Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis
The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, fe...
Saved in:
Published in | PloS one Vol. 17; no. 5; p. e0264695 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
06.05.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer′s. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer’s disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI). |
---|---|
AbstractList | The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer's. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer's disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI). The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer's. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer's disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer's. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer's disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI). |
Audience | Academic |
Author | Ferraz, Francisco Hernandez, Monica Ramon-Julvez, Ubaldo |
AuthorAffiliation | Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain Taipei Medical University, TAIWAN |
AuthorAffiliation_xml | – name: Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain – name: Taipei Medical University, TAIWAN |
Author_xml | – sequence: 1 givenname: Monica orcidid: 0000-0003-1270-5852 surname: Hernandez fullname: Hernandez, Monica – sequence: 2 givenname: Ubaldo surname: Ramon-Julvez fullname: Ramon-Julvez, Ubaldo – sequence: 3 givenname: Francisco surname: Ferraz fullname: Ferraz, Francisco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35522653$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk8Fu1DAQhiNURNuFN0AQCQnBYRfHjp2EA9KqFFip0iIoXC0nniSuHHtrO1A48QoceT2eBG93i7pVhVAUTTT5_n8yE89hsmesgSR5mKFZRorsxZkdnRF6torpGcIsZxW9kxxkFcFThhHZu_a8nxx6f4YQJSVj95J9QinGjJKD5OfxxUoLZUStIZ0v0mC_CifT0UhwPggjlenS0EO6AtdaNwjTQGrby1SwqxgdQHo6f_1-eXKcHvVCazAdpAOE3kqfKnOJRik0woe1dK6_96AGcL9__PKpVB6EhxhFZ6xX_n5ytxXaw4NtnCSf3hyfHr2bnizfLo7mJ9OGVThMKclrWrYlrSmRBIk2p4KUBYvpWpZIUkxyiYHWmAnSUlwwWbXxRoQxXIuGTJLHG9-Vtp5vp-k5ZmWcWJWxKhKLDSGtOOMrpwbhvnErFL9MWNdx4YJqNHCcIQaxSt1gnCNUl1LkwKisMNRFDVn0erWtNtYDyAZMcELvmO6-Marnnf3CK1RQFn_VJHm2NXD2fAQf-KB8A1oLA3ZcfzfLUMHK2PckeXIDvb27LdWJ2IAyrY11m7UpnxcIF7hAJI_U7BYqXhIG1cSj16qY3xE83xFEJsBF6MToPV98_PD_7PLzLvv0GtuD0KH3Vo9BWeN3wUfXJ_13xFdnPgIvN0DjrPcOWt6oINY-sTWleYb4esGuhsbXC8a3CxbF-Q3xlf8_ZX8Aw4ErRg |
CitedBy_id | crossref_primary_10_3390_make6010024 crossref_primary_10_1007_s12559_023_10192_x crossref_primary_10_3390_brainsci13111535 crossref_primary_10_1016_j_ecoinf_2025_103011 crossref_primary_10_1145_3709152 crossref_primary_10_3390_ani15020126 crossref_primary_10_3390_diagnostics15050612 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107354 crossref_primary_10_3390_app14198884 crossref_primary_10_3390_app131810470 crossref_primary_10_3233_JAD_220776 crossref_primary_10_1016_j_ejrad_2023_111159 crossref_primary_10_1186_s12920_023_01675_9 crossref_primary_10_3390_make5020035 crossref_primary_10_1186_s40708_024_00222_1 crossref_primary_10_1371_journal_pone_0295144 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1007_s11547_023_01634_5 |
Cites_doi | 10.1016/j.neuroimage.2020.117203 10.1145/2939672.2939785 10.1016/j.cmpb.2019.105242 10.2214/AJR.13.12363 10.1016/j.media.2020.101694 10.1038/s41598-021-82098-3 10.1016/j.neurobiolaging.2009.07.002 10.1016/j.jalz.2016.02.006 10.1016/B978-0-323-41559-0.00007-1 10.1016/j.neuroimage.2015.01.048 10.1007/978-3-030-57321-8_2 10.1016/j.arr.2014.01.004 10.3233/JAD-131559 10.1016/j.neuroimage.2019.01.031 10.1109/ACCESS.2018.2870052 10.1016/j.inffus.2021.01.008 10.4103/1673-5374.202942 10.1097/NEN.0b013e31824b211b 10.1017/CBO9780511803161 10.1016/j.neuroimage.2011.01.049 10.1212/WNL.0b013e3181cb3e25 10.1007/s10278-012-9465-7 10.1016/j.neuroimage.2008.07.013 10.1145/2939672.2939778 10.1006/nimg.2002.1208 10.1109/TNNLS.2020.3027314 10.1016/j.media.2020.101848 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Hernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Hernandez et al 2022 Hernandez et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Hernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Hernandez et al 2022 Hernandez et al |
CorporateAuthor | with the ADNI Consortium |
CorporateAuthor_xml | – name: with the ADNI Consortium |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0264695 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | XAI toward understanding TADPOLE challenge methods in AD diagnosis |
EISSN | 1932-6203 |
ExternalDocumentID | 2686209169 oai_doaj_org_article_2106ef52bc22400b8da4e65d92eb7be1 PMC9075665 A702727034 35522653 10_1371_journal_pone_0264695 |
Genre | Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: PID2019-104358RB-I00 – fundername: ; grantid: T64_20R |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK ESTFP |
ID | FETCH-LOGICAL-c692t-534b58f85b53d30af45a387634bbd80d5234d2e5b26a3f5276d9f6d903662bac3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Nov 05 00:20:53 EDT 2023 Wed Aug 27 01:26:26 EDT 2025 Thu Aug 21 13:42:42 EDT 2025 Tue Aug 05 09:13:39 EDT 2025 Fri Jul 25 11:24:36 EDT 2025 Tue Jun 17 20:57:23 EDT 2025 Tue Jun 10 20:27:04 EDT 2025 Fri Jun 27 03:39:32 EDT 2025 Fri Jun 27 04:38:10 EDT 2025 Thu May 22 20:54:13 EDT 2025 Mon Jul 21 06:00:20 EDT 2025 Tue Jul 01 01:41:41 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-534b58f85b53d30af45a387634bbd80d5234d2e5b26a3f5276d9f6d903662bac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Membership of the ADNI Consortium is listed in the Acknowledgments. Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-1270-5852 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0264695 |
PMID | 35522653 |
PQID | 2686209169 |
PQPubID | 1436336 |
PageCount | e0264695 |
ParticipantIDs | plos_journals_2686209169 doaj_primary_oai_doaj_org_article_2106ef52bc22400b8da4e65d92eb7be1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075665 proquest_miscellaneous_2661076852 proquest_journals_2686209169 gale_infotracmisc_A702727034 gale_infotracacademiconefile_A702727034 gale_incontextgauss_ISR_A702727034 gale_incontextgauss_IOV_A702727034 gale_healthsolutions_A702727034 pubmed_primary_35522653 crossref_citationtrail_10_1371_journal_pone_0264695 crossref_primary_10_1371_journal_pone_0264695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220506 |
PublicationDateYYYYMMDD | 2022-05-06 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220506 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | K Herholz (pone.0264695.ref034) 2002; 17 A Reeve (pone.0264695.ref002) 2014; 14 RC Petersen (pone.0264695.ref026) 2010; 74 pone.0264695.ref021 pone.0264695.ref027 pone.0264695.ref025 A Adejare (pone.0264695.ref004) 2017 VKN Shivamurthy (pone.0264695.ref042) 2015; 1 Alzheimer’s Disease (pone.0264695.ref006) 2019; 9 ADNI (pone.0264695.ref039) 2019; 189 L Merrick (pone.0264695.ref022) 2020 A Holzinger (pone.0264695.ref028) 2021; 71 M Ansart (pone.0264695.ref038) 2021; 67 pone.0264695.ref020 TG Beach (pone.0264695.ref008) 2012; 71 A Ebrahimighahnavieh (pone.0264695.ref011) 2020; 187 S Cure (pone.0264695.ref009) 2014 pone.0264695.ref019 ADNI (pone.0264695.ref035) 2011; 32 ADNI (pone.0264695.ref017) 2019 pone.0264695.ref033 pone.0264695.ref032 J Dukart (pone.0264695.ref040) 2013 S ElSappagh (pone.0264695.ref024) 2021; 11 pone.0264695.ref016 pone.0264695.ref015 pone.0264695.ref037 A Burns (pone.0264695.ref001) 2009 J Wen (pone.0264695.ref012) 2020; 63 R Guerreiro (pone.0264695.ref003) 2015; 7 J Pearl (pone.0264695.ref029) 2009 EE Bron (pone.0264695.ref013) 2015; 111 M Nguyen (pone.0264695.ref023) 2020; 222 pone.0264695.ref031 A Adadi (pone.0264695.ref018) 2017; 6 JW Prescott (pone.0264695.ref007) 2013; 26 GI Allen (pone.0264695.ref014) 2016; 12 X Hua (pone.0264695.ref010) 2008; 43 A Holzinger (pone.0264695.ref030) 2020 Y Zhang (pone.0264695.ref041) 2015 K Chen (pone.0264695.ref036) 2011; 56 L Piemontese (pone.0264695.ref005) 2017; 12 |
References_xml | – volume: 222 start-page: 117 year: 2020 ident: pone.0264695.ref023 article-title: Predicting Alzheimer’s disease progression using deep recurrent neural networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117203 – ident: pone.0264695.ref027 doi: 10.1145/2939672.2939785 – volume: 187 start-page: 105242 year: 2020 ident: pone.0264695.ref011 article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.105242 – year: 2015 ident: pone.0264695.ref041 article-title: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning publication-title: Front Comput Neurosci – volume: 1 start-page: 76 year: 2015 ident: pone.0264695.ref042 article-title: Brain FDG PET and the diagnosis of dementia publication-title: AJA Am J Roentgenol doi: 10.2214/AJR.13.12363 – ident: pone.0264695.ref031 – volume: 63 start-page: 101694 year: 2020 ident: pone.0264695.ref012 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med Imag Anal doi: 10.1016/j.media.2020.101694 – volume: 11 start-page: 2660 year: 2021 ident: pone.0264695.ref024 article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease publication-title: Nature Scientific Reports doi: 10.1038/s41598-021-82098-3 – volume: 32 start-page: 1207 issue: 7 year: 2011 ident: pone.0264695.ref035 article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.07.002 – volume: 12 start-page: 645 issue: 6 year: 2016 ident: pone.0264695.ref014 article-title: Crowd-sourced estimation of cognitive decline and resilience in Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2016.02.006 – ident: pone.0264695.ref037 doi: 10.1016/B978-0-323-41559-0.00007-1 – volume: 111 start-page: 562 year: 2015 ident: pone.0264695.ref013 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.048 – ident: pone.0264695.ref020 – start-page: 17 year: 2020 ident: pone.0264695.ref022 article-title: The explanation game: explaining machine learning models using shapley values publication-title: Machine Learning and Knowledge Extraction doi: 10.1007/978-3-030-57321-8_2 – start-page: 1 year: 2019 ident: pone.0264695.ref017 article-title: Random forest prediction of Alzheimer’s disease using pairwise selection from time series data publication-title: PLOS ONE – volume: 14 start-page: 19 issue: 100 year: 2014 ident: pone.0264695.ref002 article-title: Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? publication-title: Ageing Res Rev doi: 10.1016/j.arr.2014.01.004 – start-page: 169 year: 2014 ident: pone.0264695.ref009 article-title: Systematic literature review and meta-analysis of diagnostic test accuracy in Alzheimer’s disease and other dementia using autopsy as standard of truth publication-title: J Alzheimers Dis doi: 10.3233/JAD-131559 – volume: 189 start-page: 276 year: 2019 ident: pone.0264695.ref039 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.031 – year: 2009 ident: pone.0264695.ref001 article-title: Alzheimer’s disease publication-title: Brit Med J – volume-title: Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders year: 2017 ident: pone.0264695.ref004 – volume: 9 start-page: 123 year: 2019 ident: pone.0264695.ref006 article-title: Why We Need Early Diagnosis publication-title: Degener Neurol Neuromuscul Dis – volume: 6 start-page: 52138 year: 2017 ident: pone.0264695.ref018 article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: pone.0264695.ref032 – volume: 71 start-page: 28 year: 2021 ident: pone.0264695.ref028 article-title: Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI publication-title: Information Fusion doi: 10.1016/j.inffus.2021.01.008 – ident: pone.0264695.ref015 – volume: 12 start-page: 405 issue: 3 year: 2017 ident: pone.0264695.ref005 article-title: New approaches for prevention and treatment of Alzheimer’s disease: a fascinating challenge publication-title: Neural Regen Res doi: 10.4103/1673-5374.202942 – volume: 71 start-page: 266 issue: 4 year: 2012 ident: pone.0264695.ref008 article-title: Accuracy of the clinical diagnosis of Alzheimer’s disease at National Institute on Aging Alzheimer’s Disease Centers publication-title: J neuropathology and experimental neurology doi: 10.1097/NEN.0b013e31824b211b – year: 2013 ident: pone.0264695.ref040 article-title: Generative FDG-PET and MRI model of aging and disease progression in Alzheimer’s disease publication-title: PLoS Comput Biol – volume-title: Causality: Models, Reasoning, and Inference year: 2009 ident: pone.0264695.ref029 doi: 10.1017/CBO9780511803161 – start-page: 193 year: 2020 ident: pone.0264695.ref030 article-title: Measuring the quality of explanations: The system causability scale (SCS). Comparing human and machine explanations publication-title: German J Artif Intell – volume: 56 start-page: 52 year: 2011 ident: pone.0264695.ref036 article-title: Characterizing Alzheimer’s disease using a hypometabolic convergence index publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.049 – volume: 74 start-page: 201 issue: 3 year: 2010 ident: pone.0264695.ref026 article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization publication-title: Neurol doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 26 start-page: 97 issue: 1 year: 2013 ident: pone.0264695.ref007 article-title: Quantitative Imaging Biomarkers: The Application of Advanced Image Processing and Analysis to Clinical and Preclinical Decision Making publication-title: J Digit Imaging doi: 10.1007/s10278-012-9465-7 – volume: 43 start-page: 458 issue: 3 year: 2008 ident: pone.0264695.ref010 article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.07.013 – ident: pone.0264695.ref033 doi: 10.1145/2939672.2939778 – ident: pone.0264695.ref025 – volume: 7 issue: 106 year: 2015 ident: pone.0264695.ref003 article-title: The age factor in Alzheimer’s disease publication-title: Genome Med – ident: pone.0264695.ref021 – ident: pone.0264695.ref016 – volume: 17 start-page: 302 year: 2002 ident: pone.0264695.ref034 article-title: Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET publication-title: Neuroimage doi: 10.1006/nimg.2002.1208 – ident: pone.0264695.ref019 doi: 10.1109/TNNLS.2020.3027314 – volume: 67 start-page: 101848 year: 2021 ident: pone.0264695.ref038 article-title: Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review publication-title: Med Image Anal doi: 10.1016/j.media.2020.101848 |
SSID | ssj0053866 |
Score | 2.4983234 |
Snippet | The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of... The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0264695 |
SubjectTerms | Accuracy Alzheimer's disease Analysis Artificial intelligence Biology and Life Sciences Biomarkers Cognitive ability Computer and Information Sciences Data collection Data processing Dementia Diagnosis Disease prevention Explainable artificial intelligence Feature selection Initiatives Magnetic resonance imaging Medical diagnosis Medical imaging Medical prognosis Medicine and Health Sciences Neurodegenerative diseases Prognosis Research and Analysis Methods Tomography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBthiEVDikzcax4xxDadUioAha1Jtlxw5daUmiTfbCn-AvM3acsEGVyoHDKlI8jrLz_pSZMUKvMs6KJAJD4gTSt4QbFnLKZcgKAvFaZxCxbaPwx0_s9DJ5f0WvNo76sjVh_XjgnnGHAEmYKWmsClfuqLiWiWHwlNioVBkHfCDmDWCq98FgxYz5RjmSzg-9XA6aujIHgDoAE9JJIHLz-kevPGuWdXtTyvl35eRGKDq5j-75HBLn_btvoTumeoC2vJW2-LUfJf3mIfplS-x8fxTOz3DnimTxerOjBUMKiJs__QO4Lt2trm7gujIGX-TvPp9_OMZHw8EruD93usWLypHCVlPItrNb8-XPa7P4YVb7LfZff-Dq6vkW7SN0eXJ8cXQa-iMYwoJlcRdSkijKS04VJZpEskyoJHaIXaKU5pEGGJvo2FAVM0lASinTWQk_iIssVrIgj9GsAqZvIzw3oBcsm5O50QCzIskinhKdapJSnZQsQGSQhyj8fHJ7TMZSuI9uKeCUnr3CSlF4KQYoHHc1_XyOW-jfWlGPtHa6trsBOie8zonbdC5Az62iiL5VdfQRIk8B5MfgQ5MAvXQUdsJGZUt4vst124qz82__QPT1y4Ro3xOVNbCjkL5tAv6Tndw1odyZUIKfKCbL21atB660IrbNQWA6LIOdg6rfvPxiXLYPtWV5lanXlgZsGQArjQP0pLeMkbOQyEJqT0mA0onNTFg_XakW127AeQZ5LGP06f-Q1TN0N7YdK7ZGle2gWbdam13IIzu151zGb44EcJQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0ILlwgVRXg0UMAgJOKTdxLHjnNBSWloEFEGLeovi2GlXWpKwyV448Qsc-T2-hBnHSRtUAYdVpHi8SuY98TwIeZJIkUdTECTJwH2LpBG-5DLzRc7AXusELDYWCr97L_aOojfH_Nh9cGtcWmWvE62i1lWO38i3QixlAOMmkhf1Vx-nRuHpqhuhcZlcCcDSYEqX3H3da2KQZSFcuRyLgy1Hnc26Ks0mxB4QGfKRObJd-wfdPKkXVXOR4_ln_uQ5g7R7nVxzniSddaRfI5dMeYOsOVlt6DPXUPr5TfIDE-1clRSd7dPWpsrS1fm6FgqOIK3PqghoVdhbbVXDdWkMPZy9-nDwdodu9-NXaDd9uqHz0oLCVpNnTYtbZ4tvp2b-xSx_ff_ZUHcKBFeb1zdvbpGj3Z3D7T3fjWLwc5GErc9ZpLgsJFecaTbNiohnDJvZRUppOdUQzkY6NFyFImMFD2OhkwJ-YB9FqLKc3SaTEtC-TmhggD9EErDAaAi3ppmYypjpWLOY66gQHmE9RdLc9SnHcRmL1B6-xRCvdAhOkY6po6NH_GFX3fXp-Af8SyT2AItdtu2NanmSOqFNIRwWBt5G5TbVVkmdRUYAB4dGxcoEHnmIrJJ2JauDrkhnMQT7IejSyCOPLQR22igxleckWzVNun_w-T-APn0cAT11QEUF6MgzVz4B74QdvEaQGyNI0Bf5aHkdGbvHSpOeSRbs7Jn94uVHwzL-KabnlaZaIQzINASuPPTInU42BsyCQwsuPmceiUdSM0L9eKWcn9pG5wn4s0Lwu39_rHvkaog1KZiFKjbIpF2uzH3wFFv1wKqD31udaaQ priority: 102 providerName: ProQuest |
Title | Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35522653 https://www.proquest.com/docview/2686209169 https://www.proquest.com/docview/2661076852 https://pubmed.ncbi.nlm.nih.gov/PMC9075665 https://doaj.org/article/2106ef52bc22400b8da4e65d92eb7be1 http://dx.doi.org/10.1371/journal.pone.0264695 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtNAcNWmFy6I8qpLCQtCKhxc2V7v2j4glIaEFtGHSoNys_xYt5GCHWJHAg78Ar_MzHptahRED1lL3hlHnp3ZmfHOg5CXgS8S1wJB8hmYb64vhelzPzJFwkBfpwFobEwUPjkVRxP3w5RPN0jTs1UTsFzr2mE_qclyfvDt6_e3IPBvVNcGz26QDhZFLg_ApwCPj2-SLdBNHvY0OHHbcwWQbnV6iVaLKRyL6WS6fz2lo6xUTf925-4t5kW5ziz9O7ryhroa3yN3tZ1JBzVjbJMNmd8n21qSS_pKl5t-_YD8wjA8nUNFB8e0UoG0dHUz64WCmUgXf3IMaJGpW1WxgOtSSno5eHd-9nFEh01zFlr3pi7pLFeggCqTqKwQdTD_cS1nX-Ryv6T6hAiuKuZvVj4kk_Hocnhk6jYNZiICpzI5c2PuZz6POUuZFWUujxgWunPjOPWtFFxdN3Ukjx0RsYw7nkiDDH6gO4UTRwl7RHo5EH2HUFsC74jAZrZMwRWzImH5Hku9lHk8dTNhENasR5joGubYSmMeqoM5D3yZmrwhrmKoV9EgZou1qGt4_Af-EJe6hcUK3OpGsbwKtUCH4CoLCW8TJyoMN_bTyJUCuNuRsRdL2yDPkFHCOp213UfCgWc5YDNazDXICwWBVThyDPO5ilZlGR6ffb4F0KeLDtC-BsoKIEcS6dQKeCes7tWB3OtAwl6SdKZ3kK0bqpShgwlEYFKKADAbVl8__bydxodi6F4uixXCgLyDU8sdgzyuJaOlLBi7YP5zZhCvIzMd0ndn8tm1KoIegK0rBN-9xf8-IXccTFrBMFWxR3rVciWfgilZxX2y6U09GP2hjeP4fZ9sHY5Ozy_66uNMX-0eOP4c_QYeLHfX |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKcoALovw1UKhBIOCQNmvHTnJAaGm77NJti-gW9RaS2GlXWpKw2RWCE6_AkZfgoXgSxo6TNqgCLj2sIsXjKBmPv5lZzw9CjwOfJ64DG8mnYL65vuS2z_zI5gkFfS0C0NgqUXh3jw8O3TdH7GgJ_axzYVRYZY2JGqhFnqj_yDeISmUA5caDl8UnW3WNUqerdQuNSix25JfP4LKVL4ZbsL5PCOlvjzcHtukqYCc8IHObUTdmfuqzmFFBnSh1WURVXTY3joXvCPDMXEEkiwmPaMqIx0WQwg-gnpM4Sig89xK67FLQ5Cozvf-6Rn7ADs5Neh71uhtGGtaLPJPr4OuAJ8pa6k93CWh0QaeY5uV5hu6f8ZpnFGD_OrpmLFfcq0RtGS3J7AZaNthQ4memgPXzm-i7CuwzWVm4N8RzHZqLF2fzaDAYnrg4zVrAeapvzfMCrjMp8bi39XZ_tI0363YvuOp2XeJJpklhqkyicq6m9qZfT-Tko5z9-vajxObUCa46jnBS3kKHF7JIt1EnA7avINyVII886NKuFODeORF3fI8KT1CPCTflFqL1ioSJqYuu2nNMQ33Y54F_VDE4VOsYmnW0kN3MKqq6IP-gf6UWu6FVVb31jXx2HBqQCMH95hK-Jk50aG_si8iVHHYMkbEXy66F1pSohFWKbINNYc9zCNihDnUt9EhTqMoemQodOo4WZRkO99__B9HBuxbRU0OU5sCOJDLpGvBNqmJYi3K1RQn4lLSGV5Rg11wpw9OdDDNrYT9_-GEzrB6qwgEzmS8UDWAIOMqMWOhOtTcazoIBDS4FoxbyWrumxfr2SDY50YXVA7CfOWd3__5aa-jKYLw7CkfDvZ176CpR-TAqApavos58tpD3wUqdxw80NGD04aKx6DdgHaWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpFQlwQ42uBwQwCAYesaRw7zgGh0m5a2dgm2NBuIYmdrVJJQpMKwYm_wJG_ws_hl_DsONmCJuCyQxUpfo6S9_3q94HQ44CzxHNAkDgB983jktmc8shmCQF7LQKw2KpQ-M0u2zr0Xh_RoyX0s6mFUWmVjU7UilrkifqPvO-qUgYwbizopyYtYn-8-bL4ZKsJUuqktRmnUbPItvzyGcK38sVkDLR-4rqbGwejLdtMGLATFriVTYkXU55yGlMiiBOlHo2I6tHmxbHgjoAozROupLHLIpJS12ciSOEHap-5cZQQeO4ldNknPlcyxkdtegnoEcZMqR7xB33DGetFnsl1iHsgKqUdU6gnBrR2oVfM8vI8p_fP3M0zxnDzOrpmvFg8rNluGS3J7AZaNnqixM9MM-vnN9F3leRnKrTwcIIrnaaLF2drajA4obg4rWDAeapvVXkB17mU-GA43t_b2cCjZvQLridfl3iaaVDYKpOorNTW4ezriZx-lPNf336U2JxAwVXnFE7LW-jwQoh0G_UyQPsKwgMJvMmCARlIAaGeEzGH-0T4gvhUeCmzEGkoEiamR7oa1TEL9cGfD7FSjeBQ0TE0dLSQ3e4q6h4h_4B_pYjdwqoO3_pGPj8OjcIIIRRnEr4mTnSab8xF5EkG0uPK2I_lwEJrilXCuly21VPh0Hdc8Ekd4lnokYZQXT4yJS_H0aIsw8ne-_8Aeve2A_TUAKU5oCOJTOkGfJPqHtaBXO1Agq5KOssrirEbrJThqVTDzobZz19-2C6rh6rUwEzmCwUD-gSCZupa6E4tGy1mwZmG8IISC_kdqemgvruSTU90k_UAfGnG6N2_v9YaugJaKNyZ7G7fQ1ddVRqjkmHZKupV84W8Dw5rFT_QmgGjDxetin4DnhOpnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+AI+toward+understanding+the+performance+of+the+top+three+TADPOLE+Challenge+methods+in+the+forecast+of+Alzheimer%27s+disease+diagnosis&rft.jtitle=PloS+one&rft.au=Hernandez%2C+Monica&rft.au=Ramon-Julvez%2C+Ubaldo&rft.au=Ferraz%2C+Francisco&rft.date=2022-05-06&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=5&rft.spage=e0264695&rft_id=info:doi/10.1371%2Fjournal.pone.0264695&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |