone.0235502.ref007 – ident: pone.0235502.ref106 doi: 10.1145/2939672.2945386 – ident: pone.0235502.ref050 doi: 10.1109/ICALT.2008.198 – volume: 29 start-page: 9 issue: 2 year: 2011 ident: pone.0235502.ref053 article-title: Improving recommender systems by incorporating social contextual information publication-title: ACM Transactions on Information Systems (TOIS) – volume-title: Individual choice behavior: A theoretical analysis year: 2005 ident: pone.0235502.ref056 doi: 10.1037/14396-000 – volume: 33 start-page: 10 issue: 3 year: 2015 ident: pone.0235502.ref023 article-title: Dynamic user modeling in social media systems publication-title: ACM Transactions on Information Systems (TOIS) – volume: 7 start-page: 76 issue: 1 year: 2003 ident: pone.0235502.ref028 article-title: Amazon. com recommendations: Item-to-item collaborative filtering publication-title: IEEE Internet computing doi: 10.1109/MIC.2003.1167344 – ident: pone.0235502.ref097 doi: 10.1145/2908131.2908135 – start-page: 1 volume-title: AI & SOCIETY year: 2020 ident: pone.0235502.ref132 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: pone.0235502.ref079 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychological review doi: 10.1037/h0042519 – ident: pone.0235502.ref080 – start-page: 4349 year: 2016 ident: pone.0235502.ref086 article-title: Man is to computer programmer as woman is to homemaker? debiasing word embeddings publication-title: Advances in Neural Information Processing Systems – ident: pone.0235502.ref004 – volume: 9 issue: 6 year: 2014 ident: pone.0235502.ref059 article-title: Leveraging position bias to improve peer recommendation publication-title: PloS one doi: 10.1371/journal.pone.0098914 – volume: 576 start-page: 229 year: 2019 ident: pone.0235502.ref146 article-title: Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.06.045 – ident: pone.0235502.ref092 doi: 10.1145/1015330.1015425 – start-page: 3243 volume-title: Advances in neural information processing systems year: 2016 ident: pone.0235502.ref130 – volume: 79 start-page: 281 issue: 4 year: 1972 ident: pone.0235502.ref057 article-title: Elimination by aspects: A theory of choice publication-title: Psychological review doi: 10.1037/h0032955 – volume: 25 start-page: 7 issue: 2 year: 2007 ident: pone.0235502.ref045 article-title: Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/1229179.1229181 – volume: 42 issue: 8 year: 2009 ident: pone.0235502.ref034 article-title: Matrix factorization techniques for recommender systems publication-title: Computer doi: 10.1109/MC.2009.263 – start-page: 2 volume-title: Probabilistic Matrix Factorization year: 2007 ident: pone.0235502.ref035 – volume: 22 start-page: 5 issue: 1 year: 2004 ident: pone.0235502.ref029 article-title: Evaluating collaborative filtering recommender systems publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/963770.963772 – volume: 7 start-page: 341 issue: 4 year: 2012 ident: pone.0235502.ref060 article-title: Learning from others the consequences of psychological reasoning for human learning publication-title: Perspectives on Psychological Science doi: 10.1177/1745691612448481 – ident: pone.0235502.ref071 – ident: pone.0235502.ref017 doi: 10.1007/11899402_4 – volume: 33 start-page: 2 issue: 1 year: 2015 ident: pone.0235502.ref021 article-title: Who, where, when, and what: A nonparametric bayesian approach to context-aware recommendation and search for twitter users publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/2699667 – ident: pone.0235502.ref099 doi: 10.1145/2484028.2484053 – start-page: 21 volume-title: Human and Machine Learning year: 2018 ident: pone.0235502.ref129 doi: 10.1007/978-3-319-90403-0_2 – volume: 4 start-page: 129 issue: 1 year: 1996 ident: pone.0235502.ref134 article-title: Active learning with statistical models publication-title: Journal of artificial intelligence research doi: 10.1613/jair.295 – ident: pone.0235502.ref154 – start-page: 325 year: 2007 ident: pone.0235502.ref018 article-title: Content-based recommendation systems publication-title: The adaptive web doi: 10.1007/978-3-540-72079-9_10 – ident: pone.0235502.ref047 doi: 10.6028/NIST.SP.500-225.cornell – ident: pone.0235502.ref098 doi: 10.1145/1401890.1401959 – ident: pone.0235502.ref101 doi: 10.5772/intechopen.73176 – ident: pone.0235502.ref105 – volume: 40 start-page: 56 issue: 3 year: 1997 ident: pone.0235502.ref013 article-title: Recommender systems publication-title: Communications of the ACM doi: 10.1145/245108.245121 – ident: pone.0235502.ref123 doi: 10.1145/3178876.3186140 – volume: 34 start-page: 13 issue: 2 year: 2016 ident: pone.0235502.ref022 article-title: On effective location-aware music recommendation publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/2846092 – volume: 36 start-page: 33 issue: 3 year: 2018 ident: pone.0235502.ref037 article-title: GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling and Matrix Factorization publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/3182166 – volume: 105 start-page: 10681 issue: 31 year: 2008 ident: pone.0235502.ref073 article-title: Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0707835105 – ident: pone.0235502.ref088 doi: 10.1145/2814815.2814821 – volume: 20 start-page: 202 issue: 2 year: 2008 ident: pone.0235502.ref049 article-title: A web usage mining framework for mining evolving user profiles in dynamic web sites publication-title: IEEE transactions on knowledge and data engineering doi: 10.1109/TKDE.2007.190667 – volume: 35 start-page: 11 issue: 2 year: 2016 ident: pone.0235502.ref020 article-title: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation publication-title: ACM Transactions on Information Systems (TOIS) – volume: 85 start-page: 207 issue: 3 year: 1978 ident: pone.0235502.ref038 article-title: Context theory of classification learning publication-title: Psychological review doi: 10.1037/0033-295X.85.3.207 – volume: 14 issue: 8 year: 2019 ident: pone.0235502.ref100 article-title: Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems publication-title: PloS one doi: 10.1371/journal.pone.0220129 – volume: 5 start-page: 19 issue: 4 year: 2016 ident: pone.0235502.ref148 article-title: The movielens datasets: History and context publication-title: ACM Transactions on Interactive Intelligent Systems (TiiS) – volume: 20 start-page: 357 issue: 4 year: 2002 ident: pone.0235502.ref009 article-title: Probabilistic models of information retrieval based on measuring the divergence from randomness publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/582415.582416 – ident: pone.0235502.ref115 – volume: 10 start-page: 104 issue: 1 year: 1984 ident: pone.0235502.ref039 article-title: Choice, similarity, and the context theory of classification publication-title: Journal of Experimental Psychology: Learning, memory, and cognition – volume: 13 start-page: e1005399 issue: 3 year: 2017 ident: pone.0235502.ref082 article-title: Ten simple rules for responsible big data research publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1005399 – ident: pone.0235502.ref058 – ident: pone.0235502.ref118 doi: 10.1007/978-3-319-78105-1_37 – volume: 120 start-page: 322 issue: 3 year: 2011 ident: pone.0235502.ref062 article-title: The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery publication-title: Cognition doi: 10.1016/j.cognition.2010.10.001 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: pone.0235502.ref145 article-title: Support-vector networks publication-title: Machine learning doi: 10.1007/BF00994018 – volume-title: Proceedings of the Cognitive Science Society year: 2005 ident: pone.0235502.ref069 – ident: pone.0235502.ref055 doi: 10.1145/1135777.1136004 – ident: pone.0235502.ref108 doi: 10.1287/mnsc.2018.3093 – ident: pone.0235502.ref131 doi: 10.1609/aaai.v34i01.5349 – start-page: 714 volume-title: Recommendation as classification: Using social and content-based information in recommendation year: 1998 ident: pone.0235502.ref014 – volume: 28 start-page: 108 year: 2014 ident: pone.0235502.ref072 article-title: Iterated learning and the evolution of language publication-title: Current opinion in neurobiology doi: 10.1016/j.conb.2014.07.014 – ident: pone.0235502.ref113 doi: 10.2139/ssrn.2886526 – volume: 32 start-page: 17 issue: 4 year: 2014 ident: pone.0235502.ref054 article-title: Matrix factorization with explicit trust and distrust side information for improved social recommendation publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/2641564 – volume: 15 start-page: 436 issue: 3 year: 2012 ident: pone.0235502.ref066 article-title: Epistemic trust: Modeling children’s reasoning about others’ knowledge and intent publication-title: Developmental Science doi: 10.1111/j.1467-7687.2012.01135.x – volume: 44 start-page: 631 issue: 3 year: 2006 ident: pone.0235502.ref138 article-title: Extending the bounds of rationality: evidence and theories of preferential choice publication-title: Journal of Economic Literature doi: 10.1257/jel.44.3.631 – start-page: 325 issue: 4 year: 1976 ident: pone.0235502.ref032 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1976.5408784 – ident: pone.0235502.ref152 – ident: pone.0235502.ref110 doi: 10.1145/3091478.3091483 – volume: 40 start-page: 77 issue: 3 year: 1997 ident: pone.0235502.ref026 article-title: GroupLens: applying collaborative filtering to Usenet news publication-title: Communications of the ACM doi: 10.1145/245108.245126 – ident: pone.0235502.ref117 doi: 10.1145/3018661.3018699 – volume: 14 start-page: 288 issue: 2 year: 2007 ident: pone.0235502.ref074 article-title: Iterated learning: Intergenerational knowledge transmission reveals inductive biases publication-title: Psychonomic Bulletin & Review doi: 10.3758/BF03194066 – volume: 31 start-page: 875 year: 2014 ident: pone.0235502.ref030 article-title: Recommendation algorithm based on link prediction and domain knowledge in retail transactions publication-title: Procedia Computer Science doi: 10.1016/j.procs.2014.05.339 – volume-title: Applied logistic regression year: 2013 ident: pone.0235502.ref144 doi: 10.1002/9781118548387 – volume: 26 start-page: 89 issue: 2 year: 1970 ident: pone.0235502.ref001 article-title: Some thoughts on classification for retrieval publication-title: Journal of Documentation doi: 10.1108/eb026488 – volume-title: Reinforcement learning: An introduction year: 1998 ident: pone.0235502.ref137 – volume: 61 start-page: 54 issue: 6 year: 2018 ident: pone.0235502.ref107 article-title: Bias on the web publication-title: Communications of the ACM doi: 10.1145/3209581 – volume: 15 start-page: 209 issue: 3 year: 2013 ident: pone.0235502.ref109 article-title: Bias in algorithmic filtering and personalization publication-title: Ethics and information technology doi: 10.1007/s10676-013-9321-6 – ident: pone.0235502.ref036 doi: 10.1145/2615569.2615665 – start-page: 50 volume-title: The annals of mathematical statistics year: 1947 ident: pone.0235502.ref153 – ident: pone.0235502.ref103 doi: 10.1145/3287560.3287589 – volume-title: Explaining Choice Behavior: The Intentional Selection Assumption year: 2015 ident: pone.0235502.ref141 |
SSID | ssj0053866 |
Score | 2.5432687 |
Snippet | Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0235502 |
SubjectTerms | Algorithms Annotations Bias Biology and Life Sciences Cognitive biases Computer and Information Sciences Computer engineering Computer science Computer simulation Decision making Evolution Human influences Human performance Human-computer interaction Humans Hypotheses Information retrieval Information storage and retrieval systems Interfaces Investigations Iterative methods Labels Language Learning Learning algorithms Machine learning Machine Learning - standards Physical Sciences Psychological aspects Psychological research Recommender systems Relevance Research and Analysis Methods Social Sciences Statistical analysis Statistical methods User interfaces |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhBQxCAg5pU9uxnWNBrQoSDwFFvUW2Y29X2iarzS6_n_EjUYMqlQPXzMRK5uHxJDPfIPS6oJTbguvcKVfkcCJmuXaW566Qgpa6KRX1vcOfv_Czc_bpory4NurL14RFeOAouMNGK0kUEcJUkjWlkZBfCKtKDmszakK2DjFvSKbiHgxezHlqlKPi6DDp5WDVtfbAI7yU6TPKEIgCXv-4K89Wy66_6cj5d-XktVB0eh_dS2dIfByffQfdse0DtJO8tMdvE5T0u4fo28nvZFpYtQ2OLZG4c1gvVI8XLQ4j-gLtKlRVWpzGSMyxWs679WJzeYU9pMQ6NkA8QuenJz8_nOVphkJueEU2uW6cpcSZimtSSFYyzaRpIMeQEKt544DuqDCOcK2UlrwUuqFScaJZ5XTh6GM0a0FquwhrR4vGCCK1VIzSUskKVoCVuFVHtmIZooNAa5MAxv2ci2Ud_poJSDSifGqvhjqpIUP5eNcqAmzcwv_e62rk9fDY4QIYTZ2Mpr7NaDL0wmu6jr2mo5PXxx68Hk5cTGboVeDwEBmtr8GZq23f1x-__voHph_fJ0xvEpPrQBxGpb4HeCcPvTXh3J9wgqObCXnX2-Uglb4mjPq_sLDpwp2Drd5MfjmS_aK-rq613TbyMEEl5Rl6Ek17lCwlovLZbYbExOgnop9S2sVlQCgXEAkkl0__h6720F3iv3F4GGK6j2ab9dY-g4PgRj8PPv8H8PJcxA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8sILsPGxwACDkICHVJnt2M4DQgNtGkgDBBTtLbIdu6vUJSVpEfz3-BInIqh8vEW9s5We73x3se93CD1JKOU24Tp2yiWxj4hZrJ3lsUukoKkuUkWhdvjsHT-dsbfn6fkO6nu2BgE2W1M76Cc1q5fT719_vPQG_6Lt2iAO-0HTVVXaKeC3pIAuecX7JgGmesaGcwVv3ZyHAro_jRw5qBbHf9itJ6tl1WwLRX-_UfmLizq5ga6F2BIfdcqwi3ZsuYeu930bcDDjPbQbnhr8LKBOP7-JPhx_C1qIVVngrnoSVw7rhWrwosRtN7-WdtlewLQ4dJyYY7WcV_VifXGJAX2i7molbqHZyfHn16dxaLcQG56RdawLZylxJuOaJJKlTDNpCp-OSO_WeeE83VFhHOFaKS15KnRBpeJEs8zpxNHbaFJ6Qe4jrB1NCiOI1FIxSlMlMz-Dn4lbdWgzFiHayzg3AYscWmIs8_aATficpBNZDiuTh5WJUDyMWnVYHP_gfwXLN_ACknb7Q1XP82CYeaGVJIoIYTLJitRIn78Kq1LudZdRk0ToISx-3pWlDvtBfgQ49z44YzJCj1sOQNMo4brOXG2aJn_z_st_MH36OGJ6Gphc5cVhVCiR8P8JULpGnAcjTr8nmBF5H1S1l0qTE0bhwNbvz35kr77byY8GMkwKV_BKW206HiaopDxCdzptHyRLicggEY6QGNnBSPRjSrm4aMHMhXcaksu7f3-te-gqgQ8dgEVMD9BkXW_sfR8NrvWD1sB_AozlYDc priority: 102 providerName: Scholars Portal |
Title | Evolution and impact of bias in human and machine learning algorithm interaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32790666 https://www.proquest.com/docview/2434078257 https://www.proquest.com/docview/2434473836 https://pubmed.ncbi.nlm.nih.gov/PMC7425868 https://doaj.org/article/dba82a277c984d5c89177ea56af043c0 http://dx.doi.org/10.1371/journal.pone.0235502 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELege-GFsfGxwCgGIQEP2VLbsZ0ntE0tA2ljGgz1LbKduKvUJaVp-fvxJU4gaAJerCh3sdr78Ofd7xB6HVHK84jr0CobhW5FzEJtcx7aSAoa6yxWFHKHz8756RX7NI2n_sCt8mGV7ZhYD9RZaeCM_JAwCldOzsLeL7-HUDUKbld9CY27aAugyyCkS0y7DZfzZc59uhwVo0OvnYNlWeQHgPMS-8OUdjqqUfu7sXmwXJTVbQvPP-Mnf5uQJg_Qfb-SxEeN6nfQnbzYRdttlQbsnXYX7finCr_1GNPvHqKL8Q9vc1gVGW5yJXFpsZ6rCs8LXNfuq2k3dbhljn19iRlWi5kTzPr6BgPWxKrJjHiEribjryenoS-uEBqekHWoM5tTYk3CNYkki5lm0mRu8yHdJM4z6-iWCmMJ10ppyWOhMyoVJ5olVkeWPkaDwglyD2FtaZQZQaSWilEaK5m4HlxPPFejPGEBoq2MU-ORx6EAxiKtr9OE24E0IktBM6nXTIDC7qtlg7zxD_5jUF_HC7jZ9YtyNUu9G6aZVpIoIoRJJMtiI91uVeQq5s5SGTVRgF6A8tMmCbXz_vQIUO3dUozJAL2qOQA7o4DgnJnaVFX68fO3_2D6ctljeuOZbOnEYZRPiHD_CTC5epz7PU43ApgeeQ9MtZVKlf7yFfdla763k192ZOgUAu6KvNw0PExQSXmAnjTW3kmWEpHAtjdAoucHPdH3KcX8uoYuF26KkFw-_fvPeobuETjWAORhuo8G69Umf-7Wfms9rB3ctfJkBO3kwxBtHY_PLy6H9WmKa8-Y_AlL6V-L |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGOcAF2PhYYTCDQMAhW2Y7tnNAaMCmjn2AYEO9BduJu0pdUpoWxD_F34hf4gSCJuCyW9X3YrXv247f7yH0OKSUZyHXgVU2DFxFzAJtMx7YUAoa6TRSFHqHD4_44IS9HUbDJfSj6YWBa5VNTKwCdVoYOCPfJIzCKydnYS-nXwKYGgVvV5sRGrVZ7Gffv7ktW_li743T7xNCdneOXw8CP1UgMDwm80CnNqPEmphrEkoWMc2kSV3VLV324ql1dEuFsYRrpbTkkdAplYoTzWKrQ0vdupfQZZd4Q_AoMWw3eC52cO7b86jY2vTWsDEt8mwDcGUif3jTpL9qSkCbC3rTSVGeV-j-eV_ztwS4ewNd85Ur3q5NbRktZfkKut5MhcA-SKygZf-pxM88pvXzm-j9zldv41jlKa57M3FhsR6rEo9zXM0KrGhn1fXODPt5FiOsJiOniPnpGQZsi1ndiXELnVyI2G-jXu4EuYqwtjRMjSBSS8UojZSM3QpuJZ6prSxmfUQbGSfGI53DwI1JUr2-E27HU4ssAc0kXjN9FLRPTWukj3_wvwL1tbyA0119UcxGiXf7JNVKEkWEMLFkaWSk2x2LTEXceQajJuyjdVB-Uje9ttEm2QYUfVf6MdlHjyoOwOrI4TLQSC3KMtl79-k_mD5-6DA99Uy2cOIwyjdguP8EGGAdzrUOp4s4pkNeBVNtpFImv3zTPdmY7_nkhy0ZFoULfnlWLGoeJqikvI_u1NbeSpYSEcM2u49Exw86ou9S8vFpBZUuXEqSXN79-89aR1cGx4cHycHe0f49dJXAkQqgHtM11JvPFtl9V3fO9YPK2TH6fNHR5Sc6GZki |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAvwMbHAoMZBAIesqa2YzsPCA22amMwJsZQ34KdxF2lLilNC-Jf46_jnDiBoAl42VuVu1jNffn8cb9D6HFAKc8Crn2jTOBDRsx8bTLum0AKGuo0VNTWDr875Hsn7M0oHK2gH00tjL1W2cTEKlCnRWL3yPuEUXvkBBbWN-5axNHO8OXsi287SNmT1qadRm0iB9n3b7B8K1_s74CunxAy3P34es93HQb8hEdk4evUZJSYJOKaBJKFTDOZpJCBS5jJeGqAbqhIDOFaKS15KHRKpeJEs8jowFAY9xK6DF81sD4mRu1iD-II565Uj4pB31nG1qzIsy2LMRO6jZxmKqw6BrTzQm82Lcrzkt4_727-NhkOb6BrLovF27XZraKVLF9D15sOEdgFjDW06n6V-JnDt35-Ex3tfnX2jlWe4rpOExcG64kq8STHVd_AinZWXfXMsOttMcZqOgZFLE7PsMW5mNdVGbfQyYWI_Tbq5SDIdYS1oUGaCCK1VIzSUMkIRoCReKYGWcQ8RBsZx4lDPbfNN6ZxdZQnYPVTiyy2momdZjzkt2_NatSPf_C_supreS1md_WgmI9jFwLiVCtJFBEiiSRLw0TCSllkKuTgJYwmgYc2rfLjugC2jTzxtkXUhzSQSQ89qjgsbkduPWCslmUZ77__9B9Mxx86TE8dkylAHIlyxRjwTRYPrMO50eGE6JN0yOvWVBuplPEvP4U3G_M9n_ywJdtB7WW_PCuWNQ8TVFLuoTu1tbeSpUREdsntIdHxg47ou5R8clrBpguYniSXd__-tzbRFYgr8dv9w4N76CqxuysWAJluoN5ivszuQwq60A8qX8fo80UHl59JN51Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+and+impact+of+bias+in+human+and+machine+learning+algorithm+interaction&rft.jtitle=PloS+one&rft.au=Sun%2C+Wenlong&rft.au=Nasraoui%2C+Olfa&rft.au=Shafto%2C+Patrick&rft.date=2020-08-13&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=8&rft.spage=e0235502&rft_id=info:doi/10.1371%2Fjournal.pone.0235502&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |