Evolution and impact of bias in human and machine learning algorithm interaction

Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born fro...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 8; p. e0235502
Main Authors Sun, Wenlong, Nasraoui, Olfa, Shafto, Patrick
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.08.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.
AbstractList Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human’s reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms’ performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.
Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.
Audience Academic
Author Shafto, Patrick
Sun, Wenlong
Nasraoui, Olfa
AuthorAffiliation 1 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, United States of America
2 Department of Mathematics and Computer Science, Rutgers University - Newark, Newark, New Jersey, United States of America
Shandong University of Science and Technology, CHINA
AuthorAffiliation_xml – name: Shandong University of Science and Technology, CHINA
– name: 1 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, United States of America
– name: 2 Department of Mathematics and Computer Science, Rutgers University - Newark, Newark, New Jersey, United States of America
Author_xml – sequence: 1
  givenname: Wenlong
  orcidid: 0000-0003-0164-8733
  surname: Sun
  fullname: Sun, Wenlong
– sequence: 2
  givenname: Olfa
  surname: Nasraoui
  fullname: Nasraoui, Olfa
– sequence: 3
  givenname: Patrick
  surname: Shafto
  fullname: Shafto, Patrick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32790666$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLgujFjGmSJqkXwrKsOrCw4tdtOE2TTpY2GZN20X9vxunIdFlEepFyzvO-J-dwcpodOe90lj0t0LIgvHhz48fgoFtuUniJMClLhB9kJ0VF8IJhRI4O_o-z0xhvECqJYOxRdkwwrxBj7CT7dHnru3Gw3uXgmtz2G1BD7k1eW4i5dfl67GGX60GtrdN5pyE469ocutYHO6z7xA06JGGyeZw9NNBF_WQ6z7Jv7y-_XnxcXF1_WF2cXy0Uq_CwqBujCTaqYjVGgpa0pkI1nAmB0x0bk_KGcGUwqwFqwUpeN0QAwzWtTI0MOcue73w3nY9yGkaUmBKKuMAlT8RqRzQebuQm2B7CL-nByj8BH1oJYbCq07KpQWDAnKtK0KZUoio411AyMIgShZLXu6naWPe6UdoNAbqZ6Tzj7Fq2_lZyikvBRDJ4NRkE_2PUcZC9jUp3HTjtx929KSeCsIS-uIPe391EtZAasM74VFdtTeU5I5giLOi27PIeKn2N7q1Km2Nsis8Er2eCxAz659DCGKNcffn8_-z19zn78oBda-iGdZw2L87BZ4eT_jvi_com4O0OUMHHGLSRyg6w9Umt2U4WSG7fx35ocvs-5PQ-kpjeEe_9_yn7DakWFB8
CitedBy_id crossref_primary_10_1080_12460125_2022_2062849
crossref_primary_10_1080_10400435_2021_1930282
crossref_primary_10_3389_fdata_2021_660206
crossref_primary_10_3390_epigenomes6040034
crossref_primary_10_1097_JS9_0000000000000552
crossref_primary_10_1111_cns_13993
crossref_primary_10_1108_JBIM_02_2023_0073
crossref_primary_10_1016_j_neucom_2024_127436
crossref_primary_10_1016_j_ijbiomac_2024_136643
crossref_primary_10_1016_j_bprint_2023_e00321
crossref_primary_10_1097_OPX_0000000000001767
crossref_primary_10_2196_42262
crossref_primary_10_1016_j_japh_2023_10_018
crossref_primary_10_3828_tpr_2024_48
crossref_primary_10_3389_fpubh_2020_556789
crossref_primary_10_1057_s41599_024_03660_8
crossref_primary_10_2196_48009
crossref_primary_10_1371_journal_pone_0263954
crossref_primary_10_48143_rdai_29_valle
crossref_primary_10_1016_j_ijinfomgt_2021_102387
crossref_primary_10_3390_app11146271
crossref_primary_10_2196_36395
crossref_primary_10_1177_20552076221109531
crossref_primary_10_1038_s43588_025_00769_x
crossref_primary_10_1186_s12859_024_05695_9
crossref_primary_10_17150_2308_6203_2021_10_4__734_744
crossref_primary_10_1371_journal_pone_0268081
crossref_primary_10_3390_bdcc7010015
crossref_primary_10_1016_j_icarus_2024_116451
crossref_primary_10_1038_s41380_022_01635_2
crossref_primary_10_1053_j_ackd_2022_08_001
crossref_primary_10_1109_MC_2023_3321188
crossref_primary_10_1016_j_technovation_2023_102768
crossref_primary_10_1002_alz_13412
crossref_primary_10_1177_23780231241259659
crossref_primary_10_1186_s13643_022_01984_7
crossref_primary_10_1016_j_knosys_2023_110552
crossref_primary_10_3390_ai5010019
crossref_primary_10_53941_ijndi0101005
crossref_primary_10_1016_j_indmarman_2023_08_013
crossref_primary_10_2196_38482
crossref_primary_10_1007_s00784_022_04742_0
crossref_primary_10_3748_wjg_v29_i9_1427
crossref_primary_10_1016_j_jbusres_2022_01_083
Cites_doi 10.1109/TIT.1967.1053964
10.1145/3240323.3240370
10.1145/371920.372071
10.1016/j.cognition.2010.12.001
10.1109/BigData.2017.8258231
10.1145/182.358466
10.1145/223904.223931
10.1073/pnas.0608222104
10.3386/w0172
10.1016/0167-8655(94)00074-D
10.1145/963770.963776
10.1038/44565
10.1109/TSMCB.2012.2223460
10.1023/A:1007369909943
10.1145/3109859.3109885
10.1023/A:1011196000674
10.1080/01621459.1952.10483441
10.1061/(ASCE)HE.1943-5584.0001902
10.4018/978-1-60960-842-2.ch002
10.1257/pandp.20181018
10.1093/biomet/52.3-4.591
10.1145/245108.245124
10.1108/eb026647
10.1145/2930238.2930283
10.1145/3052768
10.24963/ijcai.2017/654
10.1145/138859.138867
10.1073/pnas.0307752101
10.1371/journal.pone.0213246
10.3115/1687878.1687919
10.1007/s40547-019-00103-3
10.1162/106454603322694825
10.1111/1467-9868.00196
10.5220/0006938702820289
10.1145/176789.176792
10.1016/j.tics.2014.12.007
10.1016/B978-0-12-397919-3.00011-3
10.1109/TKDE.2005.99
10.1016/j.cogpsych.2013.12.004
10.1145/2959100.2959188
10.1145/336992.337035
10.1016/bs.plm.2015.03.006
10.1037/0033-295X.94.2.211
10.1023/A:1007413511361
10.5220/0006938301100118
10.1145/1060745.1060754
10.1145/3278721.3278722
10.1037/0033-295X.114.2.211
10.1145/2983270
10.4304/jetwi.2.4.272-281
10.1215/07402775-3813015
10.1145/2872427.2883090
10.1111/cogs.12102
10.1145/2939672.2945386
10.1109/ICALT.2008.198
10.1037/14396-000
10.1109/MIC.2003.1167344
10.1145/2908131.2908135
10.1037/h0042519
10.1371/journal.pone.0098914
10.1016/j.jhydrol.2019.06.045
10.1145/1015330.1015425
10.1037/h0032955
10.1145/1229179.1229181
10.1109/MC.2009.263
10.1145/963770.963772
10.1177/1745691612448481
10.1007/11899402_4
10.1145/2699667
10.1145/2484028.2484053
10.1007/978-3-319-90403-0_2
10.1613/jair.295
10.1007/978-3-540-72079-9_10
10.6028/NIST.SP.500-225.cornell
10.1145/1401890.1401959
10.5772/intechopen.73176
10.1145/245108.245121
10.1145/3178876.3186140
10.1145/2846092
10.1145/3182166
10.1073/pnas.0707835105
10.1145/2814815.2814821
10.1109/TKDE.2007.190667
10.1037/0033-295X.85.3.207
10.1371/journal.pone.0220129
10.1145/582415.582416
10.1371/journal.pcbi.1005399
10.1007/978-3-319-78105-1_37
10.1016/j.cognition.2010.10.001
10.1007/BF00994018
10.1145/1135777.1136004
10.1287/mnsc.2018.3093
10.1609/aaai.v34i01.5349
10.1016/j.conb.2014.07.014
10.2139/ssrn.2886526
10.1145/2641564
10.1111/j.1467-7687.2012.01135.x
10.1257/jel.44.3.631
10.1109/TSMC.1976.5408784
10.1145/3091478.3091483
10.1145/245108.245126
10.1145/3018661.3018699
10.3758/BF03194066
10.1016/j.procs.2014.05.339
10.1002/9781118548387
10.1108/eb026488
10.1145/3209581
10.1007/s10676-013-9321-6
10.1145/2615569.2615665
10.1145/3287560.3287589
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Sun et al 2020 Sun et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Sun et al 2020 Sun et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0235502
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Agricultural Science Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
DocumentTitleAlternate Evolution and impact of bias in human and machine learning algorithm interaction
EISSN 1932-6203
ExternalDocumentID 2434078257
oai_doaj_org_article_dba82a277c984d5c89177ea56af043c0
PMC7425868
A632402848
32790666
10_1371_journal_pone_0235502
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
Louisville Kentucky
United States--US
GeographicLocations_xml – name: United States
– name: Louisville Kentucky
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: 1549981
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-bdfe32fc96b208454b48cd76882386dfbdff37cf26baab8657bd38a62b49fb0f3
IEDL.DBID 7X7
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:36 EST 2021
Wed Aug 27 01:28:17 EDT 2025
Thu Aug 21 18:20:12 EDT 2025
Fri Jul 11 04:10:27 EDT 2025
Fri Jul 25 10:24:38 EDT 2025
Tue Jun 17 21:29:56 EDT 2025
Tue Jun 10 20:26:58 EDT 2025
Fri Jun 27 04:15:40 EDT 2025
Fri Jun 27 05:05:18 EDT 2025
Thu May 22 21:22:48 EDT 2025
Wed Feb 19 02:01:57 EST 2025
Tue Jul 01 00:31:57 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-bdfe32fc96b208454b48cd76882386dfbdff37cf26baab8657bd38a62b49fb0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0164-8733
OpenAccessLink https://www.proquest.com/docview/2434078257?pq-origsite=%requestingapplication%
PMID 32790666
PQID 2434078257
PQPubID 1436336
PageCount e0235502
ParticipantIDs plos_journals_2434078257
doaj_primary_oai_doaj_org_article_dba82a277c984d5c89177ea56af043c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7425868
proquest_miscellaneous_2434473836
proquest_journals_2434078257
gale_infotracmisc_A632402848
gale_infotracacademiconefile_A632402848
gale_incontextgauss_ISR_A632402848
gale_incontextgauss_IOV_A632402848
gale_healthsolutions_A632402848
pubmed_primary_32790666
crossref_citationtrail_10_1371_journal_pone_0235502
crossref_primary_10_1371_journal_pone_0235502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-13
PublicationDateYYYYMMDD 2020-08-13
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Balabanović (pone.0235502.ref019) 1997; 40
H Yin (pone.0235502.ref023) 2015; 33
pone.0235502.ref117
G Linden (pone.0235502.ref028) 2003; 7
HB Mann (pone.0235502.ref153) 1947
pone.0235502.ref115
R Warner (pone.0235502.ref065) 2011
pone.0235502.ref112
pone.0235502.ref113
B Abdollahi (pone.0235502.ref129) 2018
pone.0235502.ref077
pone.0235502.ref110
pone.0235502.ref111
RS Sutton (pone.0235502.ref137) 1998
DD Lee (pone.0235502.ref033) 1999; 401
ME Tipping (pone.0235502.ref149) 1999; 61
pone.0235502.ref118
pone.0235502.ref119
S Barocas (pone.0235502.ref114) 2016; 104
B Eaves (pone.0235502.ref067) 2012; 43
pone.0235502.ref075
DW Hosmer (pone.0235502.ref144) 2013
WH Kruskal (pone.0235502.ref040) 1952; 47
A Moffat (pone.0235502.ref008) 2017; 35
A Sîrbu (pone.0235502.ref090) 2019; 14
pone.0235502.ref071
G Amati (pone.0235502.ref009) 2002; 20
pone.0235502.ref006
pone.0235502.ref127
A Sinha (pone.0235502.ref130) 2016
M Garcia (pone.0235502.ref085) 2016; 33
pone.0235502.ref004
pone.0235502.ref125
pone.0235502.ref126
J Li (pone.0235502.ref030) 2014; 31
pone.0235502.ref123
pone.0235502.ref003
pone.0235502.ref124
B Settles (pone.0235502.ref136) 2010; 52
pone.0235502.ref088
pone.0235502.ref121
E Bozdag (pone.0235502.ref109) 2013; 15
pone.0235502.ref122
SS Shapiro (pone.0235502.ref151) 1965; 52
S Kirby (pone.0235502.ref072) 2014; 28
F Rosenblatt (pone.0235502.ref079) 1958; 65
M Pazzani (pone.0235502.ref018) 2007
pone.0235502.ref087
pone.0235502.ref120
ML Kalish (pone.0235502.ref074) 2007; 14
FM Harper (pone.0235502.ref148) 2016; 5
K Crawford (pone.0235502.ref084) 2014; 8
pone.0235502.ref080
pone.0235502.ref058
pone.0235502.ref055
D Lian (pone.0235502.ref037) 2018; 36
K Durkin (pone.0235502.ref141) 2015
TL Griffiths (pone.0235502.ref041) 2004; 101
M Zook (pone.0235502.ref082) 2017; 13
R Forsati (pone.0235502.ref054) 2014; 32
JA Konstan (pone.0235502.ref026) 1997; 40
C Basu (pone.0235502.ref014) 1998
L Zhuhadar (pone.0235502.ref052) 2010; 2
MK Khribi (pone.0235502.ref051) 2012
TL Griffiths (pone.0235502.ref069) 2005
A Stuart (pone.0235502.ref142) 1994
D Goldberg (pone.0235502.ref010) 1992; 35
R Salakhutdinov (pone.0235502.ref035) 2007
pone.0235502.ref050
TL Griffiths (pone.0235502.ref042) 2007; 114
P Domingos (pone.0235502.ref143) 1997; 29
P Resnick (pone.0235502.ref013) 1997; 40
pone.0235502.ref105
pone.0235502.ref106
pone.0235502.ref103
Q Yuan (pone.0235502.ref021) 2015; 33
pone.0235502.ref104
pone.0235502.ref101
pone.0235502.ref102
R Baeza-Yates (pone.0235502.ref107) 2018; 61
P Maes (pone.0235502.ref011) 1994; 37
M Dudík (pone.0235502.ref094) 2006
DB Rubin (pone.0235502.ref139) 1976
J Rieskamp (pone.0235502.ref138) 2006; 44
pone.0235502.ref108
P Shafto (pone.0235502.ref064) 2014; 71
S Kirby (pone.0235502.ref070) 2007; 104
K Sparck Jones (pone.0235502.ref001) 1970; 26
J Cohen (pone.0235502.ref150) 1988
G Adomavicius (pone.0235502.ref016) 2005; 17
AR Landrum (pone.0235502.ref068) 2015; 19
J Klayman (pone.0235502.ref133) 1987; 94
R Baeza-Yates (pone.0235502.ref007) 1999
pone.0235502.ref061
K Lerman (pone.0235502.ref059) 2014; 9
O Nasraoui (pone.0235502.ref049) 2008; 20
pone.0235502.ref156
pone.0235502.ref036
K Smith (pone.0235502.ref076) 2003; 9
C Cortes (pone.0235502.ref145) 1995; 20
pone.0235502.ref154
pone.0235502.ref155
T Joachims (pone.0235502.ref045) 2007; 25
M Ayub (pone.0235502.ref100) 2019; 14
Y Koren (pone.0235502.ref034) 2009; 42
pone.0235502.ref152
N Manwani (pone.0235502.ref089) 2013; 43
G Salton (pone.0235502.ref005) 1983; 26
pone.0235502.ref048
pone.0235502.ref046
pone.0235502.ref047
M Deshpande (pone.0235502.ref024) 2004; 22
A Perfors (pone.0235502.ref078) 2014; 38
JL Herlocker (pone.0235502.ref029) 2004; 22
P Shafto (pone.0235502.ref060) 2012; 7
K Kirkpatrick (pone.0235502.ref083) 2016; 59
JD Williams (pone.0235502.ref128) 2019; 6
pone.0235502.ref043
P Shafto (pone.0235502.ref140) 2015; 63
pone.0235502.ref017
S Milano (pone.0235502.ref132) 2020
pone.0235502.ref015
D Buchsbaum (pone.0235502.ref063) 2011; 120
M Pazzani (pone.0235502.ref012) 1997; 27
pone.0235502.ref099
SE Robertson (pone.0235502.ref002) 1977; 33
KJ Rothman (pone.0235502.ref081) 2008
E Bonawitz (pone.0235502.ref062) 2011; 120
A Tversky (pone.0235502.ref057) 1972; 79
H Ma (pone.0235502.ref053) 2011; 29
SA Dudani (pone.0235502.ref032) 1976
RM Nosofsky (pone.0235502.ref039) 1984; 10
V Castelli (pone.0235502.ref135) 1995; 16
pone.0235502.ref097
pone.0235502.ref098
pone.0235502.ref131
pone.0235502.ref095
pone.0235502.ref096
pone.0235502.ref093
Z Cheng (pone.0235502.ref022) 2016; 34
T Cover (pone.0235502.ref031) 1967; 13
pone.0235502.ref091
RD Luce (pone.0235502.ref056) 2005
pone.0235502.ref092
H Yin (pone.0235502.ref020) 2016; 35
pone.0235502.ref027
S Kirby (pone.0235502.ref073) 2008; 105
pone.0235502.ref025
T Bolukbasi (pone.0235502.ref086) 2016
Zk Feng (pone.0235502.ref146) 2019; 576
DA Cohn (pone.0235502.ref134) 1996; 4
Y Li (pone.0235502.ref116) 2019; 14
Wj Niu (pone.0235502.ref147) 2020; 25
P Shafto (pone.0235502.ref066) 2012; 15
DL Medin (pone.0235502.ref038) 1978; 85
U Hanani (pone.0235502.ref044) 2001; 11
References_xml – volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: pone.0235502.ref031
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE transactions on information theory
  doi: 10.1109/TIT.1967.1053964
– ident: pone.0235502.ref111
  doi: 10.1145/3240323.3240370
– ident: pone.0235502.ref126
– ident: pone.0235502.ref027
  doi: 10.1145/371920.372071
– ident: pone.0235502.ref061
– volume: 120
  start-page: 331
  issue: 3
  year: 2011
  ident: pone.0235502.ref063
  article-title: Children’s imitation of causal action sequences is influenced by statistical and pedagogical evidence
  publication-title: Cognition
  doi: 10.1016/j.cognition.2010.12.001
– ident: pone.0235502.ref122
  doi: 10.1109/BigData.2017.8258231
– volume: 26
  start-page: 1022
  issue: 11
  year: 1983
  ident: pone.0235502.ref005
  article-title: Extended Boolean information retrieval
  publication-title: Communications of the ACM
  doi: 10.1145/182.358466
– ident: pone.0235502.ref025
  doi: 10.1145/223904.223931
– ident: pone.0235502.ref046
– volume: 104
  start-page: 5241
  issue: 12
  year: 2007
  ident: pone.0235502.ref070
  article-title: Innateness and culture in the evolution of language
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0608222104
– ident: pone.0235502.ref075
– ident: pone.0235502.ref096
  doi: 10.3386/w0172
– volume: 16
  start-page: 105
  issue: 1
  year: 1995
  ident: pone.0235502.ref135
  article-title: On the exponential value of labeled samples
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(94)00074-D
– volume: 22
  start-page: 143
  issue: 1
  year: 2004
  ident: pone.0235502.ref024
  article-title: Item-based top-n recommendation algorithms
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/963770.963776
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: pone.0235502.ref033
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– start-page: 581
  volume-title: Biometrika
  year: 1976
  ident: pone.0235502.ref139
– volume-title: Distribution theory
  year: 1994
  ident: pone.0235502.ref142
– volume: 43
  start-page: 1146
  issue: 3
  year: 2013
  ident: pone.0235502.ref089
  article-title: Noise tolerance under risk minimization
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TSMCB.2012.2223460
– volume: 27
  start-page: 313
  issue: 3
  year: 1997
  ident: pone.0235502.ref012
  article-title: Learning and revising user profiles: The identification of interesting web sites
  publication-title: Machine learning
  doi: 10.1023/A:1007369909943
– volume: 14
  issue: 7
  year: 2019
  ident: pone.0235502.ref116
  article-title: Social recommendation model based on user interaction in complex social networks
  publication-title: PloS one
– ident: pone.0235502.ref121
  doi: 10.1145/3109859.3109885
– volume: 11
  start-page: 203
  issue: 3
  year: 2001
  ident: pone.0235502.ref044
  article-title: Information filtering: Overview of issues, research and systems
  publication-title: User modeling and user-adapted interaction
  doi: 10.1023/A:1011196000674
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  ident: pone.0235502.ref040
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: Journal of the American statistical Association
  doi: 10.1080/01621459.1952.10483441
– volume: 25
  start-page: 04020008
  issue: 5
  year: 2020
  ident: pone.0235502.ref147
  article-title: Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)HE.1943-5584.0001902
– start-page: 19
  volume-title: Intelligent and Adaptive Learning Systems: Technology Enhanced Support for Learners and Teachers
  year: 2012
  ident: pone.0235502.ref051
  doi: 10.4018/978-1-60960-842-2.ch002
– ident: pone.0235502.ref104
  doi: 10.1257/pandp.20181018
– ident: pone.0235502.ref006
– volume: 52
  start-page: 591
  issue: 3-4
  year: 1965
  ident: pone.0235502.ref151
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 40
  start-page: 66
  issue: 3
  year: 1997
  ident: pone.0235502.ref019
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Communications of the ACM
  doi: 10.1145/245108.245124
– volume: 33
  start-page: 294
  issue: 4
  year: 1977
  ident: pone.0235502.ref002
  article-title: The probability ranking principle in IR
  publication-title: Journal of documentation
  doi: 10.1108/eb026647
– ident: pone.0235502.ref112
  doi: 10.1145/2930238.2930283
– ident: pone.0235502.ref003
– volume: 35
  start-page: 24
  issue: 3
  year: 2017
  ident: pone.0235502.ref008
  article-title: Incorporating user expectations and behavior into the measurement of search effectiveness
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/3052768
– ident: pone.0235502.ref095
  doi: 10.24963/ijcai.2017/654
– volume: 35
  start-page: 61
  issue: 12
  year: 1992
  ident: pone.0235502.ref010
  article-title: Using collaborative filtering to weave an information tapestry
  publication-title: Communications of the ACM
  doi: 10.1145/138859.138867
– volume: 101
  start-page: 5228
  issue: suppl 1
  year: 2004
  ident: pone.0235502.ref041
  article-title: Finding scientific topics
  publication-title: Proceedings of the National academy of Sciences
  doi: 10.1073/pnas.0307752101
– volume: 14
  issue: 3
  year: 2019
  ident: pone.0235502.ref090
  article-title: Algorithmic bias amplifies opinion fragmentation and polarization: A bounded confidence model
  publication-title: PloS one
  doi: 10.1371/journal.pone.0213246
– ident: pone.0235502.ref087
  doi: 10.3115/1687878.1687919
– volume: 6
  start-page: 84
  issue: 3-4
  year: 2019
  ident: pone.0235502.ref128
  article-title: Technological workforce and its impact on algorithmic justice in politics
  publication-title: Customer Needs and Solutions
  doi: 10.1007/s40547-019-00103-3
– volume: 9
  start-page: 371
  issue: 4
  year: 2003
  ident: pone.0235502.ref076
  article-title: Iterated learning: A framework for the emergence of language
  publication-title: Artificial life
  doi: 10.1162/106454603322694825
– ident: pone.0235502.ref093
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  ident: pone.0235502.ref149
  article-title: Probabilistic principal component analysis
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00196
– ident: pone.0235502.ref120
– ident: pone.0235502.ref124
  doi: 10.5220/0006938702820289
– volume: 37
  start-page: 30
  issue: 7
  year: 1994
  ident: pone.0235502.ref011
  article-title: Agents that reduce work and information overload
  publication-title: Communications of the ACM
  doi: 10.1145/176789.176792
– volume: 19
  start-page: 109
  issue: 3
  year: 2015
  ident: pone.0235502.ref068
  article-title: Learning to trust and trusting to learn: A theoretical framework
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2014.12.007
– volume: 104
  start-page: 671
  year: 2016
  ident: pone.0235502.ref114
  article-title: Big data’s disparate impact
  publication-title: Calif L Rev
– ident: pone.0235502.ref048
– volume: 43
  start-page: 295
  year: 2012
  ident: pone.0235502.ref067
  article-title: Unifying pedagogical reasoning and epistemic trust
  publication-title: Advances in child development and behavior
  doi: 10.1016/B978-0-12-397919-3.00011-3
– ident: pone.0235502.ref077
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: pone.0235502.ref150
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: pone.0235502.ref016
  article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
  publication-title: IEEE transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2005.99
– volume: 71
  start-page: 55
  year: 2014
  ident: pone.0235502.ref064
  article-title: A rational account of pedagogical reasoning: Teaching by, and learning from, examples
  publication-title: Cognitive psychology
  doi: 10.1016/j.cogpsych.2013.12.004
– ident: pone.0235502.ref125
  doi: 10.1145/2959100.2959188
– start-page: 323
  volume-title: Advances in neural information processing systems
  year: 2006
  ident: pone.0235502.ref094
– ident: pone.0235502.ref015
  doi: 10.1145/336992.337035
– volume: 63
  start-page: 115
  year: 2015
  ident: pone.0235502.ref140
  article-title: Chapter Four-Choice from among Intentionally Selected Options
  publication-title: Psychology of Learning and Motivation
  doi: 10.1016/bs.plm.2015.03.006
– volume-title: Modern epidemiology
  year: 2008
  ident: pone.0235502.ref081
– volume: 94
  start-page: 211
  issue: 2
  year: 1987
  ident: pone.0235502.ref133
  article-title: Confirmation, disconfirmation, and information in hypothesis testing
  publication-title: Psychological review
  doi: 10.1037/0033-295X.94.2.211
– volume: 8
  start-page: 10
  year: 2014
  ident: pone.0235502.ref084
  article-title: Big Data| critiquing Big Data: Politics, ethics, epistemology| special section introduction
  publication-title: International Journal of Communication
– volume: 29
  start-page: 103
  issue: 2-3
  year: 1997
  ident: pone.0235502.ref143
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Machine learning
  doi: 10.1023/A:1007413511361
– ident: pone.0235502.ref127
  doi: 10.5220/0006938301100118
– ident: pone.0235502.ref156
– ident: pone.0235502.ref043
– ident: pone.0235502.ref155
  doi: 10.1145/1060745.1060754
– ident: pone.0235502.ref102
  doi: 10.1145/3278721.3278722
– volume: 114
  start-page: 211
  issue: 2
  year: 2007
  ident: pone.0235502.ref042
  article-title: Topics in semantic representation
  publication-title: Psychological review
  doi: 10.1037/0033-295X.114.2.211
– volume-title: Reasoning in teaching and misleading situations
  year: 2011
  ident: pone.0235502.ref065
– volume: 59
  start-page: 16
  issue: 10
  year: 2016
  ident: pone.0235502.ref083
  article-title: Battling algorithmic bias: how do we ensure algorithms treat us fairly?
  publication-title: Communications of the ACM
  doi: 10.1145/2983270
– volume: 2
  start-page: 272
  issue: 4
  year: 2010
  ident: pone.0235502.ref052
  article-title: A hybrid recommender system guided by semantic user profiles for search in the e-learning domain
  publication-title: Journal of Emerging Technologies in Web Intelligence
  doi: 10.4304/jetwi.2.4.272-281
– volume: 33
  start-page: 111
  issue: 4
  year: 2016
  ident: pone.0235502.ref085
  article-title: Racist in the machine: The disturbing implications of algorithmic bias
  publication-title: World Policy Journal
  doi: 10.1215/07402775-3813015
– ident: pone.0235502.ref119
  doi: 10.1145/2872427.2883090
– volume: 38
  start-page: 775
  issue: 4
  year: 2014
  ident: pone.0235502.ref078
  article-title: Language evolution can be shaped by the structure of the world
  publication-title: Cognitive science
  doi: 10.1111/cogs.12102
– ident: pone.0235502.ref091
– volume: 52
  start-page: 11
  issue: 55-66
  year: 2010
  ident: pone.0235502.ref136
  article-title: Active learning literature survey
  publication-title: University of Wisconsin, Madison
– volume-title: Modern information retrieval
  year: 1999
  ident: pone.0235502.ref007
– ident: pone.0235502.ref106
  doi: 10.1145/2939672.2945386
– ident: pone.0235502.ref050
  doi: 10.1109/ICALT.2008.198
– volume: 29
  start-page: 9
  issue: 2
  year: 2011
  ident: pone.0235502.ref053
  article-title: Improving recommender systems by incorporating social contextual information
  publication-title: ACM Transactions on Information Systems (TOIS)
– volume-title: Individual choice behavior: A theoretical analysis
  year: 2005
  ident: pone.0235502.ref056
  doi: 10.1037/14396-000
– volume: 33
  start-page: 10
  issue: 3
  year: 2015
  ident: pone.0235502.ref023
  article-title: Dynamic user modeling in social media systems
  publication-title: ACM Transactions on Information Systems (TOIS)
– volume: 7
  start-page: 76
  issue: 1
  year: 2003
  ident: pone.0235502.ref028
  article-title: Amazon. com recommendations: Item-to-item collaborative filtering
  publication-title: IEEE Internet computing
  doi: 10.1109/MIC.2003.1167344
– ident: pone.0235502.ref097
  doi: 10.1145/2908131.2908135
– start-page: 1
  volume-title: AI & SOCIETY
  year: 2020
  ident: pone.0235502.ref132
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: pone.0235502.ref079
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychological review
  doi: 10.1037/h0042519
– ident: pone.0235502.ref080
– start-page: 4349
  year: 2016
  ident: pone.0235502.ref086
  article-title: Man is to computer programmer as woman is to homemaker? debiasing word embeddings
  publication-title: Advances in Neural Information Processing Systems
– ident: pone.0235502.ref004
– volume: 9
  issue: 6
  year: 2014
  ident: pone.0235502.ref059
  article-title: Leveraging position bias to improve peer recommendation
  publication-title: PloS one
  doi: 10.1371/journal.pone.0098914
– volume: 576
  start-page: 229
  year: 2019
  ident: pone.0235502.ref146
  article-title: Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.06.045
– ident: pone.0235502.ref092
  doi: 10.1145/1015330.1015425
– start-page: 3243
  volume-title: Advances in neural information processing systems
  year: 2016
  ident: pone.0235502.ref130
– volume: 79
  start-page: 281
  issue: 4
  year: 1972
  ident: pone.0235502.ref057
  article-title: Elimination by aspects: A theory of choice
  publication-title: Psychological review
  doi: 10.1037/h0032955
– volume: 25
  start-page: 7
  issue: 2
  year: 2007
  ident: pone.0235502.ref045
  article-title: Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/1229179.1229181
– volume: 42
  issue: 8
  year: 2009
  ident: pone.0235502.ref034
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– start-page: 2
  volume-title: Probabilistic Matrix Factorization
  year: 2007
  ident: pone.0235502.ref035
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  ident: pone.0235502.ref029
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/963770.963772
– volume: 7
  start-page: 341
  issue: 4
  year: 2012
  ident: pone.0235502.ref060
  article-title: Learning from others the consequences of psychological reasoning for human learning
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691612448481
– ident: pone.0235502.ref071
– ident: pone.0235502.ref017
  doi: 10.1007/11899402_4
– volume: 33
  start-page: 2
  issue: 1
  year: 2015
  ident: pone.0235502.ref021
  article-title: Who, where, when, and what: A nonparametric bayesian approach to context-aware recommendation and search for twitter users
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/2699667
– ident: pone.0235502.ref099
  doi: 10.1145/2484028.2484053
– start-page: 21
  volume-title: Human and Machine Learning
  year: 2018
  ident: pone.0235502.ref129
  doi: 10.1007/978-3-319-90403-0_2
– volume: 4
  start-page: 129
  issue: 1
  year: 1996
  ident: pone.0235502.ref134
  article-title: Active learning with statistical models
  publication-title: Journal of artificial intelligence research
  doi: 10.1613/jair.295
– ident: pone.0235502.ref154
– start-page: 325
  year: 2007
  ident: pone.0235502.ref018
  article-title: Content-based recommendation systems
  publication-title: The adaptive web
  doi: 10.1007/978-3-540-72079-9_10
– ident: pone.0235502.ref047
  doi: 10.6028/NIST.SP.500-225.cornell
– ident: pone.0235502.ref098
  doi: 10.1145/1401890.1401959
– ident: pone.0235502.ref101
  doi: 10.5772/intechopen.73176
– ident: pone.0235502.ref105
– volume: 40
  start-page: 56
  issue: 3
  year: 1997
  ident: pone.0235502.ref013
  article-title: Recommender systems
  publication-title: Communications of the ACM
  doi: 10.1145/245108.245121
– ident: pone.0235502.ref123
  doi: 10.1145/3178876.3186140
– volume: 34
  start-page: 13
  issue: 2
  year: 2016
  ident: pone.0235502.ref022
  article-title: On effective location-aware music recommendation
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/2846092
– volume: 36
  start-page: 33
  issue: 3
  year: 2018
  ident: pone.0235502.ref037
  article-title: GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling and Matrix Factorization
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/3182166
– volume: 105
  start-page: 10681
  issue: 31
  year: 2008
  ident: pone.0235502.ref073
  article-title: Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0707835105
– ident: pone.0235502.ref088
  doi: 10.1145/2814815.2814821
– volume: 20
  start-page: 202
  issue: 2
  year: 2008
  ident: pone.0235502.ref049
  article-title: A web usage mining framework for mining evolving user profiles in dynamic web sites
  publication-title: IEEE transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2007.190667
– volume: 35
  start-page: 11
  issue: 2
  year: 2016
  ident: pone.0235502.ref020
  article-title: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation
  publication-title: ACM Transactions on Information Systems (TOIS)
– volume: 85
  start-page: 207
  issue: 3
  year: 1978
  ident: pone.0235502.ref038
  article-title: Context theory of classification learning
  publication-title: Psychological review
  doi: 10.1037/0033-295X.85.3.207
– volume: 14
  issue: 8
  year: 2019
  ident: pone.0235502.ref100
  article-title: Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems
  publication-title: PloS one
  doi: 10.1371/journal.pone.0220129
– volume: 5
  start-page: 19
  issue: 4
  year: 2016
  ident: pone.0235502.ref148
  article-title: The movielens datasets: History and context
  publication-title: ACM Transactions on Interactive Intelligent Systems (TiiS)
– volume: 20
  start-page: 357
  issue: 4
  year: 2002
  ident: pone.0235502.ref009
  article-title: Probabilistic models of information retrieval based on measuring the divergence from randomness
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/582415.582416
– ident: pone.0235502.ref115
– volume: 10
  start-page: 104
  issue: 1
  year: 1984
  ident: pone.0235502.ref039
  article-title: Choice, similarity, and the context theory of classification
  publication-title: Journal of Experimental Psychology: Learning, memory, and cognition
– volume: 13
  start-page: e1005399
  issue: 3
  year: 2017
  ident: pone.0235502.ref082
  article-title: Ten simple rules for responsible big data research
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1005399
– ident: pone.0235502.ref058
– ident: pone.0235502.ref118
  doi: 10.1007/978-3-319-78105-1_37
– volume: 120
  start-page: 322
  issue: 3
  year: 2011
  ident: pone.0235502.ref062
  article-title: The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery
  publication-title: Cognition
  doi: 10.1016/j.cognition.2010.10.001
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: pone.0235502.ref145
  article-title: Support-vector networks
  publication-title: Machine learning
  doi: 10.1007/BF00994018
– volume-title: Proceedings of the Cognitive Science Society
  year: 2005
  ident: pone.0235502.ref069
– ident: pone.0235502.ref055
  doi: 10.1145/1135777.1136004
– ident: pone.0235502.ref108
  doi: 10.1287/mnsc.2018.3093
– ident: pone.0235502.ref131
  doi: 10.1609/aaai.v34i01.5349
– start-page: 714
  volume-title: Recommendation as classification: Using social and content-based information in recommendation
  year: 1998
  ident: pone.0235502.ref014
– volume: 28
  start-page: 108
  year: 2014
  ident: pone.0235502.ref072
  article-title: Iterated learning and the evolution of language
  publication-title: Current opinion in neurobiology
  doi: 10.1016/j.conb.2014.07.014
– ident: pone.0235502.ref113
  doi: 10.2139/ssrn.2886526
– volume: 32
  start-page: 17
  issue: 4
  year: 2014
  ident: pone.0235502.ref054
  article-title: Matrix factorization with explicit trust and distrust side information for improved social recommendation
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/2641564
– volume: 15
  start-page: 436
  issue: 3
  year: 2012
  ident: pone.0235502.ref066
  article-title: Epistemic trust: Modeling children’s reasoning about others’ knowledge and intent
  publication-title: Developmental Science
  doi: 10.1111/j.1467-7687.2012.01135.x
– volume: 44
  start-page: 631
  issue: 3
  year: 2006
  ident: pone.0235502.ref138
  article-title: Extending the bounds of rationality: evidence and theories of preferential choice
  publication-title: Journal of Economic Literature
  doi: 10.1257/jel.44.3.631
– start-page: 325
  issue: 4
  year: 1976
  ident: pone.0235502.ref032
  article-title: The distance-weighted k-nearest-neighbor rule
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1976.5408784
– ident: pone.0235502.ref152
– ident: pone.0235502.ref110
  doi: 10.1145/3091478.3091483
– volume: 40
  start-page: 77
  issue: 3
  year: 1997
  ident: pone.0235502.ref026
  article-title: GroupLens: applying collaborative filtering to Usenet news
  publication-title: Communications of the ACM
  doi: 10.1145/245108.245126
– ident: pone.0235502.ref117
  doi: 10.1145/3018661.3018699
– volume: 14
  start-page: 288
  issue: 2
  year: 2007
  ident: pone.0235502.ref074
  article-title: Iterated learning: Intergenerational knowledge transmission reveals inductive biases
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/BF03194066
– volume: 31
  start-page: 875
  year: 2014
  ident: pone.0235502.ref030
  article-title: Recommendation algorithm based on link prediction and domain knowledge in retail transactions
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2014.05.339
– volume-title: Applied logistic regression
  year: 2013
  ident: pone.0235502.ref144
  doi: 10.1002/9781118548387
– volume: 26
  start-page: 89
  issue: 2
  year: 1970
  ident: pone.0235502.ref001
  article-title: Some thoughts on classification for retrieval
  publication-title: Journal of Documentation
  doi: 10.1108/eb026488
– volume-title: Reinforcement learning: An introduction
  year: 1998
  ident: pone.0235502.ref137
– volume: 61
  start-page: 54
  issue: 6
  year: 2018
  ident: pone.0235502.ref107
  article-title: Bias on the web
  publication-title: Communications of the ACM
  doi: 10.1145/3209581
– volume: 15
  start-page: 209
  issue: 3
  year: 2013
  ident: pone.0235502.ref109
  article-title: Bias in algorithmic filtering and personalization
  publication-title: Ethics and information technology
  doi: 10.1007/s10676-013-9321-6
– ident: pone.0235502.ref036
  doi: 10.1145/2615569.2615665
– start-page: 50
  volume-title: The annals of mathematical statistics
  year: 1947
  ident: pone.0235502.ref153
– ident: pone.0235502.ref103
  doi: 10.1145/3287560.3287589
– volume-title: Explaining Choice Behavior: The Intentional Selection Assumption
  year: 2015
  ident: pone.0235502.ref141
SSID ssj0053866
Score 2.5432687
Snippet Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0235502
SubjectTerms Algorithms
Annotations
Bias
Biology and Life Sciences
Cognitive biases
Computer and Information Sciences
Computer engineering
Computer science
Computer simulation
Decision making
Evolution
Human influences
Human performance
Human-computer interaction
Humans
Hypotheses
Information retrieval
Information storage and retrieval systems
Interfaces
Investigations
Iterative methods
Labels
Language
Learning
Learning algorithms
Machine learning
Machine Learning - standards
Physical Sciences
Psychological aspects
Psychological research
Recommender systems
Relevance
Research and Analysis Methods
Social Sciences
Statistical analysis
Statistical methods
User interfaces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhBQxCAg5pU9uxnWNBrQoSDwFFvUW2Y29X2iarzS6_n_EjUYMqlQPXzMRK5uHxJDPfIPS6oJTbguvcKVfkcCJmuXaW566Qgpa6KRX1vcOfv_Czc_bpory4NurL14RFeOAouMNGK0kUEcJUkjWlkZBfCKtKDmszakK2DjFvSKbiHgxezHlqlKPi6DDp5WDVtfbAI7yU6TPKEIgCXv-4K89Wy66_6cj5d-XktVB0eh_dS2dIfByffQfdse0DtJO8tMdvE5T0u4fo28nvZFpYtQ2OLZG4c1gvVI8XLQ4j-gLtKlRVWpzGSMyxWs679WJzeYU9pMQ6NkA8QuenJz8_nOVphkJueEU2uW6cpcSZimtSSFYyzaRpIMeQEKt544DuqDCOcK2UlrwUuqFScaJZ5XTh6GM0a0FquwhrR4vGCCK1VIzSUskKVoCVuFVHtmIZooNAa5MAxv2ci2Ud_poJSDSifGqvhjqpIUP5eNcqAmzcwv_e62rk9fDY4QIYTZ2Mpr7NaDL0wmu6jr2mo5PXxx68Hk5cTGboVeDwEBmtr8GZq23f1x-__voHph_fJ0xvEpPrQBxGpb4HeCcPvTXh3J9wgqObCXnX2-Uglb4mjPq_sLDpwp2Drd5MfjmS_aK-rq613TbyMEEl5Rl6Ek17lCwlovLZbYbExOgnop9S2sVlQCgXEAkkl0__h6720F3iv3F4GGK6j2ab9dY-g4PgRj8PPv8H8PJcxA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8sILsPGxwACDkICHVJnt2M4DQgNtGkgDBBTtLbIdu6vUJSVpEfz3-BInIqh8vEW9s5We73x3se93CD1JKOU24Tp2yiWxj4hZrJ3lsUukoKkuUkWhdvjsHT-dsbfn6fkO6nu2BgE2W1M76Cc1q5fT719_vPQG_6Lt2iAO-0HTVVXaKeC3pIAuecX7JgGmesaGcwVv3ZyHAro_jRw5qBbHf9itJ6tl1WwLRX-_UfmLizq5ga6F2BIfdcqwi3ZsuYeu930bcDDjPbQbnhr8LKBOP7-JPhx_C1qIVVngrnoSVw7rhWrwosRtN7-WdtlewLQ4dJyYY7WcV_VifXGJAX2i7molbqHZyfHn16dxaLcQG56RdawLZylxJuOaJJKlTDNpCp-OSO_WeeE83VFhHOFaKS15KnRBpeJEs8zpxNHbaFJ6Qe4jrB1NCiOI1FIxSlMlMz-Dn4lbdWgzFiHayzg3AYscWmIs8_aATficpBNZDiuTh5WJUDyMWnVYHP_gfwXLN_ACknb7Q1XP82CYeaGVJIoIYTLJitRIn78Kq1LudZdRk0ToISx-3pWlDvtBfgQ49z44YzJCj1sOQNMo4brOXG2aJn_z_st_MH36OGJ6Gphc5cVhVCiR8P8JULpGnAcjTr8nmBF5H1S1l0qTE0bhwNbvz35kr77byY8GMkwKV_BKW206HiaopDxCdzptHyRLicggEY6QGNnBSPRjSrm4aMHMhXcaksu7f3-te-gqgQ8dgEVMD9BkXW_sfR8NrvWD1sB_AozlYDc
  priority: 102
  providerName: Scholars Portal
Title Evolution and impact of bias in human and machine learning algorithm interaction
URI https://www.ncbi.nlm.nih.gov/pubmed/32790666
https://www.proquest.com/docview/2434078257
https://www.proquest.com/docview/2434473836
https://pubmed.ncbi.nlm.nih.gov/PMC7425868
https://doaj.org/article/dba82a277c984d5c89177ea56af043c0
http://dx.doi.org/10.1371/journal.pone.0235502
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELege-GFsfGxwCgGIQEP2VLbsZ0ntE0tA2ljGgz1LbKduKvUJaVp-fvxJU4gaAJerCh3sdr78Ofd7xB6HVHK84jr0CobhW5FzEJtcx7aSAoa6yxWFHKHz8756RX7NI2n_sCt8mGV7ZhYD9RZaeCM_JAwCldOzsLeL7-HUDUKbld9CY27aAugyyCkS0y7DZfzZc59uhwVo0OvnYNlWeQHgPMS-8OUdjqqUfu7sXmwXJTVbQvPP-Mnf5uQJg_Qfb-SxEeN6nfQnbzYRdttlQbsnXYX7finCr_1GNPvHqKL8Q9vc1gVGW5yJXFpsZ6rCs8LXNfuq2k3dbhljn19iRlWi5kTzPr6BgPWxKrJjHiEribjryenoS-uEBqekHWoM5tTYk3CNYkki5lm0mRu8yHdJM4z6-iWCmMJ10ppyWOhMyoVJ5olVkeWPkaDwglyD2FtaZQZQaSWilEaK5m4HlxPPFejPGEBoq2MU-ORx6EAxiKtr9OE24E0IktBM6nXTIDC7qtlg7zxD_5jUF_HC7jZ9YtyNUu9G6aZVpIoIoRJJMtiI91uVeQq5s5SGTVRgF6A8tMmCbXz_vQIUO3dUozJAL2qOQA7o4DgnJnaVFX68fO3_2D6ctljeuOZbOnEYZRPiHD_CTC5epz7PU43ApgeeQ9MtZVKlf7yFfdla763k192ZOgUAu6KvNw0PExQSXmAnjTW3kmWEpHAtjdAoucHPdH3KcX8uoYuF26KkFw-_fvPeobuETjWAORhuo8G69Umf-7Wfms9rB3ctfJkBO3kwxBtHY_PLy6H9WmKa8-Y_AlL6V-L
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGOcAF2PhYYTCDQMAhW2Y7tnNAaMCmjn2AYEO9BduJu0pdUpoWxD_F34hf4gSCJuCyW9X3YrXv247f7yH0OKSUZyHXgVU2DFxFzAJtMx7YUAoa6TRSFHqHD4_44IS9HUbDJfSj6YWBa5VNTKwCdVoYOCPfJIzCKydnYS-nXwKYGgVvV5sRGrVZ7Gffv7ktW_li743T7xNCdneOXw8CP1UgMDwm80CnNqPEmphrEkoWMc2kSV3VLV324ql1dEuFsYRrpbTkkdAplYoTzWKrQ0vdupfQZZd4Q_AoMWw3eC52cO7b86jY2vTWsDEt8mwDcGUif3jTpL9qSkCbC3rTSVGeV-j-eV_ztwS4ewNd85Ur3q5NbRktZfkKut5MhcA-SKygZf-pxM88pvXzm-j9zldv41jlKa57M3FhsR6rEo9zXM0KrGhn1fXODPt5FiOsJiOniPnpGQZsi1ndiXELnVyI2G-jXu4EuYqwtjRMjSBSS8UojZSM3QpuJZ6prSxmfUQbGSfGI53DwI1JUr2-E27HU4ssAc0kXjN9FLRPTWukj3_wvwL1tbyA0119UcxGiXf7JNVKEkWEMLFkaWSk2x2LTEXceQajJuyjdVB-Uje9ttEm2QYUfVf6MdlHjyoOwOrI4TLQSC3KMtl79-k_mD5-6DA99Uy2cOIwyjdguP8EGGAdzrUOp4s4pkNeBVNtpFImv3zTPdmY7_nkhy0ZFoULfnlWLGoeJqikvI_u1NbeSpYSEcM2u49Exw86ou9S8vFpBZUuXEqSXN79-89aR1cGx4cHycHe0f49dJXAkQqgHtM11JvPFtl9V3fO9YPK2TH6fNHR5Sc6GZki
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAvwMbHAoMZBAIesqa2YzsPCA22amMwJsZQ34KdxF2lLilNC-Jf46_jnDiBoAl42VuVu1jNffn8cb9D6HFAKc8Crn2jTOBDRsx8bTLum0AKGuo0VNTWDr875Hsn7M0oHK2gH00tjL1W2cTEKlCnRWL3yPuEUXvkBBbWN-5axNHO8OXsi287SNmT1qadRm0iB9n3b7B8K1_s74CunxAy3P34es93HQb8hEdk4evUZJSYJOKaBJKFTDOZpJCBS5jJeGqAbqhIDOFaKS15KHRKpeJEs8jowFAY9xK6DF81sD4mRu1iD-II565Uj4pB31nG1qzIsy2LMRO6jZxmKqw6BrTzQm82Lcrzkt4_727-NhkOb6BrLovF27XZraKVLF9D15sOEdgFjDW06n6V-JnDt35-Ex3tfnX2jlWe4rpOExcG64kq8STHVd_AinZWXfXMsOttMcZqOgZFLE7PsMW5mNdVGbfQyYWI_Tbq5SDIdYS1oUGaCCK1VIzSUMkIRoCReKYGWcQ8RBsZx4lDPbfNN6ZxdZQnYPVTiyy2momdZjzkt2_NatSPf_C_supreS1md_WgmI9jFwLiVCtJFBEiiSRLw0TCSllkKuTgJYwmgYc2rfLjugC2jTzxtkXUhzSQSQ89qjgsbkduPWCslmUZ77__9B9Mxx86TE8dkylAHIlyxRjwTRYPrMO50eGE6JN0yOvWVBuplPEvP4U3G_M9n_ywJdtB7WW_PCuWNQ8TVFLuoTu1tbeSpUREdsntIdHxg47ou5R8clrBpguYniSXd__-tzbRFYgr8dv9w4N76CqxuysWAJluoN5ivszuQwq60A8qX8fo80UHl59JN51Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+and+impact+of+bias+in+human+and+machine+learning+algorithm+interaction&rft.jtitle=PloS+one&rft.au=Sun%2C+Wenlong&rft.au=Nasraoui%2C+Olfa&rft.au=Shafto%2C+Patrick&rft.date=2020-08-13&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=8&rft.spage=e0235502&rft_id=info:doi/10.1371%2Fjournal.pone.0235502&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon