Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks
Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the main criteria for equitable vaccine distribution is predicting the geographic distribution of active virus at the time of vaccination. This r...
Saved in:
Published in | PloS one Vol. 16; no. 7; p. e0253925 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
06.07.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the main criteria for equitable vaccine distribution is predicting the geographic distribution of active virus at the time of vaccination. This research developed sequence-learning models to predict the behavior of the COVID-19 pandemic across the US, based on previously reported information. For this objective, we used two time-series datasets of confirmed COVID-19 cases and COVID-19 effective reproduction numbers from January 22, 2020 to November 26, 2020 for all states in the US. The datasets have 310 time-steps (days) and 50 features (US states). To avoid training the models for all states, we categorized US states on the basis of their similarity to previously reported COVID-19 behavior. For this purpose, we used an unsupervised self-organizing map to categorize all states of the US into four groups on the basis of the similarity of their effective reproduction numbers. After selecting a leading state (the state with earliest outbreaks) in each group, we developed deterministic and stochastic Long Short Term Memory (LSTM) and Mixture Density Network (MDN) models. We trained the models with data from each leading state to make predictions, then compared the models with a baseline linear regression model. We also remove seasonality and trends from a dataset of non-stationary COVID-19 cases to determine the effects on prediction. We showed that the deterministic LSTM model trained on the COVID-19 effective reproduction numbers outperforms other prediction methods. |
---|---|
AbstractList | Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the main criteria for equitable vaccine distribution is predicting the geographic distribution of active virus at the time of vaccination. This research developed sequence-learning models to predict the behavior of the COVID-19 pandemic across the US, based on previously reported information. For this objective, we used two time-series datasets of confirmed COVID-19 cases and COVID-19 effective reproduction numbers from January 22, 2020 to November 26, 2020 for all states in the US. The datasets have 310 time-steps (days) and 50 features (US states). To avoid training the models for all states, we categorized US states on the basis of their similarity to previously reported COVID-19 behavior. For this purpose, we used an unsupervised self-organizing map to categorize all states of the US into four groups on the basis of the similarity of their effective reproduction numbers. After selecting a leading state (the state with earliest outbreaks) in each group, we developed deterministic and stochastic Long Short Term Memory (LSTM) and Mixture Density Network (MDN) models. We trained the models with data from each leading state to make predictions, then compared the models with a baseline linear regression model. We also remove seasonality and trends from a dataset of non-stationary COVID-19 cases to determine the effects on prediction. We showed that the deterministic LSTM model trained on the COVID-19 effective reproduction numbers outperforms other prediction methods. |
Audience | Academic |
Author | Karwowski, Waldemar Fiok, Krzysztof Davahli, Mohammad Reza |
AuthorAffiliation | Universita degli Studi di Pisa, ITALY Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America |
AuthorAffiliation_xml | – name: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America – name: Universita degli Studi di Pisa, ITALY |
Author_xml | – sequence: 1 givenname: Mohammad Reza orcidid: 0000-0003-4021-1235 surname: Davahli fullname: Davahli, Mohammad Reza organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America – sequence: 2 givenname: Waldemar orcidid: 0000-0002-9134-3441 surname: Karwowski fullname: Karwowski, Waldemar organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America – sequence: 3 givenname: Krzysztof orcidid: 0000-0001-5711-1498 surname: Fiok fullname: Fiok, Krzysztof organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34228740$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk0uP0zAQxyO0iH3AN0AQCQnBocWxEzu-IK3Kq9JKlVh2r9bUmbQuqd21neVx4LPjPnbVoj2gHJxMfv__eOyZ0-zIOotZ9rwgw4KJ4t3C9d5CN1yl8JDQiklaPcpOCsnogFPCjvbej7PTEBaEVKzm_El2zEpKa1GSk-zPZBXN0vw2dpaPJtfjD4NC5regtbGYNyZEb6Z9NM7moL0LIY9zzK-sidjklxEihrwPa3GDEf3S2CQxOgfb5CE6PYfNp0fde4825hZ7D11a4g_nv4en2eMWuoDPdutZdvXp47fRl8HF5PN4dH4x0FzSOKjbmjNJatE0JSUCcSqBt0xoCrQF0LTUooS6AQTO9bQpKAdCtBayqkWrKTvLXm59V50Land0QdGqrCUXlSwTMd4SjYOFWnmzBP9LOTBqE3B-psCnWjpUrRQcpah1ylWWjIAokdStaBtJ0w5E8nq_y9ZPl9joVHgq-sD08I81czVzt6qmlZScJYM3OwPvbnoMUS1N0Nh1YNH1m33LdK2E8YS--gd9uLodNYNUgLGtS3n12lSdcy44oaRYew0foNLT4NLo1GetSfEDwdsDQWIi_owz6ENQ48uv_89Org_Z13vsHKGL8-C6TSOGQ7Dcgpvm9NjeH3JB1HpM7k5DrcdE7cYkyV7sX9C96G4u2F8LbhFJ |
CitedBy_id | crossref_primary_10_1007_s12553_022_00712_4 crossref_primary_10_3390_a15020071 crossref_primary_10_2196_40057 crossref_primary_10_1007_s11277_023_10751_3 crossref_primary_10_1016_j_bspc_2023_104721 crossref_primary_10_3390_biology11010125 crossref_primary_10_2196_43703 crossref_primary_10_3390_ijerph182212024 crossref_primary_10_3390_ijerph191912804 |
Cites_doi | 10.1016/j.chaos.2020.110212 10.1371/journal.pcbi.1006869 10.1016/j.mbs.2008.02.007 10.1016/j.eswa.2017.03.073 10.1001/jama.2020.18513 10.1016/j.chaos.2020.110017 10.1016/j.chaos.2020.109853 10.1093/aje/kwt133 10.1109/TITS.2017.2755684 10.1109/5.58325 10.1016/j.chaos.2020.109850 10.1016/j.ijid.2020.02.060 10.1109/72.279188 10.1016/j.imu.2020.100386 10.5220/0010130000930103 10.1016/j.neunet.2012.09.018 10.1016/j.scitotenv.2020.138762 10.1016/j.chaos.2020.110059 10.1016/j.neucom.2015.12.114 10.1001/jama.2020.8711 10.1016/j.annals.2020.102913 10.1016/j.neucom.2019.04.061 10.4414/smw.2020.20271 10.1016/j.enggeo.2017.04.013 10.1016/j.chaos.2020.109864 10.3390/ijerph17207366 10.1162/neco.1997.9.8.1735 10.1503/cmaj.201237 10.1016/j.dsx.2020.03.017 10.3390/app10103386 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Davahli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Davahli et al 2021 Davahli et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Davahli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Davahli et al 2021 Davahli et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0253925 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Opposing Viewpoints database Gale in Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Proquest Nursing & Allied Health Source Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Engineering Database Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Optimizing COVID-19 vaccine distribution using recurrent neural networks |
EISSN | 1932-6203 |
Editor | Bacciu, Davide |
Editor_xml | – sequence: 1 givenname: Davide surname: Bacciu fullname: Bacciu, Davide |
EndPage | e0253925 |
ExternalDocumentID | 2548967594 oai_doaj_org_article_f976e978c66c4430a74e08f7fd92aea7 A667602016 10_1371_journal_pone_0253925 34228740 |
Genre | Journal Article |
GeographicLocations | United States Canada United Kingdom--UK United States--US China Italy Florida India |
GeographicLocations_xml | – name: United States – name: Canada – name: United Kingdom--UK – name: Italy – name: India – name: China – name: Florida – name: United States--US |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF D1I D1J D1K DIK DU5 E3Z EAP EAS EBD ECM EIF EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ NPM O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RIG RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX AFPKN CITATION 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c692t-8f8639087dd4207eeb9a6f37c2a2faac24c74a8daea66cbd126a00cc79587fc23 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Sun Aug 06 00:16:23 EDT 2023 Tue Oct 22 15:09:18 EDT 2024 Tue Sep 17 21:26:50 EDT 2024 Sat Oct 26 05:52:00 EDT 2024 Thu Oct 10 19:34:46 EDT 2024 Thu Feb 22 23:35:46 EST 2024 Fri Feb 02 04:23:24 EST 2024 Thu Aug 01 19:22:22 EDT 2024 Thu Aug 01 19:10:15 EDT 2024 Tue Aug 20 22:10:45 EDT 2024 Fri Aug 23 00:32:47 EDT 2024 Sat Nov 02 12:29:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-8f8639087dd4207eeb9a6f37c2a2faac24c74a8daea66cbd126a00cc79587fc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-4021-1235 0000-0001-5711-1498 0000-0002-9134-3441 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259963/ |
PMID | 34228740 |
PQID | 2548967594 |
PQPubID | 1436336 |
PageCount | e0253925 |
ParticipantIDs | plos_journals_2548967594 doaj_primary_oai_doaj_org_article_f976e978c66c4430a74e08f7fd92aea7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8259963 proquest_miscellaneous_2549203036 proquest_journals_2548967594 gale_infotracmisc_A667602016 gale_infotracacademiconefile_A667602016 gale_incontextgauss_ISR_A667602016 gale_incontextgauss_IOV_A667602016 gale_healthsolutions_A667602016 crossref_primary_10_1371_journal_pone_0253925 pubmed_primary_34228740 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-06 |
PublicationDateYYYYMMDD | 2021-07-06 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0253925.ref040 A Cori (pone.0253925.ref005) 2013; 178 CM Bishop (pone.0253925.ref008) 1994 pone.0253925.ref022 A Tomar (pone.0253925.ref021) 2020; 728 pone.0253925.ref041 VKR Chimmula (pone.0253925.ref012) 2020; 135 J Xu (pone.0253925.ref010) 2017; 19 H Nishiura (pone.0253925.ref027) 2020; 93 CN Davis (pone.0253925.ref037) 2020; 16 pone.0253925.ref002 pone.0253925.ref029 SS DeRoo (pone.0253925.ref004) 2020; 323 P Arora (pone.0253925.ref009) 2020; 139 F Chollet (pone.0253925.ref042) 2018 L Qin (pone.0253925.ref030) 2019; 356 F Shahid (pone.0253925.ref023) 2020; 140 T Kohonen (pone.0253925.ref031) 2013; 37 F Huang (pone.0253925.ref033) 2017; 223 A De Myttenaere (pone.0253925.ref043) 2016; 192 S Hochreiter (pone.0253925.ref007) 1997; 9 E Kenah (pone.0253925.ref026) 2008; 213 K Fiok (pone.0253925.ref034) 2020; 10 Y Yang (pone.0253925.ref014) 2020; 83 pone.0253925.ref036 S Ghosal (pone.0253925.ref011) 2020; 14 pone.0253925.ref015 T Chakraborty (pone.0253925.ref018) 2020; 135 J Sciré (pone.0253925.ref025) 2020; 150 B Abu-Raya (pone.0253925.ref003) 2020; 192 MHDM Ribeiro (pone.0253925.ref017) 2020; 135 pone.0253925.ref019 S Lalmuanawma (pone.0253925.ref016) 2020; 139 pone.0253925.ref038 pone.0253925.ref039 G Persad (pone.0253925.ref001) 2020; 324 KM Gostic (pone.0253925.ref024) 2020 MR Davahli (pone.0253925.ref013) 2020; 17 P Hartono (pone.0253925.ref020) 2020; 20 G Douzas (pone.0253925.ref032) 2017; 82 JT Connor (pone.0253925.ref035) 1994; 5 T Kohonen (pone.0253925.ref006) 1990; 78 MR Davahli (pone.0253925.ref028) 2020 |
References_xml | – volume: 140 start-page: 110212 year: 2020 ident: pone.0253925.ref023 article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110212 contributor: fullname: F Shahid – volume: 16 start-page: e1006869 issue: 3 year: 2020 ident: pone.0253925.ref037 article-title: The use of mixture density networks in the emulation of complex epidemiological individual-based models publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006869 contributor: fullname: CN Davis – volume: 213 start-page: 71 issue: 1 year: 2008 ident: pone.0253925.ref026 article-title: Generation interval contraction and epidemic data analysis publication-title: Math Biosci doi: 10.1016/j.mbs.2008.02.007 contributor: fullname: E Kenah – year: 2020 ident: pone.0253925.ref024 article-title: Practical considerations for measuring the effective reproductive number, Rt publication-title: medRxiv contributor: fullname: KM Gostic – volume: 82 start-page: 40 year: 2017 ident: pone.0253925.ref032 article-title: Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.03.073 contributor: fullname: G Douzas – volume: 324 start-page: 1601 issue: 16 year: 2020 ident: pone.0253925.ref001 article-title: Fairly prioritizing groups for access to COVID-19 vaccines publication-title: Jama doi: 10.1001/jama.2020.18513 contributor: fullname: G Persad – ident: pone.0253925.ref015 – ident: pone.0253925.ref038 – volume: 139 start-page: 110017 year: 2020 ident: pone.0253925.ref009 article-title: Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110017 contributor: fullname: P Arora – ident: pone.0253925.ref041 – volume: 135 start-page: 109853 year: 2020 ident: pone.0253925.ref017 article-title: Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109853 contributor: fullname: MHDM Ribeiro – volume: 178 start-page: 1505 issue: 9 year: 2013 ident: pone.0253925.ref005 article-title: A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics publication-title: Am J Epidemiol doi: 10.1093/aje/kwt133 contributor: fullname: A Cori – volume: 19 start-page: 2572 issue: 8 year: 2017 ident: pone.0253925.ref010 article-title: Real-time prediction of taxi demand using recurrent neural networks publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2017.2755684 contributor: fullname: J Xu – ident: pone.0253925.ref019 – volume: 78 start-page: 1464 issue: 9 year: 1990 ident: pone.0253925.ref006 article-title: The self-organizing map publication-title: Proc IEEE. doi: 10.1109/5.58325 contributor: fullname: T Kohonen – ident: pone.0253925.ref036 – volume: 135 start-page: 109850 year: 2020 ident: pone.0253925.ref018 article-title: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109850 contributor: fullname: T Chakraborty – volume: 93 start-page: 284 year: 2020 ident: pone.0253925.ref027 article-title: Serial interval of novel coronavirus (COVID-19) infections publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2020.02.060 contributor: fullname: H Nishiura – volume: 5 start-page: 240 issue: 2 year: 1994 ident: pone.0253925.ref035 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans Neural Netw doi: 10.1109/72.279188 contributor: fullname: JT Connor – volume: 20 start-page: 100386 year: 2020 ident: pone.0253925.ref020 article-title: Similarity maps and pairwise predictions for transmission dynamics of covid-19 with neural networks publication-title: Inform Med Unlocked. doi: 10.1016/j.imu.2020.100386 contributor: fullname: P Hartono – ident: pone.0253925.ref022 doi: 10.5220/0010130000930103 – volume: 37 start-page: 52 year: 2013 ident: pone.0253925.ref031 article-title: Essentials of the self-organizing map publication-title: Neural Netw doi: 10.1016/j.neunet.2012.09.018 contributor: fullname: T Kohonen – ident: pone.0253925.ref002 – volume: 728 start-page: 138762 year: 2020 ident: pone.0253925.ref021 article-title: Prediction for the spread of COVID-19 in India and effectiveness of preventive measures publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138762 contributor: fullname: A Tomar – volume: 139 start-page: 110059 year: 2020 ident: pone.0253925.ref016 article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110059 contributor: fullname: S Lalmuanawma – volume-title: Mixture density networks year: 1994 ident: pone.0253925.ref008 contributor: fullname: CM Bishop – year: 2020 ident: pone.0253925.ref028 publication-title: Input Datasets, Developed Models, and Live Figures contributor: fullname: MR Davahli – ident: pone.0253925.ref029 – volume: 192 start-page: 38 year: 2016 ident: pone.0253925.ref043 article-title: Mean absolute percentage error for regression models. publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.114 contributor: fullname: A De Myttenaere – volume: 323 start-page: 2458 issue: 24 year: 2020 ident: pone.0253925.ref004 article-title: Planning for a COVID-19 Vaccination Program publication-title: JAMA doi: 10.1001/jama.2020.8711 contributor: fullname: SS DeRoo – volume: 83 start-page: 102913 year: 2020 ident: pone.0253925.ref014 article-title: Coronavirus pandemic and tourism: Dynamic stochastic general equilibrium modeling of infectious disease outbreak. publication-title: Ann Tour Res doi: 10.1016/j.annals.2020.102913 contributor: fullname: Y Yang – volume: 356 start-page: 244 year: 2019 ident: pone.0253925.ref030 article-title: Effective passenger flow forecasting using STL and ESN based on two improvement strategies publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.061 contributor: fullname: L Qin – ident: pone.0253925.ref039 – ident: pone.0253925.ref040 – volume: 150 start-page: w20271 issue: 19–20 year: 2020 ident: pone.0253925.ref025 article-title: Reproductive number of the COVID-19 epidemic in Switzerland with a focus on the Cantons of Basel-Stadt and Basel-Landschaft publication-title: Swiss Med Wkly. doi: 10.4414/smw.2020.20271 contributor: fullname: J Sciré – volume: 223 start-page: 11 year: 2017 ident: pone.0253925.ref033 article-title: Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.04.013 contributor: fullname: F Huang – start-page: ascl-1806 year: 2018 ident: pone.0253925.ref042 article-title: Keras: The python deep learning library publication-title: ascl. contributor: fullname: F Chollet – volume: 135 start-page: 109864 year: 2020 ident: pone.0253925.ref012 article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109864 contributor: fullname: VKR Chimmula – volume: 17 start-page: 7366 issue: 20 year: 2020 ident: pone.0253925.ref013 article-title: The Hospitality Industry in the Face of the COVID-19 Pandemic: Current Topics and Research Methods publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17207366 contributor: fullname: MR Davahli – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: pone.0253925.ref007 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: S Hochreiter – volume: 192 start-page: E982 issue: 34 year: 2020 ident: pone.0253925.ref003 article-title: Challenges in evaluating SARS-CoV-2 vaccines during the COVID-19 pandemic publication-title: CMAJ doi: 10.1503/cmaj.201237 contributor: fullname: B Abu-Raya – volume: 14 start-page: 311 issue: 4 year: 2020 ident: pone.0253925.ref011 article-title: Linear Regression Analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks from day 0 (100 cases-March 14th 2020) publication-title: Diabetes Metab Syndr Clin Res Rev doi: 10.1016/j.dsx.2020.03.017 contributor: fullname: S Ghosal – volume: 10 start-page: 3386 issue: 10 year: 2020 ident: pone.0253925.ref034 article-title: Comparing the quality and speed of sentence classification with modern language models publication-title: Appl Sci doi: 10.3390/app10103386 contributor: fullname: K Fiok |
SSID | ssj0053866 |
Score | 2.498925 |
Snippet | Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0253925 |
SubjectTerms | Artificial intelligence Biology and Life Sciences Computer and Information Sciences Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 - virology COVID-19 vaccines COVID-19 Vaccines - administration & dosage Datasets Evaluation Geographical distribution Long short-term memory Medicine and Health Sciences Neural networks Neural Networks, Computer Pandemics People and places Physical Sciences Predictions Recurrent neural networks Regression analysis Regression models Reproduction Research and Analysis Methods SARS-CoV-2 - isolation & purification Seasonal variations Self organizing maps Similarity Stochasticity United States Vaccination Vaccination - statistics & numerical data Vaccines Viral diseases Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggWh4NbcEgJOCQNnEcOzmWQtUiwUpAq96iWTtuK0F21exy4MBvZ8b2Rg2qBAeOG09Wk3l4Pifjz4y9lIAoHlddKdRSpdLOcB4syzKFFoubE6VVlt53fPykjk_lh_Py_MZRX9QTFuiBg-H2HdbLFpc6RikjZZGBlm1WOe1sLaCFsI88q9eLqTAHYxYrFTfKFTrfj37ZW8y7dg-rPIKCclSIPF__MCtPFt_m_W2Q88_OyRul6Og-uxcxJD8Ium-wO223yTZilvb8daSSfvOA_ZrijPD96ifWJ344PTt5l-Y1_wGGvqZzS5y58bgrDl5LjnCQBxjKAwzl1Bh_wW3smvG0zhw6yxE0mkvwP6_pnT2xPHFix0TNutBb3j9kp0fvvx4ep_HEhdSoWizTylWIWLJKWytFptt2VoNyhTYChAMwQhotobJoeHTHzOZCQZYZo-uy0s6I4hGbdGjjLYZ6mRlkkNdOeBI4BGJOqgqEpWLpVMLStfmbRSDWaPzXNY0LkmDHhtzVRHcl7C35aJAlWmx_AYOlicHS_C1YEvaMPNyEPaZDcjcH1OmLwDlHtV54CaLG6Kj35gJWfd-cTM_-QejL55HQqyjk5hgrBuJ-B3wmotwaSe6MJDHBzWh4i-JxbZW-QYNifumylnjnOkZvH34-DNOfUj9d185XXqYWGcGXhD0OIT1YtiBWOC2zhOlRsI9MPx7pri49M3kliO2nePI_fLXN7grqH_LtmTtssrxetbsIAJezpz7XfwNzSFsv priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Complete (ProQuest Database) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLegXLggxtfKBhiEBByyJY5jJyc0BtOGBJWATb1Fr3bcTYKka1oOHPjbec9xA0ET4tj6NXp9H34_2y8_M_ZcAqJ4XHVFUEgVSTvDeTDLsggqLG5OZFZZ2u_48FEdn8r302waNtza0Fa5mRP9RG0bQ3vk-7iQwYfqrJCvF5cR3RpFp6vhCo3r7EYiYkVRraf9ggtzWanwulyqk_3gnb1FU1d7WOsRGmSDcuRZ-_u5ebT42rRXAc-_-yf_KEhHt9mtgCT5Qef6LXatqu-wrZCrLX8ZCKVf3WU_JzgvfLv4gVWKH07OTt5GScG_g6EzdW6JOTdcesXBa8kRFPIOjPIOjHJqj59zG3pnPLkzh9pyhI7mHPzHJe3cE9cTJ45M1KzuOszbe-z06N2Xw-Mo3LsQGVWIVZS7HHFLnGtrpYh1Vc0KUC7VRoBwAEZIoyXkFipQysxsIhTEsTG6yHLtjEjvs1GNNt5mqJeZQQxJ4YSngkM45qTKQVgqmU6NWbQxf7no6DVKf8amcVnS2bEkd5XBXWP2hnzUyxI5tv-iWc7LkGulQ4hV4erYoHZSpjFoWcW5084WAnXWY_aEPFx2b5r2KV4eUL8vwucE1XrmJYggo6YOnDms27Y8mZz9h9DnTwOhF0HINRgrBsJbD_ifiHhrILk7kMQ0N4PhbYrHjVXa8ndC4C83MXr18NN-mB5KXXV11ay9TCFiAjFj9qAL6d6yKXHDaRmPmR4E-8D0w5H64tzzk-eCOH_Sh_9Wa4fdFNQf5Nsvd9lotVxXjxDgrWaPfRb_AvzHUnw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGeeEFMX6t2wCDkICHVKnj2MkDQmMwbUhQCei0t-hqx92kkXZNi4AH_nbuHDciqEh7THyJLuc73-f4_Jmx5xIQxeOsK4JcqkjaCY6DaZpGUGJycyK1ytL_jo-f1PFYfjhLz7bY-szWYMB649SOzpMaLy4HP65-vsGAf-1PbdDD9UOD-awqB5jDMeWnN9hNQZuBqJhPtusKGN1-9ZJQS6REnITNdP97SydZeU7_duTuzS9n9SZY-m915V_p6ugOux1wJj9oHGObbZXVXbYdIrnmLwPd9Kt77PcIR41vF78wh_HD0enJu2iY8-9gaMWdW-LVDUdicfBacoSMvIGqvIGqnIrnp9yGyhpP_cyhshyBpTkHf7mg__rEBMWJQRM1q5r68_o-Gx-9_3p4HIVTGSKjcrGMMpchqokzba0UsS7LSQ7KJdoIEA7ACGm0hMxCCUqZiR0KBXFsjM7TTDsjkgesV6GNdxjqZSYQwzB3whPFIVhzUmUgLCVUp_osWpu_mDfkG4VfgdM4aWnsWFB3FaG7-uwt9VErS9TZ_sZsMS1CJBYOAViJc2eD2kmZxKBlGWdOO5sL1Fn32RPq4aLZh9oOAMUBVQMjuB6iWs-8BNFnVFSfM4VVXRcno9NrCH353BF6EYTcDH3FQNgTgd9EtFwdyf2OJA4CptO8Q_64tkpdoEExBnWaS3xy7aObm5-2zfRSqrmrytnKy-QYIghx-uxh49KtZRNijtMy7jPdcfaO6bst1cW5Zy_PBDECJbvXMeIeuyWohsiXaO6z3nKxKh8hCFxOHvu4_gNcMFwI priority: 102 providerName: Scholars Portal |
Title | Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34228740 https://www.proquest.com/docview/2548967594 https://search.proquest.com/docview/2549203036 https://pubmed.ncbi.nlm.nih.gov/PMC8259963 https://doaj.org/article/f976e978c66c4430a74e08f7fd92aea7 http://dx.doi.org/10.1371/journal.pone.0253925 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2cuGCGL_WMYpBSMAhbeI4cXLcysqG1HUabNotcuy4q7SmVdNy4MDfznuOUy1oB8QlVeuX6PX5Pb_PzvNnQj5wCSgeZl2eTHnscZ3DOBhFkScLSG6GRTrWuN4xPo9Pr_i3m-hmh0TNXhhbtK_yWb-8m_fL2a2trVzO1aCpExtcjIcwqwGYHg52yS44aDNFr4dfCOA4dnvkQhEMXJf0l4uy6EOCBzyAp9WESH0lcMnjXjqyrP3bsbmzvFtUDwHPv-sn7yWk0VPyxCFJelRrvEd2ivIZ2XOxWtFPjlD683PyewLjwnz2C7IUHU6uz754QUp_SoXv1KlG5lx36BWVVksKoJDWYJTWYJRiefyUalc7Y8mdqSw1BeiobqX9usKVe-R6osiRCZqVdYV59YJcjU5-DE89d-6Cp-KUrb3EJIBb_ERozZkviiJPZWxCoZhkRkrFuBJcJloWMo5VrgMWS99XSqRRIoxi4UvSKcHc-wT0Urn0ZZAaZqngAI4ZHieSaUyZJu4SrzF_tqzpNTL7jk3AtKS2Y4Y9l7me65Jj7KOtLJJj2x8Wq2nmXCQzALEKmB0r0I7z0JeCF35ihNEpA51Fl7zFHs7qnabbEM-OsN4X4HMAar23EkiQUWIFzlRuqio7m1z_g9D3y5bQRydkFuArSrpdD_CfkHirJXnYkoQwV63mffTHxipVBgaFKBNRyuHOxkcfbn63bcaHYlVdWSw2ViZlPoKYLnlVu_TWsk2AdIloOXvL9O0WCFfLT-7C8-C_73xNHjMsHbKVmYeks15tijeA_dZ5DyL-RsA1GQZ4HX3tkUfHJ-cXl_BpI6hnV1XgOuZJz44MfwArY2L7 |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12069,12236,12778,21401,24331,27937,27938,31732,31733,33279,33280,33386,33387,33757,33758,38529,43323,43592,43613,43818,43908,53805,53807,74080,74349,74370,74637,74747 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELage4CXifFrhcEMQgIesqWOYydPaBubWthaNLZpb5Zrx90kSErT8sADfzt3jlsImhCPra_R9c5399m-fCbkFdeA4mHVFemci4jbMeTBNE0jXUBxcyy1wuJ-x8lQ9M_5h8v0Mmy41aGtcpkTfaK2lcE98l1YyMBDZZrzd9NvEd4ahaer4QqN22QNqaqyDlnbPxx-Ol3mYohmIcILc4ns7Qb_7EyrstiBag_gIG0VJM_bv8rOnemXqr4Jev7dQflHSTq6R9YDlqR7jfM3yK2ivE82QrTW9E2glH77gPwcQWb4ev0D6hQ9GF0M3ke9nH7XBk_VqUXu3HDtFdVeSwqwkDZwlDZwlGKD_ITa0D3j6Z2pLi0F8GiutP84w717ZHuiyJIJmpVNj3n9kJwfHZ4d9KNw80JkRM7mUeYyQC5xJq3lLJZFMc61cIk0TDOntWHcSK4zqwsthBnbHhM6jo2ReZpJZ1jyiHRKsPEmAb3MWMe6lzvmyeAAkDkuMs0sFk0nuiRaml9NG4IN5U_ZJCxMGjsqdJcK7uqSffTRShbpsf0X1WyiQrQpByCrgPWxAe04T2IteRFnTjqbM9BZdsk2elg175quglztYccvAOgeqPXSSyBFRok9OBO9qGs1GF38h9Dn05bQ6yDkKpgrRof3HuA_IfVWS3KrJQmBblrDmzgfl1ap1e-QgF8u5-jNwy9Ww_hQ7Ksri2rhZXIWI4zpksfNlF5ZNkF2OMnjLpGtyd4yfXukvL7yDOUZQ9af5Mm_1domd_pnJ8fqeDD8-JTcZdgt5Jsxt0hnPlsUzwDuzcfPQ0z_ArczVtI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLagSIjLxPi1wmAGIQGHrKnj2MkJjY5q5ceKgE27Wa4dd5MgKU3LgQN_O-85biBoQhxbv0av9nt-n-0vnwl5yjWgeFh1RTrnIuJ2BvNgmqaRLqC4OZZaYXG_4_2xODrhb87Ss8B_qgOtcjMn-onaVgb3yAewkIGHyjTnAxdoER8Oxy8X3yK8QQpPWsN1GlfJNaiKHCM8G7V0D8hrIcKrc4kcDsJI7S-qstiHug8wIe2UJq_g387TvcWXqr4MhP7NpfyjOI1vkq2AKulBEwbb5EpR3iLbIW9r-jyIS7-4TX5OYY74evEDKhYdTU8nh9Ewp9-1wfN1alFFN1yARbX3kgJApA0wpQ0wpUiVn1MbeDRe6Jnq0lKAkeZc-49L3MVH3SeKepngWdmwzes75GT8-vPoKAp3MERG5GwVZS4DDBNn0lrOYlkUs1wLl0jDNHNaG8aN5DqzutBCmJkdMqHj2BiZp5l0hiV3Sa-EPt4h4JeZ6VgPc8e8LBxAM8dFppnF8ulEn0Sb7leLRmpD-fM2CUuUph8VDpcKw9Unr3CMWlsUyvZfVMu5CnmnHMCtAlbKBrzjPIm15EWcOelszsBn2Sd7OMKqeeu0TXd1gNxfgNJDcOuJt0CxjBLDbq7Xda0m09P_MPr0sWP0LBi5CmLF6PAGBPwnFOHqWO52LCHlTad5B-Nx0yu1-p0c8MtNjF7e_Lhtxociw64sqrW3yVmMgKZP7jUh3fZsgjpxksd9IjvB3un6bkt5ce61yjOG-j_J_X-7tUeuQzKrd5Pjtw_IDYa0Ic_K3CW91XJdPATct5o98gn9C7oNWWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+COVID-19+vaccine+distribution+across+the+United+States+using+deterministic+and+stochastic+recurrent+neural+networks&rft.jtitle=PloS+one&rft.au=Davahli%2C+Mohammad+Reza&rft.au=Karwowski%2C+Waldemar&rft.au=Fiok%2C+Krzysztof&rft.date=2021-07-06&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft.spage=e0253925&rft_id=info:doi/10.1371%2Fjournal.pone.0253925&rft.externalDBID=IOV&rft.externalDocID=A667602016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |