Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks

Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the main criteria for equitable vaccine distribution is predicting the geographic distribution of active virus at the time of vaccination. This r...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 7; p. e0253925
Main Authors Davahli, Mohammad Reza, Karwowski, Waldemar, Fiok, Krzysztof
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.07.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the main criteria for equitable vaccine distribution is predicting the geographic distribution of active virus at the time of vaccination. This research developed sequence-learning models to predict the behavior of the COVID-19 pandemic across the US, based on previously reported information. For this objective, we used two time-series datasets of confirmed COVID-19 cases and COVID-19 effective reproduction numbers from January 22, 2020 to November 26, 2020 for all states in the US. The datasets have 310 time-steps (days) and 50 features (US states). To avoid training the models for all states, we categorized US states on the basis of their similarity to previously reported COVID-19 behavior. For this purpose, we used an unsupervised self-organizing map to categorize all states of the US into four groups on the basis of the similarity of their effective reproduction numbers. After selecting a leading state (the state with earliest outbreaks) in each group, we developed deterministic and stochastic Long Short Term Memory (LSTM) and Mixture Density Network (MDN) models. We trained the models with data from each leading state to make predictions, then compared the models with a baseline linear regression model. We also remove seasonality and trends from a dataset of non-stationary COVID-19 cases to determine the effects on prediction. We showed that the deterministic LSTM model trained on the COVID-19 effective reproduction numbers outperforms other prediction methods.
AbstractList Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the main criteria for equitable vaccine distribution is predicting the geographic distribution of active virus at the time of vaccination. This research developed sequence-learning models to predict the behavior of the COVID-19 pandemic across the US, based on previously reported information. For this objective, we used two time-series datasets of confirmed COVID-19 cases and COVID-19 effective reproduction numbers from January 22, 2020 to November 26, 2020 for all states in the US. The datasets have 310 time-steps (days) and 50 features (US states). To avoid training the models for all states, we categorized US states on the basis of their similarity to previously reported COVID-19 behavior. For this purpose, we used an unsupervised self-organizing map to categorize all states of the US into four groups on the basis of the similarity of their effective reproduction numbers. After selecting a leading state (the state with earliest outbreaks) in each group, we developed deterministic and stochastic Long Short Term Memory (LSTM) and Mixture Density Network (MDN) models. We trained the models with data from each leading state to make predictions, then compared the models with a baseline linear regression model. We also remove seasonality and trends from a dataset of non-stationary COVID-19 cases to determine the effects on prediction. We showed that the deterministic LSTM model trained on the COVID-19 effective reproduction numbers outperforms other prediction methods.
Audience Academic
Author Karwowski, Waldemar
Fiok, Krzysztof
Davahli, Mohammad Reza
AuthorAffiliation Universita degli Studi di Pisa, ITALY
Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America
AuthorAffiliation_xml – name: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America
– name: Universita degli Studi di Pisa, ITALY
Author_xml – sequence: 1
  givenname: Mohammad Reza
  orcidid: 0000-0003-4021-1235
  surname: Davahli
  fullname: Davahli, Mohammad Reza
  organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America
– sequence: 2
  givenname: Waldemar
  orcidid: 0000-0002-9134-3441
  surname: Karwowski
  fullname: Karwowski, Waldemar
  organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America
– sequence: 3
  givenname: Krzysztof
  orcidid: 0000-0001-5711-1498
  surname: Fiok
  fullname: Fiok, Krzysztof
  organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34228740$$D View this record in MEDLINE/PubMed
BookMark eNqNk0uP0zAQxyO0iH3AN0AQCQnBocWxEzu-IK3Kq9JKlVh2r9bUmbQuqd21neVx4LPjPnbVoj2gHJxMfv__eOyZ0-zIOotZ9rwgw4KJ4t3C9d5CN1yl8JDQiklaPcpOCsnogFPCjvbej7PTEBaEVKzm_El2zEpKa1GSk-zPZBXN0vw2dpaPJtfjD4NC5regtbGYNyZEb6Z9NM7moL0LIY9zzK-sidjklxEihrwPa3GDEf3S2CQxOgfb5CE6PYfNp0fde4825hZ7D11a4g_nv4en2eMWuoDPdutZdvXp47fRl8HF5PN4dH4x0FzSOKjbmjNJatE0JSUCcSqBt0xoCrQF0LTUooS6AQTO9bQpKAdCtBayqkWrKTvLXm59V50Land0QdGqrCUXlSwTMd4SjYOFWnmzBP9LOTBqE3B-psCnWjpUrRQcpah1ylWWjIAokdStaBtJ0w5E8nq_y9ZPl9joVHgq-sD08I81czVzt6qmlZScJYM3OwPvbnoMUS1N0Nh1YNH1m33LdK2E8YS--gd9uLodNYNUgLGtS3n12lSdcy44oaRYew0foNLT4NLo1GetSfEDwdsDQWIi_owz6ENQ48uv_89Org_Z13vsHKGL8-C6TSOGQ7Dcgpvm9NjeH3JB1HpM7k5DrcdE7cYkyV7sX9C96G4u2F8LbhFJ
CitedBy_id crossref_primary_10_1007_s12553_022_00712_4
crossref_primary_10_3390_a15020071
crossref_primary_10_2196_40057
crossref_primary_10_1007_s11277_023_10751_3
crossref_primary_10_1016_j_bspc_2023_104721
crossref_primary_10_3390_biology11010125
crossref_primary_10_2196_43703
crossref_primary_10_3390_ijerph182212024
crossref_primary_10_3390_ijerph191912804
Cites_doi 10.1016/j.chaos.2020.110212
10.1371/journal.pcbi.1006869
10.1016/j.mbs.2008.02.007
10.1016/j.eswa.2017.03.073
10.1001/jama.2020.18513
10.1016/j.chaos.2020.110017
10.1016/j.chaos.2020.109853
10.1093/aje/kwt133
10.1109/TITS.2017.2755684
10.1109/5.58325
10.1016/j.chaos.2020.109850
10.1016/j.ijid.2020.02.060
10.1109/72.279188
10.1016/j.imu.2020.100386
10.5220/0010130000930103
10.1016/j.neunet.2012.09.018
10.1016/j.scitotenv.2020.138762
10.1016/j.chaos.2020.110059
10.1016/j.neucom.2015.12.114
10.1001/jama.2020.8711
10.1016/j.annals.2020.102913
10.1016/j.neucom.2019.04.061
10.4414/smw.2020.20271
10.1016/j.enggeo.2017.04.013
10.1016/j.chaos.2020.109864
10.3390/ijerph17207366
10.1162/neco.1997.9.8.1735
10.1503/cmaj.201237
10.1016/j.dsx.2020.03.017
10.3390/app10103386
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Davahli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Davahli et al 2021 Davahli et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Davahli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Davahli et al 2021 Davahli et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0253925
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Opposing Viewpoints database
Gale in Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Proquest Nursing & Allied Health Source
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Engineering Database
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
Technology Collection
Technology Research Database
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE



Agricultural Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Optimizing COVID-19 vaccine distribution using recurrent neural networks
EISSN 1932-6203
Editor Bacciu, Davide
Editor_xml – sequence: 1
  givenname: Davide
  surname: Bacciu
  fullname: Bacciu, Davide
EndPage e0253925
ExternalDocumentID 2548967594
oai_doaj_org_article_f976e978c66c4430a74e08f7fd92aea7
A667602016
10_1371_journal_pone_0253925
34228740
Genre Journal Article
GeographicLocations United States
Canada
United Kingdom--UK
United States--US
China
Italy
Florida
India
GeographicLocations_xml – name: United States
– name: Canada
– name: United Kingdom--UK
– name: Italy
– name: India
– name: China
– name: Florida
– name: United States--US
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
NPM
O5R
O5S
OK1
P2P
P62
PATMY
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RIG
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAYXX
AFPKN
CITATION
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PQEST
PQUKI
PRINS
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-8f8639087dd4207eeb9a6f37c2a2faac24c74a8daea66cbd126a00cc79587fc23
IEDL.DBID RPM
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:23 EDT 2023
Tue Oct 22 15:09:18 EDT 2024
Tue Sep 17 21:26:50 EDT 2024
Sat Oct 26 05:52:00 EDT 2024
Thu Oct 10 19:34:46 EDT 2024
Thu Feb 22 23:35:46 EST 2024
Fri Feb 02 04:23:24 EST 2024
Thu Aug 01 19:22:22 EDT 2024
Thu Aug 01 19:10:15 EDT 2024
Tue Aug 20 22:10:45 EDT 2024
Fri Aug 23 00:32:47 EDT 2024
Sat Nov 02 12:29:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-8f8639087dd4207eeb9a6f37c2a2faac24c74a8daea66cbd126a00cc79587fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-4021-1235
0000-0001-5711-1498
0000-0002-9134-3441
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259963/
PMID 34228740
PQID 2548967594
PQPubID 1436336
PageCount e0253925
ParticipantIDs plos_journals_2548967594
doaj_primary_oai_doaj_org_article_f976e978c66c4430a74e08f7fd92aea7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8259963
proquest_miscellaneous_2549203036
proquest_journals_2548967594
gale_infotracmisc_A667602016
gale_infotracacademiconefile_A667602016
gale_incontextgauss_ISR_A667602016
gale_incontextgauss_IOV_A667602016
gale_healthsolutions_A667602016
crossref_primary_10_1371_journal_pone_0253925
pubmed_primary_34228740
PublicationCentury 2000
PublicationDate 2021-07-06
PublicationDateYYYYMMDD 2021-07-06
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0253925.ref040
A Cori (pone.0253925.ref005) 2013; 178
CM Bishop (pone.0253925.ref008) 1994
pone.0253925.ref022
A Tomar (pone.0253925.ref021) 2020; 728
pone.0253925.ref041
VKR Chimmula (pone.0253925.ref012) 2020; 135
J Xu (pone.0253925.ref010) 2017; 19
H Nishiura (pone.0253925.ref027) 2020; 93
CN Davis (pone.0253925.ref037) 2020; 16
pone.0253925.ref002
pone.0253925.ref029
SS DeRoo (pone.0253925.ref004) 2020; 323
P Arora (pone.0253925.ref009) 2020; 139
F Chollet (pone.0253925.ref042) 2018
L Qin (pone.0253925.ref030) 2019; 356
F Shahid (pone.0253925.ref023) 2020; 140
T Kohonen (pone.0253925.ref031) 2013; 37
F Huang (pone.0253925.ref033) 2017; 223
A De Myttenaere (pone.0253925.ref043) 2016; 192
S Hochreiter (pone.0253925.ref007) 1997; 9
E Kenah (pone.0253925.ref026) 2008; 213
K Fiok (pone.0253925.ref034) 2020; 10
Y Yang (pone.0253925.ref014) 2020; 83
pone.0253925.ref036
S Ghosal (pone.0253925.ref011) 2020; 14
pone.0253925.ref015
T Chakraborty (pone.0253925.ref018) 2020; 135
J Sciré (pone.0253925.ref025) 2020; 150
B Abu-Raya (pone.0253925.ref003) 2020; 192
MHDM Ribeiro (pone.0253925.ref017) 2020; 135
pone.0253925.ref019
S Lalmuanawma (pone.0253925.ref016) 2020; 139
pone.0253925.ref038
pone.0253925.ref039
G Persad (pone.0253925.ref001) 2020; 324
KM Gostic (pone.0253925.ref024) 2020
MR Davahli (pone.0253925.ref013) 2020; 17
P Hartono (pone.0253925.ref020) 2020; 20
G Douzas (pone.0253925.ref032) 2017; 82
JT Connor (pone.0253925.ref035) 1994; 5
T Kohonen (pone.0253925.ref006) 1990; 78
MR Davahli (pone.0253925.ref028) 2020
References_xml – volume: 140
  start-page: 110212
  year: 2020
  ident: pone.0253925.ref023
  article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110212
  contributor:
    fullname: F Shahid
– volume: 16
  start-page: e1006869
  issue: 3
  year: 2020
  ident: pone.0253925.ref037
  article-title: The use of mixture density networks in the emulation of complex epidemiological individual-based models
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006869
  contributor:
    fullname: CN Davis
– volume: 213
  start-page: 71
  issue: 1
  year: 2008
  ident: pone.0253925.ref026
  article-title: Generation interval contraction and epidemic data analysis
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2008.02.007
  contributor:
    fullname: E Kenah
– year: 2020
  ident: pone.0253925.ref024
  article-title: Practical considerations for measuring the effective reproductive number, Rt
  publication-title: medRxiv
  contributor:
    fullname: KM Gostic
– volume: 82
  start-page: 40
  year: 2017
  ident: pone.0253925.ref032
  article-title: Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.03.073
  contributor:
    fullname: G Douzas
– volume: 324
  start-page: 1601
  issue: 16
  year: 2020
  ident: pone.0253925.ref001
  article-title: Fairly prioritizing groups for access to COVID-19 vaccines
  publication-title: Jama
  doi: 10.1001/jama.2020.18513
  contributor:
    fullname: G Persad
– ident: pone.0253925.ref015
– ident: pone.0253925.ref038
– volume: 139
  start-page: 110017
  year: 2020
  ident: pone.0253925.ref009
  article-title: Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110017
  contributor:
    fullname: P Arora
– ident: pone.0253925.ref041
– volume: 135
  start-page: 109853
  year: 2020
  ident: pone.0253925.ref017
  article-title: Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil.
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109853
  contributor:
    fullname: MHDM Ribeiro
– volume: 178
  start-page: 1505
  issue: 9
  year: 2013
  ident: pone.0253925.ref005
  article-title: A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwt133
  contributor:
    fullname: A Cori
– volume: 19
  start-page: 2572
  issue: 8
  year: 2017
  ident: pone.0253925.ref010
  article-title: Real-time prediction of taxi demand using recurrent neural networks
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2017.2755684
  contributor:
    fullname: J Xu
– ident: pone.0253925.ref019
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: pone.0253925.ref006
  article-title: The self-organizing map
  publication-title: Proc IEEE.
  doi: 10.1109/5.58325
  contributor:
    fullname: T Kohonen
– ident: pone.0253925.ref036
– volume: 135
  start-page: 109850
  year: 2020
  ident: pone.0253925.ref018
  article-title: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109850
  contributor:
    fullname: T Chakraborty
– volume: 93
  start-page: 284
  year: 2020
  ident: pone.0253925.ref027
  article-title: Serial interval of novel coronavirus (COVID-19) infections
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2020.02.060
  contributor:
    fullname: H Nishiura
– volume: 5
  start-page: 240
  issue: 2
  year: 1994
  ident: pone.0253925.ref035
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279188
  contributor:
    fullname: JT Connor
– volume: 20
  start-page: 100386
  year: 2020
  ident: pone.0253925.ref020
  article-title: Similarity maps and pairwise predictions for transmission dynamics of covid-19 with neural networks
  publication-title: Inform Med Unlocked.
  doi: 10.1016/j.imu.2020.100386
  contributor:
    fullname: P Hartono
– ident: pone.0253925.ref022
  doi: 10.5220/0010130000930103
– volume: 37
  start-page: 52
  year: 2013
  ident: pone.0253925.ref031
  article-title: Essentials of the self-organizing map
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.09.018
  contributor:
    fullname: T Kohonen
– ident: pone.0253925.ref002
– volume: 728
  start-page: 138762
  year: 2020
  ident: pone.0253925.ref021
  article-title: Prediction for the spread of COVID-19 in India and effectiveness of preventive measures
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.138762
  contributor:
    fullname: A Tomar
– volume: 139
  start-page: 110059
  year: 2020
  ident: pone.0253925.ref016
  article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110059
  contributor:
    fullname: S Lalmuanawma
– volume-title: Mixture density networks
  year: 1994
  ident: pone.0253925.ref008
  contributor:
    fullname: CM Bishop
– year: 2020
  ident: pone.0253925.ref028
  publication-title: Input Datasets, Developed Models, and Live Figures
  contributor:
    fullname: MR Davahli
– ident: pone.0253925.ref029
– volume: 192
  start-page: 38
  year: 2016
  ident: pone.0253925.ref043
  article-title: Mean absolute percentage error for regression models.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.114
  contributor:
    fullname: A De Myttenaere
– volume: 323
  start-page: 2458
  issue: 24
  year: 2020
  ident: pone.0253925.ref004
  article-title: Planning for a COVID-19 Vaccination Program
  publication-title: JAMA
  doi: 10.1001/jama.2020.8711
  contributor:
    fullname: SS DeRoo
– volume: 83
  start-page: 102913
  year: 2020
  ident: pone.0253925.ref014
  article-title: Coronavirus pandemic and tourism: Dynamic stochastic general equilibrium modeling of infectious disease outbreak.
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102913
  contributor:
    fullname: Y Yang
– volume: 356
  start-page: 244
  year: 2019
  ident: pone.0253925.ref030
  article-title: Effective passenger flow forecasting using STL and ESN based on two improvement strategies
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.061
  contributor:
    fullname: L Qin
– ident: pone.0253925.ref039
– ident: pone.0253925.ref040
– volume: 150
  start-page: w20271
  issue: 19–20
  year: 2020
  ident: pone.0253925.ref025
  article-title: Reproductive number of the COVID-19 epidemic in Switzerland with a focus on the Cantons of Basel-Stadt and Basel-Landschaft
  publication-title: Swiss Med Wkly.
  doi: 10.4414/smw.2020.20271
  contributor:
    fullname: J Sciré
– volume: 223
  start-page: 11
  year: 2017
  ident: pone.0253925.ref033
  article-title: Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.04.013
  contributor:
    fullname: F Huang
– start-page: ascl-1806
  year: 2018
  ident: pone.0253925.ref042
  article-title: Keras: The python deep learning library
  publication-title: ascl.
  contributor:
    fullname: F Chollet
– volume: 135
  start-page: 109864
  year: 2020
  ident: pone.0253925.ref012
  article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109864
  contributor:
    fullname: VKR Chimmula
– volume: 17
  start-page: 7366
  issue: 20
  year: 2020
  ident: pone.0253925.ref013
  article-title: The Hospitality Industry in the Face of the COVID-19 Pandemic: Current Topics and Research Methods
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17207366
  contributor:
    fullname: MR Davahli
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: pone.0253925.ref007
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: S Hochreiter
– volume: 192
  start-page: E982
  issue: 34
  year: 2020
  ident: pone.0253925.ref003
  article-title: Challenges in evaluating SARS-CoV-2 vaccines during the COVID-19 pandemic
  publication-title: CMAJ
  doi: 10.1503/cmaj.201237
  contributor:
    fullname: B Abu-Raya
– volume: 14
  start-page: 311
  issue: 4
  year: 2020
  ident: pone.0253925.ref011
  article-title: Linear Regression Analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks from day 0 (100 cases-March 14th 2020)
  publication-title: Diabetes Metab Syndr Clin Res Rev
  doi: 10.1016/j.dsx.2020.03.017
  contributor:
    fullname: S Ghosal
– volume: 10
  start-page: 3386
  issue: 10
  year: 2020
  ident: pone.0253925.ref034
  article-title: Comparing the quality and speed of sentence classification with modern language models
  publication-title: Appl Sci
  doi: 10.3390/app10103386
  contributor:
    fullname: K Fiok
SSID ssj0053866
Score 2.498925
Snippet Optimizing COVID-19 vaccine distribution can help plan around the limited production and distribution of vaccination, particularly in early stages. One of the...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0253925
SubjectTerms Artificial intelligence
Biology and Life Sciences
Computer and Information Sciences
Coronaviruses
COVID-19
COVID-19 - prevention & control
COVID-19 - virology
COVID-19 vaccines
COVID-19 Vaccines - administration & dosage
Datasets
Evaluation
Geographical distribution
Long short-term memory
Medicine and Health Sciences
Neural networks
Neural Networks, Computer
Pandemics
People and places
Physical Sciences
Predictions
Recurrent neural networks
Regression analysis
Regression models
Reproduction
Research and Analysis Methods
SARS-CoV-2 - isolation & purification
Seasonal variations
Self organizing maps
Similarity
Stochasticity
United States
Vaccination
Vaccination - statistics & numerical data
Vaccines
Viral diseases
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggWh4NbcEgJOCQNnEcOzmWQtUiwUpAq96iWTtuK0F21exy4MBvZ8b2Rg2qBAeOG09Wk3l4Pifjz4y9lIAoHlddKdRSpdLOcB4syzKFFoubE6VVlt53fPykjk_lh_Py_MZRX9QTFuiBg-H2HdbLFpc6RikjZZGBlm1WOe1sLaCFsI88q9eLqTAHYxYrFTfKFTrfj37ZW8y7dg-rPIKCclSIPF__MCtPFt_m_W2Q88_OyRul6Og-uxcxJD8Ium-wO223yTZilvb8daSSfvOA_ZrijPD96ifWJ344PTt5l-Y1_wGGvqZzS5y58bgrDl5LjnCQBxjKAwzl1Bh_wW3smvG0zhw6yxE0mkvwP6_pnT2xPHFix0TNutBb3j9kp0fvvx4ep_HEhdSoWizTylWIWLJKWytFptt2VoNyhTYChAMwQhotobJoeHTHzOZCQZYZo-uy0s6I4hGbdGjjLYZ6mRlkkNdOeBI4BGJOqgqEpWLpVMLStfmbRSDWaPzXNY0LkmDHhtzVRHcl7C35aJAlWmx_AYOlicHS_C1YEvaMPNyEPaZDcjcH1OmLwDlHtV54CaLG6Kj35gJWfd-cTM_-QejL55HQqyjk5hgrBuJ-B3wmotwaSe6MJDHBzWh4i-JxbZW-QYNifumylnjnOkZvH34-DNOfUj9d185XXqYWGcGXhD0OIT1YtiBWOC2zhOlRsI9MPx7pri49M3kliO2nePI_fLXN7grqH_LtmTtssrxetbsIAJezpz7XfwNzSFsv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Complete (ProQuest Database)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLegXLggxtfKBhiEBByyJY5jJyc0BtOGBJWATb1Fr3bcTYKka1oOHPjbec9xA0ET4tj6NXp9H34_2y8_M_ZcAqJ4XHVFUEgVSTvDeTDLsggqLG5OZFZZ2u_48FEdn8r302waNtza0Fa5mRP9RG0bQ3vk-7iQwYfqrJCvF5cR3RpFp6vhCo3r7EYiYkVRraf9ggtzWanwulyqk_3gnb1FU1d7WOsRGmSDcuRZ-_u5ebT42rRXAc-_-yf_KEhHt9mtgCT5Qef6LXatqu-wrZCrLX8ZCKVf3WU_JzgvfLv4gVWKH07OTt5GScG_g6EzdW6JOTdcesXBa8kRFPIOjPIOjHJqj59zG3pnPLkzh9pyhI7mHPzHJe3cE9cTJ45M1KzuOszbe-z06N2Xw-Mo3LsQGVWIVZS7HHFLnGtrpYh1Vc0KUC7VRoBwAEZIoyXkFipQysxsIhTEsTG6yHLtjEjvs1GNNt5mqJeZQQxJ4YSngkM45qTKQVgqmU6NWbQxf7no6DVKf8amcVnS2bEkd5XBXWP2hnzUyxI5tv-iWc7LkGulQ4hV4erYoHZSpjFoWcW5084WAnXWY_aEPFx2b5r2KV4eUL8vwucE1XrmJYggo6YOnDms27Y8mZz9h9DnTwOhF0HINRgrBsJbD_ifiHhrILk7kMQ0N4PhbYrHjVXa8ndC4C83MXr18NN-mB5KXXV11ay9TCFiAjFj9qAL6d6yKXHDaRmPmR4E-8D0w5H64tzzk-eCOH_Sh_9Wa4fdFNQf5Nsvd9lotVxXjxDgrWaPfRb_AvzHUnw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGeeEFMX6t2wCDkICHVKnj2MkDQmMwbUhQCei0t-hqx92kkXZNi4AH_nbuHDciqEh7THyJLuc73-f4_Jmx5xIQxeOsK4JcqkjaCY6DaZpGUGJycyK1ytL_jo-f1PFYfjhLz7bY-szWYMB649SOzpMaLy4HP65-vsGAf-1PbdDD9UOD-awqB5jDMeWnN9hNQZuBqJhPtusKGN1-9ZJQS6REnITNdP97SydZeU7_duTuzS9n9SZY-m915V_p6ugOux1wJj9oHGObbZXVXbYdIrnmLwPd9Kt77PcIR41vF78wh_HD0enJu2iY8-9gaMWdW-LVDUdicfBacoSMvIGqvIGqnIrnp9yGyhpP_cyhshyBpTkHf7mg__rEBMWJQRM1q5r68_o-Gx-9_3p4HIVTGSKjcrGMMpchqokzba0UsS7LSQ7KJdoIEA7ACGm0hMxCCUqZiR0KBXFsjM7TTDsjkgesV6GNdxjqZSYQwzB3whPFIVhzUmUgLCVUp_osWpu_mDfkG4VfgdM4aWnsWFB3FaG7-uwt9VErS9TZ_sZsMS1CJBYOAViJc2eD2kmZxKBlGWdOO5sL1Fn32RPq4aLZh9oOAMUBVQMjuB6iWs-8BNFnVFSfM4VVXRcno9NrCH353BF6EYTcDH3FQNgTgd9EtFwdyf2OJA4CptO8Q_64tkpdoEExBnWaS3xy7aObm5-2zfRSqrmrytnKy-QYIghx-uxh49KtZRNijtMy7jPdcfaO6bst1cW5Zy_PBDECJbvXMeIeuyWohsiXaO6z3nKxKh8hCFxOHvu4_gNcMFwI
  priority: 102
  providerName: Scholars Portal
Title Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/34228740
https://www.proquest.com/docview/2548967594
https://search.proquest.com/docview/2549203036
https://pubmed.ncbi.nlm.nih.gov/PMC8259963
https://doaj.org/article/f976e978c66c4430a74e08f7fd92aea7
http://dx.doi.org/10.1371/journal.pone.0253925
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2cuGCGL_WMYpBSMAhbeI4cXLcysqG1HUabNotcuy4q7SmVdNy4MDfznuOUy1oB8QlVeuX6PX5Pb_PzvNnQj5wCSgeZl2eTHnscZ3DOBhFkScLSG6GRTrWuN4xPo9Pr_i3m-hmh0TNXhhbtK_yWb-8m_fL2a2trVzO1aCpExtcjIcwqwGYHg52yS44aDNFr4dfCOA4dnvkQhEMXJf0l4uy6EOCBzyAp9WESH0lcMnjXjqyrP3bsbmzvFtUDwHPv-sn7yWk0VPyxCFJelRrvEd2ivIZ2XOxWtFPjlD683PyewLjwnz2C7IUHU6uz754QUp_SoXv1KlG5lx36BWVVksKoJDWYJTWYJRiefyUalc7Y8mdqSw1BeiobqX9usKVe-R6osiRCZqVdYV59YJcjU5-DE89d-6Cp-KUrb3EJIBb_ERozZkviiJPZWxCoZhkRkrFuBJcJloWMo5VrgMWS99XSqRRIoxi4UvSKcHc-wT0Urn0ZZAaZqngAI4ZHieSaUyZJu4SrzF_tqzpNTL7jk3AtKS2Y4Y9l7me65Jj7KOtLJJj2x8Wq2nmXCQzALEKmB0r0I7z0JeCF35ihNEpA51Fl7zFHs7qnabbEM-OsN4X4HMAar23EkiQUWIFzlRuqio7m1z_g9D3y5bQRydkFuArSrpdD_CfkHirJXnYkoQwV63mffTHxipVBgaFKBNRyuHOxkcfbn63bcaHYlVdWSw2ViZlPoKYLnlVu_TWsk2AdIloOXvL9O0WCFfLT-7C8-C_73xNHjMsHbKVmYeks15tijeA_dZ5DyL-RsA1GQZ4HX3tkUfHJ-cXl_BpI6hnV1XgOuZJz44MfwArY2L7
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12069,12236,12778,21401,24331,27937,27938,31732,31733,33279,33280,33386,33387,33757,33758,38529,43323,43592,43613,43818,43908,53805,53807,74080,74349,74370,74637,74747
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELage4CXifFrhcEMQgIesqWOYydPaBubWthaNLZpb5Zrx90kSErT8sADfzt3jlsImhCPra_R9c5399m-fCbkFdeA4mHVFemci4jbMeTBNE0jXUBxcyy1wuJ-x8lQ9M_5h8v0Mmy41aGtcpkTfaK2lcE98l1YyMBDZZrzd9NvEd4ahaer4QqN22QNqaqyDlnbPxx-Ol3mYohmIcILc4ns7Qb_7EyrstiBag_gIG0VJM_bv8rOnemXqr4Jev7dQflHSTq6R9YDlqR7jfM3yK2ivE82QrTW9E2glH77gPwcQWb4ev0D6hQ9GF0M3ke9nH7XBk_VqUXu3HDtFdVeSwqwkDZwlDZwlGKD_ITa0D3j6Z2pLi0F8GiutP84w717ZHuiyJIJmpVNj3n9kJwfHZ4d9KNw80JkRM7mUeYyQC5xJq3lLJZFMc61cIk0TDOntWHcSK4zqwsthBnbHhM6jo2ReZpJZ1jyiHRKsPEmAb3MWMe6lzvmyeAAkDkuMs0sFk0nuiRaml9NG4IN5U_ZJCxMGjsqdJcK7uqSffTRShbpsf0X1WyiQrQpByCrgPWxAe04T2IteRFnTjqbM9BZdsk2elg175quglztYccvAOgeqPXSSyBFRok9OBO9qGs1GF38h9Dn05bQ6yDkKpgrRof3HuA_IfVWS3KrJQmBblrDmzgfl1ap1e-QgF8u5-jNwy9Ww_hQ7Ksri2rhZXIWI4zpksfNlF5ZNkF2OMnjLpGtyd4yfXukvL7yDOUZQ9af5Mm_1domd_pnJ8fqeDD8-JTcZdgt5Jsxt0hnPlsUzwDuzcfPQ0z_ArczVtI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLagSIjLxPi1wmAGIQGHrKnj2MkJjY5q5ceKgE27Wa4dd5MgKU3LgQN_O-85biBoQhxbv0av9nt-n-0vnwl5yjWgeFh1RTrnIuJ2BvNgmqaRLqC4OZZaYXG_4_2xODrhb87Ss8B_qgOtcjMn-onaVgb3yAewkIGHyjTnAxdoER8Oxy8X3yK8QQpPWsN1GlfJNaiKHCM8G7V0D8hrIcKrc4kcDsJI7S-qstiHug8wIe2UJq_g387TvcWXqr4MhP7NpfyjOI1vkq2AKulBEwbb5EpR3iLbIW9r-jyIS7-4TX5OYY74evEDKhYdTU8nh9Ewp9-1wfN1alFFN1yARbX3kgJApA0wpQ0wpUiVn1MbeDRe6Jnq0lKAkeZc-49L3MVH3SeKepngWdmwzes75GT8-vPoKAp3MERG5GwVZS4DDBNn0lrOYlkUs1wLl0jDNHNaG8aN5DqzutBCmJkdMqHj2BiZp5l0hiV3Sa-EPt4h4JeZ6VgPc8e8LBxAM8dFppnF8ulEn0Sb7leLRmpD-fM2CUuUph8VDpcKw9Unr3CMWlsUyvZfVMu5CnmnHMCtAlbKBrzjPIm15EWcOelszsBn2Sd7OMKqeeu0TXd1gNxfgNJDcOuJt0CxjBLDbq7Xda0m09P_MPr0sWP0LBi5CmLF6PAGBPwnFOHqWO52LCHlTad5B-Nx0yu1-p0c8MtNjF7e_Lhtxociw64sqrW3yVmMgKZP7jUh3fZsgjpxksd9IjvB3un6bkt5ce61yjOG-j_J_X-7tUeuQzKrd5Pjtw_IDYa0Ic_K3CW91XJdPATct5o98gn9C7oNWWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+COVID-19+vaccine+distribution+across+the+United+States+using+deterministic+and+stochastic+recurrent+neural+networks&rft.jtitle=PloS+one&rft.au=Davahli%2C+Mohammad+Reza&rft.au=Karwowski%2C+Waldemar&rft.au=Fiok%2C+Krzysztof&rft.date=2021-07-06&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft.spage=e0253925&rft_id=info:doi/10.1371%2Fjournal.pone.0253925&rft.externalDBID=IOV&rft.externalDocID=A667602016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon