Scar–free healing: from embryonic mechanisms to adult therapeutic intervention

In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreli...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 359; no. 1445; pp. 839 - 850
Main Authors Ferguson, Mark W. J., O'Kane, Sharon
Format Journal Article
LanguageEnglish
Published England The Royal Society 29.05.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFβ1 and TGFβ2, low levels of platelet-derived growth factor and high levels of TGFβ3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFβ1 and TGFβ2 or adding exogenous TGFβ3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modern wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modern injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments.
AbstractList In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFbeta1 and TGFbeta2, low levels of platelet-derived growth factor and high levels of TGFbeta3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFbeta1 and TGFbeta2 or adding exogenous TGFbeta3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modem wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modem injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments.
In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFβ1 and TGFβ2, low levels of platelet-derived growth factor and high levels of TGFβ3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFβ1 and TGFβ2 or adding exogenous TGFβ3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modern wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modern injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments.
In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar–free healing in embryonic wounds and scar–forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFβ1 and TGFβ2, low levels of platelet–derived growth factor and high levels of TGFβ3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar–free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFβ1 and TGFβ2 or adding exogenous TGFβ3. These experiments result in scar–free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double–blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient–based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modern wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modern injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar–improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments.
Author Ferguson, Mark W. J.
O'Kane, Sharon
AuthorAffiliation UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK. mark.ferguson@man.ac.uk
AuthorAffiliation_xml – name: UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK. mark.ferguson@man.ac.uk
Author_xml – sequence: 3
  givenname: Mark W. J.
  surname: Ferguson
  fullname: Ferguson, Mark W. J.
  email: mark.ferguson@man.ac.uk
  organization: UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
– sequence: 4
  givenname: Sharon
  surname: O'Kane
  fullname: O'Kane, Sharon
  organization: Renovo Limited, Manchester Incubator Building, 48 Grafton Street, Manchester M13 9XX, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15293811$$D View this record in MEDLINE/PubMed
BookMark eNp9Us2O0zAYjNAitrtw5YRQTtxS_Jc_DiBYwYJUBNotXC0n-dy4JHaxnUI58Q68IU-C21RlK8SeLGvmm5nP47PoRBsNUfQQoylGZfHUOl9NCUJsilme3okm4cAJKXN0Ek1QmZGkYDQ7jc6cWyKEyjRn96JTnJKSFhhPoo_XtbC_f_6SFiBuQXRKL57F0po-hr6yG6NVHfdQt0Ir17vYm1g0Q-dj34IVKxh8wJX2YNegvTL6fnRXis7Bg_15Hn1683p-8TaZfbh8d_FyltRZSXxSoQZkTkRdS1qwCiTN84zlRZpLUVYENxmRVVVJKSSGhghGCokZ0EqIpkAVoufR81F3NVQ9NHVwt6LjK6t6YTfcCMWPEa1avjBrjrOS0owGgSd7AWu-DuA875WroeuEBjM4nmV5miGWBuJ0JNbWOGdBHkww4tsS-LYEvi2Bb0sIA49vRvtL3796ILiRYM0mvJGpFfgNX5rB6nDlV9fzV7gs0ZqmpcKMpRwVFKOckmD4Q612flsCDwSunBuA72jHOf6NRW9z_e8yj8appfPGHnZhmBGMWYCTEVbOw_cDLOwXnuU0hPhcMD6_vMLvEUV8FvgvRn6rFu03ZYEfpdmZ1yb8J-132-32KmjJ5dCFdhsZFNCtCmazCho3Z-kf3lwAdA
CitedBy_id crossref_primary_10_1155_2009_625376
crossref_primary_10_1038_s41598_024_58779_0
crossref_primary_10_1016_j_ydbio_2015_03_008
crossref_primary_10_1002_jcb_22355
crossref_primary_10_1016_j_jtbi_2010_12_011
crossref_primary_10_1016_j_isci_2020_100841
crossref_primary_10_1017_S1462399409001124
crossref_primary_10_1111_j_1440_169X_2005_00831_x
crossref_primary_10_1016_j_msec_2018_12_038
crossref_primary_10_1002_lary_22389
crossref_primary_10_1097_PRS_0b013e3181ef8e66
crossref_primary_10_3390_cells11172740
crossref_primary_10_1186_1471_213X_11_50
crossref_primary_10_5966_sctm_2013_0120
crossref_primary_10_1097_01_ico_0000178743_06340_2c
crossref_primary_10_1111_dgd_12544
crossref_primary_10_1016_j_aanat_2018_12_005
crossref_primary_10_3390_ijms24119745
crossref_primary_10_1088_1758_5090_8_3_032001
crossref_primary_10_1369_jhc_2009_952572
crossref_primary_10_3897_biodiscovery_20_e11207
crossref_primary_10_1126_science_aam7928
crossref_primary_10_1515_jpm_2023_0211
crossref_primary_10_1155_2019_2352079
crossref_primary_10_1088_1748_605X_aaac37
crossref_primary_10_1111_exd_12457
crossref_primary_10_1016_j_jdermsci_2009_09_005
crossref_primary_10_1016_j_pep_2015_02_014
crossref_primary_10_1016_j_ydbio_2023_12_008
crossref_primary_10_1097_PRS_0b013e318217429b
crossref_primary_10_1155_2017_1472642
crossref_primary_10_3390_ijms20030538
crossref_primary_10_1177_1534734608322983
crossref_primary_10_1038_ncomms11394
crossref_primary_10_1016_j_diff_2017_12_001
crossref_primary_10_1097_SAP_0b013e31826af01a
crossref_primary_10_1155_2015_712546
crossref_primary_10_1016_j_cps_2008_11_008
crossref_primary_10_1098_rspb_2012_0319
crossref_primary_10_1007_s12631_011_0151_2
crossref_primary_10_1002_dvdy_23977
crossref_primary_10_1089_zeb_2012_0759
crossref_primary_10_1371_journal_pone_0032875
crossref_primary_10_1038_sj_jid_5701119
crossref_primary_10_2353_ajpath_2009_090380
crossref_primary_10_1007_s10561_018_9732_z
crossref_primary_10_1007_s00238_015_1126_x
crossref_primary_10_1586_erd_09_57
crossref_primary_10_1155_2018_9525624
crossref_primary_10_1097_PRS_0b013e318188245e
crossref_primary_10_1016_j_carbpol_2008_11_002
crossref_primary_10_1002_dvdy_22753
crossref_primary_10_1016_j_apmt_2017_12_007
crossref_primary_10_1089_wound_2015_0634
crossref_primary_10_1016_j_anplas_2019_07_008
crossref_primary_10_1016_j_cps_2011_09_004
crossref_primary_10_1039_D0BM01928C
crossref_primary_10_1111_dsu_12472
crossref_primary_10_5604_16652681_1198820
crossref_primary_10_1583_06_1846_1
crossref_primary_10_1016_j_cobme_2018_02_006
crossref_primary_10_17555_jvc_2022_39_5_272
crossref_primary_10_1146_annurev_cellbio_092910_154251
crossref_primary_10_3390_ani10111938
crossref_primary_10_1002_jor_22504
crossref_primary_10_1111_j_1742_481X_2006_00239_x
crossref_primary_10_1002_dvdy_21774
crossref_primary_10_1002_jbmr_3178
crossref_primary_10_1007_s11515_012_1192_4
crossref_primary_10_1016_S1532_3382_12_70022_2
crossref_primary_10_2310_7750_2010_09069
crossref_primary_10_1177_1535370214542067
crossref_primary_10_3390_ijms24097895
crossref_primary_10_1016_j_tox_2006_05_017
crossref_primary_10_1016_j_zool_2019_125737
crossref_primary_10_2353_ajpath_2009_090248
crossref_primary_10_1038_jid_2011_223
crossref_primary_10_1186_s40662_020_00217_z
crossref_primary_10_1016_j_ejps_2018_11_009
crossref_primary_10_1097_PRS_0b013e3181a205de
crossref_primary_10_1016_j_bbrc_2014_09_077
crossref_primary_10_1016_j_addr_2018_02_010
crossref_primary_10_1016_j_bmcl_2012_04_013
crossref_primary_10_1016_j_mehy_2009_03_054
crossref_primary_10_1016_j_jcyt_2013_10_008
crossref_primary_10_1016_j_bbamcr_2015_02_004
crossref_primary_10_1089_wound_2012_0389
crossref_primary_10_3109_03008207_2012_657309
crossref_primary_10_1203_PDR_0b013e31816a7453
crossref_primary_10_55095_achot2008_005
crossref_primary_10_1002_path_2831
crossref_primary_10_3390_jfb9040065
crossref_primary_10_1007_s00441_011_1136_3
crossref_primary_10_2174_1386207323666200717150414
crossref_primary_10_1111_j_1524_475X_2012_00775_x
crossref_primary_10_1016_j_addr_2018_02_007
crossref_primary_10_1007_s00238_017_1307_x
crossref_primary_10_1016_j_biomaterials_2018_03_006
crossref_primary_10_1111_wrr_12659
crossref_primary_10_1038_nature05664
crossref_primary_10_1016_j_biomaterials_2018_04_036
crossref_primary_10_1016_j_tibtech_2007_12_007
crossref_primary_10_1016_j_jid_2023_12_016
crossref_primary_10_1007_s11538_011_9712_y
crossref_primary_10_1016_j_jevs_2023_104262
crossref_primary_10_1016_j_actbio_2020_06_031
crossref_primary_10_1371_journal_pcbi_1000030
crossref_primary_10_3109_03008207_2010_534208
crossref_primary_10_1080_03008207_2019_1698556
crossref_primary_10_1080_17425247_2020_1819787
crossref_primary_10_1089_ten_2006_12_537
crossref_primary_10_1111_j_1749_6632_2008_03801_x
crossref_primary_10_1586_17434440_2_4_429
crossref_primary_10_5435_JAAOS_D_18_00638
crossref_primary_10_3892_mmr_2016_4944
crossref_primary_10_1007_s00586_014_3438_0
crossref_primary_10_1002_der2_13
crossref_primary_10_1016_j_ijbiomac_2015_02_041
crossref_primary_10_1097_PRS_0000000000005455
crossref_primary_10_1002_ggn2_10025
crossref_primary_10_1038_s41556_018_0073_8
crossref_primary_10_1186_s13287_020_01992_1
crossref_primary_10_1111_bjd_13954
crossref_primary_10_1016_j_ijsu_2005_05_002
crossref_primary_10_3389_fneur_2023_1184246
crossref_primary_10_1007_s12015_006_0050_7
crossref_primary_10_1111_j_1529_8027_2007_00148_x
crossref_primary_10_3389_fimmu_2024_1395479
crossref_primary_10_1007_s00018_011_0663_0
crossref_primary_10_1002_reg2_97
crossref_primary_10_1038_nrurol_2012_158
crossref_primary_10_1089_wound_2020_1257
crossref_primary_10_1089_ten_tea_2009_0254
crossref_primary_10_1111_j_1469_7580_2011_01366_x
crossref_primary_10_1002_dvdy_24561
crossref_primary_10_1002_jbm_a_33083
crossref_primary_10_1111_j_1460_9568_2007_05439_x
crossref_primary_10_1016_j_medcli_2014_09_012
crossref_primary_10_1039_C4BM00246F
crossref_primary_10_1111_j_1529_8027_2006_00100_x
crossref_primary_10_1002_term_521
crossref_primary_10_1016_j_medcle_2016_02_028
crossref_primary_10_1111_jcmm_14313
crossref_primary_10_1111_j_1365_3083_2011_02523_x
crossref_primary_10_1038_jid_2013_290
crossref_primary_10_1186_s41232_023_00265_7
crossref_primary_10_1371_journal_pone_0155618
crossref_primary_10_1080_14647270801965954
crossref_primary_10_1016_j_micron_2022_103215
crossref_primary_10_1016_j_rvsc_2011_03_020
crossref_primary_10_1155_2018_5196023
crossref_primary_10_55095_achot2008_045
crossref_primary_10_1089_wound_2018_0900
crossref_primary_10_3389_fphar_2018_00672
crossref_primary_10_1097_SAP_0b013e3181788ec9
crossref_primary_10_1111_iwj_13286
crossref_primary_10_1101_cshperspect_a041241
crossref_primary_10_1016_j_ajpath_2010_12_025
crossref_primary_10_1016_j_burns_2009_11_014
crossref_primary_10_1016_j_imbio_2015_11_002
crossref_primary_10_1097_01_ASW_0000288208_85807_b8
crossref_primary_10_1080_15476278_2017_1421882
crossref_primary_10_1016_j_regen_2019_100022
crossref_primary_10_1038_s41598_020_70658_y
crossref_primary_10_1007_s10103_018_2628_0
crossref_primary_10_1016_j_carpath_2004_11_005
crossref_primary_10_1016_j_colsurfb_2016_11_036
crossref_primary_10_3109_03008207_2013_787418
crossref_primary_10_1242_dmm_033092
crossref_primary_10_3390_ijms19030835
crossref_primary_10_1111_bjd_17076
crossref_primary_10_1016_j_jss_2014_02_030
crossref_primary_10_1002_jmor_20953
crossref_primary_10_1038_jid_2008_118
crossref_primary_10_1111_j_1469_7580_2006_00632_x
crossref_primary_10_1016_j_cytogfr_2017_09_003
crossref_primary_10_1038_ki_2008_351
crossref_primary_10_1002_stem_2842
crossref_primary_10_1016_j_proghi_2013_12_001
crossref_primary_10_1038_s41580_024_00733_z
crossref_primary_10_1016_S0140_6736_09_60322_6
crossref_primary_10_1111_j_1365_2230_2010_03779_x
crossref_primary_10_1177_0883911510391445
crossref_primary_10_1111_eve_12466
crossref_primary_10_1016_j_jid_2019_06_137
crossref_primary_10_2165_1153419_S0_000000000_00000
crossref_primary_10_1002_dvdy_24520
crossref_primary_10_1016_j_mtbio_2023_100589
crossref_primary_10_1186_s13287_020_01662_2
crossref_primary_10_1016_j_mayocp_2013_04_001
crossref_primary_10_1586_17469899_2_1_79
crossref_primary_10_1155_2014_750602
crossref_primary_10_1016_j_actbio_2016_06_039
crossref_primary_10_1016_j_bbrc_2015_07_076
crossref_primary_10_1155_2017_2540540
crossref_primary_10_3390_cells8060607
crossref_primary_10_1016_j_addr_2015_04_018
crossref_primary_10_1177_0883911509105847
crossref_primary_10_1016_j_yacs_2019_02_003
crossref_primary_10_1242_jeb_126862
crossref_primary_10_1111_jocd_15298
crossref_primary_10_12688_f1000research_18293_1
crossref_primary_10_1002_adbi_202000176
crossref_primary_10_1038_jid_2014_169
crossref_primary_10_1016_j_jtbi_2013_03_013
crossref_primary_10_33589_22_2_0037
crossref_primary_10_1002_lary_21759
crossref_primary_10_1007_s40610_016_0045_3
crossref_primary_10_3109_14764170903352878
crossref_primary_10_3390_ani11010234
crossref_primary_10_3103_S0096392520010046
crossref_primary_10_1002_ar_b_20082
crossref_primary_10_1371_journal_pone_0001227
crossref_primary_10_3390_ijms19061778
crossref_primary_10_1177_1933719116638177
crossref_primary_10_1007_s00335_011_9320_z
crossref_primary_10_3389_fnagi_2014_00044
crossref_primary_10_1097_PRS_0b013e3181a80747
crossref_primary_10_1016_j_cveq_2011_05_001
crossref_primary_10_1097_SLA_0b013e318243a4db
crossref_primary_10_1098_rsif_2008_0536
crossref_primary_10_1111_prd_12546
crossref_primary_10_3390_biom11081095
crossref_primary_10_1111_j_1440_169X_2005_00830_x
crossref_primary_10_1155_2010_405262
crossref_primary_10_1371_journal_pone_0010044
crossref_primary_10_1242_dmm_013326
crossref_primary_10_1016_j_matbio_2011_04_004
crossref_primary_10_1186_1749_8104_6_1
crossref_primary_10_1111_cpr_13087
crossref_primary_10_1016_j_cytogfr_2015_11_006
crossref_primary_10_1080_17469899_2022_2101998
crossref_primary_10_1002_term_2004
crossref_primary_10_1517_13543780903130594
crossref_primary_10_23873_2074_0506_2022_14_4_432_443
crossref_primary_10_1111_j_1469_7580_2006_00641_x
crossref_primary_10_1111_etp_12008
crossref_primary_10_1177_000348940811700912
crossref_primary_10_1177_0363546518757759
crossref_primary_10_1002_smll_202101384
crossref_primary_10_1016_j_ydbio_2017_09_025
crossref_primary_10_1016_j_xrrt_2021_10_008
crossref_primary_10_1109_TBME_2010_2103075
crossref_primary_10_1002_dvdy_22553
crossref_primary_10_1186_s12893_020_00932_3
crossref_primary_10_1515_biol_2019_0047
crossref_primary_10_1002_term_2128
crossref_primary_10_1016_j_jid_2018_05_031
crossref_primary_10_1007_s00018_016_2252_8
crossref_primary_10_1016_j_jss_2014_01_041
crossref_primary_10_1111_joa_12368
crossref_primary_10_1038_nature07039
crossref_primary_10_1039_C8TB03071E
crossref_primary_10_1089_ten_teb_2016_0202
crossref_primary_10_1098_rsif_2006_0179
crossref_primary_10_1155_2016_9176357
crossref_primary_10_1016_j_ajpath_2014_05_012
crossref_primary_10_1016_j_bbagen_2016_02_009
crossref_primary_10_1152_physrev_00013_2005
crossref_primary_10_1016_j_aanat_2016_12_001
crossref_primary_10_1016_j_matpr_2021_06_157
crossref_primary_10_1007_s00403_012_1240_6
crossref_primary_10_3109_14764172_2010_514923
crossref_primary_10_1002_art_27307
crossref_primary_10_1097_PRS_0b013e318199f01d
crossref_primary_10_1083_jcb_200507111
crossref_primary_10_3390_nano13040706
crossref_primary_10_1089_wound_2013_0429
crossref_primary_10_1007_s10522_016_9650_z
crossref_primary_10_1007_s10735_018_9756_5
crossref_primary_10_1007_s11605_011_1819_9
crossref_primary_10_1098_rsta_2006_1773
crossref_primary_10_12968_jowc_2017_26_1_5
crossref_primary_10_1111_j_1600_051X_2010_01696_x
crossref_primary_10_1007_s00449_012_0786_1
crossref_primary_10_1007_s00701_012_1382_5
crossref_primary_10_1097_01_moo_0000170525_74264_f8
crossref_primary_10_1186_s13287_019_1203_3
crossref_primary_10_1038_ki_2010_418
crossref_primary_10_1242_dmm_049801
crossref_primary_10_12968_joan_2019_8_8_362
crossref_primary_10_1016_j_hansur_2024_101678
crossref_primary_10_1007_s12192_011_0274_6
crossref_primary_10_4236_health_2020_127053
crossref_primary_10_1016_j_biomaterials_2007_07_031
crossref_primary_10_1152_japplphysiol_00858_2011
crossref_primary_10_1042_BST0330413
crossref_primary_10_1016_j_ultrasmedbio_2020_03_003
crossref_primary_10_1002_jbm_a_34413
crossref_primary_10_1080_10717544_2022_2086943
crossref_primary_10_3390_ijms21238936
crossref_primary_10_2217_epi_2016_0068
crossref_primary_10_1097_DSS_0000000000001060
crossref_primary_10_1016_j_yhbeh_2010_10_005
crossref_primary_10_1080_00914037_2019_1575828
crossref_primary_10_18632_oncotarget_8501
crossref_primary_10_3390_nano14080730
crossref_primary_10_1096_fj_05_5229fje
crossref_primary_10_2217_rme_2021_0076
crossref_primary_10_1111_j_1365_4632_2011_04940_x
crossref_primary_10_1186_s12864_017_4202_8
crossref_primary_10_1097_TA_0b013e31802c8247
crossref_primary_10_3390_nu9060532
crossref_primary_10_1016_j_burns_2006_02_023
crossref_primary_10_1111_febs_14842
crossref_primary_10_1586_17434440_3_4_471
crossref_primary_10_3390_ijms22115619
crossref_primary_10_22467_jwmr_2022_02201
crossref_primary_10_1002_dvdy_650
crossref_primary_10_1177_1753193410394521
crossref_primary_10_1177_1753193413489639
crossref_primary_10_1101_cshperspect_a041229
crossref_primary_10_1080_03008207_2018_1489381
crossref_primary_10_1002_jez_b_21371
crossref_primary_10_1016_j_expneurol_2024_114692
crossref_primary_10_1038_s41598_022_07124_4
crossref_primary_10_1111_exd_13909
crossref_primary_10_1242_jeb_226076
crossref_primary_10_1007_s12634_018_0001_1
crossref_primary_10_4236_jcdsa_2017_71009
crossref_primary_10_1111_bpa_12162
crossref_primary_10_1142_S021881041750037X
crossref_primary_10_1016_j_bjps_2011_07_009
crossref_primary_10_1098_rstb_2004_1468
crossref_primary_10_1016_j_actbio_2022_04_028
crossref_primary_10_12687_phleb2303_2_2016
crossref_primary_10_1007_s00125_008_1051_7
crossref_primary_10_3389_fimmu_2023_1214757
crossref_primary_10_1051_medsci_201026189
crossref_primary_10_1111_j_1469_7580_2005_00431_x
crossref_primary_10_3389_fsurg_2021_644057
crossref_primary_10_1016_j_regen_2019_100025
crossref_primary_10_1038_s41467_021_26495_2
crossref_primary_10_1111_wrr_12098
crossref_primary_10_1016_j_cps_2012_07_012
crossref_primary_10_1089_wound_2017_0763
crossref_primary_10_1093_asj_sjw151
crossref_primary_10_1155_2017_6471071
crossref_primary_10_1016_j_cyto_2016_04_008
crossref_primary_10_1517_17460441_2013_761202
crossref_primary_10_1007_s12221_020_9771_5
crossref_primary_10_1097_SCS_0b013e318175f3a7
crossref_primary_10_1002_dvdy_24474
crossref_primary_10_1007_s00347_006_1404_x
crossref_primary_10_1111_j_1463_6395_2009_00409_x
crossref_primary_10_1097_SCS_0000000000005161
crossref_primary_10_1038_s41536_017_0023_2
crossref_primary_10_1016_j_semcdb_2021_05_005
crossref_primary_10_1590_1414_431x2021e11735
crossref_primary_10_1097_PRS_0b013e3181a0741d
crossref_primary_10_1186_s12891_023_06425_7
crossref_primary_10_3390_biology12050733
crossref_primary_10_1039_C5RA18287E
crossref_primary_10_1002_dvdy_24224
crossref_primary_10_1097_01_prs_0000304612_72899_02
crossref_primary_10_1103_PRXLife_1_013009
crossref_primary_10_3892_etm_2018_6350
crossref_primary_10_1038_s41598_017_05869_x
crossref_primary_10_1016_j_jaad_2011_05_055
crossref_primary_10_1089_wound_2020_1284
crossref_primary_10_2165_11585010_000000000_00000
crossref_primary_10_1902_jop_2013_130348
crossref_primary_10_1016_j_matbio_2006_07_008
crossref_primary_10_1167_iovs_65_3_35
crossref_primary_10_1016_j_jddst_2018_09_021
crossref_primary_10_1111_j_1440_169X_2007_00973_x
crossref_primary_10_1002_jmor_20631
crossref_primary_10_1039_c2jm00134a
crossref_primary_10_1371_journal_pone_0059105
crossref_primary_10_1016_j_burns_2017_03_017
crossref_primary_10_1016_j_drudis_2008_08_009
crossref_primary_10_1016_j_matpr_2021_05_638
crossref_primary_10_1016_j_preteyeres_2021_101039
crossref_primary_10_1080_10408360701713120
crossref_primary_10_2106_JBJS_CC_21_00066
crossref_primary_10_1371_journal_pone_0135324
crossref_primary_10_1128_microbiolspec_MCHD_0017_2015
crossref_primary_10_1007_s12285_018_0157_2
crossref_primary_10_1186_s13018_018_0781_6
crossref_primary_10_1002_adhm_201601422
crossref_primary_10_1111_iep_12031
crossref_primary_10_1002_lio2_214
crossref_primary_10_1097_PRS_0b013e3181c9f6d3
crossref_primary_10_1111_wrr_12398
crossref_primary_10_1039_c2sm00030j
crossref_primary_10_1096_fj_202001768RR
crossref_primary_10_1002_jmor_21484
crossref_primary_10_1542_peds_2014_2065
crossref_primary_10_23868_201808021
crossref_primary_10_1016_j_mehy_2019_03_021
crossref_primary_10_3390_jcm10245947
crossref_primary_10_1016_j_aanat_2017_12_008
crossref_primary_10_1016_j_bbrc_2013_05_125
crossref_primary_10_1681_ASN_2011060603
crossref_primary_10_2174_1574886318666230509143017
crossref_primary_10_2165_00128071_200607060_00003
crossref_primary_10_3390_ijms20123002
crossref_primary_10_1098_rsif_2005_0062
crossref_primary_10_1097_01_wnr_0000230519_39456_ea
crossref_primary_10_1590_S0100_879X2009005000042
crossref_primary_10_1016_j_autrev_2016_07_007
crossref_primary_10_1016_j_matpr_2021_05_625
crossref_primary_10_1016_j_repbio_2014_01_004
crossref_primary_10_2460_ajvr_72_5_699
crossref_primary_10_1002_lio2_202
crossref_primary_10_1002_jez_b_22835
crossref_primary_10_1007_s12634_018_5560_1
crossref_primary_10_1016_j_jbc_2021_101530
crossref_primary_10_1002_sctm_17_0236
crossref_primary_10_1002_jez_b_22950
crossref_primary_10_1067_j_cpsurg_2007_07_001
crossref_primary_10_1002_advs_202100407
crossref_primary_10_1002_sstr_202000137
crossref_primary_10_3390_ijms17122085
crossref_primary_10_1016_j_jid_2016_11_006
crossref_primary_10_1098_rsif_2009_0403
crossref_primary_10_1038_srep26792
crossref_primary_10_1016_j_actbio_2012_06_042
crossref_primary_10_1093_intimm_dxv069
crossref_primary_10_2165_00063030_200519060_00004
crossref_primary_10_1111_wrr_12180
crossref_primary_10_1002_path_5589
crossref_primary_10_1111_wrr_12063
crossref_primary_10_11603_2311_9624_2023_2_3_14141
crossref_primary_10_3390_pharmaceutics12080735
crossref_primary_10_1111_joa_12784
crossref_primary_10_1016_j_biomaterials_2017_04_041
crossref_primary_10_1016_j_carbpol_2022_119520
crossref_primary_10_4161_cam_4_3_11917
crossref_primary_10_5999_aps_2012_39_5_463
crossref_primary_10_1016_j_cytogfr_2009_07_002
crossref_primary_10_1371_journal_pone_0097972
crossref_primary_10_3390_cells9020306
crossref_primary_10_1097_01_jsa_0000173230_61276_f4
crossref_primary_10_2217_rme_2023_0145
crossref_primary_10_1371_journal_pone_0051411
crossref_primary_10_2217_17460751_4_2_205
crossref_primary_10_1111_brv_12072
crossref_primary_10_1002_jcp_29302
crossref_primary_10_1016_j_jcyt_2016_05_008
crossref_primary_10_1155_2010_690613
crossref_primary_10_1002_jmor_20155
crossref_primary_10_1093_ndt_gfs283
crossref_primary_10_1007_s00784_024_05641_2
crossref_primary_10_1667_RR1295_1
crossref_primary_10_1002_adfm_202400613
crossref_primary_10_1089_neu_2006_23_422
crossref_primary_10_1111_aor_12807
crossref_primary_10_1111_prd_12076
crossref_primary_10_1016_j_jbiomech_2005_05_011
crossref_primary_10_1111_j_1365_2559_2006_02559_x
crossref_primary_10_3389_fcell_2021_657621
crossref_primary_10_1002_ar_22490
crossref_primary_10_1016_j_ydbio_2023_06_013
crossref_primary_10_4995_wrs_2016_3965
crossref_primary_10_1016_j_tcb_2005_09_002
crossref_primary_10_1016_j_jcyt_2022_07_004
crossref_primary_10_1007_s00266_010_9621_8
crossref_primary_10_1089_scd_2007_0239
crossref_primary_10_1016_j_msec_2014_12_068
crossref_primary_10_1186_s40001_018_0357_2
crossref_primary_10_1111_srt_13199
crossref_primary_10_5812_ircmj_29536
crossref_primary_10_1007_s00106_010_2124_8
crossref_primary_10_3390_jdb9030036
crossref_primary_10_1126_scitranslmed_3009337
crossref_primary_10_1016_j_athoracsur_2017_11_035
crossref_primary_10_1101_sqb_2005_70_013
crossref_primary_10_3389_fmed_2020_615774
crossref_primary_10_1016_j_jsps_2023_03_014
crossref_primary_10_1002_bdrc_21019
crossref_primary_10_1096_fj_202001881R
crossref_primary_10_1152_ajpregu_00349_2014
crossref_primary_10_1002_path_4049
crossref_primary_10_1016_j_hansur_2019_06_002
crossref_primary_10_1002_bdrc_21016
crossref_primary_10_1016_j_ceb_2016_04_001
crossref_primary_10_1177_000348940811700213
crossref_primary_10_1016_j_jid_2020_04_030
crossref_primary_10_1002_jez_b_22754
crossref_primary_10_3389_fbioe_2021_681501
crossref_primary_10_1155_2015_121575
crossref_primary_10_1111_j_1524_475X_2012_00821_x
crossref_primary_10_1007_s10522_011_9343_6
crossref_primary_10_1097_SAP_0b013e3181d376f9
crossref_primary_10_1111_wrr_12141
crossref_primary_10_3390_molecules27238239
crossref_primary_10_1111_wrr_12143
crossref_primary_10_1080_08977190701723505
crossref_primary_10_1163_156856208784909345
crossref_primary_10_1016_j_transproceed_2012_01_128
crossref_primary_10_1080_09273948_2020_1780271
crossref_primary_10_1016_j_jvs_2005_08_041
crossref_primary_10_1016_j_semcdb_2019_11_014
crossref_primary_10_1016_S0002_9440_10_61190_X
crossref_primary_10_1002_term_2812
crossref_primary_10_1111_j_1742_481X_2009_00597_x
crossref_primary_10_1016_j_jse_2014_02_029
crossref_primary_10_3390_polym16050573
crossref_primary_10_1007_s40883_021_00229_8
crossref_primary_10_1016_j_semcdb_2016_08_008
crossref_primary_10_1016_j_cps_2016_03_004
crossref_primary_10_1002_jez_b_22771
crossref_primary_10_1111_dth_12714
crossref_primary_10_1111_joa_13782
crossref_primary_10_1111_wrr_12274
crossref_primary_10_1111_wrr_13000
crossref_primary_10_1007_s00018_012_1152_9
crossref_primary_10_1016_j_cyto_2005_06_015
crossref_primary_10_1002_jbm_a_32844
crossref_primary_10_1371_journal_pone_0163092
crossref_primary_10_1155_2022_4586569
crossref_primary_10_3390_jdb9040048
crossref_primary_10_1007_s10665_014_9774_6
crossref_primary_10_1111_imm_12732
Cites_doi 10.1038/35018085
10.1242/dev.112.2.651
10.1098/rstb.2004.1472
10.1242/jcs.107.5.1137
10.1242/jcs.108.3.985
10.1098/rstb.2004.1468
10.1002/jez.10144
10.1016/S1357-2725(96)00120-3
10.1016/S0960-9822(02)00839-4
10.1093/oxfordjournals.molbev.a004023
10.1007/978-3-642-49295-2_8
10.1097/00000658-199401000-00011
10.1242/jcs.99.3.583
10.1038/nm1197-1209
10.1098/rstb.2004.1467
10.1073/pnas.94.4.1441
10.1002/(SICI)1097-0177(199807)212:3<385::AID-AJA6>3.0.CO;2-D
10.1111/1523-1747.ep12289705
10.1046/j.1469-7580.1997.19030351.x
10.1097/00006534-199811000-00022
10.4049/jimmunol.161.4.1983
10.1016/0140-6736(92)90009-R
10.1038/ng1295-409
10.1097/00006534-199604000-00029
10.1002/dvdy.10242
10.1016/S0002-9440(10)65217-0
10.1097/00041552-200105000-00007
10.1007/978-3-0348-8354-2_8
10.1136/bmj.326.7380.88
10.1201/b14004-11
10.1006/dbio.1995.1141
10.1016/S0012-1606(05)80018-1
10.1172/JCI11867
10.1016/S0168-8278(00)80412-2
10.1098/rstb.2004.1470
10.1007/978-1-4899-0185-9_18
ContentType Journal Article
Copyright Copyright 2004 The Royal Society
Copyright_xml – notice: Copyright 2004 The Royal Society
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1098/rstb.2004.1475
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
EISSN 1471-2970
Editor Martin, P.
Brockes, J. P.
Editor_xml – sequence: 1
  givenname: J. P.
  surname: Brockes
  fullname: Brockes, J. P.
  organization: 1UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
– sequence: 1
  givenname: J. P.
  surname: Brockes
  fullname: Brockes, J. P.
– sequence: 2
  givenname: P.
  surname: Martin
  fullname: Martin, P.
  organization: 1UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
– sequence: 2
  givenname: P.
  surname: Martin
  fullname: Martin, P.
EndPage 850
ExternalDocumentID 10_1098_rstb_2004_1475
15293811
4142114
ark_67375_V84_TGR1M030_L
royptb_359_1445_839
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID -
02
0R
29O
2WC
4.4
53G
8RP
ABBHK
ABFLS
ABPTK
ABXXB
ACPRK
ADACO
ADBBV
ADULT
ADZLD
AEUPB
AFRAH
AGCAB
ALMA_UNASSIGNED_HOLDINGS
AS
BGBPD
CAG
COF
DCCCD
DIK
DNJUQ
DOOOF
DWIUU
E3Z
EBS
EJD
F5P
GX1
H13
HQ3
HTVGU
HYE
HZ
JLS
JPM
JSG
JSODD
JST
K-O
KQ8
MV1
MVM
O0-
O9-
OK1
OP1
RHF
ROL
RPM
RRY
SA0
TN5
V1E
WOQ
X
XHC
YNT
---
-~X
0R~
AACGO
AANCE
ABPLY
ABTLG
ABXSQ
ACQIA
ACSFO
ADACV
AEXZC
AJZGM
ALMYZ
AOIJS
AQVQM
AS~
BSCLL
BTFSW
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
MRS
W8F
WHG
~02
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c692t-b0def72accf384bef377647857fa9b21d62fbbbffaf1ed2a428f14e3baad80b03
IEDL.DBID RPM
ISSN 0962-8436
IngestDate Tue Sep 17 21:22:34 EDT 2024
Fri Oct 25 10:18:27 EDT 2024
Thu Sep 26 18:54:04 EDT 2024
Sat Sep 28 07:40:55 EDT 2024
Wed Jan 17 02:37:39 EST 2024
Tue May 24 16:18:36 EDT 2022
Fri Feb 02 07:03:10 EST 2024
Wed Oct 30 09:50:55 EDT 2024
Tue Jan 05 21:45:58 EST 2021
Mon May 06 11:44:09 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1445
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-b0def72accf384bef377647857fa9b21d62fbbbffaf1ed2a428f14e3baad80b03
Notes istex:192054718996A03CBD8852DB08358DA84DC45653
ark:/67375/V84-TGR1M030-L
Discussion Meeting Issue 'New directions in tissue repair and regeneration' organized by J. P. Brockes and P. Martin
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://europepmc.org/articles/pmc1693363?pdf=render
PMID 15293811
PQID 66756045
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1098_rstb_2004_1475
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693363
proquest_miscellaneous_66756045
istex_primary_ark_67375_V84_TGR1M030_L
royalsociety_journals_RSTB1990v359i1445_0831073210_zip_rstb1990_359_issue_1445_rstb_2004_1475_rstb_2004_1475
royalsociety_journals_10_1098_rstb_2004_1475
jstor_primary_4142114
highwire_royalsociety_royptb_359_1445_839
pubmed_primary_15293811
ProviderPackageCode RHF
PublicationCentury 2000
PublicationDate 20040529
2004-05-29
2004-May-29
PublicationDateYYYYMMDD 2004-05-29
PublicationDate_xml – month: 5
  year: 2004
  text: 20040529
  day: 29
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2004
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References 10514397 - Am J Pathol. 1999 Oct;155(4):1137-46
7750642 - Dev Biol. 1995 May;169(1):242-60
7542672 - J Cell Sci. 1995 Mar;108 ( Pt 3):985-1002
9671942 - Dev Dyn. 1998 Jul;212(3):385-93
12015114 - Curr Biol. 2002 May 14;12(10):778-86
15293808 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):799-808
10910359 - Nature. 2000 Jul 13;406(6792):188-92
9076942 - Int J Biochem Cell Biol. 1997 Jan;29(1):63-78
11525949 - Eur J Dermatol. 2001 Sep-Oct;11(5):424-31
15293812 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):851-6
1879607 - Dev Biol. 1991 Sep;147(1):207-15
9810991 - Plast Reconstr Surg. 1998 Nov;102(6):1954-61
9037072 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1441-6
10728791 - J Hepatol. 2000;32(1 Suppl):19-31
9147222 - J Anat. 1997 Apr;190 ( Pt 3):351-65
15293804 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):765-76
1724421 - Development. 1991 Jun;112(2):651-68
9359694 - Nat Med. 1997 Nov;3(11):1209-15
15293806 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):785-93
12362429 - J Exp Zool. 2002 Oct 15;294(3):179-215
1719005 - J Cell Sci. 1991 Jul;99 ( Pt 3):583-6
12411608 - Mol Biol Evol. 2002 Nov;19(11):1991-2004
12521975 - BMJ. 2003 Jan 11;326(7380):88-92
12557217 - Dev Dyn. 2003 Feb;226(2):388-97
11342795 - Curr Opin Nephrol Hypertens. 2001 May;10(3):341-7
8628785 - Plast Reconstr Surg. 1996 Apr;97(4):854-60
9077470 - J Invest Dermatol. 1997 Apr;108(4):430-7
8297179 - Ann Surg. 1994 Jan;219(1):65-72
7493021 - Nat Genet. 1995 Dec;11(4):409-14
7929624 - J Cell Sci. 1994 May;107 ( Pt 5):1137-57
11375418 - J Clin Invest. 2001 May;107(10):1285-92
12091424 - Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2250-7
9712070 - J Immunol. 1998 Aug 15;161(4):1983-8
1346175 - Lancet. 1992 Jan 25;339(8787):213-4
p_27
p_28
p_29
p_23
p_24
p_25
p_26
Whitby D. J. (p_39) 1991; 112
Shah M. (p_35) 1995; 108
p_20
p_42
p_21
p_22
p_40
p_16
p_38
p_17
p_2
p_18
p_1
p_19
p_4
Cowin A. J. (p_12) 2001; 11
p_3
p_6
p_14
p_36
p_5
p_15
p_37
Whitby D. J. (p_41) 1991; 99
p_8
p_7
p_9
Erwig L.-P. (p_13) 1998; 161
p_30
Robertson M. J. (p_31) 2002; 43
p_10
p_32
p_11
p_33
Shah M. (p_34) 1994; 107
References_xml – ident: p_38
  doi: 10.1038/35018085
– volume: 112
  start-page: 651
  year: 1991
  ident: p_39
  article-title: The extracellular matrix of lip wounds in fetal, neonatal and adult mice
  publication-title: Development
  doi: 10.1242/dev.112.2.651
  contributor:
    fullname: Whitby D. J.
– ident: p_22
  doi: 10.1098/rstb.2004.1472
– volume: 107
  start-page: 1137
  year: 1994
  ident: p_34
  article-title: Neutralising antibody to TGF~1,2, reduces scarring in adult rodents
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.107.5.1137
  contributor:
    fullname: Shah M.
– volume: 108
  start-page: 985
  year: 1995
  ident: p_35
  article-title: Neutralisation of TGF~1 and TGF~2 or exogenous addition of TGF~3 to cutaneous rat wounds reduces scarring
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.108.3.985
  contributor:
    fullname: Shah M.
– ident: p_18
  doi: 10.1098/rstb.2004.1468
– ident: p_2
– volume: 43
  start-page: 2250
  year: 2002
  ident: p_31
  article-title: Retinal microenvironment controls resident and infiltrating macrophage function during uveoretinitis
  publication-title: Invest. Ophthalmol. Visual Sci.
  contributor:
    fullname: Robertson M. J.
– ident: p_37
  doi: 10.1002/jez.10144
– ident: p_26
  doi: 10.1016/S1357-2725(96)00120-3
– ident: p_24
  doi: 10.1016/S0960-9822(02)00839-4
– ident: p_32
  doi: 10.1093/oxfordjournals.molbev.a004023
– ident: p_30
  doi: 10.1007/978-3-642-49295-2_8
– ident: p_28
– ident: p_20
  doi: 10.1097/00000658-199401000-00011
– volume: 99
  start-page: 583
  year: 1991
  ident: p_41
  article-title: Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.99.3.583
  contributor:
    fullname: Whitby D. J.
– ident: p_3
  doi: 10.1038/nm1197-1209
– ident: p_19
  doi: 10.1098/rstb.2004.1467
– ident: p_42
  doi: 10.1073/pnas.94.4.1441
– volume: 11
  start-page: 424
  year: 2001
  ident: p_12
  article-title: Expression of TGF-~ and its receptors in murine fetal and adult dermal wounds
  publication-title: Eur. J. Dermatol.
  contributor:
    fullname: Cowin A. J.
– ident: p_11
  doi: 10.1002/(SICI)1097-0177(199807)212:3<385::AID-AJA6>3.0.CO;2-D
– ident: p_4
  doi: 10.1111/1523-1747.ep12289705
– ident: p_5
  doi: 10.1046/j.1469-7580.1997.19030351.x
– ident: p_16
– ident: p_8
  doi: 10.1097/00006534-199811000-00022
– ident: p_10
– volume: 161
  start-page: 1983
  year: 1998
  ident: p_13
  article-title: Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.161.4.1983
  contributor:
    fullname: Erwig L.-P.
– ident: p_33
  doi: 10.1016/0140-6736(92)90009-R
– ident: p_27
  doi: 10.1038/ng1295-409
– ident: p_17
  doi: 10.1097/00006534-199604000-00029
– ident: p_29
  doi: 10.1002/dvdy.10242
– ident: p_6
  doi: 10.1016/S0002-9440(10)65217-0
– ident: p_14
  doi: 10.1097/00041552-200105000-00007
– ident: p_25
  doi: 10.1007/978-3-0348-8354-2_8
– ident: p_7
  doi: 10.1136/bmj.326.7380.88
– ident: p_36
  doi: 10.1201/b14004-11
– ident: p_1
  doi: 10.1006/dbio.1995.1141
– ident: p_40
  doi: 10.1016/S0012-1606(05)80018-1
– ident: p_9
  doi: 10.1172/JCI11867
– ident: p_15
  doi: 10.1016/S0168-8278(00)80412-2
– ident: p_23
  doi: 10.1098/rstb.2004.1470
– ident: p_21
  doi: 10.1007/978-1-4899-0185-9_18
SSID ssj0009574
Score 2.4183745
SecondaryResourceType review_article
Snippet In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse...
In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse...
SourceID pubmedcentral
proquest
crossref
pubmed
royalsociety
jstor
istex
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 839
SubjectTerms Adults
Biological Evolution
Cicatrix - drug therapy
Cicatrix - physiopathology
Embryo, Mammalian - physiology
Healing
Humans
Medical treatment
Molecules
Physical trauma
Platelet-Derived Growth Factor
Regeneration
Regeneration - physiology
Regenerative Medicine
Scarring
Scars
Skin
Skin - pathology
Skin Pharmaceuticals
Skin Physiological Phenomena
Tissue repair
Transforming Growth Factor Beta
Transforming Growth Factor beta - therapeutic use
Transforming Growth Factor beta1
Transforming Growth Factor beta2
Transforming Growth Factor beta3
Wound Healing
Wound Healing - physiology
Title Scar–free healing: from embryonic mechanisms to adult therapeutic intervention
URI http://rstb.royalsocietypublishing.org/content/359/1445/839.abstract
https://api.istex.fr/ark:/67375/V84-TGR1M030-L/fulltext.pdf
https://www.jstor.org/stable/4142114
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2004.1475
https://www.ncbi.nlm.nih.gov/pubmed/15293811
https://search.proquest.com/docview/66756045
https://pubmed.ncbi.nlm.nih.gov/PMC1693363
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tk0C8IFYGhI-RBwRMImsT2_ngDSbGBHSC0aG9WXZii4g1rZoOMf567pyktKh74THqJap_vrPvdHe_A3iGTifTTJtAWKECzngSZBhaB2jj2gxDm5uEGoVHJ_HxGf9wLs63QHS9MK5oP9flQXUxOajK7662cjbJB12d2ODz6JAIRFjMBj3ooYJ2IfqSabehXs5iNHVOucmWqTEdoD-lXUiI50Mimok8GV5Z4fql1BEFo79KUP_qShU3OaEbainnFPfXTc3lyl11dAdut06m_6ZZzA5smaoPN5qxk1d9uDlqE-p92Gltu_ZftgTU-3fhhLIygZ0b45MfiZfba5_aUHwz0fMr4tL1J4Y6hst6UvuLqe9IPPyVVi6_XCml3IWzo3fjw-OgnbsQ5HEWLQI9LIxNIpXnlqVcG8uShFpSRWJVpqOwiCOrtbZW2dAUkcIIxobcMK1UkQ71kN2D7WpamQfgM43AEIVNGGpuDArGPFfZMI9UJNIs9uBFB7ycNfQaskmLp5J2i6Zkckm75cF-ty9yFWF6mKEgExnKcSHR4_MgvUaWPkk9ADTBePUNSckOOSusB8_dni__jZr_oNq3RMhvKZfj96fhCM9F-cmDXacUS0EecgymuQdPOyWRaKmUflGVmV7WMsbYLEYsPLjfqMzfFbdq6EGypkxLAeIAX_8FTcNxgbem4MGrtYW2B1F9LZgXm8VPv47fhuig_ERwSgeOm0SXUKeX_F3O3HdIwKHnjoYGw_Xv__P48L_X9QhuNaVSIoiyx7C9mF-aJ-gFLvQe9D5-Sfec7f8BZsheJw
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIT5egJUB4Wt5QMAk0ubD-eINJkaBtkKjm_Zm2aktoq1p1bSI7a_nzklKO3UP8Gj5YsXn8_lOd_c7gFdodAYykMoJdSgcFrDYSdG1dvCOS-V6OlMxFQr3B1H3mH09DU-3IGxqYUzSfibzdnE-bhf5T5NbOR1nnSZPrPO9f0AAIkEUdG7ATbyvbtQ46Uus3Qp8OY3wsjOKTtZYjUkHLSppnELUEHFY9eRJ8dHy1p-lBioYLVZi9u8mWXGTGbohm3JGnn9ZZV2uvFaH9-Gk2WeVpHLWXuD_ZJdXICD_mREP4F5tv9ofqukd2FJFC25VHS0vWnC7X8fqW7BTq43SfltjW-8_hAEFfBw9U8omExXfzfc2VbjYaixnFwTTa48VFSPn5bi05xPb4IPYK1Vidr6SpbkLx4efhgddp27p4GRR6s8d6Y6Ujn2RZTpImFQ6iGOqdg1jLVLpe6PI11JKrYX21MgX6Bxpj6lACjFKXOkGj2C7mBTqCdiBRI4TOo7nSaYUEkYsE6mb-cIPkzSy4E1zonxaIXfwKuKecBIDasDJOImBBfvNgfPVo6PBFAmDMEU6FnI0Ji1IrqGlJam8gJojr37BKY7CpyNtwWsjTMu_EbMzSquLQ36SMD78fOT1UeXyngW7RtqWhMxj6KczC_Ya6eOoBCiyIwo1WZQ8QrcvQl5Y8LiSxb87ruXbgnhNSpcEBC--PoPCZmDGa-Gy4N3aRmsdV17LzPPN5Ec_hh89tH1-IXNywxzT5C6mIjJ-mU_NOkRguGe0TsXD9fWvDJ_-97724E532O_x3pfBt2dwt8rICh0_fQ7b89lCvUBjcy5fGtXyBz7sfyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BERUXoKGAedUHBFSq49f6xQ0KoUATVSVFFZeV19kVVhsnihNE--uZWdvBqdJLj1Ymlnf229kZzcw3AK_R6fSFL6QVqCC1mM8iK8HQ2sIzLqTjqkxG1CjcH4QHJ-zbaXDaGvWli_YzkXeL83G3yH_r2srpOLObOjH7qL9PBCJ-6NvTkbJvwx08s07cBOpLvt2KgDkJ8cAzylDWfI2xjV6V0IEhWokoqObyJHhxuatXU0MXjF4rKfxvU7C4zhVdU1E5o-i_rCovWzdW7wH8atZaFaqcdRf4PdnlFRrIGynjIdyv_VjzQyWyBbdk0YG71WTLiw5s9uucfQe2avNRmu9qjuvdRzCgxI-lZlKa5Kri_fnepE4XU47F7ILoes2xpKbkvByX5nxiap4Qs9UtZuatas1tOOl9Hu4fWPVoBysLE29uCWckVeSlWab8mAmp_CiirtcgUmkiPHcUekoIoVSqXDnyUgySlMukL9J0FDvC8R_DRjEp5FMwfYFaJ5Yc1xVMShQMWZYmTualXhAnoQFvm13l04rBg1eZ95gTFGgQJ-MEBQN2m03n7e2jhykK-kGCcizg6FQaEF8jS6-kNgMaktz-B6d8CsddMuCNBtTya9LZGZXXRQH_GTM-_HLs9tH08kMDtjXiloLMZRivMwN2GgRyNAaU4UkLOVmUPMTwL0RdGPCkwuP_FdcYNyBaQepSgGjGV39BwGm68RpgBuytLLS2deW1yjxfL378Y_jRRR_oDyon18rRw-4iaibjl_lUv4cEtPa09al0uPr-K4_PbryuHdg8-tTjh18H35_DvaowK7C85AVszGcL-RJ9zrl4pa3LPwhTgak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scar%E2%80%93free+healing%3A+from+embryonic+mechanisms+to+adult+therapeutic+intervention&rft.jtitle=Philosophical+transactions.+Biological+sciences&rft.au=M.+W.+J.+Ferguson&rft.au=S.+O%27Kane&rft.date=2004-05-29&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=359&rft.issue=1445&rft.spage=839&rft_id=info:doi/10.1098%2Frstb.2004.1475&rft_id=info%3Apmid%2F15293811&rft.externalDBID=n%2Fa&rft.externalDocID=royptb_359_1445_839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon