Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population
Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations betwee...
Saved in:
Published in | Circulation Journal Vol. 82; no. 7; pp. 1892 - 1899 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
25.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-9843 1347-4820 1347-4820 |
DOI | 10.1253/circj.CJ-18-0082 |
Cover
Abstract | Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.Methods and Results:A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.Conclusions:Plasma XOR activity is a novel biomarker of metabolic disorders in a general population. |
---|---|
AbstractList | Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [
C
,
N
]-uric acid using [
C
,
N
]-xanthine as a substrate.
A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.
Plasma XOR activity is a novel biomarker of metabolic disorders in a general population. Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.BACKGROUNDXanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.METHODS AND RESULTSA total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.Plasma XOR activity is a novel biomarker of metabolic disorders in a general population.CONCLUSIONSPlasma XOR activity is a novel biomarker of metabolic disorders in a general population. Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and reactive oxygen species. Activation of XOR promotes oxidative stress-related tissue injury. We investigated the associations between metabolic parameters and plasma XOR activity measured by a sensitive and accurate assay using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2,15N2]-uric acid using [13C2,15N2]-xanthine as a substrate.Methods and Results:A total of 627 Japanese subjects (M/F, 292/335) from the Tanno-Sobetsu Study, a population-based cohort, were recruited. Plasma XOR activity was significantly higher in males than in females, and habitual smoking was associated with elevation of activity. Plasma XOR activity was positively correlated with body mass index (BMI; r=0.323, P<0.001), waist circumference, blood pressure, and levels of liver enzymes including alanine transaminase (r=0.694, P<0.001), uric acid (r=0.249, P<0.001), triglycerides (r=0.312, P<0.001), hemoglobin A1c, fasting glucose, insulin and HOMA-R (r=0.238, P<0.001) as a marker of insulin resistance and was negatively correlated with high-density lipoprotein cholesterol level. On stepwise and multivariate regression analyses, BMI, smoking and levels of alanine transaminase, uric acid, triglycerides and HOMA-R were independent predictors of plasma XOR activity after adjustment for age and gender.Conclusions:Plasma XOR activity is a novel biomarker of metabolic disorders in a general population. |
Author | Furuhashi, Masato Shimamoto, Kazuaki Murase, Takayo Saitoh, Shigeyuki Tanaka, Marenao Matsumoto, Megumi Moniwa, Norihito Nakamura, Takashi Ohnishi, Hirofumi Miura, Tetsuji |
Author_xml | – sequence: 1 fullname: Miura, Tetsuji organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine – sequence: 1 fullname: Shimamoto, Kazuaki organization: Japan Health Care College – sequence: 1 fullname: Matsumoto, Megumi organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine – sequence: 1 fullname: Nakamura, Takashi organization: Sanwa Kagaku Kenkyusho Co., Ltd – sequence: 1 fullname: Murase, Takayo organization: Sanwa Kagaku Kenkyusho Co., Ltd – sequence: 1 fullname: Tanaka, Marenao organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine – sequence: 1 fullname: Moniwa, Norihito organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine – sequence: 1 fullname: Furuhashi, Masato organization: Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine – sequence: 1 fullname: Ohnishi, Hirofumi organization: Department of Public Health, Sapporo Medical University School of Medicine – sequence: 1 fullname: Saitoh, Shigeyuki organization: Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29643318$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEURi0URB6kp0IuaSb4MePxlGFJAlEgKUBKZ9313CHeeO3F9kTJv2f2ESJR0Fzf4pwrff4OyV6IAQl5x9kJF438aF2yi5PZZcV1xZgWr8gBl3Vb1Vqwvc2uqk7Xcp8c5rxgTHSs6d6QfdGpWkquD8j9jYe8BHoLody5gPT60fUxYT_aAhnpqS3uwZUnCpkC_R4f0NNPLi4h3WOicaDfsMA8emfpZ5dj6jFl6sLEXmDABJ7exNXoobgY3pLXA_iMx7v3iPw8P_sx-1JdXV98nZ1eVVZ1olQNQjuFsRwll1YOumcgW43YMNs0XCumW1SoAEWNnWqHfs61tZpD2yuJnTwiH7Z3Vyn-HjEXs3TZovcQMI7ZCCbqulVcyQl9v0PH-RJ7s0puivZknj9oAtQWsCnmnHAw1pVNmpLAecOZWTdhNk2Y2aXh2qybmET2j_h8-z_K-VZZ5AK_8K8AqTjrcSdoYdr1eBFfgDtIBoP8A1CFprg |
CitedBy_id | crossref_primary_10_1002_acr_24576 crossref_primary_10_3390_metabo12030237 crossref_primary_10_4103_2773_0387_348714 crossref_primary_10_5551_jat_48710 crossref_primary_10_1159_000540701 crossref_primary_10_1016_j_nbd_2021_105392 crossref_primary_10_1111_nep_13983 crossref_primary_10_1016_j_ekir_2022_11_016 crossref_primary_10_1038_s41440_021_00840_w crossref_primary_10_1038_s41440_021_00792_1 crossref_primary_10_1111_jdi_13467 crossref_primary_10_1097_HCO_0000000000000626 crossref_primary_10_3390_biomedicines11051258 crossref_primary_10_1507_endocrj_EJ19_0053 crossref_primary_10_1002_ehf2_12390 crossref_primary_10_3390_biomedicines11030754 crossref_primary_10_1002_jssc_202100484 crossref_primary_10_3390_antiox13020211 crossref_primary_10_1093_ndt_gfac188 crossref_primary_10_3390_ijerph18041894 crossref_primary_10_31857_S0301179824030037 crossref_primary_10_1038_s41440_021_00679_1 crossref_primary_10_1186_s12889_024_20457_1 crossref_primary_10_1016_j_biopha_2022_113784 crossref_primary_10_1038_s41440_023_01392_x crossref_primary_10_1093_ehjopen_oeac030 crossref_primary_10_1111_jdi_13735 crossref_primary_10_3390_ijms24087027 crossref_primary_10_1253_circrep_CR_19_0116 crossref_primary_10_1507_endocrj_EJ18_0127 crossref_primary_10_1038_s41598_024_71733_4 crossref_primary_10_2147_CLEP_S363429 crossref_primary_10_1007_s00380_020_01608_x crossref_primary_10_1038_s41387_021_00155_2 crossref_primary_10_1038_s41598_021_83234_9 crossref_primary_10_1152_ajpendo_00378_2020 crossref_primary_10_1016_j_tifs_2022_03_002 crossref_primary_10_1371_journal_pone_0298602 crossref_primary_10_1016_j_amjcard_2019_12_043 crossref_primary_10_3390_plants10081668 crossref_primary_10_1159_000516610 crossref_primary_10_1016_j_orcp_2023_09_007 crossref_primary_10_1159_000519491 crossref_primary_10_1515_cclm_2019_0199 crossref_primary_10_1038_s41598_021_92292_y crossref_primary_10_1507_endocrj_EJ23_0160 crossref_primary_10_1111_jdi_13207 crossref_primary_10_3389_fphar_2022_955219 crossref_primary_10_1172_jci_insight_144762 crossref_primary_10_1371_journal_pone_0257227 crossref_primary_10_1038_s41440_023_01179_0 crossref_primary_10_1038_s41598_022_11094_y crossref_primary_10_1007_s11926_021_01050_6 crossref_primary_10_1016_j_heliyon_2022_e11549 crossref_primary_10_1016_j_niox_2022_10_004 crossref_primary_10_1186_s12882_023_03062_z crossref_primary_10_3164_jcbn_21_118 crossref_primary_10_1016_j_amjcard_2021_07_047 crossref_primary_10_3390_brainsci13050800 crossref_primary_10_1507_endocrj_EJ20_0823 crossref_primary_10_1038_s41598_021_88025_w crossref_primary_10_1253_circj_CJ_20_0406 crossref_primary_10_1111_jdi_12982 crossref_primary_10_1016_j_amjms_2021_09_011 crossref_primary_10_5551_jat_63159 crossref_primary_10_1038_s41440_020_0532_z crossref_primary_10_3390_biomedicines11051445 crossref_primary_10_1155_2019_1762161 crossref_primary_10_1016_j_numecd_2023_02_025 crossref_primary_10_1161_JAHA_121_021430 |
Cites_doi | 10.5551/jat.7922 10.1016/j.bbadis.2014.05.022 10.1016/0009-2797(92)90093-Z 10.1016/j.amjcard.2003.11.046 10.1016/S0092-8674(00)81359-8 10.1111/j.1365-2125.2010.03887.x 10.1016/S0026-0495(98)90026-9 10.1016/j.freeradbiomed.2013.01.023 10.1101/gad.1032702 10.1161/CIRCULATIONAHA.114.014536 10.1016/j.jchromb.2015.11.030 10.1016/j.ejphar.2016.03.055 10.1016/j.pharep.2015.05.004 10.1002/jlcr.3390 10.1053/j.ajkd.2008.12.034 10.1016/j.jacc.2008.01.068 10.1016/j.cmet.2007.01.005 10.1016/S0021-9258(18)77283-9 10.4103/0975-3583.74262 10.1089/chi.2015.0051 10.1016/0891-5849(93)90138-K 10.1161/CIRCULATIONAHA.106.651117 10.1161/HYPERTENSIONAHA.109.135152 10.1016/j.metabol.2017.01.031 10.1016/j.jchromb.2016.10.033 10.1093/ndt/gfq554 10.1073/pnas.86.23.9412 10.1007/s00775-014-1210-x 10.1053/j.ajkd.2014.11.016 10.1016/j.ijcard.2016.11.077 10.1016/S0041-008X(02)00076-5 10.1113/jphysiol.2003.055913 10.2215/CJN.01580210 10.1016/j.atherosclerosis.2014.10.006 10.1161/01.CIR.0000046448.26751.58 10.1016/S0026-0495(98)90346-8 10.1186/1758-5996-4-3 10.1159/000441091 10.1002/hep.1840190626 10.1074/jbc.M113.485094 10.1136/bmj.j2376 10.1124/pr.58.1.6 |
ContentType | Journal Article |
Copyright | 2018 THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2018 THE JAPANESE CIRCULATION SOCIETY |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1253/circj.CJ-18-0082 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 1899 |
ExternalDocumentID | 29643318 10_1253_circj_CJ_18_0082 article_circj_82_7_82_CJ_18_0082_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29B 2WC 53G 5GY 5RE 6J9 ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 OVT P2P RJT RNS RZJ TR2 W2D X7M XSB ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c692t-5ea7008c1e313c3f8d0a378ee50c55186087e6e6ae24e967fdb18cc81a7d63e93 |
ISSN | 1346-9843 1347-4820 |
IngestDate | Thu Jul 10 18:15:44 EDT 2025 Mon Jul 21 05:51:27 EDT 2025 Tue Jul 01 02:01:23 EDT 2025 Thu Apr 24 23:04:01 EDT 2025 Wed Sep 03 06:30:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Liver dysfunction Obesity Insulin resistance Uric acid Smoking |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c692t-5ea7008c1e313c3f8d0a378ee50c55186087e6e6ae24e967fdb18cc81a7d63e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/82/7/82_CJ-18-0082/_article/-char/en |
PMID | 29643318 |
PQID | 2024476163 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2024476163 pubmed_primary_29643318 crossref_citationtrail_10_1253_circj_CJ_18_0082 crossref_primary_10_1253_circj_CJ_18_0082 jstage_primary_article_circj_82_7_82_CJ_18_0082_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-25 |
PublicationDateYYYYMMDD | 2018-06-25 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2018 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 31. Leyva F, Wingrove CS, Godsland IF, Stevenson JC. The glycolytic pathway to coronary heart disease: A hypothesis. Metabolism 1998; 47: 657–662. 43. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516. 26. Lehr HA, Kress E, Menger MD, Friedl HP, Hubner C, Arfors KE, et al. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters: Inhibition by CuZn-SOD. Free Radic Biol Med 1993; 14: 573–581. 30. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 2013; 288: 27138–27149. 28. Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 2003; 107: 416–421. 6. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation 2015; 131: 1763–1771. 20. Choi JY, Yoon YJ, Choi HJ, Park SH, Kim CD, Kim IS, et al. Dialysis modality-dependent changes in serum metabolites: Accumulation of inosine and hypoxanthine in patients on haemodialysis. Nephrol Dial Transplant 2011; 26: 1304–1313. 25. Kayyali US, Budhiraja R, Pennella CM, Cooray S, Lanzillo JJ, Chalkley R, et al. Upregulation of xanthine oxidase by tobacco smoke condensate in pulmonary endothelial cells. Toxicol Appl Pharmacol 2003; 188: 59–68. 35. Ohtsubo T, Matsumura K, Sakagami K, Fujii K, Tsuruya K, Noguchi H, et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 2009; 54: 868–876. 7. Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis PA, et al. Serum uric acid levels and multiple health outcomes: Umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017; 357: j2376. 34. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 2007; 5: 115–128. 9. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type: Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 1990; 265: 14170–14175. 5. Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 2010; 1: 191–195. 18. Murase T, Nampei M, Oka M, Ashizawa N, Matsumoto K, Miyachi A, et al. Xanthine oxidoreductase activity assay in tissues using stable isotope-labeled substrate and liquid chromatography high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008: 189–197. 32. Spiegelman BM, Flier JS. Adipogenesis and obesity: Rounding out the big picture. Cell 1996; 87: 377–389. 12. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014; 1842: 1502–1517. 23. Washio KW, Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M, et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism 2017; 70: 51–56. 27. Kim BS, Serebreni L, Hamdan O, Wang L, Parniani A, Sussan T, et al. Xanthine oxidoreductase is a critical mediator of cigarette smoke-induced endothelial cell DNA damage and apoptosis. Free Radic Biol Med 2013; 60: 336–346. 38. Wei L, Mackenzie IS, Chen Y, Struthers AD, MacDonald TM. Impact of allopurinol use on urate concentration and cardiovascular outcome. Br J Clin Pharmacol 2011; 71: 600–607. 42. Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, et al. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur J Pharmacol 2016; 780: 224–231. 21. Gondouin B, Jourde-Chiche N, Sallee M, Dou L, Cerini C, Loundou A, et al. Plasma xanthine oxidase activity is predictive of cardiovascular disease in patients with chronic kidney disease, independently of uric acid levels. Nephron 2015; 131: 167–174. 3. Kim TH, Lee SS, Yoo JH, Kim SR, Yoo SJ, Song HC, et al. The relationship between the regional abdominal adipose tissue distribution and the serum uric acid levels in people with type 2 diabetes mellitus. Diabetol Metab Syndr 2012; 4: 3. 11. Kooij A, Schiller HJ, Schijns M, Van Noorden CJ, Frederiks WM. Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia. Hepatology 1994; 19: 1488–1495. 29. Guthikonda S, Woods K, Sinkey CA, Haynes WG. Role of xanthine oxidase in conduit artery endothelial dysfunction in cigarette smokers. Am J Cardiol 2004; 93: 664–668. 41. Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58: 87–114. 8. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20: 195–207. 24. Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014; 237: 562–567. 33. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes Dev 2002; 16: 3223–3235. 13. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67: 669–674. 22. Tam HK, Kelly AS, Fox CK, Nathan BM, Johnson LA. Weight loss mediated reduction in xanthine oxidase activity and uric acid clearance in adolescents with severe obesity. Child Obes 2016; 12: 286–291. 2. Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998; 47: 929–933. 14. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606. 1. Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: Primary structure and evolutionary implications. Proc Natl Acad Sci USA 1989; 86: 9412–9416. 4. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18: 629–639. 36. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 2008; 51: 2301–2309. 16. Murase T, Nampei M, Oka M, Miyachi A, Nakamura T. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039: 51–58. 19. Murase T, Oka M, Nampei M, Miyachi A, Nakamura T. A highly sensitive assay for xanthine oxidoreductase activity using a combination of [(13)C2,(15)N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. J Labelled Comp Radiopharm 2016; 59: 214–220. 15. Parks DA, Granger DN. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol Scand Suppl 1986; 548: 87–99. 40. Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol 2017; 228: 151–157. 39. Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am J Kidney Dis 2015; 65: 543–549. 10. Battelli MG, Abbondanza A, Stirpe F. Effects of hypoxia and ethanol on xanthine oxidase of isolated rat hepatocytes: Conversion from D to O form and leakage from cells. Chem Biol Interact 1992; 83: 73–84. 17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992. 37. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5: 1388–1393. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 28. Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 2003; 107: 416–421. – reference: 27. Kim BS, Serebreni L, Hamdan O, Wang L, Parniani A, Sussan T, et al. Xanthine oxidoreductase is a critical mediator of cigarette smoke-induced endothelial cell DNA damage and apoptosis. Free Radic Biol Med 2013; 60: 336–346. – reference: 5. Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 2010; 1: 191–195. – reference: 20. Choi JY, Yoon YJ, Choi HJ, Park SH, Kim CD, Kim IS, et al. Dialysis modality-dependent changes in serum metabolites: Accumulation of inosine and hypoxanthine in patients on haemodialysis. Nephrol Dial Transplant 2011; 26: 1304–1313. – reference: 32. Spiegelman BM, Flier JS. Adipogenesis and obesity: Rounding out the big picture. Cell 1996; 87: 377–389. – reference: 40. Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol 2017; 228: 151–157. – reference: 42. Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, et al. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur J Pharmacol 2016; 780: 224–231. – reference: 22. Tam HK, Kelly AS, Fox CK, Nathan BM, Johnson LA. Weight loss mediated reduction in xanthine oxidase activity and uric acid clearance in adolescents with severe obesity. Child Obes 2016; 12: 286–291. – reference: 33. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes Dev 2002; 16: 3223–3235. – reference: 19. Murase T, Oka M, Nampei M, Miyachi A, Nakamura T. A highly sensitive assay for xanthine oxidoreductase activity using a combination of [(13)C2,(15)N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. J Labelled Comp Radiopharm 2016; 59: 214–220. – reference: 24. Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014; 237: 562–567. – reference: 13. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67: 669–674. – reference: 23. Washio KW, Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M, et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism 2017; 70: 51–56. – reference: 9. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type: Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 1990; 265: 14170–14175. – reference: 30. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 2013; 288: 27138–27149. – reference: 31. Leyva F, Wingrove CS, Godsland IF, Stevenson JC. The glycolytic pathway to coronary heart disease: A hypothesis. Metabolism 1998; 47: 657–662. – reference: 14. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606. – reference: 17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992. – reference: 21. Gondouin B, Jourde-Chiche N, Sallee M, Dou L, Cerini C, Loundou A, et al. Plasma xanthine oxidase activity is predictive of cardiovascular disease in patients with chronic kidney disease, independently of uric acid levels. Nephron 2015; 131: 167–174. – reference: 2. Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998; 47: 929–933. – reference: 26. Lehr HA, Kress E, Menger MD, Friedl HP, Hubner C, Arfors KE, et al. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters: Inhibition by CuZn-SOD. Free Radic Biol Med 1993; 14: 573–581. – reference: 4. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18: 629–639. – reference: 10. Battelli MG, Abbondanza A, Stirpe F. Effects of hypoxia and ethanol on xanthine oxidase of isolated rat hepatocytes: Conversion from D to O form and leakage from cells. Chem Biol Interact 1992; 83: 73–84. – reference: 11. Kooij A, Schiller HJ, Schijns M, Van Noorden CJ, Frederiks WM. Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia. Hepatology 1994; 19: 1488–1495. – reference: 15. Parks DA, Granger DN. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol Scand Suppl 1986; 548: 87–99. – reference: 34. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 2007; 5: 115–128. – reference: 18. Murase T, Nampei M, Oka M, Ashizawa N, Matsumoto K, Miyachi A, et al. Xanthine oxidoreductase activity assay in tissues using stable isotope-labeled substrate and liquid chromatography high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008: 189–197. – reference: 6. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation 2015; 131: 1763–1771. – reference: 29. Guthikonda S, Woods K, Sinkey CA, Haynes WG. Role of xanthine oxidase in conduit artery endothelial dysfunction in cigarette smokers. Am J Cardiol 2004; 93: 664–668. – reference: 3. Kim TH, Lee SS, Yoo JH, Kim SR, Yoo SJ, Song HC, et al. The relationship between the regional abdominal adipose tissue distribution and the serum uric acid levels in people with type 2 diabetes mellitus. Diabetol Metab Syndr 2012; 4: 3. – reference: 38. Wei L, Mackenzie IS, Chen Y, Struthers AD, MacDonald TM. Impact of allopurinol use on urate concentration and cardiovascular outcome. Br J Clin Pharmacol 2011; 71: 600–607. – reference: 37. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5: 1388–1393. – reference: 36. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 2008; 51: 2301–2309. – reference: 41. Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58: 87–114. – reference: 43. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516. – reference: 25. Kayyali US, Budhiraja R, Pennella CM, Cooray S, Lanzillo JJ, Chalkley R, et al. Upregulation of xanthine oxidase by tobacco smoke condensate in pulmonary endothelial cells. Toxicol Appl Pharmacol 2003; 188: 59–68. – reference: 1. Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: Primary structure and evolutionary implications. Proc Natl Acad Sci USA 1989; 86: 9412–9416. – reference: 7. Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis PA, et al. Serum uric acid levels and multiple health outcomes: Umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017; 357: j2376. – reference: 8. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20: 195–207. – reference: 16. Murase T, Nampei M, Oka M, Miyachi A, Nakamura T. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039: 51–58. – reference: 35. Ohtsubo T, Matsumura K, Sakagami K, Fujii K, Tsuruya K, Noguchi H, et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 2009; 54: 868–876. – reference: 39. Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am J Kidney Dis 2015; 65: 543–549. – reference: 12. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014; 1842: 1502–1517. – ident: 4 doi: 10.5551/jat.7922 – ident: 12 doi: 10.1016/j.bbadis.2014.05.022 – ident: 10 doi: 10.1016/0009-2797(92)90093-Z – ident: 29 doi: 10.1016/j.amjcard.2003.11.046 – ident: 32 doi: 10.1016/S0092-8674(00)81359-8 – ident: 38 doi: 10.1111/j.1365-2125.2010.03887.x – ident: 31 doi: 10.1016/S0026-0495(98)90026-9 – ident: 27 doi: 10.1016/j.freeradbiomed.2013.01.023 – ident: 33 doi: 10.1101/gad.1032702 – ident: 6 doi: 10.1161/CIRCULATIONAHA.114.014536 – ident: 18 doi: 10.1016/j.jchromb.2015.11.030 – ident: 42 doi: 10.1016/j.ejphar.2016.03.055 – ident: 13 doi: 10.1016/j.pharep.2015.05.004 – ident: 19 doi: 10.1002/jlcr.3390 – ident: 17 doi: 10.1053/j.ajkd.2008.12.034 – ident: 36 doi: 10.1016/j.jacc.2008.01.068 – ident: 34 doi: 10.1016/j.cmet.2007.01.005 – ident: 9 doi: 10.1016/S0021-9258(18)77283-9 – ident: 5 doi: 10.4103/0975-3583.74262 – ident: 22 doi: 10.1089/chi.2015.0051 – ident: 26 doi: 10.1016/0891-5849(93)90138-K – ident: 43 doi: 10.1161/CIRCULATIONAHA.106.651117 – ident: 35 doi: 10.1161/HYPERTENSIONAHA.109.135152 – ident: 23 doi: 10.1016/j.metabol.2017.01.031 – ident: 16 doi: 10.1016/j.jchromb.2016.10.033 – ident: 20 doi: 10.1093/ndt/gfq554 – ident: 1 doi: 10.1073/pnas.86.23.9412 – ident: 8 doi: 10.1007/s00775-014-1210-x – ident: 39 doi: 10.1053/j.ajkd.2014.11.016 – ident: 40 doi: 10.1016/j.ijcard.2016.11.077 – ident: 15 – ident: 25 doi: 10.1016/S0041-008X(02)00076-5 – ident: 14 doi: 10.1113/jphysiol.2003.055913 – ident: 37 doi: 10.2215/CJN.01580210 – ident: 24 doi: 10.1016/j.atherosclerosis.2014.10.006 – ident: 28 doi: 10.1161/01.CIR.0000046448.26751.58 – ident: 2 doi: 10.1016/S0026-0495(98)90346-8 – ident: 3 doi: 10.1186/1758-5996-4-3 – ident: 21 doi: 10.1159/000441091 – ident: 11 doi: 10.1002/hep.1840190626 – ident: 30 doi: 10.1074/jbc.M113.485094 – ident: 7 doi: 10.1136/bmj.j2376 – ident: 41 doi: 10.1124/pr.58.1.6 |
SSID | ssj0029059 |
Score | 2.483565 |
Snippet | Background:Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in... Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the formation of uric acid from hypoxanthine and xanthine, leading to an increase in superoxide and... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1892 |
SubjectTerms | Aged Aged, 80 and over Asian People Biomarkers - blood Cholesterol, HDL - blood Chromatography, Liquid Cohort Studies Female Humans Insulin Resistance Liver dysfunction Male Mass Spectrometry Metabolic Diseases - diagnosis Metabolic Diseases - enzymology Metabolic Diseases - epidemiology Middle Aged Obesity Smoking Uric acid Xanthine Dehydrogenase - blood Xanthine Dehydrogenase - metabolism |
Title | Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population |
URI | https://www.jstage.jst.go.jp/article/circj/82/7/82_CJ-18-0082/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29643318 https://www.proquest.com/docview/2024476163 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2018/06/25, Vol.82(7), pp.1892-1899 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKQIgXxHV0XGQkXlCULrfazhNCFTBVatlDJ_UtchxnTbe0qE3QtP_If-LYcdwUDcTgJUocxznx98U-to_PQeidTNPYS4eey1M_ciNOuJuCouDmaeBlQntYUpuTJ1NychaN58N5r_ejY7VUV-lAXN-4r-RfUIU0wFXtkr0FsrZQSIBzwBeOgDAc_wrjU1B9S-7MoXYWSlv8elWowCHKhStXDkeECQ3Btw53puvv8lLFniyVRY5eHJjICjig3Fy3Tji1dSxvnVE7pza8V1eJHRUbYZLb5WyLW1HrwEXOTFbbelnYCZxFUXJgxbqx4LiuQXHdTYZD1vbeRJ7Xpb015Re8bEuE8-2i6E5T-EyZUzVbmgd2oxt0_yqsptMV0xindprgMCJuzBrnTQPZplE3YoHXbbdZ0OEn7TTCPmvC65kOHS7jGzuLQEf8ECDMcjAau0pmzxS674LbAJzorAkLEqoOo3His0Q9ktgMC74BYt5BdwNKtdXAl7m1OApiT8fusx9oVs1BjONfhdjTku4tYaBwLn8_BtK60OwRemgwxx8beR6jnlw9QfcnxkzjKbpoiIlbYuJ9YuKWmJhvMceamNgSE69zbImJLTFxsYK8hph4R8xn6Ozzp9noxDVRPVxB4qByh5JT-EThy9APRZizzOMhZVIOPaHcAxKPUUkk4TKIZExonqU-E4L5nGYklHH4HB2s1iv5AuEwzhgRecYFZVEcSp5GjHChhimSxXnWR8dtLQJ2jWmLirxymaihL9S7QXSHZB-9t098a9y9_CHvhwYYm_O2POmjty2iCbTqaqkOfpB1vU0CUJ0jSmCw1EeHDdT2LcpQIoSu-Oi_3_8SPdj9qq_QQbWp5WvQsav0jWbuTwx-3IQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+Xanthine+Oxidoreductase+Activity+as+a+Novel+Biomarker+of+Metabolic+Disorders+in+a+General+Population&rft.jtitle=Circulation+Journal&rft.au=Miura%2C+Tetsuji&rft.au=Shimamoto%2C+Kazuaki&rft.au=Matsumoto%2C+Megumi&rft.au=Nakamura%2C+Takashi&rft.date=2018-06-25&rft.pub=The+Japanese+Circulation+Society&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=82&rft.issue=7&rft.spage=1892&rft.epage=1899&rft_id=info:doi/10.1253%2Fcircj.CJ-18-0082&rft.externalDocID=article_circj_82_7_82_CJ_18_0082_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |