Text Mining the History of Medicine

Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 1; p. e0144717
Main Authors Thompson, Paul, Batista-Navarro, Riza Theresa, Kontonatsios, Georgios, Carter, Jacob, Toon, Elizabeth, McNaught, John, Timmermann, Carsten, Worboys, Michael, Ananiadou, Sophia
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.01.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform.
AbstractList Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform.
Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19 th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform.
Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19.sup.th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform.
Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19 th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform.
Audience Academic
Author Carter, Jacob
Thompson, Paul
Worboys, Michael
Kontonatsios, Georgios
Ananiadou, Sophia
Batista-Navarro, Riza Theresa
Toon, Elizabeth
McNaught, John
Timmermann, Carsten
AuthorAffiliation 1 National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
2 Centre for the History of Science, Technology and Medicine, University of Manchester, Manchester, United Kingdom
Indiana University, UNITED STATES
AuthorAffiliation_xml – name: 1 National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
– name: 2 Centre for the History of Science, Technology and Medicine, University of Manchester, Manchester, United Kingdom
– name: Indiana University, UNITED STATES
Author_xml – sequence: 1
  givenname: Paul
  surname: Thompson
  fullname: Thompson, Paul
  organization: National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
– sequence: 2
  givenname: Riza Theresa
  surname: Batista-Navarro
  fullname: Batista-Navarro, Riza Theresa
  organization: National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
– sequence: 3
  givenname: Georgios
  surname: Kontonatsios
  fullname: Kontonatsios, Georgios
  organization: National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
– sequence: 4
  givenname: Jacob
  surname: Carter
  fullname: Carter, Jacob
  organization: National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
– sequence: 5
  givenname: Elizabeth
  surname: Toon
  fullname: Toon, Elizabeth
  organization: Centre for the History of Science, Technology and Medicine, University of Manchester, Manchester, United Kingdom
– sequence: 6
  givenname: John
  surname: McNaught
  fullname: McNaught, John
  organization: National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
– sequence: 7
  givenname: Carsten
  surname: Timmermann
  fullname: Timmermann, Carsten
  organization: Centre for the History of Science, Technology and Medicine, University of Manchester, Manchester, United Kingdom
– sequence: 8
  givenname: Michael
  surname: Worboys
  fullname: Worboys, Michael
  organization: Centre for the History of Science, Technology and Medicine, University of Manchester, Manchester, United Kingdom
– sequence: 9
  givenname: Sophia
  surname: Ananiadou
  fullname: Ananiadou, Sophia
  organization: National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26734936$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A_9B6IDBdGLXfOdzY1QSrULLQWt3oZMJjObZTbZJhmx_74Zd1p2pBcmFwknz3mTc_IeFwfOO1MUbyGYQ8zh57Xvg1PdfJvDcwAJ4ZC_KI6gwGjGEMAHe_vD4jjGNQAULxh7VRwixjERmB0Vp7fmTyqvrbOuLdPKlJc2Jh_uS9-U16a22jrzunjZqC6aN-N6Uvz8enF7fjm7uvm2PD-7mmkmUJqJ2pBFVYOKE60R4pSThmklMNdaA0qh0ZARSpGmHDeEMVgZimvD6ooJ3gh8Urzf6W47H-VYX5SQUwIQhwhlYrkjaq_WchvsRoV76ZWVfwM-tFKFZHVnJKkUyj0hFckDQF1BUIsFIVBwLhYKZq0v4219tTG1Ni4F1U1EpyfOrmTrf0vCAcacZ4GPo0Dwd72JSW5s1KbrlDO-H97NwIIyiod3n_6DPl_dSLUqF2Bd4_O9ehCVZwQLyEAWy9T8GSrP2myszmZobI5PEj5NEjKT8qe3qo9RLn98_3_25teU_bDHrozq0ir6rk_WuzgFyQ7UwccYTPPUZAjk4OXHbsjBy3L0ck57t_9BT0mP5sUPQATsWg
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3012542
crossref_primary_10_1038_s41746_022_00730_6
crossref_primary_10_3390_app10238575
crossref_primary_10_1002_jrsm_1250
crossref_primary_10_1371_journal_pcbi_1005962
crossref_primary_10_1016_j_colegn_2020_06_009
crossref_primary_10_1093_database_baw145
crossref_primary_10_1177_01655515211000642
crossref_primary_10_1136_bmjopen_2020_039759
crossref_primary_10_1016_j_eswa_2018_09_034
crossref_primary_10_1016_j_ssaho_2020_100048
crossref_primary_10_1186_s13326_019_0199_z
crossref_primary_10_1177_0952695119834152
crossref_primary_10_1007_s10044_020_00936_y
crossref_primary_10_1016_j_ipm_2018_06_001
crossref_primary_10_18521_ktd_700789
crossref_primary_10_1186_s13321_018_0290_y
crossref_primary_10_1016_j_compbiolchem_2018_05_002
crossref_primary_10_1371_journal_pone_0175277
crossref_primary_10_16995_dscn_8076
crossref_primary_10_1371_journal_pone_0212488
crossref_primary_10_1145_3604931
crossref_primary_10_1007_s13127_019_00397_0
crossref_primary_10_53608_estudambilisim_1224150
crossref_primary_10_1016_j_procs_2019_08_189
crossref_primary_10_1111_1475_6773_13560
crossref_primary_10_7554_eLife_72602
Cites_doi 10.1197/jamia.M1733
10.1109/DigitalHeritage.2015.7419530
10.3115/980432.980696
10.1136/amiajnl-2011-000203
10.1145/1871840.1871845
10.3115/1218955.1218991
10.1186/1471-2105-9-S3-S2
10.1016/j.jbi.2013.12.006
10.3115/v1/W14-1110
10.1197/jamia.M3115
10.1109/BigData.2013.6691671
10.1007/11562214_18
10.1145/1141753.1141759
10.3115/v1/S14-2007
10.1109/BigData.2014.7004457
10.1186/1471-2105-14-2
10.1186/1471-2105-12-188
10.3115/v1/S14-2143
10.1093/nar/gkh061
10.1109/DigitalHeritage.2015.7413829
10.1111/tgis.12106
10.1093/llc/fqv046
10.1093/bioinformatics/btm393
10.1186/1472-6947-15-S2-S3
10.3115/v1/W14-0617
10.1007/s10791-006-9020-6
10.1016/j.jbi.2015.01.016
10.1197/jamia.M2408
10.1186/1471-2105-10-349
10.1093/bioinformatics/bts237
10.1093/bioinformatics/btt580
10.1136/jamia.2009.002733
10.1177/001316446002000104
10.1016/j.jbi.2013.08.004
10.1186/2041-1480-4-3
10.1093/nar/gkr972
10.3115/974147.974191
10.1080/00437956.1954.11659520
10.1186/1472-6947-15-S2-S2
10.1007/s10032-009-0094-8
10.3115/v1/W14-0603
10.1142/S0219720010004586
10.1186/1471-2105-13-S11-S9
10.4137/BII.S11664
ContentType Journal Article
Copyright COPYRIGHT 2016 Public Library of Science
2016 Thompson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2016 Thompson et al 2016 Thompson et al
Copyright_xml – notice: COPYRIGHT 2016 Public Library of Science
– notice: 2016 Thompson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2016 Thompson et al 2016 Thompson et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0144717
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Opposing Viewpoints Resource Center
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (Proquest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
Technology Collection
Technology Research Database
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Agricultural Science Database
MEDLINE




Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Computer Science
DocumentTitleAlternate Text Mining the History of Medicine
EISSN 1932-6203
Editor Rocha, Luis M.
Editor_xml – sequence: 1
  givenname: Luis M.
  surname: Rocha
  fullname: Rocha, Luis M.
EndPage e0144717
ExternalDocumentID 1754027122
oai_doaj_org_article_4ba24474b444401cb10d9844197798a1
3913430911
A439160653
10_1371_journal_pone_0144717
26734936
Genre Historical Article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Iran
United Kingdom--UK
GeographicLocations_xml – name: Iran
– name: United Kingdom--UK
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
NPM
O5R
O5S
OK1
P2P
P62
PATMY
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RIG
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAYXX
CITATION
AFPKN
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
ACUHS
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PQEST
PQUKI
PRINS
RC3
7X8
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-9de48bd0b74cc227574f6ca937ccc0551ec164552c573f4661be53de6db697f93
IEDL.DBID RPM
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:07 EST 2021
Tue Oct 22 15:16:27 EDT 2024
Tue Sep 17 21:13:40 EDT 2024
Fri Oct 25 21:24:33 EDT 2024
Mon Dec 16 20:57:43 EST 2024
Tue Nov 19 21:01:22 EST 2024
Tue Nov 12 23:12:20 EST 2024
Thu Aug 01 20:35:59 EDT 2024
Thu Aug 01 19:42:49 EDT 2024
Tue Aug 20 22:11:47 EDT 2024
Fri Nov 22 00:19:50 EST 2024
Wed Oct 16 00:51:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-9de48bd0b74cc227574f6ca937ccc0551ec164552c573f4661be53de6db697f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: SA MW JM CT. Performed the experiments: PT RB GK ET. Analyzed the data: PT RB GK ET. Wrote the paper: PT SA JM RB GK. Developed the semantic search interface: JC.
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703377/
PMID 26734936
PQID 1754027122
PQPubID 1436336
ParticipantIDs plos_journals_1754027122
doaj_primary_oai_doaj_org_article_4ba24474b444401cb10d9844197798a1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4703377
proquest_miscellaneous_1760856532
proquest_journals_1754027122
gale_infotracmisc_A439160653
gale_infotracacademiconefile_A439160653
gale_incontextgauss_ISR_A439160653
gale_incontextgauss_IOV_A439160653
gale_healthsolutions_A439160653
crossref_primary_10_1371_journal_pone_0144717
pubmed_primary_26734936
PublicationCentury 2000
PublicationDate 2016-01-06
PublicationDateYYYYMMDD 2016-01-06
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2016
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – sequence: 0
  name: Public Library of Science
– name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref57
H Suominen (ref6) 2013; 8138
ref12
ref15
LM Schriml (ref36) 2012; 40
ref14
ref53
Y Wang (ref56) 2015; 54
Y Tsuruoka (ref37) 2008; 9
ref52
ref11
ref10
ref54
TH Tanner (ref72) 1882
ref17
K Bontcheva (ref22) 2002; 2458
ref16
ref18
T Hitchcock (ref33) 2014; 11
Y Tsuruoka (ref9) 2005; 3746
ref46
ref45
N Alnazzawi (ref58) 2015; 15
ref47
M Miwa (ref79) 2012; 28
ref44
S Zhang (ref50) 2013; 46
KB Wagholikar (ref55) 2013; 4
Ö Uzuner (ref5) 2011; 18
ref8
RI Dogan (ref82) 2014; 47
ref81
ref84
J Cohen (ref83) 1960; 20
M Ruiz-Casado (ref41) 2005; 3513
ref80
R Prasad (ref61) 2011; 12
ref78
P Thompson (ref68) 2009; 10
ZS Harris (ref42) 1954; 10
H Moen (ref49) 2015; 15
ref31
ref75
ref30
A Henriksson (ref51) 2014; 5
ref74
ref77
ref32
D McClosky (ref65) 2012; 13
ref76
JR Firth (ref43) 1957
C Mihăilă (ref60) 2013; 14
ref2
Y Tsuruoka (ref38) 2007; 23
Ö Uzuner (ref4) 2008; 15
J-D Kim (ref62) 2008; 9
ref70
M Worboys (ref1) 2000
ref73
D Lopresti (ref19) 2009; 12
MA Hearst (ref40) 1998
ref24
S Jonnalagadda (ref48) 2013; 6
G Schneider (ref13) 2012; 10
ref23
ref26
ref25
ref69
ref20
ref64
ref66
ref21
S Pyysalo (ref59) 2014; 30
M Miwa (ref63) 2010; 8
ref28
Z Liu (ref71) 2007; 10
ref27
ref29
O Bodenreider (ref35) 2004; 32
P Murrieta-Flores (ref34) 2014; 19
G Hripcsak (ref67) 2005; 12
L Kelly (ref7) 2014; 8685
Ö Uzuner (ref3) 2009; 16
AR Aronson (ref39) 2010; 17
References_xml – volume: 12
  start-page: 296
  issue: 3
  year: 2005
  ident: ref67
  article-title: Agreement, the f-measure, and reliability in information retrieval
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1733
  contributor:
    fullname: G Hripcsak
– ident: ref84
  doi: 10.1109/DigitalHeritage.2015.7419530
– ident: ref66
– ident: ref44
  doi: 10.3115/980432.980696
– volume: 10
  year: 2012
  ident: ref13
  article-title: Studies in Variation, Contacts and Change in English—Outposts of Historical Corpus Linguistics: From the Helsinki Corpus to a Proliferation of Resources
  contributor:
    fullname: G Schneider
– ident: ref81
– volume: 18
  start-page: 552
  issue: 5
  year: 2011
  ident: ref5
  article-title: 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000203
  contributor:
    fullname: Ö Uzuner
– ident: ref24
  doi: 10.1145/1871840.1871845
– ident: ref47
  doi: 10.3115/1218955.1218991
– volume: 9
  start-page: S2
  issue: Suppl 3
  year: 2008
  ident: ref37
  article-title: Normalizing biomedical terms by minimizing ambiguity and variability
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S3-S2
  contributor:
    fullname: Y Tsuruoka
– volume: 47
  start-page: 1
  year: 2014
  ident: ref82
  article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2013.12.006
  contributor:
    fullname: RI Dogan
– ident: ref69
– ident: ref57
  doi: 10.3115/v1/W14-1110
– volume: 16
  start-page: 561
  issue: 4
  year: 2009
  ident: ref3
  article-title: Recognizing obesity and comorbidities in sparse data
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3115
  contributor:
    fullname: Ö Uzuner
– ident: ref53
– ident: ref11
– ident: ref17
– ident: ref29
  doi: 10.1109/BigData.2013.6691671
– year: 1882
  ident: ref72
  article-title: Index of diseases and their treatment
  contributor:
    fullname: TH Tanner
– ident: ref30
– year: 2000
  ident: ref1
  article-title: Spreading germs: disease theories and medical practice in Britain, 1865–1900
  contributor:
    fullname: M Worboys
– ident: ref2
– ident: ref10
  doi: 10.1007/11562214_18
– ident: ref26
  doi: 10.1145/1141753.1141759
– ident: ref78
  doi: 10.3115/v1/S14-2007
– ident: ref31
  doi: 10.1109/BigData.2014.7004457
– volume: 14
  start-page: 2
  year: 2013
  ident: ref60
  article-title: BioCause: Annotating and analysing causality in the biomedical domain
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-2
  contributor:
    fullname: C Mihăilă
– ident: ref23
– ident: ref75
– volume: 12
  start-page: 188
  year: 2011
  ident: ref61
  article-title: The biomedical discourse relation bank
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-188
  contributor:
    fullname: R Prasad
– volume: 8138
  start-page: 212
  year: 2013
  ident: ref6
  article-title: Information Access Evaluation: Multilinguality, Multimodality, and Visualization
  contributor:
    fullname: H Suominen
– ident: ref76
  doi: 10.3115/v1/S14-2143
– ident: ref16
– ident: ref12
– volume: 11
  year: 2014
  ident: ref33
  article-title: Rethinking inventories in the digital age: the case of the Old Bailey
  publication-title: Journal of Art Historiography
  contributor:
    fullname: T Hitchcock
– volume: 32
  start-page: 267
  year: 2004
  ident: ref35
  article-title: The Unified Medical Language System (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh061
  contributor:
    fullname: O Bodenreider
– ident: ref54
  doi: 10.1109/DigitalHeritage.2015.7413829
– ident: ref64
– volume: 19
  start-page: 296
  issue: 2
  year: 2014
  ident: ref34
  article-title: Automatically Analyzing Large Texts in a GIS Environment: The Registrar General's Reports and Cholera in the 19th Century
  publication-title: Trans GIS
  doi: 10.1111/tgis.12106
  contributor:
    fullname: P Murrieta-Flores
– ident: ref32
  doi: 10.1093/llc/fqv046
– volume: 23
  start-page: 2768
  issue: 20
  year: 2007
  ident: ref38
  article-title: Learning string similarity measures for gene/protein name dictionary look-up using logistic regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm393
  contributor:
    fullname: Y Tsuruoka
– volume: 3513
  start-page: 67
  year: 2005
  ident: ref41
  article-title: Natural Language Processing and Information Systems
  contributor:
    fullname: M Ruiz-Casado
– volume: 15
  start-page: S3
  issue: Suppl 2
  year: 2015
  ident: ref58
  article-title: Using text mining techniques to extract phenotypic information from the PhenoCHF corpus
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-15-S2-S3
  contributor:
    fullname: N Alnazzawi
– ident: ref45
– ident: ref28
  doi: 10.3115/v1/W14-0617
– volume: 10
  start-page: 173
  issue: 2
  year: 2007
  ident: ref71
  article-title: Knowledge-based query expansion to support scenario-specific retrieval of medical free text
  publication-title: Inf Retr Boston
  doi: 10.1007/s10791-006-9020-6
  contributor:
    fullname: Z Liu
– volume: 54
  start-page: 1
  year: 2015
  ident: ref56
  article-title: Domain adaption of parsing for operative notes
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.01.016
  contributor:
    fullname: Y Wang
– ident: ref25
– volume: 5
  issue: 6
  year: 2014
  ident: ref51
  article-title: Synonym extraction and abbreviation expansion with ensembles of semantic spaces
  publication-title: J Biomed Semantics
  contributor:
    fullname: A Henriksson
– ident: ref74
– volume: 15
  start-page: 14
  issue: 1
  year: 2008
  ident: ref4
  article-title: Identifying patient smoking status from medical discharge records
  publication-title: J Med Inform Assoc
  doi: 10.1197/jamia.M2408
  contributor:
    fullname: Ö Uzuner
– volume: 10
  start-page: 349
  issue: 1
  year: 2009
  ident: ref68
  article-title: Construction of an annotated corpus to support biomedical information extraction
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-349
  contributor:
    fullname: P Thompson
– volume: 28
  start-page: 1759
  issue: 13
  year: 2012
  ident: ref79
  article-title: Boosting automatic event extraction from the literature using domain adaptation and coreference resolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts237
  contributor:
    fullname: M Miwa
– volume: 30
  start-page: 868
  issue: 6
  year: 2014
  ident: ref59
  article-title: Anatomical entity mention recognition at literature scale
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt580
  contributor:
    fullname: S Pyysalo
– volume: 17
  start-page: 229
  issue: 3
  year: 2010
  ident: ref39
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.002733
  contributor:
    fullname: AR Aronson
– ident: ref70
– ident: ref15
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: ref83
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and psychological measurement
  doi: 10.1177/001316446002000104
  contributor:
    fullname: J Cohen
– year: 1957
  ident: ref43
  article-title: Selected papers of JR Firth 1952–9
  contributor:
    fullname: JR Firth
– volume: 3746
  start-page: 382
  year: 2005
  ident: ref9
  article-title: Lecture Notes in Computer Science—Advances in Informatics—10th Panhellenic Conference on Informatics
  contributor:
    fullname: Y Tsuruoka
– volume: 2458
  start-page: 613
  year: 2002
  ident: ref22
  article-title: Research and Advanced Technology for Digital Libraries
  contributor:
    fullname: K Bontcheva
– volume: 46
  start-page: 1088
  issue: 6
  year: 2013
  ident: ref50
  article-title: Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2013.08.004
  contributor:
    fullname: S Zhang
– volume: 4
  start-page: 3
  year: 2013
  ident: ref55
  article-title: Pooling annotated corpora for clinical concept extraction
  publication-title: J Biomed Semantics
  doi: 10.1186/2041-1480-4-3
  contributor:
    fullname: KB Wagholikar
– volume: 40
  start-page: D940
  issue: D1
  year: 2012
  ident: ref36
  article-title: Disease Ontology: a backbone for disease semantic integration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr972
  contributor:
    fullname: LM Schriml
– ident: ref46
– ident: ref80
– ident: ref20
  doi: 10.3115/974147.974191
– ident: ref21
– volume: 9
  issue: 10
  year: 2008
  ident: ref62
  article-title: Corpus annotation for mining biomedical events from literature
  publication-title: BMC Bioinformatics
  contributor:
    fullname: J-D Kim
– volume: 10
  start-page: 146
  issue: 23
  year: 1954
  ident: ref42
  article-title: Distributional structure
  publication-title: Word
  doi: 10.1080/00437956.1954.11659520
  contributor:
    fullname: ZS Harris
– volume: 15
  start-page: S2
  issue: Suppl 2
  year: 2015
  ident: ref49
  article-title: Care episode retrieval: distributional semantic models for information retrieval in the clinical domain
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-15-S2-S2
  contributor:
    fullname: H Moen
– volume: 12
  start-page: 141
  issue: 3
  year: 2009
  ident: ref19
  article-title: Optical character recognition errors and their effects on natural language processing
  publication-title: Int J Doc Anal Recognit
  doi: 10.1007/s10032-009-0094-8
  contributor:
    fullname: D Lopresti
– ident: ref52
– ident: ref73
– ident: ref77
– volume: 8685
  start-page: 172
  year: 2014
  ident: ref7
  article-title: Information Access Evaluation: Multilinguality, Multimodality, and Interaction
  contributor:
    fullname: L Kelly
– ident: ref27
  doi: 10.3115/v1/W14-0603
– start-page: 131
  year: 1998
  ident: ref40
  article-title: WordNet: an electronic lexical database
  contributor:
    fullname: MA Hearst
– volume: 8
  start-page: 131
  issue: 1
  year: 2010
  ident: ref63
  article-title: Event extraction with complex event classification using rich features
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720010004586
  contributor:
    fullname: M Miwa
– volume: 13
  start-page: S9
  issue: Suppl 11
  year: 2012
  ident: ref65
  article-title: Combining joint models for biomedical event extraction
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S11-S9
  contributor:
    fullname: D McClosky
– ident: ref8
– ident: ref18
– volume: 6
  start-page: 17
  issue: Suppl 1
  year: 2013
  ident: ref48
  article-title: Using empirically constructed lexical resources for named entity recognition
  publication-title: Biomed Inform Insights
  doi: 10.4137/BII.S11664
  contributor:
    fullname: S Jonnalagadda
– ident: ref14
SSID ssj0053866
Score 2.4494264
Snippet Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0144717
SubjectTerms Accessibility
Analysis
Archives
Archives & records
Bioinformatics
Causality
Computer science
Data Mining
Data processing
Dating techniques
Digitization
Disease
Drugs
History of Medicine
History, 19th Century
Keywords
Medical research
Medical services
Medicine
Queries
Query expansion
Researchers
Science history
Searching
Semantics
Studies
Terminology
Texts
Tuberculosis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaqPXGpeLRlgUIolYBDIHEcOzlSBNpWWiqVh7hZfgUqVcmK7B767xk_NmwQEhzYYzyxNt947G8Sz2eEvittBFZUxBTWjpiIlMaSmDwmOtEFSbFOmC0UHl_Q0TX5dZvfLhz1ZfeEeXlgD9wxkQJ6YUQS-CWpkmmiywIWcSAuZSF84pPgeTLl52CIYkpDoVzG0uPgl6NJU5sjm0Mwd0DZ00Lk9Pq7WXkw-de0L1HO5zsnF5ai82X0MXDI6MT_9xX0wdSraCVEaRsdBCnpwzW0dwVzbzR2h0BEQPUirwryP2qqaBy-qn9C1-dnV6ejOByLECta4mlcakMKqRPJiFIYs5yRiioBPEMplQADMgpyoDzHKmdZRWABlibPtKFa0pJVZfYZDWoAYh1FpNIa60pJy4uoBNREWhhSJhISR13QIYrnGPGJV7_g7hMYg6zBPyy3mPKA6RD9sEB2tla72l0Aj_LgUf6aR4dox7qB-0LQLgL5iSsStlq6Q_TNWVj9itpukLkTs7blP3_fvMHo8k_PaD8YVQ04VIlQlADPZHWxepZbPUuIQtVrXreDZo5Ky4GWQWrOUozhzvlAerl5t2u2ndpNb7VpZtaGAiGGzsHmix93HbKYsoyUGXiI9UZkD_p-S_333smHE5jkM8Y23sNXm2gJGKR_J0W30GD6MDNfgaVN5bYLyEdivTTr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgkRCXQpdHFwqEhwQc3CaOYycnVBBLQVqQoEW9WfEjbaUqWZrdQ_99ZxwnJahC5BhPomQ8j29szwwhr411JTOipAJ8B-VlIqjmLqPcxjbnCbOxxEThxTexf8i_HmVHYcGtDccqe5voDbVtDK6R74Kbg1BHJoy9X_6m2DUKd1dDC42b5FbCpMAjffn8c2-JQZeFCOlyqUx2w-zsLJva7WAkIX2bsit35Kv2D7Z5sjxr2uuA59_nJ_9wSPN7ZCMgyWivm_pNcsPVU3K379IQBaWdktuLsH0-JZvhZhu9DeWm390nrw7APkcL3ygiAjgYdZVDLqKmivpHH5DD-aeDj_s0tE6gRhRsRQvreK5trCU3hjGZSV4JUwIWMcbEgJKcgTgpy5jJZFpxcNLaZal1wmpRyKpIH5JJDWzaIhGvrGW2Mhqxk9DA0zLJHS9iDcGlzcWM0J6DatlVyFB-m0xCZNGxQiHHVeD4jHxANg-0WN_a32jOj1VQF8V1CbIjueZwxYnRSWyLHKAbwNUiL5MZeY6TpLpk0UFL1Z5PJMZ6uzPy0lNgjYsaD9Ecl-u2VV--__oPop8_RkRvAlHVwHSbMiQuwD9h7awR5faIEjTVjIa3UKR6rrTqSqbhyV7Mrh9-MQzjS_FgXO2aNdIIAM3wcqB51EnlwFkmZMqLFGZIjuR1xPrxSH164kuMc3AEqZSP__1ZT8gdwI_dipTYJpPV-do9BYy20s-8Il4CAD03sQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIiFegJWPdR8QPiTYQ6rEcezkAaGBmAZSQYIV7c3yVwbSlHRNK7H_fufEiRZUEHmMz1H6813ud7XvDuCVNlYSzWTI0HeEVMYsVNSmITWRyWhMTMRdovDsCzuZ089n6dkWdD1bPYD1xtDO9ZOaLy-mvy-v3qHBv226NvC4mzRdVKWduggBQ5RbcJugb3SHvGa031dA62bMJ9D9bebAQTV1_Puv9WhxUdWbqOifJypvuKjjB3DPc8vgqFWGbdiy5Rjud30bAm_GY7gz8xvqY9j2N-vgjS9AffgQXp7iFzuYNa0jAiSIQVtL5CqoiqCb-gjmxx9PP5yEvplCqFlOVmFuLM2UiRSnWhPCU04LpiWyE611hLzJaoyc0pTolCcFRbetbJoYy4xiOS_y5DGMSoRpBwJaGENMoZVjU0whpjLOLM0jheGmydgEwg5BsWhrZohm44xjrNFCIRziwiM-gfcO5l7WVbxublTLc-ENSFAlUZs4VRSvKNYqjkyeIZlDAptnMp7AM7dIok0f7e1WHDWpxa4C7wReNBKu6kXpjtWcy3Vdi09ff_yH0PdvA6HXXqiocLm19KkM-JtcNa2B5P5AEm1XD4Z3nEp1qNQCyRwG9DwmBGd2arZ5-Hk_7B7qjsqVtlo7GYY0Gh-OMk9areyRJYwnNE9whfhAXwfQD0fKXz-bouMUXUPC-e6_X2sP7iKjbP-jYvswWi3X9gBZ20o9bQzxGjYrPZM
  priority: 102
  providerName: Scholars Portal
Title Text Mining the History of Medicine
URI https://www.ncbi.nlm.nih.gov/pubmed/26734936
https://www.proquest.com/docview/1754027122
https://search.proquest.com/docview/1760856532
https://pubmed.ncbi.nlm.nih.gov/PMC4703377
https://doaj.org/article/4ba24474b444401cb10d9844197798a1
http://dx.doi.org/10.1371/journal.pone.0144717
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB614cIFUV41lGAeEnBw4sd61z62UUNBcqlKi3JbeR8ulVo7apJD_31n12uDUQ-IHPaQHVv27MzON_bMZ4APUukylrQMKMaOgJQRDQTRaUBUqDISxSpkplG4OKZH5-TbIl1sQdr1wtiifSkuJ_XV9aS-_GVrK5fXctrViU1PihlBM00Ym27DNobfLkVvt190YEpdj1zCoqlbksmyqfXEpA-YvxgGYMoSklti5t_hyLL293vzaHnVrO4Dnn_XT_4RkOaP4ZFDkv5-e8U7sKXrJ7DjfHXlf3KE0p-fwvsz3IH9wn4KwkfA57fcILd-U_mFe7f-DM7nh2ezo8B9HCGQNI_XQa40yYQKBSNSxjFLGamoLBFtSClDxEFaYiaUprFMWVIRDMNCp4nSVAmasypPnsOoRp3sgk8qpWJVSWHQERWowDLKNMlDgemjyqgHQacjvmw5MLh9EcYwd2hvlhv1cqdeDw6MIntZw2Bt_2huLrhbR05EidbBiCD4CyMpolDlGYIzBKR5VkYevDHLwNt20N4P-b5tFTaMuh68sxKGxaI2ZTIX5Wa14l-___wHoR-nA6GPTqhqcEFl6VoT8J4MO9ZAcm8gib4oB9O7xmg6raw4gjNM0FkUx3hkZ0j3T7_tp81JTelbrZuNkaEIi_HkKPOitbtes50Ve8AGFjlQ_XAGfcqSiDsfevnfR76Chwge28dRdA9G65uNfo0AbS3G6JYLhmM2i8w4_zKGBweHxyenY_vIA8eCZGPrtnfk1z1E
link.rule.ids 230,314,727,780,784,864,885,2102,2221,12056,12223,12765,21388,24318,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,53791,53793,73745,74014,74035,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ_okSgvIucHJyj1IxEfCu12u9s-ETCQQ7nT4GF423Q_CiamPendg_89s-22WEOMfexOm3Y-dn6zuzMD8E5pkxHFMp-h7_BpFjJfUhP7VAc6oSHRAbeJwpMpG5_TTxfxhVtwq9yxynZOrCdqXSq7Rr6Hbg5DHR4Ssj__5duuUXZ31bXQuA8rtnJ6PICVw6Pp17N2LkZrZswlzEU83HPy2Z2Xhdm1sQSvG5XdOqS6bn83Ow_mP8vqLuj59wnKP1zS8WN45LCkd9AIfx3umWIIa22fBs-Z7RAeTNwG-hDW3c3K23EFpz88gbcznKG9Sd0qwkNA6DW1Q357Ze61jz6F8-Oj2cex75on-IqlZOGn2tBE6kByqhQhPOY0ZypDNKKUChAnGYWRUhwTFfMop-impYkjbZiWLOV5Gj2DQYFs2gCP5loTnStp0ROTyNMsTAxNA4nhpU7YCPyWg2Le1MgQ9UYZx9iiYYWwHBeO4yM4tGzuaG2F6_pGeX0pnMEIKjPUHk4lxSsIlQwDnSYI3hCwpkkWjmDbCkk06aKdnYqDOpXYVtwdwZuawla5KOwxmstsWVXi5Mv3_yD6dtYjeu-I8hLFrTKXuoD_ZKtn9Si3epRoq6o3vGFVquVKJW61Gp9s1ezu4dfdsH2pPRpXmHJpaRjCZnw50jxvtLLjLGE8ommEEuI9fe2xvj9S_Liqi4xTdAUR5y_-_Vnb8HA8m5yK05Pp501YRTTZrE-xLRgsrpfmJSK2hXzlzPIGAso8Ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ_okRBfQE6FQ5T6kagP5drtdrd9MqBcQL2TIBjeNt2PoglpD3r34H_vbLst1hDjPXanzfW3Mzu_6c7OALxW2mREscxn6Dt8moXMl9TEPtWBTmhIdMDtQeHpjB2d008X8YXLf6pcWmW7JtYLtS6V_UY-RjeHoQ4PCRnnLi3i5OPk_fzatx2k7E6ra6dxH1bQKwZkACsHh7OT03ZdRstmzB2ei3g4dnO1Ny8Ls2fjCl43Lbt1TnUN_26lHsyvyuouGvp3NuUf7mnyENYcr_T2G0XYgHumGMJ627PBcyY8hNWp20wfwoa7WHlvXfHpd4_g1Rm-sjet20Z4SA69po7IL6_MvfbWx3A-OTz7cOS7Rgq-YilZ-Kk2NJE6kJwqRQiPOc2ZypCZKKUC5ExGYdQUx0TFPMopumxp4kgbpiVLeZ5GT2BQIExb4NFca6JzJS2TYhIxzcLE0DSQGGrqhI3AbxEU86Zehqg3zTjGGQ0UwiIuHOIjOLAwd7K22nV9oby5FM54BJUZahKnkuIvCJUMA50mSOSQvKZJFo5g106SaI6OdjYr9utjxbb67ghe1hK24kVhdecyW1aVOP76_T-Evp32hN44obzE6VaZO8aA72QrafUkd3qSaLeqN7xlVapFpRK3Go53tmp29_CLbtg-1KbJFaZcWhmGFBofjjKbjVZ2yBLGI5pGOEO8p6896Psjxc8fdcFxim4h4nz7339rF1bRIsWX49nnp_AAiWXzqYrtwGBxszTPkLwt5HNnlb8BDl5ALw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Mining+the+History+of+Medicine&rft.jtitle=PloS+one&rft.au=Thompson%2C+Paul&rft.au=Batista-Navarro%2C+Riza+Theresa&rft.au=Kontonatsios%2C+Georgios&rft.au=Carter%2C+Jacob&rft.date=2016-01-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=11&rft.issue=1&rft.spage=e0144717&rft_id=info:doi/10.1371%2Fjournal.pone.0144717&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3913430911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon