Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population

Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations betwee...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 82; no. 7; pp. 1892 - 1899
Main Authors Miura, Tetsuji, Shimamoto, Kazuaki, Matsumoto, Megumi, Nakamura, Takashi, Murase, Takayo, Tanaka, Marenao, Moniwa, Norihito, Furuhashi, Masato, Ohnishi, Hirofumi, Saitoh, Shigeyuki
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 25.06.2018
Subjects
Online AccessGet full text
ISSN1346-9843
1347-4820
1347-4820
DOI10.1253/circj.CJ-18-0082

Cover

Abstract Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.Methods and Results:A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.Conclusions:Plasma XOR activity is a novel biomarker of metabolic disorders in a general population.
AbstractList Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [ C , N ]-uric acid using [ C , N ]-xanthine as a substrate. A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender. Plasma XOR activity is a novel biomarker of metabolic disorders in a general population.
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.BACKGROUNDXanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.METHODS AND RESULTSA total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.Plasma XOR activity is a novel biomarker of metabolic disorders in a general population.CONCLUSIONSPlasma XOR activity is a novel biomarker of metabolic disorders in a general population.
Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.Methods and Results:A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.Conclusions:Plasma XOR activity is a novel biomarker of metabolic disorders in a general population.
Author Furuhashi, Masato
Shimamoto, Kazuaki
Murase, Takayo
Saitoh, Shigeyuki
Tanaka, Marenao
Matsumoto, Megumi
Moniwa, Norihito
Nakamura, Takashi
Ohnishi, Hirofumi
Miura, Tetsuji
Author_xml – sequence: 1
  fullname: Miura, Tetsuji
  organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
– sequence: 1
  fullname: Shimamoto, Kazuaki
  organization: Japan Health Care College
– sequence: 1
  fullname: Matsumoto, Megumi
  organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
– sequence: 1
  fullname: Nakamura, Takashi
  organization: Sanwa Kagaku Kenkyusho Co., Ltd
– sequence: 1
  fullname: Murase, Takayo
  organization: Sanwa Kagaku Kenkyusho Co., Ltd
– sequence: 1
  fullname: Tanaka, Marenao
  organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
– sequence: 1
  fullname: Moniwa, Norihito
  organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
– sequence: 1
  fullname: Furuhashi, Masato
  organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
– sequence: 1
  fullname: Ohnishi, Hirofumi
  organization: Department of Public Health, Sapporo Medical University School of Medicine
– sequence: 1
  fullname: Saitoh, Shigeyuki
  organization: Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29643318$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEURi0URB6kp0IuaSb4MePxlGFJAlEgKUBKZ9313CHeeO3F9kTJv2f2ESJR0Fzf4pwrff4OyV6IAQl5x9kJF438aF2yi5PZZcV1xZgWr8gBl3Vb1Vqwvc2uqk7Xcp8c5rxgTHSs6d6QfdGpWkquD8j9jYe8BHoLody5gPT60fUxYT_aAhnpqS3uwZUnCpkC_R4f0NNPLi4h3WOicaDfsMA8emfpZ5dj6jFl6sLEXmDABJ7exNXoobgY3pLXA_iMx7v3iPw8P_sx-1JdXV98nZ1eVVZ1olQNQjuFsRwll1YOumcgW43YMNs0XCumW1SoAEWNnWqHfs61tZpD2yuJnTwiH7Z3Vyn-HjEXs3TZovcQMI7ZCCbqulVcyQl9v0PH-RJ7s0puivZknj9oAtQWsCnmnHAw1pVNmpLAecOZWTdhNk2Y2aXh2qybmET2j_h8-z_K-VZZ5AK_8K8AqTjrcSdoYdr1eBFfgDtIBoP8A1CFprg
CitedBy_id crossref_primary_10_1002_acr_24576
crossref_primary_10_3390_metabo12030237
crossref_primary_10_4103_2773_0387_348714
crossref_primary_10_5551_jat_48710
crossref_primary_10_1159_000540701
crossref_primary_10_1016_j_nbd_2021_105392
crossref_primary_10_1111_nep_13983
crossref_primary_10_1016_j_ekir_2022_11_016
crossref_primary_10_1038_s41440_021_00840_w
crossref_primary_10_1038_s41440_021_00792_1
crossref_primary_10_1111_jdi_13467
crossref_primary_10_1097_HCO_0000000000000626
crossref_primary_10_3390_biomedicines11051258
crossref_primary_10_1507_endocrj_EJ19_0053
crossref_primary_10_1002_ehf2_12390
crossref_primary_10_3390_biomedicines11030754
crossref_primary_10_1002_jssc_202100484
crossref_primary_10_3390_antiox13020211
crossref_primary_10_1093_ndt_gfac188
crossref_primary_10_3390_ijerph18041894
crossref_primary_10_31857_S0301179824030037
crossref_primary_10_1038_s41440_021_00679_1
crossref_primary_10_1186_s12889_024_20457_1
crossref_primary_10_1016_j_biopha_2022_113784
crossref_primary_10_1038_s41440_023_01392_x
crossref_primary_10_1093_ehjopen_oeac030
crossref_primary_10_1111_jdi_13735
crossref_primary_10_3390_ijms24087027
crossref_primary_10_1253_circrep_CR_19_0116
crossref_primary_10_1507_endocrj_EJ18_0127
crossref_primary_10_1038_s41598_024_71733_4
crossref_primary_10_2147_CLEP_S363429
crossref_primary_10_1007_s00380_020_01608_x
crossref_primary_10_1038_s41387_021_00155_2
crossref_primary_10_1038_s41598_021_83234_9
crossref_primary_10_1152_ajpendo_00378_2020
crossref_primary_10_1016_j_tifs_2022_03_002
crossref_primary_10_1371_journal_pone_0298602
crossref_primary_10_1016_j_amjcard_2019_12_043
crossref_primary_10_3390_plants10081668
crossref_primary_10_1159_000516610
crossref_primary_10_1016_j_orcp_2023_09_007
crossref_primary_10_1159_000519491
crossref_primary_10_1515_cclm_2019_0199
crossref_primary_10_1038_s41598_021_92292_y
crossref_primary_10_1507_endocrj_EJ23_0160
crossref_primary_10_1111_jdi_13207
crossref_primary_10_3389_fphar_2022_955219
crossref_primary_10_1172_jci_insight_144762
crossref_primary_10_1371_journal_pone_0257227
crossref_primary_10_1038_s41440_023_01179_0
crossref_primary_10_1038_s41598_022_11094_y
crossref_primary_10_1007_s11926_021_01050_6
crossref_primary_10_1016_j_heliyon_2022_e11549
crossref_primary_10_1016_j_niox_2022_10_004
crossref_primary_10_1186_s12882_023_03062_z
crossref_primary_10_3164_jcbn_21_118
crossref_primary_10_1016_j_amjcard_2021_07_047
crossref_primary_10_3390_brainsci13050800
crossref_primary_10_1507_endocrj_EJ20_0823
crossref_primary_10_1038_s41598_021_88025_w
crossref_primary_10_1253_circj_CJ_20_0406
crossref_primary_10_1111_jdi_12982
crossref_primary_10_1016_j_amjms_2021_09_011
crossref_primary_10_5551_jat_63159
crossref_primary_10_1038_s41440_020_0532_z
crossref_primary_10_3390_biomedicines11051445
crossref_primary_10_1155_2019_1762161
crossref_primary_10_1016_j_numecd_2023_02_025
crossref_primary_10_1161_JAHA_121_021430
Cites_doi 10.5551/jat.7922
10.1016/j.bbadis.2014.05.022
10.1016/0009-2797(92)90093-Z
10.1016/j.amjcard.2003.11.046
10.1016/S0092-8674(00)81359-8
10.1111/j.1365-2125.2010.03887.x
10.1016/S0026-0495(98)90026-9
10.1016/j.freeradbiomed.2013.01.023
10.1101/gad.1032702
10.1161/CIRCULATIONAHA.114.014536
10.1016/j.jchromb.2015.11.030
10.1016/j.ejphar.2016.03.055
10.1016/j.pharep.2015.05.004
10.1002/jlcr.3390
10.1053/j.ajkd.2008.12.034
10.1016/j.jacc.2008.01.068
10.1016/j.cmet.2007.01.005
10.1016/S0021-9258(18)77283-9
10.4103/0975-3583.74262
10.1089/chi.2015.0051
10.1016/0891-5849(93)90138-K
10.1161/CIRCULATIONAHA.106.651117
10.1161/HYPERTENSIONAHA.109.135152
10.1016/j.metabol.2017.01.031
10.1016/j.jchromb.2016.10.033
10.1093/ndt/gfq554
10.1073/pnas.86.23.9412
10.1007/s00775-014-1210-x
10.1053/j.ajkd.2014.11.016
10.1016/j.ijcard.2016.11.077
10.1016/S0041-008X(02)00076-5
10.1113/jphysiol.2003.055913
10.2215/CJN.01580210
10.1016/j.atherosclerosis.2014.10.006
10.1161/01.CIR.0000046448.26751.58
10.1016/S0026-0495(98)90346-8
10.1186/1758-5996-4-3
10.1159/000441091
10.1002/hep.1840190626
10.1074/jbc.M113.485094
10.1136/bmj.j2376
10.1124/pr.58.1.6
ContentType Journal Article
Copyright 2018 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2018 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-18-0082
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 1899
ExternalDocumentID 29643318
10_1253_circj_CJ_18_0082
article_circj_82_7_82_CJ_18_0082_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c692t-5ea7008c1e313c3f8d0a378ee50c55186087e6e6ae24e967fdb18cc81a7d63e93
ISSN 1346-9843
1347-4820
IngestDate Thu Jul 10 18:15:44 EDT 2025
Mon Jul 21 05:51:27 EDT 2025
Tue Jul 01 02:01:23 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
Wed Sep 03 06:30:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Liver dysfunction
Obesity
Insulin resistance
Uric acid
Smoking
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c692t-5ea7008c1e313c3f8d0a378ee50c55186087e6e6ae24e967fdb18cc81a7d63e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/82/7/82_CJ-18-0082/_article/-char/en
PMID 29643318
PQID 2024476163
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2024476163
pubmed_primary_29643318
crossref_citationtrail_10_1253_circj_CJ_18_0082
crossref_primary_10_1253_circj_CJ_18_0082
jstage_primary_article_circj_82_7_82_CJ_18_0082_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-25
PublicationDateYYYYMMDD 2018-06-25
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-25
  day: 25
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2018
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 31. Leyva F, Wingrove CS, Godsland IF, Stevenson JC. The glycolytic pathway to coronary heart disease: A hypothesis. Metabolism 1998; 47: 657–662.
43. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516.
26. Lehr HA, Kress E, Menger MD, Friedl HP, Hubner C, Arfors KE, et al. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters: Inhibition by CuZn-SOD. Free Radic Biol Med 1993; 14: 573–581.
30. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 2013; 288: 27138–27149.
28. Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 2003; 107: 416–421.
6. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation 2015; 131: 1763–1771.
20. Choi JY, Yoon YJ, Choi HJ, Park SH, Kim CD, Kim IS, et al. Dialysis modality-dependent changes in serum metabolites: Accumulation of inosine and hypoxanthine in patients on haemodialysis. Nephrol Dial Transplant 2011; 26: 1304–1313.
25. Kayyali US, Budhiraja R, Pennella CM, Cooray S, Lanzillo JJ, Chalkley R, et al. Upregulation of xanthine oxidase by tobacco smoke condensate in pulmonary endothelial cells. Toxicol Appl Pharmacol 2003; 188: 59–68.
35. Ohtsubo T, Matsumura K, Sakagami K, Fujii K, Tsuruya K, Noguchi H, et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 2009; 54: 868–876.
7. Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis PA, et al. Serum uric acid levels and multiple health outcomes: Umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017; 357: j2376.
34. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 2007; 5: 115–128.
9. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type: Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 1990; 265: 14170–14175.
5. Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 2010; 1: 191–195.
18. Murase T, Nampei M, Oka M, Ashizawa N, Matsumoto K, Miyachi A, et al. Xanthine oxidoreductase activity assay in tissues using stable isotope-labeled substrate and liquid chromatography high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008: 189–197.
32. Spiegelman BM, Flier JS. Adipogenesis and obesity: Rounding out the big picture. Cell 1996; 87: 377–389.
12. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014; 1842: 1502–1517.
23. Washio KW, Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M, et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism 2017; 70: 51–56.
27. Kim BS, Serebreni L, Hamdan O, Wang L, Parniani A, Sussan T, et al. Xanthine oxidoreductase is a critical mediator of cigarette smoke-induced endothelial cell DNA damage and apoptosis. Free Radic Biol Med 2013; 60: 336–346.
38. Wei L, Mackenzie IS, Chen Y, Struthers AD, MacDonald TM. Impact of allopurinol use on urate concentration and cardiovascular outcome. Br J Clin Pharmacol 2011; 71: 600–607.
42. Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, et al. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur J Pharmacol 2016; 780: 224–231.
21. Gondouin B, Jourde-Chiche N, Sallee M, Dou L, Cerini C, Loundou A, et al. Plasma xanthine oxidase activity is predictive of cardiovascular disease in patients with chronic kidney disease, independently of uric acid levels. Nephron 2015; 131: 167–174.
3. Kim TH, Lee SS, Yoo JH, Kim SR, Yoo SJ, Song HC, et al. The relationship between the regional abdominal adipose tissue distribution and the serum uric acid levels in people with type 2 diabetes mellitus. Diabetol Metab Syndr 2012; 4: 3.
11. Kooij A, Schiller HJ, Schijns M, Van Noorden CJ, Frederiks WM. Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia. Hepatology 1994; 19: 1488–1495.
29. Guthikonda S, Woods K, Sinkey CA, Haynes WG. Role of xanthine oxidase in conduit artery endothelial dysfunction in cigarette smokers. Am J Cardiol 2004; 93: 664–668.
41. Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58: 87–114.
8. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20: 195–207.
24. Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014; 237: 562–567.
33. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes Dev 2002; 16: 3223–3235.
13. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67: 669–674.
22. Tam HK, Kelly AS, Fox CK, Nathan BM, Johnson LA. Weight loss mediated reduction in xanthine oxidase activity and uric acid clearance in adolescents with severe obesity. Child Obes 2016; 12: 286–291.
2. Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998; 47: 929–933.
14. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606.
1. Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: Primary structure and evolutionary implications. Proc Natl Acad Sci USA 1989; 86: 9412–9416.
4. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18: 629–639.
36. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 2008; 51: 2301–2309.
16. Murase T, Nampei M, Oka M, Miyachi A, Nakamura T. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039: 51–58.
19. Murase T, Oka M, Nampei M, Miyachi A, Nakamura T. A highly sensitive assay for xanthine oxidoreductase activity using a combination of [(13)C2,(15)N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. J Labelled Comp Radiopharm 2016; 59: 214–220.
15. Parks DA, Granger DN. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol Scand Suppl 1986; 548: 87–99.
40. Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol 2017; 228: 151–157.
39. Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am J Kidney Dis 2015; 65: 543–549.
10. Battelli MG, Abbondanza A, Stirpe F. Effects of hypoxia and ethanol on xanthine oxidase of isolated rat hepatocytes: Conversion from D to O form and leakage from cells. Chem Biol Interact 1992; 83: 73–84.
17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992.
37. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5: 1388–1393.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 28. Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 2003; 107: 416–421.
– reference: 27. Kim BS, Serebreni L, Hamdan O, Wang L, Parniani A, Sussan T, et al. Xanthine oxidoreductase is a critical mediator of cigarette smoke-induced endothelial cell DNA damage and apoptosis. Free Radic Biol Med 2013; 60: 336–346.
– reference: 5. Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 2010; 1: 191–195.
– reference: 20. Choi JY, Yoon YJ, Choi HJ, Park SH, Kim CD, Kim IS, et al. Dialysis modality-dependent changes in serum metabolites: Accumulation of inosine and hypoxanthine in patients on haemodialysis. Nephrol Dial Transplant 2011; 26: 1304–1313.
– reference: 32. Spiegelman BM, Flier JS. Adipogenesis and obesity: Rounding out the big picture. Cell 1996; 87: 377–389.
– reference: 40. Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol 2017; 228: 151–157.
– reference: 42. Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, et al. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur J Pharmacol 2016; 780: 224–231.
– reference: 22. Tam HK, Kelly AS, Fox CK, Nathan BM, Johnson LA. Weight loss mediated reduction in xanthine oxidase activity and uric acid clearance in adolescents with severe obesity. Child Obes 2016; 12: 286–291.
– reference: 33. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes Dev 2002; 16: 3223–3235.
– reference: 19. Murase T, Oka M, Nampei M, Miyachi A, Nakamura T. A highly sensitive assay for xanthine oxidoreductase activity using a combination of [(13)C2,(15)N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. J Labelled Comp Radiopharm 2016; 59: 214–220.
– reference: 24. Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014; 237: 562–567.
– reference: 13. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67: 669–674.
– reference: 23. Washio KW, Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M, et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism 2017; 70: 51–56.
– reference: 9. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type: Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 1990; 265: 14170–14175.
– reference: 30. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 2013; 288: 27138–27149.
– reference: 31. Leyva F, Wingrove CS, Godsland IF, Stevenson JC. The glycolytic pathway to coronary heart disease: A hypothesis. Metabolism 1998; 47: 657–662.
– reference: 14. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606.
– reference: 17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992.
– reference: 21. Gondouin B, Jourde-Chiche N, Sallee M, Dou L, Cerini C, Loundou A, et al. Plasma xanthine oxidase activity is predictive of cardiovascular disease in patients with chronic kidney disease, independently of uric acid levels. Nephron 2015; 131: 167–174.
– reference: 2. Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998; 47: 929–933.
– reference: 26. Lehr HA, Kress E, Menger MD, Friedl HP, Hubner C, Arfors KE, et al. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters: Inhibition by CuZn-SOD. Free Radic Biol Med 1993; 14: 573–581.
– reference: 4. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18: 629–639.
– reference: 10. Battelli MG, Abbondanza A, Stirpe F. Effects of hypoxia and ethanol on xanthine oxidase of isolated rat hepatocytes: Conversion from D to O form and leakage from cells. Chem Biol Interact 1992; 83: 73–84.
– reference: 11. Kooij A, Schiller HJ, Schijns M, Van Noorden CJ, Frederiks WM. Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia. Hepatology 1994; 19: 1488–1495.
– reference: 15. Parks DA, Granger DN. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol Scand Suppl 1986; 548: 87–99.
– reference: 34. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 2007; 5: 115–128.
– reference: 18. Murase T, Nampei M, Oka M, Ashizawa N, Matsumoto K, Miyachi A, et al. Xanthine oxidoreductase activity assay in tissues using stable isotope-labeled substrate and liquid chromatography high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008: 189–197.
– reference: 6. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation 2015; 131: 1763–1771.
– reference: 29. Guthikonda S, Woods K, Sinkey CA, Haynes WG. Role of xanthine oxidase in conduit artery endothelial dysfunction in cigarette smokers. Am J Cardiol 2004; 93: 664–668.
– reference: 3. Kim TH, Lee SS, Yoo JH, Kim SR, Yoo SJ, Song HC, et al. The relationship between the regional abdominal adipose tissue distribution and the serum uric acid levels in people with type 2 diabetes mellitus. Diabetol Metab Syndr 2012; 4: 3.
– reference: 38. Wei L, Mackenzie IS, Chen Y, Struthers AD, MacDonald TM. Impact of allopurinol use on urate concentration and cardiovascular outcome. Br J Clin Pharmacol 2011; 71: 600–607.
– reference: 37. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5: 1388–1393.
– reference: 36. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 2008; 51: 2301–2309.
– reference: 41. Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58: 87–114.
– reference: 43. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516.
– reference: 25. Kayyali US, Budhiraja R, Pennella CM, Cooray S, Lanzillo JJ, Chalkley R, et al. Upregulation of xanthine oxidase by tobacco smoke condensate in pulmonary endothelial cells. Toxicol Appl Pharmacol 2003; 188: 59–68.
– reference: 1. Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: Primary structure and evolutionary implications. Proc Natl Acad Sci USA 1989; 86: 9412–9416.
– reference: 7. Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis PA, et al. Serum uric acid levels and multiple health outcomes: Umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017; 357: j2376.
– reference: 8. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20: 195–207.
– reference: 16. Murase T, Nampei M, Oka M, Miyachi A, Nakamura T. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039: 51–58.
– reference: 35. Ohtsubo T, Matsumura K, Sakagami K, Fujii K, Tsuruya K, Noguchi H, et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 2009; 54: 868–876.
– reference: 39. Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am J Kidney Dis 2015; 65: 543–549.
– reference: 12. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014; 1842: 1502–1517.
– ident: 4
  doi: 10.5551/jat.7922
– ident: 12
  doi: 10.1016/j.bbadis.2014.05.022
– ident: 10
  doi: 10.1016/0009-2797(92)90093-Z
– ident: 29
  doi: 10.1016/j.amjcard.2003.11.046
– ident: 32
  doi: 10.1016/S0092-8674(00)81359-8
– ident: 38
  doi: 10.1111/j.1365-2125.2010.03887.x
– ident: 31
  doi: 10.1016/S0026-0495(98)90026-9
– ident: 27
  doi: 10.1016/j.freeradbiomed.2013.01.023
– ident: 33
  doi: 10.1101/gad.1032702
– ident: 6
  doi: 10.1161/CIRCULATIONAHA.114.014536
– ident: 18
  doi: 10.1016/j.jchromb.2015.11.030
– ident: 42
  doi: 10.1016/j.ejphar.2016.03.055
– ident: 13
  doi: 10.1016/j.pharep.2015.05.004
– ident: 19
  doi: 10.1002/jlcr.3390
– ident: 17
  doi: 10.1053/j.ajkd.2008.12.034
– ident: 36
  doi: 10.1016/j.jacc.2008.01.068
– ident: 34
  doi: 10.1016/j.cmet.2007.01.005
– ident: 9
  doi: 10.1016/S0021-9258(18)77283-9
– ident: 5
  doi: 10.4103/0975-3583.74262
– ident: 22
  doi: 10.1089/chi.2015.0051
– ident: 26
  doi: 10.1016/0891-5849(93)90138-K
– ident: 43
  doi: 10.1161/CIRCULATIONAHA.106.651117
– ident: 35
  doi: 10.1161/HYPERTENSIONAHA.109.135152
– ident: 23
  doi: 10.1016/j.metabol.2017.01.031
– ident: 16
  doi: 10.1016/j.jchromb.2016.10.033
– ident: 20
  doi: 10.1093/ndt/gfq554
– ident: 1
  doi: 10.1073/pnas.86.23.9412
– ident: 8
  doi: 10.1007/s00775-014-1210-x
– ident: 39
  doi: 10.1053/j.ajkd.2014.11.016
– ident: 40
  doi: 10.1016/j.ijcard.2016.11.077
– ident: 15
– ident: 25
  doi: 10.1016/S0041-008X(02)00076-5
– ident: 14
  doi: 10.1113/jphysiol.2003.055913
– ident: 37
  doi: 10.2215/CJN.01580210
– ident: 24
  doi: 10.1016/j.atherosclerosis.2014.10.006
– ident: 28
  doi: 10.1161/01.CIR.0000046448.26751.58
– ident: 2
  doi: 10.1016/S0026-0495(98)90346-8
– ident: 3
  doi: 10.1186/1758-5996-4-3
– ident: 21
  doi: 10.1159/000441091
– ident: 11
  doi: 10.1002/hep.1840190626
– ident: 30
  doi: 10.1074/jbc.M113.485094
– ident: 7
  doi: 10.1136/bmj.j2376
– ident: 41
  doi: 10.1124/pr.58.1.6
SSID ssj0029059
Score 2.483565
Snippet Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in...
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1892
SubjectTerms Aged
Aged, 80 and over
Asian People
Biomarkers - blood
Cholesterol, HDL - blood
Chromatography, Liquid
Cohort Studies
Female
Humans
Insulin Resistance
Liver dysfunction
Male
Mass Spectrometry
Metabolic Diseases - diagnosis
Metabolic Diseases - enzymology
Metabolic Diseases - epidemiology
Middle Aged
Obesity
Smoking
Uric acid
Xanthine Dehydrogenase - blood
Xanthine Dehydrogenase - metabolism
Title Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population
URI https://www.jstage.jst.go.jp/article/circj/82/7/82_CJ-18-0082/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29643318
https://www.proquest.com/docview/2024476163
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2018/06/25, Vol.82(7), pp.1892-1899
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKQIgXxHV0XGQkXlCULrfazhNCFTBVatlDJ_UtchxnTbe0qE3QtP_If-LYcdwUDcTgJUocxznx98U-to_PQeidTNPYS4eey1M_ciNOuJuCouDmaeBlQntYUpuTJ1NychaN58N5r_ejY7VUV-lAXN-4r-RfUIU0wFXtkr0FsrZQSIBzwBeOgDAc_wrjU1B9S-7MoXYWSlv8elWowCHKhStXDkeECQ3Btw53puvv8lLFniyVRY5eHJjICjig3Fy3Tji1dSxvnVE7pza8V1eJHRUbYZLb5WyLW1HrwEXOTFbbelnYCZxFUXJgxbqx4LiuQXHdTYZD1vbeRJ7Xpb015Re8bEuE8-2i6E5T-EyZUzVbmgd2oxt0_yqsptMV0xindprgMCJuzBrnTQPZplE3YoHXbbdZ0OEn7TTCPmvC65kOHS7jGzuLQEf8ECDMcjAau0pmzxS674LbAJzorAkLEqoOo3His0Q9ktgMC74BYt5BdwNKtdXAl7m1OApiT8fusx9oVs1BjONfhdjTku4tYaBwLn8_BtK60OwRemgwxx8beR6jnlw9QfcnxkzjKbpoiIlbYuJ9YuKWmJhvMceamNgSE69zbImJLTFxsYK8hph4R8xn6Ozzp9noxDVRPVxB4qByh5JT-EThy9APRZizzOMhZVIOPaHcAxKPUUkk4TKIZExonqU-E4L5nGYklHH4HB2s1iv5AuEwzhgRecYFZVEcSp5GjHChhimSxXnWR8dtLQJ2jWmLirxymaihL9S7QXSHZB-9t098a9y9_CHvhwYYm_O2POmjty2iCbTqaqkOfpB1vU0CUJ0jSmCw1EeHDdT2LcpQIoSu-Oi_3_8SPdj9qq_QQbWp5WvQsav0jWbuTwx-3IQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+Xanthine+Oxidoreductase+Activity+as+a+Novel+Biomarker+of+Metabolic+Disorders+in+a+General+Population&rft.jtitle=Circulation+Journal&rft.au=Miura%2C+Tetsuji&rft.au=Shimamoto%2C+Kazuaki&rft.au=Matsumoto%2C+Megumi&rft.au=Nakamura%2C+Takashi&rft.date=2018-06-25&rft.pub=The+Japanese+Circulation+Society&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=82&rft.issue=7&rft.spage=1892&rft.epage=1899&rft_id=info:doi/10.1253%2Fcircj.CJ-18-0082&rft.externalDocID=article_circj_82_7_82_CJ_18_0082_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon