Active semi-supervised learning for biological data classification
Due to datasets have continuously grown, efforts have been performed in the attempt to solve the problem related to the large amount of unlabeled data in disproportion to the scarcity of labeled data. Another important issue is related to the trade-off between the difficulty in obtaining annotations...
Saved in:
Published in | PloS one Vol. 15; no. 8; p. e0237428 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
19.08.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to datasets have continuously grown, efforts have been performed in the attempt to solve the problem related to the large amount of unlabeled data in disproportion to the scarcity of labeled data. Another important issue is related to the trade-off between the difficulty in obtaining annotations provided by a specialist and the need for a significant amount of annotated data to obtain a robust classifier. In this context, active learning techniques jointly with semi-supervised learning are interesting. A smaller number of more informative samples previously selected (by the active learning strategy) and labeled by a specialist can propagate the labels to a set of unlabeled data (through the semi-supervised one). However, most of the literature works neglect the need for interactive response times that can be required by certain real applications. We propose a more effective and efficient active semi-supervised learning framework, including a new active learning method. An extensive experimental evaluation was performed in the biological context (using the ALL-AML, Escherichia coli and PlantLeaves II datasets), comparing our proposals with state-of-the-art literature works and different supervised (SVM, RF, OPF) and semi-supervised (YATSI-SVM, YATSI-RF and YATSI-OPF) classifiers. From the obtained results, we can observe the benefits of our framework, which allows the classifier to achieve higher accuracies more quickly with a reduced number of annotated samples. Moreover, the selection criterion adopted by our active learning method, based on diversity and uncertainty, enables the prioritization of the most informative boundary samples for the learning process. We obtained a gain of up to 20% against other learning techniques. The active semi-supervised learning approaches presented a better trade-off (accuracies and competitive and viable computational times) when compared with the active supervised learning ones. |
---|---|
AbstractList | Due to datasets have continuously grown, efforts have been performed in the attempt to solve the problem related to the large amount of unlabeled data in disproportion to the scarcity of labeled data. Another important issue is related to the trade-off between the difficulty in obtaining annotations provided by a specialist and the need for a significant amount of annotated data to obtain a robust classifier. In this context, active learning techniques jointly with semi-supervised learning are interesting. A smaller number of more informative samples previously selected (by the active learning strategy) and labeled by a specialist can propagate the labels to a set of unlabeled data (through the semi-supervised one). However, most of the literature works neglect the need for interactive response times that can be required by certain real applications. We propose a more effective and efficient active semi-supervised learning framework, including a new active learning method. An extensive experimental evaluation was performed in the biological context (using the ALL-AML, Escherichia coli and PlantLeaves II datasets), comparing our proposals with state-of-the-art literature works and different supervised (SVM, RF, OPF) and semi-supervised (YATSI-SVM, YATSI-RF and YATSI-OPF) classifiers. From the obtained results, we can observe the benefits of our framework, which allows the classifier to achieve higher accuracies more quickly with a reduced number of annotated samples. Moreover, the selection criterion adopted by our active learning method, based on diversity and uncertainty, enables the prioritization of the most informative boundary samples for the learning process. We obtained a gain of up to 20% against other learning techniques. The active semi-supervised learning approaches presented a better trade-off (accuracies and competitive and viable computational times) when compared with the active supervised learning ones. |
Audience | Academic |
Author | Camargo, Guilherme Bugatti, Pedro H Saito, Priscila T M |
AuthorAffiliation | Korea National University of Transportation, KOREA, REPUBLIC OF 1 Department of Computing, Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil 2 Institute of Computing, University of Campinas, Campinas, SP, Brazil |
AuthorAffiliation_xml | – name: 1 Department of Computing, Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil – name: Korea National University of Transportation, KOREA, REPUBLIC OF – name: 2 Institute of Computing, University of Campinas, Campinas, SP, Brazil |
Author_xml | – sequence: 1 givenname: Guilherme surname: Camargo fullname: Camargo, Guilherme organization: Department of Computing, Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil – sequence: 2 givenname: Pedro H surname: Bugatti fullname: Bugatti, Pedro H organization: Department of Computing, Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil – sequence: 3 givenname: Priscila T M orcidid: 0000-0002-4870-4766 surname: Saito fullname: Saito, Priscila T M organization: Institute of Computing, University of Campinas, Campinas, SP, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32813738$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkluLEzEUxwdZcS_6DUQHBNGH1twneRHq4qWwsODtNaSZM21KOukmM4t-ezN2dunIPkgeEk5-539yTv7nxUkbWiiK5xjNMa3wu23oY2v8fJ_Dc0RoxYh8VJxhRclMEERPjs6nxXlKW4Q4lUI8KU4pkVmDyrPiw8J27hbKBDs3S_0e4q1LUJceTGxduy6bEMuVCz6snTW-rE1nSutNSq7Jgc6F9mnxuDE-wbNxvyh-fPr4_fLL7Or68_JycTWzQpFuZqA2FTCFlTBIWQyNpI1RjFthVoRL4FVTr5BSCjMODalsZUUtmAJSUcEVvSheHnT3PiQ9tp80YZRzXCkqM7E8EHUwW72Pbmfibx2M038DIa61iZ2zHjRlTFrEKJaYMIYaiZG0HDEAjlaWQtZ6P1brVzuoLbRdNH4iOr1p3Uavw62uGK2k4FngzSgQw00PqdM7lyx4b1oI_eHdFZcUD-irf9CHuxuptckNuLYJua4dRPVCUKK44mKg5g9QedX5h232SuNyfJLwdpKQmQ5-dWvTp6SX377-P3v9c8q-PmI3YHy3ScH3g2XSFGQH0MaQUoTmfsgY6cHqd9PQg9X1aPWc9uL4g-6T7rxN_wCcDfms |
CitedBy_id | crossref_primary_10_3390_ijms24010706 crossref_primary_10_3389_fonc_2022_960984 crossref_primary_10_3390_rs14153776 crossref_primary_10_1007_s11227_022_04847_z crossref_primary_10_1016_j_biosystemseng_2021_05_006 crossref_primary_10_1093_bib_bbad120 crossref_primary_10_1007_s11517_024_03114_y crossref_primary_10_1021_acs_jcim_2c00258 crossref_primary_10_1038_s41598_022_26236_5 crossref_primary_10_1186_s12859_022_04764_1 crossref_primary_10_1002_bies_202300114 crossref_primary_10_1371_journal_pone_0285566 crossref_primary_10_1371_journal_pone_0286137 crossref_primary_10_1016_j_mtbio_2024_101119 crossref_primary_10_1021_acsomega_1c03132 crossref_primary_10_2196_28028 crossref_primary_10_1080_21645515_2023_2204020 |
Cites_doi | 10.1186/1471-2105-16-S10-S4 10.1186/1471-2105-11-S1-S57 10.1186/1471-2105-13-237 10.1007/978-3-319-75193-1_5 10.1093/bib/3.4.361 10.1109/TNNLS.2018.2869164 10.1145/2623330.2623760 10.1109/RIVF.2016.7800267 10.1023/A:1010933404324 10.1109/ICASSP.2017.7952584 10.1109/DSC.2017.48 10.1109/TNSRE.2017.2748388 10.1109/TNNLS.2017.2784814 10.1126/science.286.5439.531 10.1186/1471-2105-11-S8-S6 10.1109/TNNLS.2018.2855446 10.1109/TNNLS.2016.2514401 10.1186/1471-2105-15-S1-S4 10.1186/1471-2105-5-122 10.1109/TNNLS.2018.2868649 10.1109/LGRS.2013.2255258 10.1016/j.patcog.2015.05.020 10.1093/bioinformatics/btu772 10.1007/s13173-013-0121-y 10.1093/bib/bbv082 10.1371/journal.pone.0162075 10.1371/journal.pone.0138814 10.1038/s41598-018-31395-5 10.1109/TPAMI.2017.2652459 10.1186/1471-2105-12-S12-S4 10.1109/ACCESS.2018.2821192 10.3390/e21100988 10.1109/I-SMAC.2017.8058397 10.1186/1471-2105-12-424 10.1016/j.patcog.2011.07.013 10.1371/journal.pone.0210689 10.1109/ICPR.2014.652 10.1016/j.patcog.2011.05.013 10.1109/ICIEA.2018.8398182 10.1109/BigData.2017.8257916 10.1186/1471-2105-15-143 10.1109/TNNLS.2016.2614393 10.1109/JSTARS.2015.2510867 10.1007/11731139_10 10.1186/s12859-015-0872-x 10.1186/1471-2105-10-S1-S47 10.1093/bib/bbk007 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Camargo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Camargo et al 2020 Camargo et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Camargo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Camargo et al 2020 Camargo et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0237428 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Opposing Viewpoints database Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing and Allied Health Journals Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (Proquest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Active semi-supervised learning and biological data classification |
EISSN | 1932-6203 |
Editor | Gwak, Jeonghwan |
Editor_xml | – sequence: 1 givenname: Jeonghwan surname: Gwak fullname: Gwak, Jeonghwan |
EndPage | e0237428 |
ExternalDocumentID | 2435517938 oai_doaj_org_article_3448c0431812440f8108c504ee50bc3e A632959568 10_1371_journal_pone_0237428 32813738 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 422811/2016-5 – fundername: ; grantid: 431668/2016-7 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF D1I D1J D1K DIK DU5 E3Z EAP EAS EBD ECM EIF EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ NPM O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RIG RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX CITATION AFPKN 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM AAPBV ABPTK BBAFP N95 |
ID | FETCH-LOGICAL-c692t-aeda7e49196a09c1ef83fa945c6ab258e57fdb0999145ef27c7c6d649e2736593 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Sun Jan 01 07:45:41 EST 2023 Tue Oct 22 15:04:42 EDT 2024 Tue Sep 17 21:00:17 EDT 2024 Sat Oct 26 05:58:51 EDT 2024 Thu Oct 10 16:09:06 EDT 2024 Tue Nov 19 20:46:25 EST 2024 Tue Nov 12 23:22:48 EST 2024 Thu Aug 01 19:14:57 EDT 2024 Thu Aug 01 19:23:58 EDT 2024 Tue Aug 20 22:05:56 EDT 2024 Thu Nov 21 23:49:04 EST 2024 Sat Nov 02 12:27:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-aeda7e49196a09c1ef83fa945c6ab258e57fdb0999145ef27c7c6d649e2736593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: currently, one of the authors (Priscila T. M. Saito) of the present work is a member of the PLOS ONE Editorial Board, acting as an academic editor. This does not alter our adherence to PLOS ONE policies on sharing data and materials. |
ORCID | 0000-0002-4870-4766 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437865/ |
PMID | 32813738 |
PQID | 2435517938 |
PQPubID | 1436336 |
PageCount | e0237428 |
ParticipantIDs | plos_journals_2435517938 doaj_primary_oai_doaj_org_article_3448c0431812440f8108c504ee50bc3e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7437865 proquest_miscellaneous_2435758315 proquest_journals_2435517938 gale_infotracmisc_A632959568 gale_infotracacademiconefile_A632959568 gale_incontextgauss_ISR_A632959568 gale_incontextgauss_IOV_A632959568 gale_healthsolutions_A632959568 crossref_primary_10_1371_journal_pone_0237428 pubmed_primary_32813738 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-19 |
PublicationDateYYYYMMDD | 2020-08-19 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Z Zhang (pone.0237428.ref010) 2018; 6 PTM Saito (pone.0237428.ref045) 2015; 48 JD Kangas (pone.0237428.ref029) 2014; 15 pone.0237428.ref054 pone.0237428.ref053 N Alajlan (pone.0237428.ref043) 2014; 11 pone.0237428.ref051 VV Le (pone.0237428.ref011) 2016; 17 I Walsh (pone.0237428.ref020) 2016; 17 TP Mohamed (pone.0237428.ref032) 2010; 11 D Wu (pone.0237428.ref024) 2019; 30 Armis andén Proux-Wéra D Estelle (pone.0237428.ref004) 2012; 13 Z Qiu (pone.0237428.ref038) 2017; 28 V Fazakis Kanas (pone.0237428.ref035) 2019; 21 H Chai (pone.0237428.ref034) 2018; 8 JT Zhou (pone.0237428.ref001) 2019 YY Xu (pone.0237428.ref013) 2015; 31 pone.0237428.ref044 pone.0237428.ref041 O Emanuelsson (pone.0237428.ref022) 2002; 3 pone.0237428.ref042 pone.0237428.ref040 W Han (pone.0237428.ref039) 2019; 11 pone.0237428.ref049 pone.0237428.ref003 pone.0237428.ref047 X Lu (pone.0237428.ref006) 2004; 5 pone.0237428.ref048 pone.0237428.ref002 JP Papa (pone.0237428.ref052) 2012; 45 P Larrañaga (pone.0237428.ref008) 2006; 7 PTM Saito (pone.0237428.ref007) 2015; 10 TR Golub (pone.0237428.ref046) 1999; 286 pone.0237428.ref030 X Zhang (pone.0237428.ref019) 2015; 10 M Carbonneau (pone.0237428.ref023) 2019; 30 O Edo-Osagie (pone.0237428.ref017) 2019; 14 H Chen (pone.0237428.ref009) 2018; 29 P Drews (pone.0237428.ref033) 2013; 19 P Polewski (pone.0237428.ref028) 2016; 9 H Yu (pone.0237428.ref025) 2019; 30 G Pio (pone.0237428.ref014) 2014; 15 L Breiman (pone.0237428.ref050) 2001; 45 Y Jiang (pone.0237428.ref018) 2017; 25 pone.0237428.ref021 S Mohamad (pone.0237428.ref026) 2018; 29 L Lin (pone.0237428.ref036) 2018; 40 S Doyle (pone.0237428.ref031) 2011; 12 pone.0237428.ref027 Q Xu (pone.0237428.ref016) 2009; 10 C Caragea (pone.0237428.ref015) 2010; 11 M Song (pone.0237428.ref037) 2011; 12 D Zhang (pone.0237428.ref005) 2012; 45 T Provoost (pone.0237428.ref012) 2015; 16 |
References_xml | – volume: 16 start-page: S4 issue: 10 year: 2015 ident: pone.0237428.ref012 article-title: Semi-supervised Learning for the BioNLP Gene Regulation Network publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-16-S10-S4 contributor: fullname: T Provoost – volume: 11 start-page: S57 issue: 1 year: 2010 ident: pone.0237428.ref032 article-title: Active learning for human protein-protein interaction prediction publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-S1-S57 contributor: fullname: TP Mohamed – volume: 13 start-page: 237 issue: 1 year: 2012 ident: pone.0237428.ref004 article-title: A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-237 contributor: fullname: Armis andén Proux-Wéra D Estelle – ident: pone.0237428.ref048 doi: 10.1007/978-3-319-75193-1_5 – volume: 3 start-page: 361 issue: 4 year: 2002 ident: pone.0237428.ref022 article-title: Predicting protein subcellular localisation from amino acid sequence information publication-title: Briefings in Bioinformatics doi: 10.1093/bib/3.4.361 contributor: fullname: O Emanuelsson – volume: 30 start-page: 1441 issue: 5 year: 2019 ident: pone.0237428.ref023 article-title: Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2869164 contributor: fullname: M Carbonneau – ident: pone.0237428.ref042 doi: 10.1145/2623330.2623760 – ident: pone.0237428.ref021 doi: 10.1109/RIVF.2016.7800267 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: pone.0237428.ref050 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – ident: pone.0237428.ref041 doi: 10.1109/ICASSP.2017.7952584 – ident: pone.0237428.ref003 doi: 10.1109/DSC.2017.48 – volume: 25 start-page: 2270 issue: 12 year: 2017 ident: pone.0237428.ref018 article-title: Seizure Classification From EEG Signals Using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2748388 contributor: fullname: Y Jiang – start-page: 1 year: 2019 ident: pone.0237428.ref001 article-title: Learning With Annotation of Various Degrees publication-title: IEEE Transactions on Neural Networks and Learning Systems contributor: fullname: JT Zhou – volume: 29 start-page: 5366 issue: 11 year: 2018 ident: pone.0237428.ref009 article-title: Semisupervised Negative Correlation Learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2784814 contributor: fullname: H Chen – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: pone.0237428.ref046 article-title: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring publication-title: Science doi: 10.1126/science.286.5439.531 contributor: fullname: TR Golub – volume: 11 start-page: S6 issue: 8 year: 2010 ident: pone.0237428.ref015 article-title: Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-S8-S6 contributor: fullname: C Caragea – volume: 30 start-page: 1088 issue: 4 year: 2019 ident: pone.0237428.ref025 article-title: Active Learning From Imbalanced Data: A Solution of Online Weighted Extreme Learning Machine publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2855446 contributor: fullname: H Yu – volume: 28 start-page: 917 issue: 4 year: 2017 ident: pone.0237428.ref038 article-title: A Maximum Entropy Framework for Semisupervised and Active Learning With Unknown and Label-Scarce Classes publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2514401 contributor: fullname: Z Qiu – volume: 15 start-page: S4 issue: 1 year: 2014 ident: pone.0237428.ref014 article-title: Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-S1-S4 contributor: fullname: G Pio – volume: 5 start-page: 122 issue: 1 year: 2004 ident: pone.0237428.ref006 article-title: Automatic annotation of protein motif function with Gene Ontology terms publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-122 contributor: fullname: X Lu – volume: 30 start-page: 1348 issue: 5 year: 2019 ident: pone.0237428.ref024 article-title: Pool-Based Sequential Active Learning for Regression publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2868649 contributor: fullname: D Wu – ident: pone.0237428.ref049 – volume: 11 start-page: 259 issue: 1 year: 2014 ident: pone.0237428.ref043 article-title: Large-Scale Image Classification Using Active Learning publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2013.2255258 contributor: fullname: N Alajlan – volume: 48 start-page: 3572 issue: 11 year: 2015 ident: pone.0237428.ref045 article-title: Robust active learning for the diagnosis of parasites publication-title: Pattern Recognition doi: 10.1016/j.patcog.2015.05.020 contributor: fullname: PTM Saito – volume: 31 start-page: 1111 issue: 7 year: 2015 ident: pone.0237428.ref013 article-title: Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu772 contributor: fullname: YY Xu – volume: 19 start-page: 411 year: 2013 ident: pone.0237428.ref033 article-title: Microalgae classification using semi-supervised and active learning based on Gaussian mixture models publication-title: Journal of the Brazilian Computer Society doi: 10.1007/s13173-013-0121-y contributor: fullname: P Drews – volume: 17 start-page: 831 issue: 5 year: 2016 ident: pone.0237428.ref020 article-title: Correct machine learning on protein sequences: a peer-reviewing perspective publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbv082 contributor: fullname: I Walsh – volume: 11 start-page: e0162075 issue: 9 year: 2019 ident: pone.0237428.ref039 article-title: Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments publication-title: PLoS ONE doi: 10.1371/journal.pone.0162075 contributor: fullname: W Han – volume: 10 start-page: 1 issue: 9 year: 2015 ident: pone.0237428.ref019 article-title: Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification publication-title: PLOS ONE doi: 10.1371/journal.pone.0138814 contributor: fullname: X Zhang – ident: pone.0237428.ref051 – volume: 8 start-page: 13009 issue: 1 year: 2018 ident: pone.0237428.ref034 article-title: A novel logistic regression model combining semi-supervised learning and active learning for disease classification publication-title: Scientific Reports doi: 10.1038/s41598-018-31395-5 contributor: fullname: H Chai – volume: 40 start-page: 7 issue: 1 year: 2018 ident: pone.0237428.ref036 article-title: Active Self-Paced Learning for Cost-Effective and Progressive Face Identification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2652459 contributor: fullname: L Lin – volume: 12 start-page: S4 issue: 12 year: 2011 ident: pone.0237428.ref037 article-title: Combining active learning and semi-supervised learning techniques to extract protein interaction sentences publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-S12-S4 contributor: fullname: M Song – volume: 6 start-page: 22196 year: 2018 ident: pone.0237428.ref010 article-title: Leveraging Unlabeled Data for Emotion Recognition With Enhanced Collaborative Semi-Supervised Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2821192 contributor: fullname: Z Zhang – volume: 21 start-page: 988 year: 2019 ident: pone.0237428.ref035 article-title: Combination of Active Learning and Semi-Supervised Learning under a Self-Training Scheme publication-title: Entropy doi: 10.3390/e21100988 contributor: fullname: V Fazakis Kanas – ident: pone.0237428.ref040 doi: 10.1109/I-SMAC.2017.8058397 – volume: 12 start-page: 424 issue: 1 year: 2011 ident: pone.0237428.ref031 article-title: An active learning based classification strategy for the minority class problem: application to histopathology annotation publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-424 contributor: fullname: S Doyle – ident: pone.0237428.ref044 – volume: 45 start-page: 512 issue: 1 year: 2012 ident: pone.0237428.ref052 article-title: Efficient Supervised Optimum-Path Forest Classification for Large Datasets publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.07.013 contributor: fullname: JP Papa – volume: 14 start-page: 1 issue: 7 year: 2019 ident: pone.0237428.ref017 article-title: Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance publication-title: PLOS ONE doi: 10.1371/journal.pone.0210689 contributor: fullname: O Edo-Osagie – ident: pone.0237428.ref030 doi: 10.1109/ICPR.2014.652 – volume: 45 start-page: 346 issue: 1 year: 2012 ident: pone.0237428.ref005 article-title: A review on automatic image annotation techniques publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.05.013 contributor: fullname: D Zhang – ident: pone.0237428.ref002 doi: 10.1109/ICIEA.2018.8398182 – ident: pone.0237428.ref027 doi: 10.1109/BigData.2017.8257916 – ident: pone.0237428.ref054 – volume: 15 start-page: 143 issue: 1 year: 2014 ident: pone.0237428.ref029 article-title: Efficient discovery of responses of proteins to compounds using active learning publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-143 contributor: fullname: JD Kangas – volume: 29 start-page: 74 issue: 1 year: 2018 ident: pone.0237428.ref026 article-title: A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2614393 contributor: fullname: S Mohamad – ident: pone.0237428.ref047 – volume: 10 start-page: 1 issue: 6 year: 2015 ident: pone.0237428.ref007 article-title: Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint publication-title: PLOS ONE contributor: fullname: PTM Saito – volume: 9 start-page: 2910 issue: 7 year: 2016 ident: pone.0237428.ref028 article-title: Combining Active and Semisupervised Learning of Remote Sensing Data Within a Renyi Entropy Regularization Framework publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2015.2510867 contributor: fullname: P Polewski – ident: pone.0237428.ref053 doi: 10.1007/11731139_10 – volume: 17 start-page: 22 issue: 1 year: 2016 ident: pone.0237428.ref011 article-title: A novel semi-supervised algorithm for the taxonomic assignment of metagenomic reads publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0872-x contributor: fullname: VV Le – volume: 10 start-page: S47 issue: 1 year: 2009 ident: pone.0237428.ref016 article-title: Semi-supervised protein subcellular localization publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-S1-S47 contributor: fullname: Q Xu – volume: 7 start-page: 86 issue: 1 year: 2006 ident: pone.0237428.ref008 article-title: Machine learning in bioinformatics publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbk007 contributor: fullname: P Larrañaga |
SSID | ssj0053866 |
Score | 2.4843802 |
Snippet | Due to datasets have continuously grown, efforts have been performed in the attempt to solve the problem related to the large amount of unlabeled data in... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0237428 |
SubjectTerms | Active learning Annotations Biological research Biology and Life Sciences Classification Classifiers Computer and Information Sciences Computer applications Context Data Management - methods Datasets E coli Learning Machine learning Medicine and Health Sciences Methods Research and Analysis Methods Semi-supervised learning Social Sciences Supervised Machine Learning Technology application Tradeoffs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDBQJCAg5pk_j7uEVUBQmQgKLeLMexSyXIrsju_2fG9kYNqgQHruvZ1e4bz_hNduaZkBeOA6cQHa2oqm3FemorzVVf8cbXTVCd5i1OI3_4KE7P2Ptzfn7lqi_sCUvywAm4Iwr1g0MFmHgS1UE1tXK8Zt7zunPUx-xbt7tiKuVgiGIh8qAclc1R9svhejX4QziloB5Us4Mo6vVPWXmx_rEar6Ocf3ZOXjmKTm6TW5lDlsv03ffIDT_cIXs5SsfyVZaSfn2XHC9jOitH__OyGrdrTAyj78t8V8RFCZS1TDpM6KwS-0VLh4QaO4ii0-6Rs5O3X9-cVvnWhMoJ3W4q63srPdMQWrbWrvFB0WA1407YruXKcxn6LhJDxn1opZNO9IJpD0xGcE3vk8UAOO2Tkittre4gJTDHnPQ6aOt56KQMUFZKWpBqB6FZJ3EME_8hk1BUJCwMQm4y5AU5RpwnW5S2ji-Aw012uPmbwwvyFL1k0pzoFKBmKWirOU4_FuR5tEB5iwH7Zy7sdhzNu0_f_sHoy-eZ0ctsFFbgb2fzzAL8JpTNmlkezCwhSN1seR_31A6V0bRAU1EdjeI7d_vs-uVn0zJ-KPbEDX61TTZQ7dGGF-RB2pYTsrRVDWpWFUTONuwM-vnKcPk9qosDpZRK8If_w1ePyM0Wn0-ghLA-IIvNr61_DCRu0z2J8fobw19CKA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdDCwSEBBzcJnH8OqEtYilIgAQU9WY5jr2tBEna7P5_PI4TCKoQ1_VktTsvf-PMfEbouaEeU7CKYCIyjcuaaCypqDHNbZY7UUlawDTyx0_s-KT8cEpP44FbH9sqx5wYEnXdGjgjPyz8vg50UkS87i4w3BoFb1fjFRrX0Y284Axa-sTq3ZiJfSwzFsflCM8Po3UOuraxB36v8lWhmG1HgbV_ys2L7kfbXwU8_-6f_GNDWt1GtyKSTJeD6XfQNdvcQTsxVvv0ZSSUfnUXHS1DUkt7-_Mc99sO0kNv6zTeGLFOPXBNBzYmMFkKXaOpAVgNfUTBdPfQyerttzfHON6dgA2TxQZrW2tuS-kDTGfS5NYJ4rQsqWG6KqiwlLu6CvCwpNYV3HDDalZK6_EMo5LcR4vG62kXpVRIrWXlE0NpSsOtdFJb6irOnS8uOUkQHlWouoEiQ4X3ZNyXFoMuFKhcRZUn6Aj0PMkCwXX4oL1cqxgviviy0QDxTwAgmRN5JgzNSmtpVhliE_QErKSGadEpTNWSkUJSmIFM0LMgASQXDXTRrPW279X7z9__Q-jrl5nQiyjkWm9vo-Pkgv9PQJ41k9yfSfpQNbPlXfCpUSu9-u3U_snRz65efjotw5dCZ1xj2-0g42s-ktMEPRjcctIsKUQOzFUJ4jOHnal-vtKcnwWOcQ8suWD04b9_1h66WcD5A1AEy3202Fxu7SMP0jbV4xCJvwBpHDtD priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGeeEFMX4tbEBASMBDqiSOfz0g1CGmgTSQgKK9RY5jl0kj6ZpWgv-eO8eNCCrSXutLpHy-s7-r7z4T8sIw4BS8ogmVqU6KmupEMVknLLNp5mSlWI7dyGef-Om8-HjOzvfI9s7WAGC3M7XD-6Tmq8vpr6vfbyHg3_hbG0S2fWi6bBs7hT0Isj15g9zMYW_EIq-zYjhXgOj2p5fIWhKepzQ00_3vLaPNymv6Dyv3ZHnZdrto6b_VlX9tVyd3yO3AM-NZ7xj7ZM82d8l-iOQufhXkpl_fI8czv-TFnf15kXSbJS4ena3jcJ_EIgZaG_daTTihMdaUxgZJN1YZ-Ym9T-Yn77-9O03CzQqJ4SpfJ9rWWthCQfjpVJnMOkmdVgUzXFc5k5YJV1eePBbMulwYYXjNC2WB7XCm6AMyaQCnAxIzqbRWFSwbhSmMsMopbZmrhHCQegoakWQLYbnsBTRKf4omIPHosSgR8jJAHpFjxHmwRflr_0O7WpQhmkoKSaVBWSBPT1Ins1QalhbWsrQy1EbkKc5S2feSDkFczjjNFcMOyYg89xYogdFgjc1Cb7qu_PD5-zWMvn4ZGb0MRq6F-TY69DXAN6G01sjyaGQJgWxGwwfoU1tUuhIcmKGCGsUnt362e_jZMIwvxbq5xrab3gYyQpqxiDzs3XJAluYyQ12riIiRw46gH480Fz-8AjnQTiE5e3QdfA7JrRz_o0AZYXVEJuvVxj4GIreunvjY_AOxfUT- priority: 102 providerName: Scholars Portal |
Title | Active semi-supervised learning for biological data classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32813738 https://www.proquest.com/docview/2435517938 https://search.proquest.com/docview/2435758315 https://pubmed.ncbi.nlm.nih.gov/PMC7437865 https://doaj.org/article/3448c0431812440f8108c504ee50bc3e http://dx.doi.org/10.1371/journal.pone.0237428 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2cuGC2PhYYCsBIQGHtEkcx_axrVYGUsc0GOotchynq7Sm1dL-_7znONWCdkBcfKhfouR9v_S9nwn5qBnkFGlOAypCFSQFVYFkoghYZMKoFLlkMU4jzy7Ti5vk-5zNDwhrZ2Fs077Ol4PqbjWolre2t3Kz0sO2T2x4NZtA1OMiZcNDcgjhty3RG_cLBpymbkaO8mjoRDLYrCszgAAFpSCe0UdjEVE7lfIgHFnU_r1v7m3u1vVjieff_ZMPAtL0OXnmMkl_1DzxETkw1TE5crZa-58doPSXF2Q8sk7Nr81qGdS7DbqH2hS-OzFi4UPi6jdoTCgyH7tGfY1pNfYRWdG9JDfT81-Ti8CdnRDoVMbbQJlCcZNIMDAVSh2ZUtBSyYTpVOUxE4bxsshtepgwU8Zcc50WaSIN5DMpk_QV6VXAshPiMyGVkjk4hkQnmhtZSmVYmXNeQnHJqUeCloXZpoHIyOz_ZBxKi4YXGXI_c9z3yBj5vKdFgGv7w_p-kTkxZxTKRo3APzYBCUsRhUKzMDGGhbmmxiPvUEpZMy26N9NslNJYMpyB9MgHS4EgFxV20SzUrq6zbz9-_wPRz-sO0SdHVK5B3lq5yQV4JwTP6lCedijBVHVn-wR1quVKncWQrCJGGsUrWz17fPv9fhtvip1xlVnvGhqo-WjEPPK6Ucs9Z1sl9wjvKGyH9d0dMDmLMe5M7M1_X_mWPI3x0wSiB8tT0tve78wZ5G_bvA9WO-ewikmE6_RrnzwZn19eXfftFxFYZ4noW6v-A5TcSkg |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12223,12765,21388,24318,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,53791,53793,73745,74014,74035,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcAFtbwaWmhASMAhbRLHrxPaVlRbaIsELerNchxnqQTJ0uz-f2YcbyCoQlx3JqvdefmzM_OZkFeWAabgJU2oTE1SVNQkiskqYZlLs1qWiuU4jXx6xmcXxYdLdhkO3LrQVrmuib5QV63FM_L9HNZ1pJOi8t3iZ4K3RuHb1XCFxm1yB8QCo1oeDi0ekMuch3E5KrL94J29Rdu4PVirYFcoR8uRZ-0favNk8b3tbgKef_dP_rEgHW2Q-wFJxtPe9ZvklmsekM2Qq138JhBKv31IDqa-qMWd-3GVdKsFlofOVXG4MWIeA3CNezYmdFmMXaOxRViNfUTedY_IxdH788NZEu5OSCxX-TIxrjLCFQoSzKTKZq6WtDaqYJabMmfSMVFXpYeHBXN1LqywvOKFcoBnOFP0MZk0YKctEjOpjFElFIbCFlY4VSvjWF0KUcPmUtCIJGsT6kVPkaH9ezIBW4veFhpNroPJI3KAdh50keDaf9Bez3XIF01h22iR-McDkLSWWSotSwvnWFpa6iKyi17S_bTokKZ6ymmuGM5ARuSl10CSiwa7aOZm1XX6-NPX_1D68nmk9Doo1S3425owuQD_CcmzRpo7I01IVTsSb2FMra3S6d9BDU-u4-xm8YtBjF-KnXGNa1e9Duz5aMYi8qQPy8GyNJcZMldFRIwCdmT6saS5-uY5xgFYCsnZ03__rF1yd3Z-eqJPjs8-bpN7OZ5FIF2w2iGT5fXKPQPAtiyf-6z8BRGEPgI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgkRAXRHk1UGhASMDB3SSOXye0LaxaHgUBrXqzHMdeKkGyNLv_H4_jDQRViOt6EmXn5c_JzDcIPTPUYwpWEUxEpnFZE40lFTWmuc1yJypJC-hG_nDMDk_Kt2f0LNY_dbGscpMTQ6KuWwPvyKeF39eBToqIqYtlEZ9ez18tf2KYIAVfWuM4javoGkyZAx59cTCUe_i4Ziy2zhGeT6Ol9pZtY_f8vuVPiGK0NQUG_yFPT5bf2-4yEPp3LeUfm9P8FroZUWU6691gC12xzW20FeO2S19EcumXd9D-LCS4tLM_znG3XkKq6GydxukRi9SD2LRnZgLzpVBBmhqA2FBTFMx4F53M33w9OMRxjgI2TBYrrG2tuS2lDzadSZNbJ4jTsqSG6aqgwlLu6ipAxZJaV3DDDatZKa3HNoxKcg9NGq-nbZRSIbWWlU8SpSkNt9JJbamrOHf-oMlJgvBGhWrZ02Wo8M2M-2NGrwsFKldR5QnaBz0PskB2HX5oLxYqxo4i_ghpgAQogJHMiTwThmaltTSrDLEJ2gUrqb5zdAhZNWOkkBT6IRP0NEgA4UUDrrPQ665TRx9P_0Poy-eR0PMo5Fpvb6NjF4P_T0CkNZLcGUn6sDWj5W3wqY1WOvXbwf2VGz-7fPnJsAw3hSq5xrbrXsaf_0hOE3S_d8tBs6QQObBYJYiPHHak-vFKc_4t8I17kMkFow_-_Vi76LoPSPX-6PjdQ3SjgNcSwBwsd9BkdbG2jzx2W1WPQ1D-Aut1Qic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+semi-supervised+learning+for+biological+data+classification&rft.jtitle=PloS+one&rft.au=Camargo%2C+Guilherme&rft.au=Bugatti%2C+Pedro+H&rft.au=Saito%2C+Priscila+T.+M&rft.date=2020-08-19&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=8&rft.spage=e0237428&rft_id=info:doi/10.1371%2Fjournal.pone.0237428&rft.externalDBID=ISR&rft.externalDocID=A632959568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |