Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis

The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, fe...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 5; p. e0264695
Main Authors Hernandez, Monica, Ramon-Julvez, Ubaldo, Ferraz, Francisco
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.05.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer′s. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer’s disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).
AbstractList The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer's. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer's disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer's. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer's disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer's. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer's disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).
Audience Academic
Author Ferraz, Francisco
Hernandez, Monica
Ramon-Julvez, Ubaldo
AuthorAffiliation Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain
Taipei Medical University, TAIWAN
AuthorAffiliation_xml – name: Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain
– name: Taipei Medical University, TAIWAN
Author_xml – sequence: 1
  givenname: Monica
  orcidid: 0000-0003-1270-5852
  surname: Hernandez
  fullname: Hernandez, Monica
– sequence: 2
  givenname: Ubaldo
  surname: Ramon-Julvez
  fullname: Ramon-Julvez, Ubaldo
– sequence: 3
  givenname: Francisco
  surname: Ferraz
  fullname: Ferraz, Francisco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35522653$$D View this record in MEDLINE/PubMed
BookMark eNqNk8Fu1DAQhiNURNuFN0AQCQnBYRfHjp2EA9KqFFip0iIoXC0nniSuHHtrO1A48QoceT2eBG93i7pVhVAUTTT5_n8yE89hsmesgSR5mKFZRorsxZkdnRF6torpGcIsZxW9kxxkFcFThhHZu_a8nxx6f4YQJSVj95J9QinGjJKD5OfxxUoLZUStIZ0v0mC_CifT0UhwPggjlenS0EO6AtdaNwjTQGrby1SwqxgdQHo6f_1-eXKcHvVCazAdpAOE3kqfKnOJRik0woe1dK6_96AGcL9__PKpVB6EhxhFZ6xX_n5ytxXaw4NtnCSf3hyfHr2bnizfLo7mJ9OGVThMKclrWrYlrSmRBIk2p4KUBYvpWpZIUkxyiYHWmAnSUlwwWbXxRoQxXIuGTJLHG9-Vtp5vp-k5ZmWcWJWxKhKLDSGtOOMrpwbhvnErFL9MWNdx4YJqNHCcIQaxSt1gnCNUl1LkwKisMNRFDVn0erWtNtYDyAZMcELvmO6-Marnnf3CK1RQFn_VJHm2NXD2fAQf-KB8A1oLA3ZcfzfLUMHK2PckeXIDvb27LdWJ2IAyrY11m7UpnxcIF7hAJI_U7BYqXhIG1cSj16qY3xE83xFEJsBF6MToPV98_PD_7PLzLvv0GtuD0KH3Vo9BWeN3wUfXJ_13xFdnPgIvN0DjrPcOWt6oINY-sTWleYb4esGuhsbXC8a3CxbF-Q3xlf8_ZX8Aw4ErRg
CitedBy_id crossref_primary_10_3390_make6010024
crossref_primary_10_1007_s12559_023_10192_x
crossref_primary_10_3390_brainsci13111535
crossref_primary_10_1016_j_ecoinf_2025_103011
crossref_primary_10_1145_3709152
crossref_primary_10_3390_ani15020126
crossref_primary_10_3390_diagnostics15050612
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107354
crossref_primary_10_3390_app14198884
crossref_primary_10_3390_app131810470
crossref_primary_10_3233_JAD_220776
crossref_primary_10_1016_j_ejrad_2023_111159
crossref_primary_10_1186_s12920_023_01675_9
crossref_primary_10_3390_make5020035
crossref_primary_10_1186_s40708_024_00222_1
crossref_primary_10_1371_journal_pone_0295144
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1007_s11547_023_01634_5
Cites_doi 10.1016/j.neuroimage.2020.117203
10.1145/2939672.2939785
10.1016/j.cmpb.2019.105242
10.2214/AJR.13.12363
10.1016/j.media.2020.101694
10.1038/s41598-021-82098-3
10.1016/j.neurobiolaging.2009.07.002
10.1016/j.jalz.2016.02.006
10.1016/B978-0-323-41559-0.00007-1
10.1016/j.neuroimage.2015.01.048
10.1007/978-3-030-57321-8_2
10.1016/j.arr.2014.01.004
10.3233/JAD-131559
10.1016/j.neuroimage.2019.01.031
10.1109/ACCESS.2018.2870052
10.1016/j.inffus.2021.01.008
10.4103/1673-5374.202942
10.1097/NEN.0b013e31824b211b
10.1017/CBO9780511803161
10.1016/j.neuroimage.2011.01.049
10.1212/WNL.0b013e3181cb3e25
10.1007/s10278-012-9465-7
10.1016/j.neuroimage.2008.07.013
10.1145/2939672.2939778
10.1006/nimg.2002.1208
10.1109/TNNLS.2020.3027314
10.1016/j.media.2020.101848
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Hernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Hernandez et al 2022 Hernandez et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Hernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Hernandez et al 2022 Hernandez et al
CorporateAuthor with the ADNI Consortium
CorporateAuthor_xml – name: with the ADNI Consortium
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0264695
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Agricultural Science Database
MEDLINE - Academic


CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate XAI toward understanding TADPOLE challenge methods in AD diagnosis
EISSN 1932-6203
ExternalDocumentID 2686209169
oai_doaj_org_article_2106ef52bc22400b8da4e65d92eb7be1
PMC9075665
A702727034
35522653
10_1371_journal_pone_0264695
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: PID2019-104358RB-I00
– fundername: ;
  grantid: T64_20R
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ESTFP
ID FETCH-LOGICAL-c692t-534b58f85b53d30af45a387634bbd80d5234d2e5b26a3f5276d9f6d903662bac3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:53 EDT 2023
Wed Aug 27 01:26:26 EDT 2025
Thu Aug 21 13:42:42 EDT 2025
Tue Aug 05 09:13:39 EDT 2025
Fri Jul 25 11:24:36 EDT 2025
Tue Jun 17 20:57:23 EDT 2025
Tue Jun 10 20:27:04 EDT 2025
Fri Jun 27 03:39:32 EDT 2025
Fri Jun 27 04:38:10 EDT 2025
Thu May 22 20:54:13 EDT 2025
Mon Jul 21 06:00:20 EDT 2025
Tue Jul 01 01:41:41 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-534b58f85b53d30af45a387634bbd80d5234d2e5b26a3f5276d9f6d903662bac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Membership of the ADNI Consortium is listed in the Acknowledgments.
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-1270-5852
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0264695
PMID 35522653
PQID 2686209169
PQPubID 1436336
PageCount e0264695
ParticipantIDs plos_journals_2686209169
doaj_primary_oai_doaj_org_article_2106ef52bc22400b8da4e65d92eb7be1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075665
proquest_miscellaneous_2661076852
proquest_journals_2686209169
gale_infotracmisc_A702727034
gale_infotracacademiconefile_A702727034
gale_incontextgauss_ISR_A702727034
gale_incontextgauss_IOV_A702727034
gale_healthsolutions_A702727034
pubmed_primary_35522653
crossref_citationtrail_10_1371_journal_pone_0264695
crossref_primary_10_1371_journal_pone_0264695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220506
PublicationDateYYYYMMDD 2022-05-06
PublicationDate_xml – month: 5
  year: 2022
  text: 20220506
  day: 6
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References K Herholz (pone.0264695.ref034) 2002; 17
A Reeve (pone.0264695.ref002) 2014; 14
RC Petersen (pone.0264695.ref026) 2010; 74
pone.0264695.ref021
pone.0264695.ref027
pone.0264695.ref025
A Adejare (pone.0264695.ref004) 2017
VKN Shivamurthy (pone.0264695.ref042) 2015; 1
Alzheimer’s Disease (pone.0264695.ref006) 2019; 9
ADNI (pone.0264695.ref039) 2019; 189
L Merrick (pone.0264695.ref022) 2020
A Holzinger (pone.0264695.ref028) 2021; 71
M Ansart (pone.0264695.ref038) 2021; 67
pone.0264695.ref020
TG Beach (pone.0264695.ref008) 2012; 71
A Ebrahimighahnavieh (pone.0264695.ref011) 2020; 187
S Cure (pone.0264695.ref009) 2014
pone.0264695.ref019
ADNI (pone.0264695.ref035) 2011; 32
ADNI (pone.0264695.ref017) 2019
pone.0264695.ref033
pone.0264695.ref032
J Dukart (pone.0264695.ref040) 2013
S ElSappagh (pone.0264695.ref024) 2021; 11
pone.0264695.ref016
pone.0264695.ref015
pone.0264695.ref037
A Burns (pone.0264695.ref001) 2009
J Wen (pone.0264695.ref012) 2020; 63
R Guerreiro (pone.0264695.ref003) 2015; 7
J Pearl (pone.0264695.ref029) 2009
EE Bron (pone.0264695.ref013) 2015; 111
M Nguyen (pone.0264695.ref023) 2020; 222
pone.0264695.ref031
A Adadi (pone.0264695.ref018) 2017; 6
JW Prescott (pone.0264695.ref007) 2013; 26
GI Allen (pone.0264695.ref014) 2016; 12
X Hua (pone.0264695.ref010) 2008; 43
A Holzinger (pone.0264695.ref030) 2020
Y Zhang (pone.0264695.ref041) 2015
K Chen (pone.0264695.ref036) 2011; 56
L Piemontese (pone.0264695.ref005) 2017; 12
References_xml – volume: 222
  start-page: 117
  year: 2020
  ident: pone.0264695.ref023
  article-title: Predicting Alzheimer’s disease progression using deep recurrent neural networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117203
– ident: pone.0264695.ref027
  doi: 10.1145/2939672.2939785
– volume: 187
  start-page: 105242
  year: 2020
  ident: pone.0264695.ref011
  article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.105242
– year: 2015
  ident: pone.0264695.ref041
  article-title: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning
  publication-title: Front Comput Neurosci
– volume: 1
  start-page: 76
  year: 2015
  ident: pone.0264695.ref042
  article-title: Brain FDG PET and the diagnosis of dementia
  publication-title: AJA Am J Roentgenol
  doi: 10.2214/AJR.13.12363
– ident: pone.0264695.ref031
– volume: 63
  start-page: 101694
  year: 2020
  ident: pone.0264695.ref012
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med Imag Anal
  doi: 10.1016/j.media.2020.101694
– volume: 11
  start-page: 2660
  year: 2021
  ident: pone.0264695.ref024
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
  publication-title: Nature Scientific Reports
  doi: 10.1038/s41598-021-82098-3
– volume: 32
  start-page: 1207
  issue: 7
  year: 2011
  ident: pone.0264695.ref035
  article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.07.002
– volume: 12
  start-page: 645
  issue: 6
  year: 2016
  ident: pone.0264695.ref014
  article-title: Crowd-sourced estimation of cognitive decline and resilience in Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2016.02.006
– ident: pone.0264695.ref037
  doi: 10.1016/B978-0-323-41559-0.00007-1
– volume: 111
  start-page: 562
  year: 2015
  ident: pone.0264695.ref013
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.048
– ident: pone.0264695.ref020
– start-page: 17
  year: 2020
  ident: pone.0264695.ref022
  article-title: The explanation game: explaining machine learning models using shapley values
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.1007/978-3-030-57321-8_2
– start-page: 1
  year: 2019
  ident: pone.0264695.ref017
  article-title: Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
  publication-title: PLOS ONE
– volume: 14
  start-page: 19
  issue: 100
  year: 2014
  ident: pone.0264695.ref002
  article-title: Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2014.01.004
– start-page: 169
  year: 2014
  ident: pone.0264695.ref009
  article-title: Systematic literature review and meta-analysis of diagnostic test accuracy in Alzheimer’s disease and other dementia using autopsy as standard of truth
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-131559
– volume: 189
  start-page: 276
  year: 2019
  ident: pone.0264695.ref039
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.031
– year: 2009
  ident: pone.0264695.ref001
  article-title: Alzheimer’s disease
  publication-title: Brit Med J
– volume-title: Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders
  year: 2017
  ident: pone.0264695.ref004
– volume: 9
  start-page: 123
  year: 2019
  ident: pone.0264695.ref006
  article-title: Why We Need Early Diagnosis
  publication-title: Degener Neurol Neuromuscul Dis
– volume: 6
  start-page: 52138
  year: 2017
  ident: pone.0264695.ref018
  article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: pone.0264695.ref032
– volume: 71
  start-page: 28
  year: 2021
  ident: pone.0264695.ref028
  article-title: Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.01.008
– ident: pone.0264695.ref015
– volume: 12
  start-page: 405
  issue: 3
  year: 2017
  ident: pone.0264695.ref005
  article-title: New approaches for prevention and treatment of Alzheimer’s disease: a fascinating challenge
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.202942
– volume: 71
  start-page: 266
  issue: 4
  year: 2012
  ident: pone.0264695.ref008
  article-title: Accuracy of the clinical diagnosis of Alzheimer’s disease at National Institute on Aging Alzheimer’s Disease Centers
  publication-title: J neuropathology and experimental neurology
  doi: 10.1097/NEN.0b013e31824b211b
– year: 2013
  ident: pone.0264695.ref040
  article-title: Generative FDG-PET and MRI model of aging and disease progression in Alzheimer’s disease
  publication-title: PLoS Comput Biol
– volume-title: Causality: Models, Reasoning, and Inference
  year: 2009
  ident: pone.0264695.ref029
  doi: 10.1017/CBO9780511803161
– start-page: 193
  year: 2020
  ident: pone.0264695.ref030
  article-title: Measuring the quality of explanations: The system causability scale (SCS). Comparing human and machine explanations
  publication-title: German J Artif Intell
– volume: 56
  start-page: 52
  year: 2011
  ident: pone.0264695.ref036
  article-title: Characterizing Alzheimer’s disease using a hypometabolic convergence index
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.049
– volume: 74
  start-page: 201
  issue: 3
  year: 2010
  ident: pone.0264695.ref026
  article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization
  publication-title: Neurol
  doi: 10.1212/WNL.0b013e3181cb3e25
– volume: 26
  start-page: 97
  issue: 1
  year: 2013
  ident: pone.0264695.ref007
  article-title: Quantitative Imaging Biomarkers: The Application of Advanced Image Processing and Analysis to Clinical and Preclinical Decision Making
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-012-9465-7
– volume: 43
  start-page: 458
  issue: 3
  year: 2008
  ident: pone.0264695.ref010
  article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.013
– ident: pone.0264695.ref033
  doi: 10.1145/2939672.2939778
– ident: pone.0264695.ref025
– volume: 7
  issue: 106
  year: 2015
  ident: pone.0264695.ref003
  article-title: The age factor in Alzheimer’s disease
  publication-title: Genome Med
– ident: pone.0264695.ref021
– ident: pone.0264695.ref016
– volume: 17
  start-page: 302
  year: 2002
  ident: pone.0264695.ref034
  article-title: Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1208
– ident: pone.0264695.ref019
  doi: 10.1109/TNNLS.2020.3027314
– volume: 67
  start-page: 101848
  year: 2021
  ident: pone.0264695.ref038
  article-title: Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101848
SSID ssj0053866
Score 2.4983234
Snippet The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of...
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0264695
SubjectTerms Accuracy
Alzheimer's disease
Analysis
Artificial intelligence
Biology and Life Sciences
Biomarkers
Cognitive ability
Computer and Information Sciences
Data collection
Data processing
Dementia
Diagnosis
Disease prevention
Explainable artificial intelligence
Feature selection
Initiatives
Magnetic resonance imaging
Medical diagnosis
Medical imaging
Medical prognosis
Medicine and Health Sciences
Neurodegenerative diseases
Prognosis
Research and Analysis Methods
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBthiEVDikzcax4xxDadUioAha1Jtlxw5daUmiTfbCn-AvM3acsEGVyoHDKlI8jrLz_pSZMUKvMs6KJAJD4gTSt4QbFnLKZcgKAvFaZxCxbaPwx0_s9DJ5f0WvNo76sjVh_XjgnnGHAEmYKWmsClfuqLiWiWHwlNioVBkHfCDmDWCq98FgxYz5RjmSzg-9XA6aujIHgDoAE9JJIHLz-kevPGuWdXtTyvl35eRGKDq5j-75HBLn_btvoTumeoC2vJW2-LUfJf3mIfplS-x8fxTOz3DnimTxerOjBUMKiJs__QO4Lt2trm7gujIGX-TvPp9_OMZHw8EruD93usWLypHCVlPItrNb8-XPa7P4YVb7LfZff-Dq6vkW7SN0eXJ8cXQa-iMYwoJlcRdSkijKS04VJZpEskyoJHaIXaKU5pEGGJvo2FAVM0lASinTWQk_iIssVrIgj9GsAqZvIzw3oBcsm5O50QCzIskinhKdapJSnZQsQGSQhyj8fHJ7TMZSuI9uKeCUnr3CSlF4KQYoHHc1_XyOW-jfWlGPtHa6trsBOie8zonbdC5Az62iiL5VdfQRIk8B5MfgQ5MAvXQUdsJGZUt4vst124qz82__QPT1y4Ro3xOVNbCjkL5tAv6Tndw1odyZUIKfKCbL21atB660IrbNQWA6LIOdg6rfvPxiXLYPtWV5lanXlgZsGQArjQP0pLeMkbOQyEJqT0mA0onNTFg_XakW127AeQZ5LGP06f-Q1TN0N7YdK7ZGle2gWbdam13IIzu151zGb44EcJQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0ILlwgVRXg0UMAgJOKTdxLHjnNBSWloEFEGLeovi2GlXWpKwyV448Qsc-T2-hBnHSRtUAYdVpHi8SuY98TwIeZJIkUdTECTJwH2LpBG-5DLzRc7AXusELDYWCr97L_aOojfH_Nh9cGtcWmWvE62i1lWO38i3QixlAOMmkhf1Vx-nRuHpqhuhcZlcCcDSYEqX3H3da2KQZSFcuRyLgy1Hnc26Ks0mxB4QGfKRObJd-wfdPKkXVXOR4_ln_uQ5g7R7nVxzniSddaRfI5dMeYOsOVlt6DPXUPr5TfIDE-1clRSd7dPWpsrS1fm6FgqOIK3PqghoVdhbbVXDdWkMPZy9-nDwdodu9-NXaDd9uqHz0oLCVpNnTYtbZ4tvp2b-xSx_ff_ZUHcKBFeb1zdvbpGj3Z3D7T3fjWLwc5GErc9ZpLgsJFecaTbNiohnDJvZRUppOdUQzkY6NFyFImMFD2OhkwJ-YB9FqLKc3SaTEtC-TmhggD9EErDAaAi3ppmYypjpWLOY66gQHmE9RdLc9SnHcRmL1B6-xRCvdAhOkY6po6NH_GFX3fXp-Af8SyT2AItdtu2NanmSOqFNIRwWBt5G5TbVVkmdRUYAB4dGxcoEHnmIrJJ2JauDrkhnMQT7IejSyCOPLQR22igxleckWzVNun_w-T-APn0cAT11QEUF6MgzVz4B74QdvEaQGyNI0Bf5aHkdGbvHSpOeSRbs7Jn94uVHwzL-KabnlaZaIQzINASuPPTInU42BsyCQwsuPmceiUdSM0L9eKWcn9pG5wn4s0Lwu39_rHvkaog1KZiFKjbIpF2uzH3wFFv1wKqD31udaaQ
  priority: 102
  providerName: ProQuest
Title Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/35522653
https://www.proquest.com/docview/2686209169
https://www.proquest.com/docview/2661076852
https://pubmed.ncbi.nlm.nih.gov/PMC9075665
https://doaj.org/article/2106ef52bc22400b8da4e65d92eb7be1
http://dx.doi.org/10.1371/journal.pone.0264695
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtNAcNWmFy6I8qpLCQtCKhxc2V7v2j4glIaEFtGHSoNys_xYt5GCHWJHAg78Ar_MzHptahRED1lL3hlHnp3ZmfHOg5CXgS8S1wJB8hmYb64vhelzPzJFwkBfpwFobEwUPjkVRxP3w5RPN0jTs1UTsFzr2mE_qclyfvDt6_e3IPBvVNcGz26QDhZFLg_ApwCPj2-SLdBNHvY0OHHbcwWQbnV6iVaLKRyL6WS6fz2lo6xUTf925-4t5kW5ziz9O7ryhroa3yN3tZ1JBzVjbJMNmd8n21qSS_pKl5t-_YD8wjA8nUNFB8e0UoG0dHUz64WCmUgXf3IMaJGpW1WxgOtSSno5eHd-9nFEh01zFlr3pi7pLFeggCqTqKwQdTD_cS1nX-Ryv6T6hAiuKuZvVj4kk_Hocnhk6jYNZiICpzI5c2PuZz6POUuZFWUujxgWunPjOPWtFFxdN3Ukjx0RsYw7nkiDDH6gO4UTRwl7RHo5EH2HUFsC74jAZrZMwRWzImH5Hku9lHk8dTNhENasR5joGubYSmMeqoM5D3yZmrwhrmKoV9EgZou1qGt4_Af-EJe6hcUK3OpGsbwKtUCH4CoLCW8TJyoMN_bTyJUCuNuRsRdL2yDPkFHCOp213UfCgWc5YDNazDXICwWBVThyDPO5ilZlGR6ffb4F0KeLDtC-BsoKIEcS6dQKeCes7tWB3OtAwl6SdKZ3kK0bqpShgwlEYFKKADAbVl8__bydxodi6F4uixXCgLyDU8sdgzyuJaOlLBi7YP5zZhCvIzMd0ndn8tm1KoIegK0rBN-9xf8-IXccTFrBMFWxR3rVciWfgilZxX2y6U09GP2hjeP4fZ9sHY5Ozy_66uNMX-0eOP4c_QYeLHfX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKcoALovw1UKhBIOCQNmvHTnJAaGm77NJti-gW9RaS2GlXWpKw2RWCE6_AkZfgoXgSxo6TNqgCLj2sIsXjKBmPv5lZzw9CjwOfJ64DG8mnYL65vuS2z_zI5gkFfS0C0NgqUXh3jw8O3TdH7GgJ_axzYVRYZY2JGqhFnqj_yDeISmUA5caDl8UnW3WNUqerdQuNSix25JfP4LKVL4ZbsL5PCOlvjzcHtukqYCc8IHObUTdmfuqzmFFBnSh1WURVXTY3joXvCPDMXEEkiwmPaMqIx0WQwg-gnpM4Sig89xK67FLQ5Cozvf-6Rn7ADs5Neh71uhtGGtaLPJPr4OuAJ8pa6k93CWh0QaeY5uV5hu6f8ZpnFGD_OrpmLFfcq0RtGS3J7AZaNthQ4memgPXzm-i7CuwzWVm4N8RzHZqLF2fzaDAYnrg4zVrAeapvzfMCrjMp8bi39XZ_tI0363YvuOp2XeJJpklhqkyicq6m9qZfT-Tko5z9-vajxObUCa46jnBS3kKHF7JIt1EnA7avINyVII886NKuFODeORF3fI8KT1CPCTflFqL1ioSJqYuu2nNMQ33Y54F_VDE4VOsYmnW0kN3MKqq6IP-gf6UWu6FVVb31jXx2HBqQCMH95hK-Jk50aG_si8iVHHYMkbEXy66F1pSohFWKbINNYc9zCNihDnUt9EhTqMoemQodOo4WZRkO99__B9HBuxbRU0OU5sCOJDLpGvBNqmJYi3K1RQn4lLSGV5Rg11wpw9OdDDNrYT9_-GEzrB6qwgEzmS8UDWAIOMqMWOhOtTcazoIBDS4FoxbyWrumxfr2SDY50YXVA7CfOWd3__5aa-jKYLw7CkfDvZ176CpR-TAqApavos58tpD3wUqdxw80NGD04aKx6DdgHaWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpFQlwQ42uBwQwCAYesaRw7zgGh0m5a2dgm2NBuIYmdrVJJQpMKwYm_wJG_ws_hl_DsONmCJuCyQxUpfo6S9_3q94HQ44CzxHNAkDgB983jktmc8shmCQF7LQKw2KpQ-M0u2zr0Xh_RoyX0s6mFUWmVjU7UilrkifqPvO-qUgYwbizopyYtYn-8-bL4ZKsJUuqktRmnUbPItvzyGcK38sVkDLR-4rqbGwejLdtMGLATFriVTYkXU55yGlMiiBOlHo2I6tHmxbHgjoAozROupLHLIpJS12ciSOEHap-5cZQQeO4ldNknPlcyxkdtegnoEcZMqR7xB33DGetFnsl1iHsgKqUdU6gnBrR2oVfM8vI8p_fP3M0zxnDzOrpmvFg8rNluGS3J7AZaNnqixM9MM-vnN9F3leRnKrTwcIIrnaaLF2drajA4obg4rWDAeapvVXkB17mU-GA43t_b2cCjZvQLridfl3iaaVDYKpOorNTW4ezriZx-lPNf336U2JxAwVXnFE7LW-jwQoh0G_UyQPsKwgMJvMmCARlIAaGeEzGH-0T4gvhUeCmzEGkoEiamR7oa1TEL9cGfD7FSjeBQ0TE0dLSQ3e4q6h4h_4B_pYjdwqoO3_pGPj8OjcIIIRRnEr4mTnSab8xF5EkG0uPK2I_lwEJrilXCuly21VPh0Hdc8Ekd4lnokYZQXT4yJS_H0aIsw8ne-_8Aeve2A_TUAKU5oCOJTOkGfJPqHtaBXO1Agq5KOssrirEbrJThqVTDzobZz19-2C6rh6rUwEzmCwUD-gSCZupa6E4tGy1mwZmG8IISC_kdqemgvruSTU90k_UAfGnG6N2_v9YaugJaKNyZ7G7fQ1ddVRqjkmHZKupV84W8Dw5rFT_QmgGjDxetin4DnhOpnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+AI+toward+understanding+the+performance+of+the+top+three+TADPOLE+Challenge+methods+in+the+forecast+of+Alzheimer%27s+disease+diagnosis&rft.jtitle=PloS+one&rft.au=Hernandez%2C+Monica&rft.au=Ramon-Julvez%2C+Ubaldo&rft.au=Ferraz%2C+Francisco&rft.date=2022-05-06&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=5&rft.spage=e0264695&rft_id=info:doi/10.1371%2Fjournal.pone.0264695&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon