Scar–free healing: from embryonic mechanisms to adult therapeutic intervention
In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreli...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 359; no. 1445; pp. 839 - 850 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
29.05.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFβ1 and TGFβ2, low levels of platelet-derived growth factor and high levels of TGFβ3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFβ1 and TGFβ2 or adding exogenous TGFβ3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modern wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modern injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments. |
---|---|
AbstractList | In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFbeta1 and TGFbeta2, low levels of platelet-derived growth factor and high levels of TGFbeta3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFbeta1 and TGFbeta2 or adding exogenous TGFbeta3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modem wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modem injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments. In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFβ1 and TGFβ2, low levels of platelet-derived growth factor and high levels of TGFβ3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFβ1 and TGFβ2 or adding exogenous TGFβ3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modern wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modern injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments. In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar–free healing in embryonic wounds and scar–forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFβ1 and TGFβ2, low levels of platelet–derived growth factor and high levels of TGFβ3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar–free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFβ1 and TGFβ2 or adding exogenous TGFβ3. These experiments result in scar–free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double–blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient–based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modern wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modern injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar–improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments. |
Author | Ferguson, Mark W. J. O'Kane, Sharon |
AuthorAffiliation | UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK. mark.ferguson@man.ac.uk |
AuthorAffiliation_xml | – name: UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK. mark.ferguson@man.ac.uk |
Author_xml | – sequence: 3 givenname: Mark W. J. surname: Ferguson fullname: Ferguson, Mark W. J. email: mark.ferguson@man.ac.uk organization: UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK – sequence: 4 givenname: Sharon surname: O'Kane fullname: O'Kane, Sharon organization: Renovo Limited, Manchester Incubator Building, 48 Grafton Street, Manchester M13 9XX, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15293811$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us2O0zAYjNAitrtw5YRQTtxS_Jc_DiBYwYJUBNotXC0n-dy4JHaxnUI58Q68IU-C21RlK8SeLGvmm5nP47PoRBsNUfQQoylGZfHUOl9NCUJsilme3okm4cAJKXN0Ek1QmZGkYDQ7jc6cWyKEyjRn96JTnJKSFhhPoo_XtbC_f_6SFiBuQXRKL57F0po-hr6yG6NVHfdQt0Ir17vYm1g0Q-dj34IVKxh8wJX2YNegvTL6fnRXis7Bg_15Hn1683p-8TaZfbh8d_FyltRZSXxSoQZkTkRdS1qwCiTN84zlRZpLUVYENxmRVVVJKSSGhghGCokZ0EqIpkAVoufR81F3NVQ9NHVwt6LjK6t6YTfcCMWPEa1avjBrjrOS0owGgSd7AWu-DuA875WroeuEBjM4nmV5miGWBuJ0JNbWOGdBHkww4tsS-LYEvi2Bb0sIA49vRvtL3796ILiRYM0mvJGpFfgNX5rB6nDlV9fzV7gs0ZqmpcKMpRwVFKOckmD4Q612flsCDwSunBuA72jHOf6NRW9z_e8yj8appfPGHnZhmBGMWYCTEVbOw_cDLOwXnuU0hPhcMD6_vMLvEUV8FvgvRn6rFu03ZYEfpdmZ1yb8J-132-32KmjJ5dCFdhsZFNCtCmazCho3Z-kf3lwAdA |
CitedBy_id | crossref_primary_10_1155_2009_625376 crossref_primary_10_1038_s41598_024_58779_0 crossref_primary_10_1016_j_ydbio_2015_03_008 crossref_primary_10_1002_jcb_22355 crossref_primary_10_1016_j_jtbi_2010_12_011 crossref_primary_10_1016_j_isci_2020_100841 crossref_primary_10_1017_S1462399409001124 crossref_primary_10_1111_j_1440_169X_2005_00831_x crossref_primary_10_1016_j_msec_2018_12_038 crossref_primary_10_1002_lary_22389 crossref_primary_10_1097_PRS_0b013e3181ef8e66 crossref_primary_10_3390_cells11172740 crossref_primary_10_1186_1471_213X_11_50 crossref_primary_10_5966_sctm_2013_0120 crossref_primary_10_1097_01_ico_0000178743_06340_2c crossref_primary_10_1111_dgd_12544 crossref_primary_10_1016_j_aanat_2018_12_005 crossref_primary_10_3390_ijms24119745 crossref_primary_10_1088_1758_5090_8_3_032001 crossref_primary_10_1369_jhc_2009_952572 crossref_primary_10_3897_biodiscovery_20_e11207 crossref_primary_10_1126_science_aam7928 crossref_primary_10_1515_jpm_2023_0211 crossref_primary_10_1155_2019_2352079 crossref_primary_10_1088_1748_605X_aaac37 crossref_primary_10_1111_exd_12457 crossref_primary_10_1016_j_jdermsci_2009_09_005 crossref_primary_10_1016_j_pep_2015_02_014 crossref_primary_10_1016_j_ydbio_2023_12_008 crossref_primary_10_1097_PRS_0b013e318217429b crossref_primary_10_1155_2017_1472642 crossref_primary_10_3390_ijms20030538 crossref_primary_10_1177_1534734608322983 crossref_primary_10_1038_ncomms11394 crossref_primary_10_1016_j_diff_2017_12_001 crossref_primary_10_1097_SAP_0b013e31826af01a crossref_primary_10_1155_2015_712546 crossref_primary_10_1016_j_cps_2008_11_008 crossref_primary_10_1098_rspb_2012_0319 crossref_primary_10_1007_s12631_011_0151_2 crossref_primary_10_1002_dvdy_23977 crossref_primary_10_1089_zeb_2012_0759 crossref_primary_10_1371_journal_pone_0032875 crossref_primary_10_1038_sj_jid_5701119 crossref_primary_10_2353_ajpath_2009_090380 crossref_primary_10_1007_s10561_018_9732_z crossref_primary_10_1007_s00238_015_1126_x crossref_primary_10_1586_erd_09_57 crossref_primary_10_1155_2018_9525624 crossref_primary_10_1097_PRS_0b013e318188245e crossref_primary_10_1016_j_carbpol_2008_11_002 crossref_primary_10_1002_dvdy_22753 crossref_primary_10_1016_j_apmt_2017_12_007 crossref_primary_10_1089_wound_2015_0634 crossref_primary_10_1016_j_anplas_2019_07_008 crossref_primary_10_1016_j_cps_2011_09_004 crossref_primary_10_1039_D0BM01928C crossref_primary_10_1111_dsu_12472 crossref_primary_10_5604_16652681_1198820 crossref_primary_10_1583_06_1846_1 crossref_primary_10_1016_j_cobme_2018_02_006 crossref_primary_10_17555_jvc_2022_39_5_272 crossref_primary_10_1146_annurev_cellbio_092910_154251 crossref_primary_10_3390_ani10111938 crossref_primary_10_1002_jor_22504 crossref_primary_10_1111_j_1742_481X_2006_00239_x crossref_primary_10_1002_dvdy_21774 crossref_primary_10_1002_jbmr_3178 crossref_primary_10_1007_s11515_012_1192_4 crossref_primary_10_1016_S1532_3382_12_70022_2 crossref_primary_10_2310_7750_2010_09069 crossref_primary_10_1177_1535370214542067 crossref_primary_10_3390_ijms24097895 crossref_primary_10_1016_j_tox_2006_05_017 crossref_primary_10_1016_j_zool_2019_125737 crossref_primary_10_2353_ajpath_2009_090248 crossref_primary_10_1038_jid_2011_223 crossref_primary_10_1186_s40662_020_00217_z crossref_primary_10_1016_j_ejps_2018_11_009 crossref_primary_10_1097_PRS_0b013e3181a205de crossref_primary_10_1016_j_bbrc_2014_09_077 crossref_primary_10_1016_j_addr_2018_02_010 crossref_primary_10_1016_j_bmcl_2012_04_013 crossref_primary_10_1016_j_mehy_2009_03_054 crossref_primary_10_1016_j_jcyt_2013_10_008 crossref_primary_10_1016_j_bbamcr_2015_02_004 crossref_primary_10_1089_wound_2012_0389 crossref_primary_10_3109_03008207_2012_657309 crossref_primary_10_1203_PDR_0b013e31816a7453 crossref_primary_10_55095_achot2008_005 crossref_primary_10_1002_path_2831 crossref_primary_10_3390_jfb9040065 crossref_primary_10_1007_s00441_011_1136_3 crossref_primary_10_2174_1386207323666200717150414 crossref_primary_10_1111_j_1524_475X_2012_00775_x crossref_primary_10_1016_j_addr_2018_02_007 crossref_primary_10_1007_s00238_017_1307_x crossref_primary_10_1016_j_biomaterials_2018_03_006 crossref_primary_10_1111_wrr_12659 crossref_primary_10_1038_nature05664 crossref_primary_10_1016_j_biomaterials_2018_04_036 crossref_primary_10_1016_j_tibtech_2007_12_007 crossref_primary_10_1016_j_jid_2023_12_016 crossref_primary_10_1007_s11538_011_9712_y crossref_primary_10_1016_j_jevs_2023_104262 crossref_primary_10_1016_j_actbio_2020_06_031 crossref_primary_10_1371_journal_pcbi_1000030 crossref_primary_10_3109_03008207_2010_534208 crossref_primary_10_1080_03008207_2019_1698556 crossref_primary_10_1080_17425247_2020_1819787 crossref_primary_10_1089_ten_2006_12_537 crossref_primary_10_1111_j_1749_6632_2008_03801_x crossref_primary_10_1586_17434440_2_4_429 crossref_primary_10_5435_JAAOS_D_18_00638 crossref_primary_10_3892_mmr_2016_4944 crossref_primary_10_1007_s00586_014_3438_0 crossref_primary_10_1002_der2_13 crossref_primary_10_1016_j_ijbiomac_2015_02_041 crossref_primary_10_1097_PRS_0000000000005455 crossref_primary_10_1002_ggn2_10025 crossref_primary_10_1038_s41556_018_0073_8 crossref_primary_10_1186_s13287_020_01992_1 crossref_primary_10_1111_bjd_13954 crossref_primary_10_1016_j_ijsu_2005_05_002 crossref_primary_10_3389_fneur_2023_1184246 crossref_primary_10_1007_s12015_006_0050_7 crossref_primary_10_1111_j_1529_8027_2007_00148_x crossref_primary_10_3389_fimmu_2024_1395479 crossref_primary_10_1007_s00018_011_0663_0 crossref_primary_10_1002_reg2_97 crossref_primary_10_1038_nrurol_2012_158 crossref_primary_10_1089_wound_2020_1257 crossref_primary_10_1089_ten_tea_2009_0254 crossref_primary_10_1111_j_1469_7580_2011_01366_x crossref_primary_10_1002_dvdy_24561 crossref_primary_10_1002_jbm_a_33083 crossref_primary_10_1111_j_1460_9568_2007_05439_x crossref_primary_10_1016_j_medcli_2014_09_012 crossref_primary_10_1039_C4BM00246F crossref_primary_10_1111_j_1529_8027_2006_00100_x crossref_primary_10_1002_term_521 crossref_primary_10_1016_j_medcle_2016_02_028 crossref_primary_10_1111_jcmm_14313 crossref_primary_10_1111_j_1365_3083_2011_02523_x crossref_primary_10_1038_jid_2013_290 crossref_primary_10_1186_s41232_023_00265_7 crossref_primary_10_1371_journal_pone_0155618 crossref_primary_10_1080_14647270801965954 crossref_primary_10_1016_j_micron_2022_103215 crossref_primary_10_1016_j_rvsc_2011_03_020 crossref_primary_10_1155_2018_5196023 crossref_primary_10_55095_achot2008_045 crossref_primary_10_1089_wound_2018_0900 crossref_primary_10_3389_fphar_2018_00672 crossref_primary_10_1097_SAP_0b013e3181788ec9 crossref_primary_10_1111_iwj_13286 crossref_primary_10_1101_cshperspect_a041241 crossref_primary_10_1016_j_ajpath_2010_12_025 crossref_primary_10_1016_j_burns_2009_11_014 crossref_primary_10_1016_j_imbio_2015_11_002 crossref_primary_10_1097_01_ASW_0000288208_85807_b8 crossref_primary_10_1080_15476278_2017_1421882 crossref_primary_10_1016_j_regen_2019_100022 crossref_primary_10_1038_s41598_020_70658_y crossref_primary_10_1007_s10103_018_2628_0 crossref_primary_10_1016_j_carpath_2004_11_005 crossref_primary_10_1016_j_colsurfb_2016_11_036 crossref_primary_10_3109_03008207_2013_787418 crossref_primary_10_1242_dmm_033092 crossref_primary_10_3390_ijms19030835 crossref_primary_10_1111_bjd_17076 crossref_primary_10_1016_j_jss_2014_02_030 crossref_primary_10_1002_jmor_20953 crossref_primary_10_1038_jid_2008_118 crossref_primary_10_1111_j_1469_7580_2006_00632_x crossref_primary_10_1016_j_cytogfr_2017_09_003 crossref_primary_10_1038_ki_2008_351 crossref_primary_10_1002_stem_2842 crossref_primary_10_1016_j_proghi_2013_12_001 crossref_primary_10_1038_s41580_024_00733_z crossref_primary_10_1016_S0140_6736_09_60322_6 crossref_primary_10_1111_j_1365_2230_2010_03779_x crossref_primary_10_1177_0883911510391445 crossref_primary_10_1111_eve_12466 crossref_primary_10_1016_j_jid_2019_06_137 crossref_primary_10_2165_1153419_S0_000000000_00000 crossref_primary_10_1002_dvdy_24520 crossref_primary_10_1016_j_mtbio_2023_100589 crossref_primary_10_1186_s13287_020_01662_2 crossref_primary_10_1016_j_mayocp_2013_04_001 crossref_primary_10_1586_17469899_2_1_79 crossref_primary_10_1155_2014_750602 crossref_primary_10_1016_j_actbio_2016_06_039 crossref_primary_10_1016_j_bbrc_2015_07_076 crossref_primary_10_1155_2017_2540540 crossref_primary_10_3390_cells8060607 crossref_primary_10_1016_j_addr_2015_04_018 crossref_primary_10_1177_0883911509105847 crossref_primary_10_1016_j_yacs_2019_02_003 crossref_primary_10_1242_jeb_126862 crossref_primary_10_1111_jocd_15298 crossref_primary_10_12688_f1000research_18293_1 crossref_primary_10_1002_adbi_202000176 crossref_primary_10_1038_jid_2014_169 crossref_primary_10_1016_j_jtbi_2013_03_013 crossref_primary_10_33589_22_2_0037 crossref_primary_10_1002_lary_21759 crossref_primary_10_1007_s40610_016_0045_3 crossref_primary_10_3109_14764170903352878 crossref_primary_10_3390_ani11010234 crossref_primary_10_3103_S0096392520010046 crossref_primary_10_1002_ar_b_20082 crossref_primary_10_1371_journal_pone_0001227 crossref_primary_10_3390_ijms19061778 crossref_primary_10_1177_1933719116638177 crossref_primary_10_1007_s00335_011_9320_z crossref_primary_10_3389_fnagi_2014_00044 crossref_primary_10_1097_PRS_0b013e3181a80747 crossref_primary_10_1016_j_cveq_2011_05_001 crossref_primary_10_1097_SLA_0b013e318243a4db crossref_primary_10_1098_rsif_2008_0536 crossref_primary_10_1111_prd_12546 crossref_primary_10_3390_biom11081095 crossref_primary_10_1111_j_1440_169X_2005_00830_x crossref_primary_10_1155_2010_405262 crossref_primary_10_1371_journal_pone_0010044 crossref_primary_10_1242_dmm_013326 crossref_primary_10_1016_j_matbio_2011_04_004 crossref_primary_10_1186_1749_8104_6_1 crossref_primary_10_1111_cpr_13087 crossref_primary_10_1016_j_cytogfr_2015_11_006 crossref_primary_10_1080_17469899_2022_2101998 crossref_primary_10_1002_term_2004 crossref_primary_10_1517_13543780903130594 crossref_primary_10_23873_2074_0506_2022_14_4_432_443 crossref_primary_10_1111_j_1469_7580_2006_00641_x crossref_primary_10_1111_etp_12008 crossref_primary_10_1177_000348940811700912 crossref_primary_10_1177_0363546518757759 crossref_primary_10_1002_smll_202101384 crossref_primary_10_1016_j_ydbio_2017_09_025 crossref_primary_10_1016_j_xrrt_2021_10_008 crossref_primary_10_1109_TBME_2010_2103075 crossref_primary_10_1002_dvdy_22553 crossref_primary_10_1186_s12893_020_00932_3 crossref_primary_10_1515_biol_2019_0047 crossref_primary_10_1002_term_2128 crossref_primary_10_1016_j_jid_2018_05_031 crossref_primary_10_1007_s00018_016_2252_8 crossref_primary_10_1016_j_jss_2014_01_041 crossref_primary_10_1111_joa_12368 crossref_primary_10_1038_nature07039 crossref_primary_10_1039_C8TB03071E crossref_primary_10_1089_ten_teb_2016_0202 crossref_primary_10_1098_rsif_2006_0179 crossref_primary_10_1155_2016_9176357 crossref_primary_10_1016_j_ajpath_2014_05_012 crossref_primary_10_1016_j_bbagen_2016_02_009 crossref_primary_10_1152_physrev_00013_2005 crossref_primary_10_1016_j_aanat_2016_12_001 crossref_primary_10_1016_j_matpr_2021_06_157 crossref_primary_10_1007_s00403_012_1240_6 crossref_primary_10_3109_14764172_2010_514923 crossref_primary_10_1002_art_27307 crossref_primary_10_1097_PRS_0b013e318199f01d crossref_primary_10_1083_jcb_200507111 crossref_primary_10_3390_nano13040706 crossref_primary_10_1089_wound_2013_0429 crossref_primary_10_1007_s10522_016_9650_z crossref_primary_10_1007_s10735_018_9756_5 crossref_primary_10_1007_s11605_011_1819_9 crossref_primary_10_1098_rsta_2006_1773 crossref_primary_10_12968_jowc_2017_26_1_5 crossref_primary_10_1111_j_1600_051X_2010_01696_x crossref_primary_10_1007_s00449_012_0786_1 crossref_primary_10_1007_s00701_012_1382_5 crossref_primary_10_1097_01_moo_0000170525_74264_f8 crossref_primary_10_1186_s13287_019_1203_3 crossref_primary_10_1038_ki_2010_418 crossref_primary_10_1242_dmm_049801 crossref_primary_10_12968_joan_2019_8_8_362 crossref_primary_10_1016_j_hansur_2024_101678 crossref_primary_10_1007_s12192_011_0274_6 crossref_primary_10_4236_health_2020_127053 crossref_primary_10_1016_j_biomaterials_2007_07_031 crossref_primary_10_1152_japplphysiol_00858_2011 crossref_primary_10_1042_BST0330413 crossref_primary_10_1016_j_ultrasmedbio_2020_03_003 crossref_primary_10_1002_jbm_a_34413 crossref_primary_10_1080_10717544_2022_2086943 crossref_primary_10_3390_ijms21238936 crossref_primary_10_2217_epi_2016_0068 crossref_primary_10_1097_DSS_0000000000001060 crossref_primary_10_1016_j_yhbeh_2010_10_005 crossref_primary_10_1080_00914037_2019_1575828 crossref_primary_10_18632_oncotarget_8501 crossref_primary_10_3390_nano14080730 crossref_primary_10_1096_fj_05_5229fje crossref_primary_10_2217_rme_2021_0076 crossref_primary_10_1111_j_1365_4632_2011_04940_x crossref_primary_10_1186_s12864_017_4202_8 crossref_primary_10_1097_TA_0b013e31802c8247 crossref_primary_10_3390_nu9060532 crossref_primary_10_1016_j_burns_2006_02_023 crossref_primary_10_1111_febs_14842 crossref_primary_10_1586_17434440_3_4_471 crossref_primary_10_3390_ijms22115619 crossref_primary_10_22467_jwmr_2022_02201 crossref_primary_10_1002_dvdy_650 crossref_primary_10_1177_1753193410394521 crossref_primary_10_1177_1753193413489639 crossref_primary_10_1101_cshperspect_a041229 crossref_primary_10_1080_03008207_2018_1489381 crossref_primary_10_1002_jez_b_21371 crossref_primary_10_1016_j_expneurol_2024_114692 crossref_primary_10_1038_s41598_022_07124_4 crossref_primary_10_1111_exd_13909 crossref_primary_10_1242_jeb_226076 crossref_primary_10_1007_s12634_018_0001_1 crossref_primary_10_4236_jcdsa_2017_71009 crossref_primary_10_1111_bpa_12162 crossref_primary_10_1142_S021881041750037X crossref_primary_10_1016_j_bjps_2011_07_009 crossref_primary_10_1098_rstb_2004_1468 crossref_primary_10_1016_j_actbio_2022_04_028 crossref_primary_10_12687_phleb2303_2_2016 crossref_primary_10_1007_s00125_008_1051_7 crossref_primary_10_3389_fimmu_2023_1214757 crossref_primary_10_1051_medsci_201026189 crossref_primary_10_1111_j_1469_7580_2005_00431_x crossref_primary_10_3389_fsurg_2021_644057 crossref_primary_10_1016_j_regen_2019_100025 crossref_primary_10_1038_s41467_021_26495_2 crossref_primary_10_1111_wrr_12098 crossref_primary_10_1016_j_cps_2012_07_012 crossref_primary_10_1089_wound_2017_0763 crossref_primary_10_1093_asj_sjw151 crossref_primary_10_1155_2017_6471071 crossref_primary_10_1016_j_cyto_2016_04_008 crossref_primary_10_1517_17460441_2013_761202 crossref_primary_10_1007_s12221_020_9771_5 crossref_primary_10_1097_SCS_0b013e318175f3a7 crossref_primary_10_1002_dvdy_24474 crossref_primary_10_1007_s00347_006_1404_x crossref_primary_10_1111_j_1463_6395_2009_00409_x crossref_primary_10_1097_SCS_0000000000005161 crossref_primary_10_1038_s41536_017_0023_2 crossref_primary_10_1016_j_semcdb_2021_05_005 crossref_primary_10_1590_1414_431x2021e11735 crossref_primary_10_1097_PRS_0b013e3181a0741d crossref_primary_10_1186_s12891_023_06425_7 crossref_primary_10_3390_biology12050733 crossref_primary_10_1039_C5RA18287E crossref_primary_10_1002_dvdy_24224 crossref_primary_10_1097_01_prs_0000304612_72899_02 crossref_primary_10_1103_PRXLife_1_013009 crossref_primary_10_3892_etm_2018_6350 crossref_primary_10_1038_s41598_017_05869_x crossref_primary_10_1016_j_jaad_2011_05_055 crossref_primary_10_1089_wound_2020_1284 crossref_primary_10_2165_11585010_000000000_00000 crossref_primary_10_1902_jop_2013_130348 crossref_primary_10_1016_j_matbio_2006_07_008 crossref_primary_10_1167_iovs_65_3_35 crossref_primary_10_1016_j_jddst_2018_09_021 crossref_primary_10_1111_j_1440_169X_2007_00973_x crossref_primary_10_1002_jmor_20631 crossref_primary_10_1039_c2jm00134a crossref_primary_10_1371_journal_pone_0059105 crossref_primary_10_1016_j_burns_2017_03_017 crossref_primary_10_1016_j_drudis_2008_08_009 crossref_primary_10_1016_j_matpr_2021_05_638 crossref_primary_10_1016_j_preteyeres_2021_101039 crossref_primary_10_1080_10408360701713120 crossref_primary_10_2106_JBJS_CC_21_00066 crossref_primary_10_1371_journal_pone_0135324 crossref_primary_10_1128_microbiolspec_MCHD_0017_2015 crossref_primary_10_1007_s12285_018_0157_2 crossref_primary_10_1186_s13018_018_0781_6 crossref_primary_10_1002_adhm_201601422 crossref_primary_10_1111_iep_12031 crossref_primary_10_1002_lio2_214 crossref_primary_10_1097_PRS_0b013e3181c9f6d3 crossref_primary_10_1111_wrr_12398 crossref_primary_10_1039_c2sm00030j crossref_primary_10_1096_fj_202001768RR crossref_primary_10_1002_jmor_21484 crossref_primary_10_1542_peds_2014_2065 crossref_primary_10_23868_201808021 crossref_primary_10_1016_j_mehy_2019_03_021 crossref_primary_10_3390_jcm10245947 crossref_primary_10_1016_j_aanat_2017_12_008 crossref_primary_10_1016_j_bbrc_2013_05_125 crossref_primary_10_1681_ASN_2011060603 crossref_primary_10_2174_1574886318666230509143017 crossref_primary_10_2165_00128071_200607060_00003 crossref_primary_10_3390_ijms20123002 crossref_primary_10_1098_rsif_2005_0062 crossref_primary_10_1097_01_wnr_0000230519_39456_ea crossref_primary_10_1590_S0100_879X2009005000042 crossref_primary_10_1016_j_autrev_2016_07_007 crossref_primary_10_1016_j_matpr_2021_05_625 crossref_primary_10_1016_j_repbio_2014_01_004 crossref_primary_10_2460_ajvr_72_5_699 crossref_primary_10_1002_lio2_202 crossref_primary_10_1002_jez_b_22835 crossref_primary_10_1007_s12634_018_5560_1 crossref_primary_10_1016_j_jbc_2021_101530 crossref_primary_10_1002_sctm_17_0236 crossref_primary_10_1002_jez_b_22950 crossref_primary_10_1067_j_cpsurg_2007_07_001 crossref_primary_10_1002_advs_202100407 crossref_primary_10_1002_sstr_202000137 crossref_primary_10_3390_ijms17122085 crossref_primary_10_1016_j_jid_2016_11_006 crossref_primary_10_1098_rsif_2009_0403 crossref_primary_10_1038_srep26792 crossref_primary_10_1016_j_actbio_2012_06_042 crossref_primary_10_1093_intimm_dxv069 crossref_primary_10_2165_00063030_200519060_00004 crossref_primary_10_1111_wrr_12180 crossref_primary_10_1002_path_5589 crossref_primary_10_1111_wrr_12063 crossref_primary_10_11603_2311_9624_2023_2_3_14141 crossref_primary_10_3390_pharmaceutics12080735 crossref_primary_10_1111_joa_12784 crossref_primary_10_1016_j_biomaterials_2017_04_041 crossref_primary_10_1016_j_carbpol_2022_119520 crossref_primary_10_4161_cam_4_3_11917 crossref_primary_10_5999_aps_2012_39_5_463 crossref_primary_10_1016_j_cytogfr_2009_07_002 crossref_primary_10_1371_journal_pone_0097972 crossref_primary_10_3390_cells9020306 crossref_primary_10_1097_01_jsa_0000173230_61276_f4 crossref_primary_10_2217_rme_2023_0145 crossref_primary_10_1371_journal_pone_0051411 crossref_primary_10_2217_17460751_4_2_205 crossref_primary_10_1111_brv_12072 crossref_primary_10_1002_jcp_29302 crossref_primary_10_1016_j_jcyt_2016_05_008 crossref_primary_10_1155_2010_690613 crossref_primary_10_1002_jmor_20155 crossref_primary_10_1093_ndt_gfs283 crossref_primary_10_1007_s00784_024_05641_2 crossref_primary_10_1667_RR1295_1 crossref_primary_10_1002_adfm_202400613 crossref_primary_10_1089_neu_2006_23_422 crossref_primary_10_1111_aor_12807 crossref_primary_10_1111_prd_12076 crossref_primary_10_1016_j_jbiomech_2005_05_011 crossref_primary_10_1111_j_1365_2559_2006_02559_x crossref_primary_10_3389_fcell_2021_657621 crossref_primary_10_1002_ar_22490 crossref_primary_10_1016_j_ydbio_2023_06_013 crossref_primary_10_4995_wrs_2016_3965 crossref_primary_10_1016_j_tcb_2005_09_002 crossref_primary_10_1016_j_jcyt_2022_07_004 crossref_primary_10_1007_s00266_010_9621_8 crossref_primary_10_1089_scd_2007_0239 crossref_primary_10_1016_j_msec_2014_12_068 crossref_primary_10_1186_s40001_018_0357_2 crossref_primary_10_1111_srt_13199 crossref_primary_10_5812_ircmj_29536 crossref_primary_10_1007_s00106_010_2124_8 crossref_primary_10_3390_jdb9030036 crossref_primary_10_1126_scitranslmed_3009337 crossref_primary_10_1016_j_athoracsur_2017_11_035 crossref_primary_10_1101_sqb_2005_70_013 crossref_primary_10_3389_fmed_2020_615774 crossref_primary_10_1016_j_jsps_2023_03_014 crossref_primary_10_1002_bdrc_21019 crossref_primary_10_1096_fj_202001881R crossref_primary_10_1152_ajpregu_00349_2014 crossref_primary_10_1002_path_4049 crossref_primary_10_1016_j_hansur_2019_06_002 crossref_primary_10_1002_bdrc_21016 crossref_primary_10_1016_j_ceb_2016_04_001 crossref_primary_10_1177_000348940811700213 crossref_primary_10_1016_j_jid_2020_04_030 crossref_primary_10_1002_jez_b_22754 crossref_primary_10_3389_fbioe_2021_681501 crossref_primary_10_1155_2015_121575 crossref_primary_10_1111_j_1524_475X_2012_00821_x crossref_primary_10_1007_s10522_011_9343_6 crossref_primary_10_1097_SAP_0b013e3181d376f9 crossref_primary_10_1111_wrr_12141 crossref_primary_10_3390_molecules27238239 crossref_primary_10_1111_wrr_12143 crossref_primary_10_1080_08977190701723505 crossref_primary_10_1163_156856208784909345 crossref_primary_10_1016_j_transproceed_2012_01_128 crossref_primary_10_1080_09273948_2020_1780271 crossref_primary_10_1016_j_jvs_2005_08_041 crossref_primary_10_1016_j_semcdb_2019_11_014 crossref_primary_10_1016_S0002_9440_10_61190_X crossref_primary_10_1002_term_2812 crossref_primary_10_1111_j_1742_481X_2009_00597_x crossref_primary_10_1016_j_jse_2014_02_029 crossref_primary_10_3390_polym16050573 crossref_primary_10_1007_s40883_021_00229_8 crossref_primary_10_1016_j_semcdb_2016_08_008 crossref_primary_10_1016_j_cps_2016_03_004 crossref_primary_10_1002_jez_b_22771 crossref_primary_10_1111_dth_12714 crossref_primary_10_1111_joa_13782 crossref_primary_10_1111_wrr_12274 crossref_primary_10_1111_wrr_13000 crossref_primary_10_1007_s00018_012_1152_9 crossref_primary_10_1016_j_cyto_2005_06_015 crossref_primary_10_1002_jbm_a_32844 crossref_primary_10_1371_journal_pone_0163092 crossref_primary_10_1155_2022_4586569 crossref_primary_10_3390_jdb9040048 crossref_primary_10_1007_s10665_014_9774_6 crossref_primary_10_1111_imm_12732 |
Cites_doi | 10.1038/35018085 10.1242/dev.112.2.651 10.1098/rstb.2004.1472 10.1242/jcs.107.5.1137 10.1242/jcs.108.3.985 10.1098/rstb.2004.1468 10.1002/jez.10144 10.1016/S1357-2725(96)00120-3 10.1016/S0960-9822(02)00839-4 10.1093/oxfordjournals.molbev.a004023 10.1007/978-3-642-49295-2_8 10.1097/00000658-199401000-00011 10.1242/jcs.99.3.583 10.1038/nm1197-1209 10.1098/rstb.2004.1467 10.1073/pnas.94.4.1441 10.1002/(SICI)1097-0177(199807)212:3<385::AID-AJA6>3.0.CO;2-D 10.1111/1523-1747.ep12289705 10.1046/j.1469-7580.1997.19030351.x 10.1097/00006534-199811000-00022 10.4049/jimmunol.161.4.1983 10.1016/0140-6736(92)90009-R 10.1038/ng1295-409 10.1097/00006534-199604000-00029 10.1002/dvdy.10242 10.1016/S0002-9440(10)65217-0 10.1097/00041552-200105000-00007 10.1007/978-3-0348-8354-2_8 10.1136/bmj.326.7380.88 10.1201/b14004-11 10.1006/dbio.1995.1141 10.1016/S0012-1606(05)80018-1 10.1172/JCI11867 10.1016/S0168-8278(00)80412-2 10.1098/rstb.2004.1470 10.1007/978-1-4899-0185-9_18 |
ContentType | Journal Article |
Copyright | Copyright 2004 The Royal Society |
Copyright_xml | – notice: Copyright 2004 The Royal Society |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1098/rstb.2004.1475 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Biology |
EISSN | 1471-2970 |
Editor | Martin, P. Brockes, J. P. |
Editor_xml | – sequence: 1 givenname: J. P. surname: Brockes fullname: Brockes, J. P. organization: 1UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK – sequence: 1 givenname: J. P. surname: Brockes fullname: Brockes, J. P. – sequence: 2 givenname: P. surname: Martin fullname: Martin, P. organization: 1UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK – sequence: 2 givenname: P. surname: Martin fullname: Martin, P. |
EndPage | 850 |
ExternalDocumentID | 10_1098_rstb_2004_1475 15293811 4142114 ark_67375_V84_TGR1M030_L royptb_359_1445_839 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - 02 0R 29O 2WC 4.4 53G 8RP ABBHK ABFLS ABPTK ABXXB ACPRK ADACO ADBBV ADULT ADZLD AEUPB AFRAH AGCAB ALMA_UNASSIGNED_HOLDINGS AS BGBPD CAG COF DCCCD DIK DNJUQ DOOOF DWIUU E3Z EBS EJD F5P GX1 H13 HQ3 HTVGU HYE HZ JLS JPM JSG JSODD JST K-O KQ8 MV1 MVM O0- O9- OK1 OP1 RHF ROL RPM RRY SA0 TN5 V1E WOQ X XHC YNT --- -~X 0R~ AACGO AANCE ABPLY ABTLG ABXSQ ACQIA ACSFO ADACV AEXZC AJZGM ALMYZ AOIJS AQVQM AS~ BSCLL BTFSW HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF MRS W8F WHG ~02 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c692t-b0def72accf384bef377647857fa9b21d62fbbbffaf1ed2a428f14e3baad80b03 |
IEDL.DBID | RPM |
ISSN | 0962-8436 |
IngestDate | Tue Sep 17 21:22:34 EDT 2024 Fri Oct 25 10:18:27 EDT 2024 Thu Sep 26 18:54:04 EDT 2024 Sat Sep 28 07:40:55 EDT 2024 Wed Jan 17 02:37:39 EST 2024 Tue May 24 16:18:36 EDT 2022 Fri Feb 02 07:03:10 EST 2024 Wed Oct 30 09:50:55 EDT 2024 Tue Jan 05 21:45:58 EST 2021 Mon May 06 11:44:09 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1445 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-b0def72accf384bef377647857fa9b21d62fbbbffaf1ed2a428f14e3baad80b03 |
Notes | istex:192054718996A03CBD8852DB08358DA84DC45653 ark:/67375/V84-TGR1M030-L Discussion Meeting Issue 'New directions in tissue repair and regeneration' organized by J. P. Brockes and P. Martin ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://europepmc.org/articles/pmc1693363?pdf=render |
PMID | 15293811 |
PQID | 66756045 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1098_rstb_2004_1475 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693363 proquest_miscellaneous_66756045 istex_primary_ark_67375_V84_TGR1M030_L royalsociety_journals_RSTB1990v359i1445_0831073210_zip_rstb1990_359_issue_1445_rstb_2004_1475_rstb_2004_1475 royalsociety_journals_10_1098_rstb_2004_1475 jstor_primary_4142114 highwire_royalsociety_royptb_359_1445_839 pubmed_primary_15293811 |
ProviderPackageCode | RHF |
PublicationCentury | 2000 |
PublicationDate | 20040529 2004-05-29 2004-May-29 |
PublicationDateYYYYMMDD | 2004-05-29 |
PublicationDate_xml | – month: 5 year: 2004 text: 20040529 day: 29 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
PublicationYear | 2004 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | 10514397 - Am J Pathol. 1999 Oct;155(4):1137-46 7750642 - Dev Biol. 1995 May;169(1):242-60 7542672 - J Cell Sci. 1995 Mar;108 ( Pt 3):985-1002 9671942 - Dev Dyn. 1998 Jul;212(3):385-93 12015114 - Curr Biol. 2002 May 14;12(10):778-86 15293808 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):799-808 10910359 - Nature. 2000 Jul 13;406(6792):188-92 9076942 - Int J Biochem Cell Biol. 1997 Jan;29(1):63-78 11525949 - Eur J Dermatol. 2001 Sep-Oct;11(5):424-31 15293812 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):851-6 1879607 - Dev Biol. 1991 Sep;147(1):207-15 9810991 - Plast Reconstr Surg. 1998 Nov;102(6):1954-61 9037072 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1441-6 10728791 - J Hepatol. 2000;32(1 Suppl):19-31 9147222 - J Anat. 1997 Apr;190 ( Pt 3):351-65 15293804 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):765-76 1724421 - Development. 1991 Jun;112(2):651-68 9359694 - Nat Med. 1997 Nov;3(11):1209-15 15293806 - Philos Trans R Soc Lond B Biol Sci. 2004 May 29;359(1445):785-93 12362429 - J Exp Zool. 2002 Oct 15;294(3):179-215 1719005 - J Cell Sci. 1991 Jul;99 ( Pt 3):583-6 12411608 - Mol Biol Evol. 2002 Nov;19(11):1991-2004 12521975 - BMJ. 2003 Jan 11;326(7380):88-92 12557217 - Dev Dyn. 2003 Feb;226(2):388-97 11342795 - Curr Opin Nephrol Hypertens. 2001 May;10(3):341-7 8628785 - Plast Reconstr Surg. 1996 Apr;97(4):854-60 9077470 - J Invest Dermatol. 1997 Apr;108(4):430-7 8297179 - Ann Surg. 1994 Jan;219(1):65-72 7493021 - Nat Genet. 1995 Dec;11(4):409-14 7929624 - J Cell Sci. 1994 May;107 ( Pt 5):1137-57 11375418 - J Clin Invest. 2001 May;107(10):1285-92 12091424 - Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2250-7 9712070 - J Immunol. 1998 Aug 15;161(4):1983-8 1346175 - Lancet. 1992 Jan 25;339(8787):213-4 p_27 p_28 p_29 p_23 p_24 p_25 p_26 Whitby D. J. (p_39) 1991; 112 Shah M. (p_35) 1995; 108 p_20 p_42 p_21 p_22 p_40 p_16 p_38 p_17 p_2 p_18 p_1 p_19 p_4 Cowin A. J. (p_12) 2001; 11 p_3 p_6 p_14 p_36 p_5 p_15 p_37 Whitby D. J. (p_41) 1991; 99 p_8 p_7 p_9 Erwig L.-P. (p_13) 1998; 161 p_30 Robertson M. J. (p_31) 2002; 43 p_10 p_32 p_11 p_33 Shah M. (p_34) 1994; 107 |
References_xml | – ident: p_38 doi: 10.1038/35018085 – volume: 112 start-page: 651 year: 1991 ident: p_39 article-title: The extracellular matrix of lip wounds in fetal, neonatal and adult mice publication-title: Development doi: 10.1242/dev.112.2.651 contributor: fullname: Whitby D. J. – ident: p_22 doi: 10.1098/rstb.2004.1472 – volume: 107 start-page: 1137 year: 1994 ident: p_34 article-title: Neutralising antibody to TGF~1,2, reduces scarring in adult rodents publication-title: J. Cell Sci. doi: 10.1242/jcs.107.5.1137 contributor: fullname: Shah M. – volume: 108 start-page: 985 year: 1995 ident: p_35 article-title: Neutralisation of TGF~1 and TGF~2 or exogenous addition of TGF~3 to cutaneous rat wounds reduces scarring publication-title: J. Cell Sci. doi: 10.1242/jcs.108.3.985 contributor: fullname: Shah M. – ident: p_18 doi: 10.1098/rstb.2004.1468 – ident: p_2 – volume: 43 start-page: 2250 year: 2002 ident: p_31 article-title: Retinal microenvironment controls resident and infiltrating macrophage function during uveoretinitis publication-title: Invest. Ophthalmol. Visual Sci. contributor: fullname: Robertson M. J. – ident: p_37 doi: 10.1002/jez.10144 – ident: p_26 doi: 10.1016/S1357-2725(96)00120-3 – ident: p_24 doi: 10.1016/S0960-9822(02)00839-4 – ident: p_32 doi: 10.1093/oxfordjournals.molbev.a004023 – ident: p_30 doi: 10.1007/978-3-642-49295-2_8 – ident: p_28 – ident: p_20 doi: 10.1097/00000658-199401000-00011 – volume: 99 start-page: 583 year: 1991 ident: p_41 article-title: Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin publication-title: J. Cell Sci. doi: 10.1242/jcs.99.3.583 contributor: fullname: Whitby D. J. – ident: p_3 doi: 10.1038/nm1197-1209 – ident: p_19 doi: 10.1098/rstb.2004.1467 – ident: p_42 doi: 10.1073/pnas.94.4.1441 – volume: 11 start-page: 424 year: 2001 ident: p_12 article-title: Expression of TGF-~ and its receptors in murine fetal and adult dermal wounds publication-title: Eur. J. Dermatol. contributor: fullname: Cowin A. J. – ident: p_11 doi: 10.1002/(SICI)1097-0177(199807)212:3<385::AID-AJA6>3.0.CO;2-D – ident: p_4 doi: 10.1111/1523-1747.ep12289705 – ident: p_5 doi: 10.1046/j.1469-7580.1997.19030351.x – ident: p_16 – ident: p_8 doi: 10.1097/00006534-199811000-00022 – ident: p_10 – volume: 161 start-page: 1983 year: 1998 ident: p_13 article-title: Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines publication-title: J. Immunol. doi: 10.4049/jimmunol.161.4.1983 contributor: fullname: Erwig L.-P. – ident: p_33 doi: 10.1016/0140-6736(92)90009-R – ident: p_27 doi: 10.1038/ng1295-409 – ident: p_17 doi: 10.1097/00006534-199604000-00029 – ident: p_29 doi: 10.1002/dvdy.10242 – ident: p_6 doi: 10.1016/S0002-9440(10)65217-0 – ident: p_14 doi: 10.1097/00041552-200105000-00007 – ident: p_25 doi: 10.1007/978-3-0348-8354-2_8 – ident: p_7 doi: 10.1136/bmj.326.7380.88 – ident: p_36 doi: 10.1201/b14004-11 – ident: p_1 doi: 10.1006/dbio.1995.1141 – ident: p_40 doi: 10.1016/S0012-1606(05)80018-1 – ident: p_9 doi: 10.1172/JCI11867 – ident: p_15 doi: 10.1016/S0168-8278(00)80412-2 – ident: p_23 doi: 10.1098/rstb.2004.1470 – ident: p_21 doi: 10.1007/978-1-4899-0185-9_18 |
SSID | ssj0009574 |
Score | 2.4183745 |
SecondaryResourceType | review_article |
Snippet | In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem,
often resulting in adverse... In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse... |
SourceID | pubmedcentral proquest crossref pubmed royalsociety jstor istex highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 839 |
SubjectTerms | Adults Biological Evolution Cicatrix - drug therapy Cicatrix - physiopathology Embryo, Mammalian - physiology Healing Humans Medical treatment Molecules Physical trauma Platelet-Derived Growth Factor Regeneration Regeneration - physiology Regenerative Medicine Scarring Scars Skin Skin - pathology Skin Pharmaceuticals Skin Physiological Phenomena Tissue repair Transforming Growth Factor Beta Transforming Growth Factor beta - therapeutic use Transforming Growth Factor beta1 Transforming Growth Factor beta2 Transforming Growth Factor beta3 Wound Healing Wound Healing - physiology |
Title | Scar–free healing: from embryonic mechanisms to adult therapeutic intervention |
URI | http://rstb.royalsocietypublishing.org/content/359/1445/839.abstract https://api.istex.fr/ark:/67375/V84-TGR1M030-L/fulltext.pdf https://www.jstor.org/stable/4142114 https://royalsocietypublishing.org/doi/full/10.1098/rstb.2004.1475 https://www.ncbi.nlm.nih.gov/pubmed/15293811 https://search.proquest.com/docview/66756045 https://pubmed.ncbi.nlm.nih.gov/PMC1693363 |
Volume | 359 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tk0C8IFYGhI-RBwRMImsT2_ngDSbGBHSC0aG9WXZii4g1rZoOMf567pyktKh74THqJap_vrPvdHe_A3iGTifTTJtAWKECzngSZBhaB2jj2gxDm5uEGoVHJ_HxGf9wLs63QHS9MK5oP9flQXUxOajK7662cjbJB12d2ODz6JAIRFjMBj3ooYJ2IfqSabehXs5iNHVOucmWqTEdoD-lXUiI50Mimok8GV5Z4fql1BEFo79KUP_qShU3OaEbainnFPfXTc3lyl11dAdut06m_6ZZzA5smaoPN5qxk1d9uDlqE-p92Gltu_ZftgTU-3fhhLIygZ0b45MfiZfba5_aUHwz0fMr4tL1J4Y6hst6UvuLqe9IPPyVVi6_XCml3IWzo3fjw-OgnbsQ5HEWLQI9LIxNIpXnlqVcG8uShFpSRWJVpqOwiCOrtbZW2dAUkcIIxobcMK1UkQ71kN2D7WpamQfgM43AEIVNGGpuDArGPFfZMI9UJNIs9uBFB7ycNfQaskmLp5J2i6Zkckm75cF-ty9yFWF6mKEgExnKcSHR4_MgvUaWPkk9ADTBePUNSckOOSusB8_dni__jZr_oNq3RMhvKZfj96fhCM9F-cmDXacUS0EecgymuQdPOyWRaKmUflGVmV7WMsbYLEYsPLjfqMzfFbdq6EGypkxLAeIAX_8FTcNxgbem4MGrtYW2B1F9LZgXm8VPv47fhuig_ERwSgeOm0SXUKeX_F3O3HdIwKHnjoYGw_Xv__P48L_X9QhuNaVSIoiyx7C9mF-aJ-gFLvQe9D5-Sfec7f8BZsheJw |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIT5egJUB4Wt5QMAk0ubD-eINJkaBtkKjm_Zm2aktoq1p1bSI7a_nzklKO3UP8Gj5YsXn8_lOd_c7gFdodAYykMoJdSgcFrDYSdG1dvCOS-V6OlMxFQr3B1H3mH09DU-3IGxqYUzSfibzdnE-bhf5T5NbOR1nnSZPrPO9f0AAIkEUdG7ATbyvbtQ46Uus3Qp8OY3wsjOKTtZYjUkHLSppnELUEHFY9eRJ8dHy1p-lBioYLVZi9u8mWXGTGbohm3JGnn9ZZV2uvFaH9-Gk2WeVpHLWXuD_ZJdXICD_mREP4F5tv9ofqukd2FJFC25VHS0vWnC7X8fqW7BTq43SfltjW-8_hAEFfBw9U8omExXfzfc2VbjYaixnFwTTa48VFSPn5bi05xPb4IPYK1Vidr6SpbkLx4efhgddp27p4GRR6s8d6Y6Ujn2RZTpImFQ6iGOqdg1jLVLpe6PI11JKrYX21MgX6Bxpj6lACjFKXOkGj2C7mBTqCdiBRI4TOo7nSaYUEkYsE6mb-cIPkzSy4E1zonxaIXfwKuKecBIDasDJOImBBfvNgfPVo6PBFAmDMEU6FnI0Ji1IrqGlJam8gJojr37BKY7CpyNtwWsjTMu_EbMzSquLQ36SMD78fOT1UeXyngW7RtqWhMxj6KczC_Ya6eOoBCiyIwo1WZQ8QrcvQl5Y8LiSxb87ruXbgnhNSpcEBC--PoPCZmDGa-Gy4N3aRmsdV17LzPPN5Ec_hh89tH1-IXNywxzT5C6mIjJ-mU_NOkRguGe0TsXD9fWvDJ_-97724E532O_x3pfBt2dwt8rICh0_fQ7b89lCvUBjcy5fGtXyBz7sfyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BERUXoKGAedUHBFSq49f6xQ0KoUATVSVFFZeV19kVVhsnihNE--uZWdvBqdJLj1Ymlnf229kZzcw3AK_R6fSFL6QVqCC1mM8iK8HQ2sIzLqTjqkxG1CjcH4QHJ-zbaXDaGvWli_YzkXeL83G3yH_r2srpOLObOjH7qL9PBCJ-6NvTkbJvwx08s07cBOpLvt2KgDkJ8cAzylDWfI2xjV6V0IEhWokoqObyJHhxuatXU0MXjF4rKfxvU7C4zhVdU1E5o-i_rCovWzdW7wH8atZaFaqcdRf4PdnlFRrIGynjIdyv_VjzQyWyBbdk0YG71WTLiw5s9uucfQe2avNRmu9qjuvdRzCgxI-lZlKa5Kri_fnepE4XU47F7ILoes2xpKbkvByX5nxiap4Qs9UtZuatas1tOOl9Hu4fWPVoBysLE29uCWckVeSlWab8mAmp_CiirtcgUmkiPHcUekoIoVSqXDnyUgySlMukL9J0FDvC8R_DRjEp5FMwfYFaJ5Yc1xVMShQMWZYmTualXhAnoQFvm13l04rBg1eZ95gTFGgQJ-MEBQN2m03n7e2jhykK-kGCcizg6FQaEF8jS6-kNgMaktz-B6d8CsddMuCNBtTya9LZGZXXRQH_GTM-_HLs9tH08kMDtjXiloLMZRivMwN2GgRyNAaU4UkLOVmUPMTwL0RdGPCkwuP_FdcYNyBaQepSgGjGV39BwGm68RpgBuytLLS2deW1yjxfL378Y_jRRR_oDyon18rRw-4iaibjl_lUv4cEtPa09al0uPr-K4_PbryuHdg8-tTjh18H35_DvaowK7C85AVszGcL-RJ9zrl4pa3LPwhTgak |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scar%E2%80%93free+healing%3A+from+embryonic+mechanisms+to+adult+therapeutic+intervention&rft.jtitle=Philosophical+transactions.+Biological+sciences&rft.au=M.+W.+J.+Ferguson&rft.au=S.+O%27Kane&rft.date=2004-05-29&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=359&rft.issue=1445&rft.spage=839&rft_id=info:doi/10.1098%2Frstb.2004.1475&rft_id=info%3Apmid%2F15293811&rft.externalDBID=n%2Fa&rft.externalDocID=royptb_359_1445_839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon |