Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease

Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing literature, support vector machine (SVM) has always been applied to distinguish between AD and healthy controls (HC) based on neuroimaging data. B...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 3; p. e0194479
Main Authors Bi, Xia-an, Shu, Qing, Sun, Qi, Xu, Qian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.03.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing literature, support vector machine (SVM) has always been applied to distinguish between AD and healthy controls (HC) based on neuroimaging data. But previous studies have only used a single SVM to classify AD and HC, and the accuracy is not very high and generally less than 90%. The method of random support vector machine cluster was proposed to classify AD and HC in this paper. From the Alzheimer's Disease Neuroimaging Initiative database, the subjects including 25 AD individuals and 35 HC individuals were obtained. The classification accuracy could reach to 94.44% in the results. Furthermore, the method could also be used for feature selection and the accuracy could be maintained at the level of 94.44%. In addition, we could also find out abnormal brain regions (inferior frontal gyrus, superior frontal gyrus, precentral gyrus and cingulate cortex). It is worth noting that the proposed random support vector machine cluster could be a new insight to help the diagnosis of AD.
AbstractList Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing literature, support vector machine (SVM) has always been applied to distinguish between AD and healthy controls (HC) based on neuroimaging data. But previous studies have only used a single SVM to classify AD and HC, and the accuracy is not very high and generally less than 90%. The method of random support vector machine cluster was proposed to classify AD and HC in this paper. From the Alzheimer's Disease Neuroimaging Initiative database, the subjects including 25 AD individuals and 35 HC individuals were obtained. The classification accuracy could reach to 94.44% in the results. Furthermore, the method could also be used for feature selection and the accuracy could be maintained at the level of 94.44%. In addition, we could also find out abnormal brain regions (inferior frontal gyrus, superior frontal gyrus, precentral gyrus and cingulate cortex). It is worth noting that the proposed random support vector machine cluster could be a new insight to help the diagnosis of AD.
Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing literature, support vector machine (SVM) has always been applied to distinguish between AD and healthy controls (HC) based on neuroimaging data. But previous studies have only used a single SVM to classify AD and HC, and the accuracy is not very high and generally less than 90%. The method of random support vector machine cluster was proposed to classify AD and HC in this paper. From the Alzheimer's Disease Neuroimaging Initiative database, the subjects including 25 AD individuals and 35 HC individuals were obtained. The classification accuracy could reach to 94.44% in the results. Furthermore, the method could also be used for feature selection and the accuracy could be maintained at the level of 94.44%. In addition, we could also find out abnormal brain regions (inferior frontal gyrus, superior frontal gyrus, precentral gyrus and cingulate cortex). It is worth noting that the proposed random support vector machine cluster could be a new insight to help the diagnosis of AD.Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing literature, support vector machine (SVM) has always been applied to distinguish between AD and healthy controls (HC) based on neuroimaging data. But previous studies have only used a single SVM to classify AD and HC, and the accuracy is not very high and generally less than 90%. The method of random support vector machine cluster was proposed to classify AD and HC in this paper. From the Alzheimer's Disease Neuroimaging Initiative database, the subjects including 25 AD individuals and 35 HC individuals were obtained. The classification accuracy could reach to 94.44% in the results. Furthermore, the method could also be used for feature selection and the accuracy could be maintained at the level of 94.44%. In addition, we could also find out abnormal brain regions (inferior frontal gyrus, superior frontal gyrus, precentral gyrus and cingulate cortex). It is worth noting that the proposed random support vector machine cluster could be a new insight to help the diagnosis of AD.
Audience Academic
Author Xu, Qian
Shu, Qing
Sun, Qi
Bi, Xia-an
AuthorAffiliation Nathan S Kline Institute, UNITED STATES
College of Information Science and Engineering, Hunan Normal University, Changsha, P.R. China
AuthorAffiliation_xml – name: College of Information Science and Engineering, Hunan Normal University, Changsha, P.R. China
– name: Nathan S Kline Institute, UNITED STATES
Author_xml – sequence: 1
  givenname: Xia-an
  orcidid: 0000-0002-2715-3360
  surname: Bi
  fullname: Bi, Xia-an
– sequence: 2
  givenname: Qing
  surname: Shu
  fullname: Shu, Qing
– sequence: 3
  givenname: Qi
  surname: Sun
  fullname: Sun, Qi
– sequence: 4
  givenname: Qian
  surname: Xu
  fullname: Xu, Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29570705$$D View this record in MEDLINE/PubMed
BookMark eNqNk9uK2zAQhk3Z0j20b1Baw0IPF0ll62T3ohCWHgJbFtLDTS-ELI8SBdtKJXnp9umrbJwSL0spurAYf_OP5mfmNDnqbAdJ8jRD0wzz7M3a9q6TzXQTw1OUlYTw8kFykpU4n7Ac4aOD-3Fy6v0aIYoLxh4lx3lJOeKIniQ_FrKrbZv6frOxLqTXoIJ1aSvVynSQqqb3AVwqY6Ubb3xqderAB9MtJz7IAKn-vJinpktnze8VmBbcS5_WxoP08Dh5qGXj4cnwPUu-fXj_9eLT5PLq4_xidjlRrMzDpCKaq4ywihUIU0ZJpSqqK6QyJbNKQlkCk1KTUmcFcEZKhZmiiBSoqBXhBT5Lnu90N431YvDFixxlHJcUMRqJ-Y6orVyLjTOtdDfCSiNuA9YthXTBqAZExbGuMcG8qIEUlZaKFWWpCKk5YJ2pqPVuqNZXLdQKuuBkMxId_-nMSizttaAFo_FBUeDVIODszz6aKVrjFTSN7MD2t-8uUE55vu3s_A56f3cDtZSxAdNpG-uqraiYUZwjSnOypab3UPHU0BoVh0ibGB8lvB4lRCbAr7CUvfdi_mXx_-zV9zH74oBdgWzCytumD8Z2fgw-O3T6r8X76Y3A2x2gnPXegRbKxKGMOrE104gMie2q7E0T21URw6rEZHInea__z7Q_hPsX3g
CitedBy_id crossref_primary_10_1038_s41598_022_06444_9
crossref_primary_10_1016_j_neuroimage_2019_116317
crossref_primary_10_1016_j_matpr_2022_04_357
crossref_primary_10_36548_jaicn_2020_4_003
crossref_primary_10_1016_j_compbiomed_2024_108762
crossref_primary_10_1109_ACCESS_2019_2902889
crossref_primary_10_1007_s11831_024_10120_8
crossref_primary_10_3389_fcvm_2021_741679
crossref_primary_10_3389_fnins_2024_1394234
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_1155_2022_6120230
crossref_primary_10_1007_s11682_021_00538_0
crossref_primary_10_1016_j_compbiomed_2022_105944
crossref_primary_10_3389_fphys_2018_01646
crossref_primary_10_61186_jss_17_2_4
crossref_primary_10_3390_brainsci12101348
crossref_primary_10_2174_1573405616999200918150259
crossref_primary_10_7717_peerj_cs_2302
crossref_primary_10_1155_2022_2535954
crossref_primary_10_1016_j_arr_2024_102497
crossref_primary_10_1016_j_clinph_2021_06_036
crossref_primary_10_1002_hbm_25369
crossref_primary_10_1007_s12553_020_00488_5
crossref_primary_10_3389_fninf_2018_00060
crossref_primary_10_1109_TCYB_2019_2940526
crossref_primary_10_1016_j_isci_2023_107454
crossref_primary_10_1145_3344998
crossref_primary_10_1109_JBHI_2020_2973324
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_1016_j_procs_2020_01_049
crossref_primary_10_3389_fpsyt_2018_00340
crossref_primary_10_1016_j_bspc_2024_106721
crossref_primary_10_3390_genes12050683
crossref_primary_10_1155_2021_7706782
crossref_primary_10_1016_j_ijleo_2022_170212
crossref_primary_10_1016_j_jneumeth_2018_12_012
crossref_primary_10_1016_j_neucom_2023_126512
crossref_primary_10_3389_fnins_2022_900330
crossref_primary_10_1109_TBME_2019_2957921
crossref_primary_10_55525_tjst_1396312
crossref_primary_10_1515_revneuro_2019_0108
crossref_primary_10_3390_diagnostics14121281
crossref_primary_10_1049_ipr2_12910
Cites_doi 10.1196/annals.1379.017
10.1016/j.nicl.2014.12.013
10.1016/j.neuroimage.2007.08.008
10.1371/journal.pone.0025446
10.1212/01.WNL.0000159743.08996.99
10.1155/2015/354186
10.1148/radiol.10100734
10.1523/JNEUROSCI.2272-08.2008
10.1016/j.clinph.2015.02.019
10.1016/j.nicl.2014.11.021
10.1073/pnas.0504136102
10.1371/journal.pone.0177169
10.1037/a0030266
10.1212/01.wnl.0000256697.20968.d7
10.1097/WCO.0b013e328306f2c5
10.1016/j.compag.2010.09.002
10.1016/j.cmpb.2016.09.019
10.1002/hbm.20113
10.1126/science.1194144
10.1016/j.eswa.2016.01.044
10.1016/j.mri.2015.11.009
10.1016/j.exger.2016.03.017
10.1177/1545968313503220
10.1016/j.neuroimage.2011.11.002
10.3233/JAD-142820
10.1016/j.mam.2015.05.005
10.1111/jon.12163
10.3174/ajnr.A3713
10.1002/hbm.22829
10.1016/j.neuroimage.2010.06.013
10.3389/fpsyt.2016.00052
10.1371/journal.pone.0037828
10.1523/JNEUROSCI.1175-16.2016
10.1016/j.neubiorev.2012.01.004
10.1212/01.WNL.0000042480.86872.03
10.1097/00004728-199905000-00025
10.1016/j.neuroimage.2016.03.032
10.1007/s00429-013-0641-4
10.1016/j.bandl.2012.02.001
10.1162/jocn_a_00595
10.1146/annurev.neuro.24.1.167
10.1186/1475-925X-11-50
10.1523/JNEUROSCI.1921-04.2004
10.1177/197140091202500101
10.2174/15672050113109990146
10.1186/s40035-015-0027-z
10.1523/JNEUROSCI.23-25-08771.2003
10.1016/S0896-6273(01)00303-8
10.1148/radiol.2015150220
10.1212/01.WNL.0000080366.90234.7F
10.4088/JCP.15m10413
10.1212/WNL.59.7.1034
10.3233/JAD-141110
10.1007/s12021-013-9204-3
10.1111/jon.12266
10.1111/ejn.12425
10.3390/s120912489
10.1371/journal.pone.0074070
10.3233/JAD-150848
10.1371/journal.pone.0160697
10.1016/j.neuron.2011.07.016
10.3233/JAD-160107
10.1002/tee.22224
10.1016/j.jalz.2016.06.1907
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Bi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Bi et al 2018 Bi et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Bi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Bi et al 2018 Bi et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0194479
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database

PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease
EISSN 1932-6203
ExternalDocumentID 2017395065
oai_doaj_org_article_b73fd34378de48bfac6899c44d7e3f1c
PMC5865739
A532055245
29570705
10_1371_journal_pone_0194479
Genre Journal Article
GeographicLocations China
United States--US
California
GeographicLocations_xml – name: China
– name: United States--US
– name: California
GrantInformation_xml – fundername: ;
  grantid: 61502167
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
BBORY
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ESTFP
ID FETCH-LOGICAL-c692t-b4f7c146b68035654bcb5fb0c1ca1bae99e6aaf49f18e7649c36c504808dc4783
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:50 EDT 2023
Wed Aug 27 01:22:34 EDT 2025
Thu Aug 21 14:10:06 EDT 2025
Fri Jul 11 04:42:05 EDT 2025
Fri Jul 25 10:19:29 EDT 2025
Tue Jun 17 21:35:20 EDT 2025
Tue Jun 10 20:28:46 EDT 2025
Fri Jun 27 04:51:41 EDT 2025
Fri Jun 27 04:43:24 EDT 2025
Thu May 22 21:20:07 EDT 2025
Wed Feb 19 02:42:27 EST 2025
Tue Jul 01 02:27:50 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-b4f7c146b68035654bcb5fb0c1ca1bae99e6aaf49f18e7649c36c504808dc4783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2715-3360
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0194479
PMID 29570705
PQID 2017395065
PQPubID 1436336
PageCount e0194479
ParticipantIDs plos_journals_2017395065
doaj_primary_oai_doaj_org_article_b73fd34378de48bfac6899c44d7e3f1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865739
proquest_miscellaneous_2018025728
proquest_journals_2017395065
gale_infotracmisc_A532055245
gale_infotracacademiconefile_A532055245
gale_incontextgauss_ISR_A532055245
gale_incontextgauss_IOV_A532055245
gale_healthsolutions_A532055245
pubmed_primary_29570705
crossref_citationtrail_10_1371_journal_pone_0194479
crossref_primary_10_1371_journal_pone_0194479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-23
PublicationDateYYYYMMDD 2018-03-23
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Mwangi (ref34) 2014; 12
Z Guo (ref64) 2016; 79
P Fransson (ref25) 2005; 26
AM Kelly (ref27) 2008; 39
F Liu (ref33) 2015; 220
PG Nestor (ref49) 2015; 2015
HC Breiter (ref47) 2001; 30
Y Chudasama (ref45) 2003; 23
C-Y Wee (ref32) 2012; 7
CA Luis (ref40) 2003; 61
M Storandt (ref41) 2002; 59
E Cavedo (ref51) 2016; 77
DP Terry (ref59) 2015; 25
I Beheshti (ref20) 2016; 137
PH Rudebeck (ref43) 2008; 28
G Orrù (ref10) 2012; 36
C Jack (ref3) 2003; 60
V Wottschel (ref21) 2015; 7
J Taylor (ref61) 2013; 139
Y Zhan (ref19) 2015; 47
MC Woodward (ref50) 2015; 44
I Beheshti (ref28) 2016; 34
PB Rosenberg (ref48) 2015; 43
D Li (ref16) 2010; 74
Y Wang (ref69) 2013; 8
N Fox (ref4) 2005; 64
S Nakaaki (ref52) 2013; 9
S Wang (ref62) 2016; 50
C Chatelle (ref65) 2014; 28
F Dambacher (ref56) 2014; 39
Y Zhang (ref13) 2012; 12
ED Huey (ref68) 2017; 55
G Chen (ref39) 2011; 259
C Jongkreangkrai (ref18) 2016; 694
MJ Lowe (ref24) 1999; 23
N Multani (ref66) 2016; 12
R Landin-Romero (ref67) 2017; 151
R Chen (ref36) 2012; 25
A Moriai-Izawa (ref60) 2012; 121
PM Thompson (ref2) 2007; 1097
M Greicius (ref7) 2008; 21
M Plitt (ref30) 2015; 7
A Reynolds (ref1) 2013; 85
S Klöppel (ref9) 2012; 61
L dos Santos Tascone (ref57) 2017; 12
Y Wei (ref15) 2016; 11
R Wolz (ref6) 2011; 6
MNI Qureshi (ref29) 2016; 11
B Sundermann (ref17) 2014; 35
C Möller (ref38) 2015; 279
SE Morrison (ref42) 2011; 71
B Zhou (ref8) 2013; 10
A Retico (ref11) 2015; 25
M Carrasco (ref14) 2016; 54
Y Tang (ref31) 2012; 11
N Sadeh (ref54) 2015; 36
K Nishida (ref63) 2015; 126
DP Devanand (ref37) 2007; 68
I Valli (ref22) 2016; 7
H-I Suk (ref23) 2013
R Cuingnet (ref5) 2011; 56
NU Dosenbach (ref35) 2010; 329
MD Fox (ref26) 2005; 102
S Hu (ref53) 2016; 36
Y Zhang (ref12) 2015; 9
A Izquierdo (ref44) 2004; 24
W-Y Wang (ref58) 2015; 4
F Dambacher (ref55) 2014; 26
EK Miller (ref46) 2001; 24
References_xml – volume: 1097
  start-page: 183
  issue: 1
  year: 2007
  ident: ref2
  article-title: Tracking Alzheimer's disease
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1196/annals.1379.017
– start-page: 583
  year: 2013
  ident: ref23
  article-title: Deep Learning-Based Feature Representation for AD/MCI Classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 7
  start-page: 359
  year: 2015
  ident: ref30
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.12.013
– volume: 39
  start-page: 527
  issue: 1
  year: 2008
  ident: ref27
  article-title: Competition between functional brain networks mediates behavioral variability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.008
– volume: 6
  start-page: e25446
  issue: 10
  year: 2011
  ident: ref6
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: Plos One
  doi: 10.1371/journal.pone.0025446
– volume: 64
  start-page: 1563
  issue: 9
  year: 2005
  ident: ref4
  article-title: Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000159743.08996.99
– volume: 694
  start-page: 012036
  issue: 1
  year: 2016
  ident: ref18
  article-title: Computer-aided classification of Alzheimer's disease based on support vector machine with combination of cerebral image features in MRI
  publication-title: Journal of Physics: Conference Series
– volume: 2015
  start-page: 354186
  year: 2015
  ident: ref49
  article-title: Attentional control and intelligence: MRI orbital frontal gray matter and neuropsychological correlates
  publication-title: Behavioural neurology
  doi: 10.1155/2015/354186
– volume: 259
  start-page: 213
  issue: 1
  year: 2011
  ident: ref39
  article-title: Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.10100734
– volume: 28
  start-page: 8338
  issue: 33
  year: 2008
  ident: ref43
  article-title: Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2272-08.2008
– volume: 126
  start-page: e54
  issue: 6
  year: 2015
  ident: ref63
  article-title: 1-AD-16. The characteristics of resting-state EEG connectivity in patients with Alzheimer’s disease by the LORETA
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2015.02.019
– volume: 85
  start-page: 187CT
  issue: 2
  year: 2013
  ident: ref1
  article-title: Alzheimer disease: focus on computed tomography
  publication-title: Radiologic Technology
– volume: 7
  start-page: 281
  year: 2015
  ident: ref21
  article-title: Predicting outcome in clinically isolated syndrome using machine learning
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.11.021
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: ref26
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0504136102
– volume: 12
  start-page: e0177169
  issue: 5
  year: 2017
  ident: ref57
  article-title: Cortical brain volume abnormalities associated with few or multiple neuropsychiatric symptoms in Alzheimer’s disease
  publication-title: PloS one
  doi: 10.1371/journal.pone.0177169
– volume: 139
  start-page: 766
  issue: 4
  year: 2013
  ident: ref61
  article-title: Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies
  publication-title: Psychological Bulletin
  doi: 10.1037/a0030266
– volume: 68
  start-page: 828
  issue: 11
  year: 2007
  ident: ref37
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 21
  start-page: 424
  issue: 4
  year: 2008
  ident: ref7
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Current opinion in neurology
  doi: 10.1097/WCO.0b013e328306f2c5
– volume: 74
  start-page: 274
  issue: 2
  year: 2010
  ident: ref16
  article-title: Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine
  publication-title: Computers & Electronics in Agriculture
  doi: 10.1016/j.compag.2010.09.002
– volume: 137
  start-page: 177
  year: 2016
  ident: ref20
  article-title: Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2016.09.019
– volume: 26
  start-page: 15
  issue: 1
  year: 2005
  ident: ref25
  article-title: Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20113
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  ident: ref35
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 54
  start-page: 95
  year: 2016
  ident: ref14
  article-title: A second-order cone programming formulation for nonparallel hyperplane support vector machine
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.044
– volume: 34
  start-page: 252
  issue: 3
  year: 2016
  ident: ref28
  article-title: Feature-ranking-based Alzheimer’s disease classification from structural MRI
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2015.11.009
– volume: 79
  start-page: 61
  year: 2016
  ident: ref64
  article-title: Abnormal degree centrality in Alzheimer's disease patients with depression: A resting-state functional magnetic resonance imaging study
  publication-title: Experimental gerontology
  doi: 10.1016/j.exger.2016.03.017
– volume: 28
  start-page: 149
  issue: 2
  year: 2014
  ident: ref65
  article-title: Nociception Coma Scale–Revised Scores Correlate With Metabolism in the Anterior Cingulate Cortex
  publication-title: Neurorehabilitation and neural repair
  doi: 10.1177/1545968313503220
– volume: 61
  start-page: 457
  issue: 2
  year: 2012
  ident: ref9
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 47
  start-page: 1057
  issue: 4
  year: 2015
  ident: ref19
  article-title: Identification of conversion from normal elderly cognition to Alzheimer’s disease using multimodal support vector machine
  publication-title: Journal of Alzheimer's Disease
  doi: 10.3233/JAD-142820
– volume: 43
  start-page: 25
  year: 2015
  ident: ref48
  article-title: Neuropsychiatric symptoms in Alzheimer's disease: what might be associated brain circuits?
  publication-title: Molecular aspects of medicine
  doi: 10.1016/j.mam.2015.05.005
– volume: 25
  start-page: 552
  issue: 4
  year: 2015
  ident: ref11
  article-title: Predictive Models Based on Support Vector Machines: Whole‐Brain versus Regional Analysis of Structural MRI in the Alzheimer's Disease
  publication-title: Journal of Neuroimaging
  doi: 10.1111/jon.12163
– volume: 35
  start-page: 848
  issue: 5
  year: 2014
  ident: ref17
  article-title: Multivariate classification of blood oxygen level–dependent fMRI data with diagnostic intention: a clinical perspective
  publication-title: American Journal of neuroradiology
  doi: 10.3174/ajnr.A3713
– volume: 36
  start-page: 3076
  issue: 8
  year: 2015
  ident: ref54
  article-title: Neurobiological indicators of disinhibition in posttraumatic stress disorder
  publication-title: Human brain mapping
  doi: 10.1002/hbm.22829
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: ref5
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 7
  start-page: 52
  year: 2016
  ident: ref22
  article-title: Identifying Individuals at High Risk of Psychosis: Predictive Utility of Support Vector Machine using Structural and Functional MRI Data
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2016.00052
– volume: 7
  start-page: e37828
  issue: 5
  year: 2012
  ident: ref32
  article-title: Resting-state multi-spectrum functional connectivity networks for identification of MCI patients
  publication-title: PloS one
  doi: 10.1371/journal.pone.0037828
– volume: 36
  start-page: 12688
  issue: 50
  year: 2016
  ident: ref53
  article-title: The right superior frontal gyrus and individual variation in proactive control of impulsive response
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1175-16.2016
– volume: 36
  start-page: 1140
  issue: 4
  year: 2012
  ident: ref10
  article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
  publication-title: Neuroscience & Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2012.01.004
– volume: 60
  start-page: 253
  issue: 2
  year: 2003
  ident: ref3
  article-title: MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000042480.86872.03
– volume: 23
  start-page: 463
  issue: 3
  year: 1999
  ident: ref24
  article-title: Treatment of baseline drifts in fMRI time series analysis
  publication-title: Journal of computer assisted tomography
  doi: 10.1097/00004728-199905000-00025
– volume: 9
  start-page: 1
  year: 2013
  ident: ref52
  article-title: Neuroanatomical abnormalities before onset of delusions in patients with Alzheimer’s disease: a voxel-based morphometry study
  publication-title: Neuropsychiatric disease and treatment
– volume: 151
  start-page: 72
  year: 2017
  ident: ref67
  article-title: Disease-specific patterns of cortical and subcortical degeneration in a longitudinal study of Alzheimer's disease and behavioural-variant frontotemporal dementia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.032
– volume: 220
  start-page: 101
  issue: 1
  year: 2015
  ident: ref33
  article-title: Multivariate classification of social anxiety disorder using whole brain functional connectivity
  publication-title: Brain Structure and Function
  doi: 10.1007/s00429-013-0641-4
– volume: 121
  start-page: 185
  issue: 3
  year: 2012
  ident: ref60
  article-title: Multichannel fNIRS assessment of overt and covert confrontation naming
  publication-title: Brain and language
  doi: 10.1016/j.bandl.2012.02.001
– volume: 26
  start-page: 1775
  issue: 8
  year: 2014
  ident: ref55
  article-title: The role of right prefrontal and medial cortex in response inhibition: interfering with action restraint and action cancellation using transcranial magnetic brain stimulation
  publication-title: Journal of cognitive neuroscience
  doi: 10.1162/jocn_a_00595
– volume: 24
  start-page: 167
  issue: 1
  year: 2001
  ident: ref46
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Annual review of neuroscience
  doi: 10.1146/annurev.neuro.24.1.167
– volume: 11
  start-page: 50
  issue: 1
  year: 2012
  ident: ref31
  article-title: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis
  publication-title: Biomedical engineering online
  doi: 10.1186/1475-925X-11-50
– volume: 24
  start-page: 7540
  issue: 34
  year: 2004
  ident: ref44
  article-title: Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1921-04.2004
– volume: 25
  start-page: 5
  issue: 1
  year: 2012
  ident: ref36
  article-title: Prediction of conversion from mild cognitive impairment to Alzheimer disease based on Bayesian data mining with ensemble learning
  publication-title: The neuroradiology journal
  doi: 10.1177/197140091202500101
– volume: 10
  start-page: 754
  issue: 7
  year: 2013
  ident: ref8
  article-title: Impaired functional connectivity of the thalamus in Alzheimer's disease and mild cognitive impairment: a resting-state fMRI study
  publication-title: Current Alzheimer Research
  doi: 10.2174/15672050113109990146
– volume: 4
  start-page: 6
  issue: 1
  year: 2015
  ident: ref58
  article-title: Voxel-based meta-analysis of grey matter changes in Alzheimer’s disease
  publication-title: Translational neurodegeneration
  doi: 10.1186/s40035-015-0027-z
– volume: 23
  start-page: 8771
  issue: 25
  year: 2003
  ident: ref45
  article-title: Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.23-25-08771.2003
– volume: 30
  start-page: 619
  issue: 2
  year: 2001
  ident: ref47
  article-title: Functional imaging of neural responses to expectancy and experience of monetary gains and losses
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00303-8
– volume: 279
  start-page: 838
  issue: 3
  year: 2015
  ident: ref38
  article-title: Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis
  publication-title: Radiology
  doi: 10.1148/radiol.2015150220
– volume: 61
  start-page: 438
  issue: 4
  year: 2003
  ident: ref40
  article-title: Mild cognitive impairment Directions for future research
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000080366.90234.7F
– volume: 77
  start-page: e1631
  issue: 12
  year: 2016
  ident: ref51
  article-title: Reduced regional cortical thickness rate of change in donepezil-treated subjects with suspected prodromal Alzheimer’s disease
  publication-title: The Journal of clinical psychiatry
  doi: 10.4088/JCP.15m10413
– volume: 59
  start-page: 1034
  issue: 7
  year: 2002
  ident: ref41
  article-title: Rates of progression in mild cognitive impairment and early Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.59.7.1034
– volume: 44
  start-page: 233
  issue: 1
  year: 2015
  ident: ref50
  article-title: Differentiating the frontal presentation of Alzheimer's disease with FDG-PET
  publication-title: Journal of Alzheimer's Disease
  doi: 10.3233/JAD-141110
– volume: 12
  start-page: 229
  issue: 2
  year: 2014
  ident: ref34
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9204-3
– volume: 25
  start-page: 849
  issue: 6
  year: 2015
  ident: ref59
  article-title: A meta‐analysis of fMRI activation differences during episodic memory in Alzheimer's disease and mild cognitive impairment
  publication-title: Journal of neuroimaging
  doi: 10.1111/jon.12266
– volume: 39
  start-page: 821
  issue: 5
  year: 2014
  ident: ref56
  article-title: A network approach to response inhibition: dissociating functional connectivity of neural components involved in action restraint and action cancellation
  publication-title: European Journal of Neuroscience
  doi: 10.1111/ejn.12425
– volume: 12
  start-page: 12489
  issue: 9
  year: 2012
  ident: ref13
  article-title: Classification of Fruits Using Computer Vision and a Multiclass Support Vector Machine
  publication-title: Sensors
  doi: 10.3390/s120912489
– volume: 8
  start-page: e74070
  issue: 8
  year: 2013
  ident: ref69
  article-title: Initiative AsDN. Structural interactions within the default mode network identified by Bayesian network analysis in Alzheimer’s disease
  publication-title: PloS one
  doi: 10.1371/journal.pone.0074070
– volume: 50
  start-page: 233
  issue: 1
  year: 2016
  ident: ref62
  article-title: Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging
  publication-title: Journal of Alzheimer's Disease
  doi: 10.3233/JAD-150848
– volume: 9
  start-page: 66
  issue: 9
  year: 2015
  ident: ref12
  article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
  publication-title: Frontiers in Computational Neuroscience
– volume: 11
  start-page: e0160697
  issue: 8
  year: 2016
  ident: ref29
  article-title: Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study
  publication-title: PloS one
  doi: 10.1371/journal.pone.0160697
– volume: 71
  start-page: 1127
  issue: 6
  year: 2011
  ident: ref42
  article-title: Different time courses for learning-related changes in amygdala and orbitofrontal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.07.016
– volume: 55
  start-page: 551
  issue: 2
  year: 2017
  ident: ref68
  article-title: Brain Regions Involved in Arousal and Reward Processing are Associated with Apathy in Alzheimer’s Disease and Frontotemporal Dementia
  publication-title: Journal of Alzheimer's Disease
  doi: 10.3233/JAD-160107
– volume: 11
  start-page: 348
  issue: 3
  year: 2016
  ident: ref15
  article-title: Design of a qualitative classification model through fuzzy support vector machine with type‐2 fuzzy expected regression classifier preset
  publication-title: IEEJ Transactions on Electrical and Electronic Engineering
  doi: 10.1002/tee.22224
– volume: 12
  start-page: P922
  issue: 7
  year: 2016
  ident: ref66
  article-title: Functional connectivity of the anterior cingulate cortex in Alzheimer's disease, Parkinson's disease and frontotemporal dementia
  publication-title: Alzheimers & Dementia the Journal of the Alzheimers Association
  doi: 10.1016/j.jalz.2016.06.1907
SSID ssj0053866
Score 2.4411454
Snippet Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0194479
SubjectTerms Accuracy
Alzheimer's disease
Artificial intelligence
Biology and Life Sciences
Brain
Brain mapping
Brain research
Care and treatment
Classification
Cluster analysis
Clusters
Computer and Information Sciences
Cortex (cingulate)
Cortex (frontal)
Dementia
Diagnosis
Engineering
Frontal gyrus
Functional magnetic resonance imaging
Hospitals
Information science
Magnetic resonance imaging
Medical imaging
Medicine and Health Sciences
Neurodegenerative diseases
Neuroimaging
Neurology
Neurosciences
NMR
Nuclear magnetic resonance
Precentral gyrus
Research and Analysis Methods
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQn3hBjK8FBhiENHjI1sSO7TwWxLQhDaTC0CQeItuxWaU2qZaGB_567hI3atCk8cBr79ym9-E7x3e_I-RNkhquldKxyN005l65WBnn4pSXU2WMznWJDc7nn8XpBf90mV3ujPrCmrAeHrgX3LGRzJeMM6lKx5Xx2go4IljOS-mYTyzuvhDztoepfg8GLxYiNMoxmRwHvRyt68odQVLDOZZu7QSiDq9_2JUn62Xd3JRy_l05uROKTu6TeyGHpLP-2ffIHVc9IHvBSxv6NkBJv3tIfsx1VdYr2rRrzLPpr-4dPV11FZSO2mWLOAlUB2QSWnuKszognMVdpxH15_MzuqjobPn7yi1W7vqwoeFO5xG5OPn47cNpHMYpxFbk6SY23EsLG6MRasogj-PGmsybqU2sTox2ee6E1p7nPlFOCp5bJmyGPeeqtFwq9phMKhDgPqFTllrlSwtnQcU908pZllsJ8RYIRuYRYVvZFjZgjePIi2XRXaBJOHP0oipQI0XQSETiYdW6x9q4hf89qm3gRaTs7gOwnyLYT3Gb_UTkJSq96NtOB38vZjgxI8tSnkXkdceBaBkVluP81G3TFGdfvv8D09f5iOkwMPkaxGF1aIGA_4QoXCPOgxEn-LwdkffRRLdSaQpI4_DGFfJJWLk125vJrwYyfimW2FWubjseBQmwTFVEnvRWPkg2zTMJsQFWy5H9j0Q_plSLqw6sPFMig99--j909YzcxafEEsCUHZDJ5rp1zyEn3JgXnfv_Ac-1Yow
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvMAD2sbHygYYhDR4yGhiJ3aeUEFMG9JAKgxV4iGyHXur1CalaXngr-fOdUODJuC1PifNne_D9t3vCHkRJ5orKVWU5XYQcSdtJLW1UcLLgdRa5arEAufzj9npBf8wTsfhwK0JaZUbm-gNdVkbPCOHTXqMd0rgMd_Mv0fYNQpvV0MLjZvkFkKXYUqXGLcbLtDlLAvlckzEr4N0jud1ZY8htOEcE7i23JFH7W9tc28-rZvrAs8_8ye3HNLJDrkbIkk6XIt-l9yw1R65s4UvuEd2g-Y29GWAl351j3wbqaqsZ7RZzTH2pj_8uT2d-axKS810hdgJVAW0Elo7iv074IGRrz6i7nx0RicVHU5_XtnJzC6OGhruee6Ti5P3X96dRqHFQmSyPFlGmjthwFjqTA4YxHZcG506PTCxUbFWNs9tppTjuYulFRnPDctMinXosjRcSPaA9Cpg5z6hA5YY6UoD-0PJHVPSGpYbAT4YBrTI-4RtOF2YgD-ObTCmhb9UE7APWTOuQPkUQT59ErWz5mv8jX_Qv0UhtrSInu1_qBeXRVDGQgvmSsaZkKXlUjtlMth2Gs5LYZmLTZ88xSVQrEtRWxtQDLGLRpomPO2T554CETQqTNG5VKumKc4-ff0Pos-jDtFRIHI1sMOoUBYB34TIXB3Kww4l2AHTGd7HBbvhSlP81hiYuVnE1w8_a4fxoZh2V9l65WkkBMUikX3ycL3mW84meSrAX8Bs0dGGDuu7I9XkygOYpzJL4d2P_v63DshtfD8m_CXskPSWi5V9DBHgUj_xav4LFA9djA
  priority: 102
  providerName: ProQuest
Title Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease
URI https://www.ncbi.nlm.nih.gov/pubmed/29570705
https://www.proquest.com/docview/2017395065
https://www.proquest.com/docview/2018025728
https://pubmed.ncbi.nlm.nih.gov/PMC5865739
https://doaj.org/article/b73fd34378de48bfac6899c44d7e3f1c
http://dx.doi.org/10.1371/journal.pone.0194479
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe27oUXxPhaYBSDkAYPqZrYiZ0HhLqpZUPqQIWiSjxEtmNvldqkNC0CHvjb8aVuRFARiBc_9O7a9OzzneO73yH0LAglFZwLP05016eGa59Lrf2QZl0upUhEBgXOw8v4fEzfTKLJHtr2bHUKLHce7aCf1Hg563z9_O2VNfiXVdcGFmyFOosi1x0bslDKkn10YH0TA1Md0vpewVp3HLsCuj9JAjxwEjFrClHDV1WQ_vXG3VrMinJXVPp7cuUv3mpwC910YSbubdbFIdrT-W106Ay5xM8d2vSLO-jTSORZMcflegFawF-q1_h4XiVZaqxma4BSwMKBl-DCYGjnYT2eXxUjYTMcXeBpjnuz79d6OtfLkxK7a5-7aDzofzg7913HBV_FSbjyJTVM2b1TxrxLbKhHpZKRkV0VKBFIoZNEx0IYmpiAaxbTRJFYRVCWzjNFGSf3UCu3ujxCuEtCxU2m7HGRU0ME14okilmXbAmSJR4iW92mysGRQ1eMWVrdsTF7LNmoKoXJSd3keMivpRYbOI6_8J_CtNW8AKZdfVAsr1Jnm6lkxGSEEsYzTbk0QsX2FKoozZgmJlAeegyTnm4qU-stIe1BU40oCmnkoacVBwBq5JCxcyXWZZlevP34D0zvRw2mE8dkCqsOJVyVhP1PANTV4DxucNptQTXIR7BEt1opUxvpwaWsDTmt5HbZ7iY_qcnwpZCFl-tiXfFwGyOzkHvo_maV15rd2oyHWGP9N1TfpOTT6wrPPOJxZH_7wX9LPkQ34NEgNTAkx6i1Wq71IxsrrmQb7bMJsyM_C2AcvG6jg9P-5btRu3r70q62Bxh_9H8C_L1yng
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BrjAXhAbHysMJhBoMFDRhM7sfOAUPmYWrYOaWxoEg_BduxtUpeUZQXBj-I3cpe6oUET8LLX3NlJz-f76H0R8jiMNFdSqiBJbTfgTtpAamuDiOddqbVKVY4FzsOdpL_P3x3EBwvk56wWBtMqZzKxFtR5afA_cnDSQ4wpgcZ8Of4S4NQojK7ORmhM2WLLfv8GLlv1YvAGzvdJFG2-3XvdD_xUgcAkaXQWaO6EAfmgE9llYM5wbXTsdNeERoVa2TS1iVKOpy6UViQ8NSwxMZZey9xwIRnse4lcBsXbxRslDhoHD2RHkvjyPCbC554bNsZlYTfAlOIcE8bm1F89JaDRBYvjUVmdZ-j-ma85pwA3b5Dr3nKlvSmrLZEFWyyTa3P9DJfJkpcUFX3q21k_u0k-7aoiL09oNRmjrU-_1nECelJncVpqRhPs1UCV745CS0dxXghsGNTVTtQNdwf0uKC90Y8je3xiT9cr6uNKt8j-hRD_NlksgJwrhHZZZKTLDfijkjumpDUsNQJ0PgC0SDuEzSidGd_vHMdujLI6iCfA75kSLsPzyfz5dEjQrBpP-338A_8VHmKDi9266wfl6WHmL3-mBXM540zI3HKpnTIJuLmG81xY5kLTIWvIAtm09LWROVkPp3bEccTjDnlUY2DHjgJTgg7VpKqywfuP_4H0YbeFtO6RXAnkMMqXYcBvwk5gLczVFibIHdMCryDDzqhSZb9vKKycMfH54IcNGDfFNL_ClpMaR4IRLiLZIXemPN9QNkpjAfoJVovWbWiRvg0pjo_qhumxTGJ4992_f9YaudLfG25n24OdrXvkKn4LJhtGbJUsnp1O7H2wPs_0g_rKU_L5omXML2B8mqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDQvCA2PhYYTCDQIOHbE3sxM4DQoMxrYwNtDFUiYdgO_Y2qU3K0oLgp_HruEvdsKAJeNlr7uyk5_N99L4IeRxGmispVZCkthtwJ20gtbVBxPOu1FqlKscC5929ZPuQv-nH_Tnyc1YLg2mVM5lYC-q8NPgfOTjpIcaUQGOuO58W8X5z68XoS4ATpDDSOhunMWWRHfv9G7hv1fPeJpz1kyjaev3h1XbgJwwEJkmjcaC5EwZkhU5kl4Fpw7XRsdNdExoVamXT1CZKOZ66UFqR8NSwxMRYhi1zw4VksO8lclmwOMQ7JvqNswdyJEl8qR4T4brnjLVRWdg1MKs4x-SxM6qwnhjQ6IX50aCszjN6_8zdPKMMt26Q696KpRtTtlsgc7ZYJNfO9DZcJAtealT0qW9t_ewm-bSvirwc0moyQruffq1jBnRYZ3RaagYT7NtAle-UQktHcXYIbBjUlU_U7e736ElBNwY_ju3J0J6uVtTHmG6Rwwsh_m0yXwA5lwjtsshIlxvwTSV3TElrWGoE6H8AaJF2CJtROjO-9zmO4BhkdUBPgA80JVyG55P58-mQoFk1mvb--Af-SzzEBhc7d9cPytOjzAuCTAvmcsaZkLnlUjtlEnB5Dee5sMyFpkNWkAWyaRlsI3-yDZzgEccRjzvkUY2B3TsKvAdHalJVWe_dx_9AOthvIa16JFcCOYzyJRnwm7ArWAtzuYUJMsi0wEvIsDOqVNnv2worZ0x8PvhhA8ZNMeWvsOWkxpFgkItIdsidKc83lI3SWICugtWidRtapG9DipPjunl6LJMY3n3375-1Qq6AdMne9vZ27pGr-CmYdxixZTI_Pp3Y-2CIjvWD-sZT8vmiRcwvj6ee3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+support+vector+machine+cluster+analysis+of+resting-state+fMRI+in+Alzheimer%27s+disease&rft.jtitle=PloS+one&rft.au=Bi%2C+Xia-an&rft.au=Shu%2C+Qing&rft.au=Sun%2C+Qi&rft.au=Xu%2C+Qian&rft.date=2018-03-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pone.0194479&rft_id=info%3Apmid%2F29570705&rft.externalDocID=PMC5865739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon