Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system
Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state bas...
Saved in:
Published in | PloS one Vol. 12; no. 12; p. e0188756 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
08.12.2017
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0188756 |
Cover
Loading…
Abstract | Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. |
---|---|
AbstractList | Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. |
Audience | Academic |
Author | Wang, Ping Min, Jianliang Hu, Jianfeng |
AuthorAffiliation | The Center of Collaboration and Innovation, Jiangxi University of Technology, Nanchang, China School of Psychology, CHINA |
AuthorAffiliation_xml | – name: The Center of Collaboration and Innovation, Jiangxi University of Technology, Nanchang, China – name: School of Psychology, CHINA |
Author_xml | – sequence: 1 givenname: Jianliang surname: Min fullname: Min, Jianliang – sequence: 2 givenname: Ping surname: Wang fullname: Wang, Ping – sequence: 3 givenname: Jianfeng orcidid: 0000-0002-0669-4328 surname: Hu fullname: Hu, Jianfeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29220351$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW4t2bLlXhRCuk0XAoGe6J2QpbFXi2xtJDlk3z5y1gnrEErxhaWZb_45MDqODjrTQRS9RskcpQX6tDa97bieb4J5niBKC5I_i45QmeJZjpP0YO98GB07t04SktI8fxEd4hIHK0FH0d-vVl2DjWvuVdNDLMGD8Mp0sV9Z0zeruO21VxsNMXTems02rns3-HlIvnXKxWo4x4vF-aziDmTsts5D-zJ6XnPt4NX4P4l-f1v8Ovs-u7g8X56dXsxEXmI_yyRNpOBIVlWCgwlQHm4FwiKpJAiKEMkLmXMCOQ6XmocWRCooTrOM1qlMT6K3O92NNo6NQ3EMlUVGCpqUNBDLHSENX7ONVS23W2a4YncGYxvGrVdCAytrmUmZQiaxyIBLCgRLAZRwGSrDVdD6MmbrqxaCK8yE64no1NOpFWvMNSMFxpgWQeDDKGDNVQ_Os1Y5AVrzDkx_VzdJUpyToe53j9CnuxuphocGVFebkFcMouyUoKIsyizFgZo_QYVPQqtE2KBaBfsk4OMkIDAebnzDe-fY8ueP_2cv_0zZ93vsCrj2K2d0P6ycm4Jv9if9MOL71Q1AtgOENc5ZqB8QlLDhhdyPiw0vhI0vJIR9fhQmlOdD-jARpf8dfAvyfBf0 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3293421 crossref_primary_10_1109_JBHI_2023_3314197 crossref_primary_10_1109_JBHI_2020_3008229 crossref_primary_10_1109_OJVT_2022_3174546 crossref_primary_10_3233_WOR_230281 crossref_primary_10_1016_j_cmpb_2022_106857 crossref_primary_10_1109_ACCESS_2018_2878150 crossref_primary_10_1016_j_bspc_2020_102129 crossref_primary_10_3389_frobt_2020_00125 crossref_primary_10_1088_1741_2552_ac2628 crossref_primary_10_1155_2022_4640426 crossref_primary_10_2298_FUEE2404671H crossref_primary_10_1063_1_5120538 crossref_primary_10_1109_TCDS_2023_3257428 crossref_primary_10_3390_electronics11142169 crossref_primary_10_1016_j_bbe_2020_08_009 crossref_primary_10_1109_ACCESS_2019_2937914 crossref_primary_10_3390_brainsci14080811 crossref_primary_10_1177_03611981221096118 crossref_primary_10_1016_j_asej_2022_101895 crossref_primary_10_1371_journal_pone_0242857 crossref_primary_10_3390_app12168146 crossref_primary_10_1088_1367_2630_aaf51c crossref_primary_10_1016_j_neucom_2023_126709 crossref_primary_10_1016_j_aap_2020_105900 crossref_primary_10_7717_peerj_11182 crossref_primary_10_1371_journal_pone_0304669 crossref_primary_10_3390_e22111234 crossref_primary_10_1109_TNNLS_2018_2886414 crossref_primary_10_3390_s21093225 crossref_primary_10_3390_su14052941 crossref_primary_10_1109_ACCESS_2024_3394218 crossref_primary_10_1016_j_schres_2024_07_015 crossref_primary_10_1016_j_jtte_2023_07_004 crossref_primary_10_1016_j_aap_2021_106093 crossref_primary_10_3390_brainsci9120348 crossref_primary_10_1109_TNSRE_2023_3245079 crossref_primary_10_1002_hfm_20927 crossref_primary_10_1088_1361_6579_abf336 crossref_primary_10_1109_JBHI_2021_3096984 crossref_primary_10_1016_j_array_2023_100320 crossref_primary_10_1088_1741_2552_aca1e2 crossref_primary_10_1016_j_cmpb_2023_107925 crossref_primary_10_1109_TIM_2018_2865842 crossref_primary_10_3389_fninf_2020_553352 crossref_primary_10_3390_app13052785 crossref_primary_10_3390_s21113786 crossref_primary_10_1515_bmt_2022_0354 crossref_primary_10_3390_fi11050115 crossref_primary_10_1049_iet_its_2018_5290 crossref_primary_10_3390_s21196449 crossref_primary_10_1016_j_bspc_2020_102075 crossref_primary_10_1016_j_ins_2018_04_003 crossref_primary_10_1088_1741_2552_ab1f4e crossref_primary_10_1007_s11571_019_09543_y crossref_primary_10_1016_j_compbiolchem_2023_107863 crossref_primary_10_1016_j_jsr_2021_12_001 crossref_primary_10_1016_j_bspc_2019_02_005 crossref_primary_10_1109_ACCESS_2021_3054785 crossref_primary_10_1109_TIM_2024_3400360 crossref_primary_10_1016_j_bspc_2024_106881 crossref_primary_10_3389_fnhum_2022_915276 crossref_primary_10_1142_S0129065718500570 crossref_primary_10_1016_j_cie_2023_109855 crossref_primary_10_3390_s24134392 crossref_primary_10_1016_j_bspc_2023_105455 crossref_primary_10_3390_s18124477 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1109_THMS_2019_2938156 crossref_primary_10_3390_s22134764 crossref_primary_10_3389_fphys_2023_1153268 crossref_primary_10_1093_sleepadvances_zpae087 crossref_primary_10_3390_s24144577 crossref_primary_10_3390_s21010056 crossref_primary_10_1109_TIM_2022_3216409 crossref_primary_10_1016_j_engappai_2019_103312 crossref_primary_10_1016_j_bspc_2021_102857 crossref_primary_10_3390_s21041255 |
Cites_doi | 10.1145/1143844.1143874 10.1209/0295-5075/116/50001 10.1016/j.clinph.2011.06.027 10.3390/s121216937 10.1002/hbm.20428 10.1111/j.1365-2869.2012.01038.x 10.1111/j.1469-8986.2011.01329.x 10.1016/j.medengphy.2013.07.011 10.1016/j.eswa.2011.07.008 10.1016/j.bspc.2010.01.001 10.1371/journal.pone.0118432 10.1016/0165-1781(91)90027-M 10.1007/s00521-012-1324-4 10.1007/978-3-642-39454-6_24 10.1016/j.procs.2014.07.045 10.1016/j.envsoft.2013.10.001 10.1109/TITS.2010.2092770 10.1016/j.eswa.2013.07.108 10.3390/s141017915 10.1109/ICCVW.2013.85 10.4108/eai.14-10-2015.2261628 10.1016/j.jneumeth.2015.01.015 10.1016/j.bspc.2011.07.007 10.1109/IMCCC.2015.156 10.1007/s00477-014-0999-8 10.1016/j.aap.2011.09.046 10.14257/ijca.2016.9.3.30 10.1109/IJCNN.2015.7280817 10.1142/S0129065717500058 10.1007/s10439-012-0668-3 10.1016/j.clinph.2010.10.044 10.5271/sjweh.1815 10.1109/TIM.2012.2187242 10.1109/IVS.2016.7535570 10.1016/j.eswa.2005.09.024 10.1152/ajpheart.2000.278.6.H2039 10.1166/jmihi.2015.1471 10.1016/j.neubiorev.2012.10.003 10.1371/journal.pone.0065056 10.1109/TITS.2013.2275192 10.1109/IVS.2016.7535572 10.1016/j.aap.2015.10.014 10.3390/e16126573 10.1016/j.eswa.2015.05.028 10.1016/j.chaos.2011.08.012 10.1209/0295-5075/109/30005 10.1098/rsif.2007.1079 10.1186/1475-925X-13-S1-I1 10.1002/widm.1072 10.1016/j.apergo.2014.02.001 10.1016/j.cmpb.2005.06.012 10.1016/j.displa.2013.01.002 10.1016/j.trf.2010.06.006 10.1073/pnas.88.6.2297 10.1016/j.knosys.2015.08.004 10.1111/j.1467-8667.2010.00685.x 10.1016/j.neulet.2011.11.014 10.3390/e18120432 10.1016/j.jneumeth.2012.07.003 10.1016/j.patcog.2005.01.012 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Public Library of Science 2017 Min et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 Min et al 2017 Min et al |
Copyright_xml | – notice: COPYRIGHT 2017 Public Library of Science – notice: 2017 Min et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 Min et al 2017 Min et al |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0188756 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Proquest Nursing & Allied Health Source Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database (NC LIVE) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Agricultural & Environmental Science Collection (NC LIVE) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) ProQuest Engineering Database (NC LIVE) Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Using EEG to detect driver fatigue |
EISSN | 1932-6203 |
ExternalDocumentID | 1974578098 oai_doaj_org_article_9fd4dd3e4d2c4ead8e52dce85ad9e12b PMC5722287 A517979432 29220351 10_1371_journal_pone_0188756 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: GJJ151146 – fundername: ; grantid: ZR15QN01 – fundername: ; grantid: 20151BBE50079 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c692t-4d80dca1dbb02c69e16ca1712c0bdec811567d6a5e62811fa538c3c823448f3d3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jun 04 06:36:54 EDT 2023 Wed Aug 27 01:30:40 EDT 2025 Thu Aug 21 18:12:18 EDT 2025 Mon Jul 21 10:55:38 EDT 2025 Fri Jul 25 11:40:41 EDT 2025 Tue Jun 17 21:26:10 EDT 2025 Tue Jun 10 20:39:09 EDT 2025 Fri Jun 27 04:54:11 EDT 2025 Fri Jun 27 03:58:24 EDT 2025 Thu May 22 21:22:02 EDT 2025 Tue Aug 05 11:47:50 EDT 2025 Thu Jul 03 08:29:37 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-4d80dca1dbb02c69e16ca1712c0bdec811567d6a5e62811fa538c3c823448f3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-0669-4328 |
OpenAccessLink | https://doaj.org/article/9fd4dd3e4d2c4ead8e52dce85ad9e12b |
PMID | 29220351 |
PQID | 1974578098 |
PQPubID | 1436336 |
PageCount | e0188756 |
ParticipantIDs | plos_journals_1974578098 doaj_primary_oai_doaj_org_article_9fd4dd3e4d2c4ead8e52dce85ad9e12b pubmedcentral_primary_oai_pubmedcentral_nih_gov_5722287 proquest_miscellaneous_1975032658 proquest_journals_1974578098 gale_infotracmisc_A517979432 gale_infotracacademiconefile_A517979432 gale_incontextgauss_ISR_A517979432 gale_incontextgauss_IOV_A517979432 gale_healthsolutions_A517979432 pubmed_primary_29220351 crossref_primary_10_1371_journal_pone_0188756 crossref_citationtrail_10_1371_journal_pone_0188756 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-08 |
PublicationDateYYYYMMDD | 2017-12-08 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2017 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | ref13 ref14 ref58 ref52 AL Boulesteix (ref49) 2012; 2 RS Ellis (ref36) 2012 ZK Gao (ref64) 2017; 27 UR Acharya (ref57) 2015; 88 ref19 M Jagannath (ref6) 2014; 45 C Zhang (ref28) 2014; 15 S Kar (ref16) 2010; 13 N Kannathal (ref38) 2005; 80 JL Rodríguez-Sotelo (ref22) 2014; 16 A Jain (ref45) 2005; 38 JS Richman (ref40) 2000; 278 AG Correa (ref1) 2014; 36 G Borghini (ref65) 2012 W Li (ref17) 2012; 506 N Nicolaou (ref24) 2012; 39 Z Mu (ref71) 2015; 7 S Ftouni (ref4) 2013; 22 J Xiang (ref21) 2015; 243 ref7 T Cao (ref9) 2014; 13 E Figueiredo (ref42) 2011; 26 F Barwick (ref66) 2012; 123 Z Mu (ref32) 2016 ZK Gao (ref62) 2015; 109 LL Chen (ref56) 2015; 42 Y Dong (ref2) 2011; 12 A Sahayadhas (ref11) 2012; 12 G Borghini (ref54) 2014; 44 UR Acharya (ref25) 2012; 7 AT Azar (ref51) 2014; 24 Z Mu (ref43) 2016; 18 G Borg (ref30) 1990 D Davenne (ref10) 2012; 45 SG Horovitz (ref31) 2008; 29 A Craig (ref34) 2012; 49 V Vapnik (ref50) 2006 J Jo (ref12) 2014; 41 KA Lee (ref29) 1991; 36 JM Yentes (ref44) 2013; 41 ZK Gao (ref61) 2016; 116 C Chen (ref8) 2013; 34 J Yin (ref33) 2016 A Kosmadopoulos (ref5) 2015; 99 NR Pal (ref59) 2008 ref70 H Jianfeng (ref15) 2015; 5 BG Lee (ref60) 2014; 14 M Convertino (ref73) 2015; 29 M Azarnoosh (ref37) 2011; 44 C-L Huang (ref47) 2006; 31 Y Xiong (ref26) 2016; 9 V Saini (ref3) 2014; 5 T Saito (ref53) 2015; 10 A Craig (ref67) 2012; 49 ref69 SM Pincus (ref39) 1991; 88 M Convertino (ref76) 2014; 51 BT Nugraha (ref72) 2016; 86 Y Song (ref41) 2012; 210 C Matteo (ref75) 2013; 8 G Rigas (ref55) 2011 C Zhao (ref20) 2011; 7 M Simon (ref18) 2011; 122 N Gurudath (ref63) 2014; 34 N Lüdtke (ref74) 2008; 5 R Chai (ref27) 2016 J Han (ref46) 2011 S-F Liang (ref23) 2012; 61 J Liu (ref35) 2010; 5 HB Demuth (ref48) 2014 M Simon (ref68) 2011; 122 |
References_xml | – ident: ref52 doi: 10.1145/1143844.1143874 – volume: 116 start-page: 50001 issue: 5 year: 2016 ident: ref61 article-title: Complex network analysis of time series publication-title: Epl doi: 10.1209/0295-5075/116/50001 – year: 2011 ident: ref55 article-title: Towards Driver's State Recognition on Real Driving Conditions publication-title: International Journal of Vehicular Technology – volume: 123 start-page: 278 issue: 2 year: 2012 ident: ref66 article-title: EEG correlates of fatigue during administration of a neuropsychological test battery publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2011.06.027 – volume: 12 start-page: 16937 issue: 12 year: 2012 ident: ref11 article-title: Detecting driver drowsiness based on sensors: a review publication-title: Sensors doi: 10.3390/s121216937 – volume: 29 start-page: 671 issue: 6 year: 2008 ident: ref31 article-title: Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG‐fMRI study publication-title: Human brain mapping doi: 10.1002/hbm.20428 – volume: 22 start-page: 58 issue: 1 year: 2013 ident: ref4 article-title: Objective and subjective measures of sleepiness, and their associations with on‐road driving events in shift workers publication-title: Journal of sleep research doi: 10.1111/j.1365-2869.2012.01038.x – volume: 49 start-page: 574 issue: 4 year: 2012 ident: ref67 article-title: Regional brain wave activity changes associated with fatigue publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2011.01329.x – volume: 36 start-page: 244 issue: 2 year: 2014 ident: ref1 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2013.07.011 – volume: 39 start-page: 202 issue: 1 year: 2012 ident: ref24 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.008 – volume: 5 start-page: 124 issue: 2 year: 2010 ident: ref35 article-title: EEG-based estimation of mental fatigue by using KPCA–HMM and complexity parameters publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2010.01.001 – volume: 10 start-page: e0118432 issue: 3 year: 2015 ident: ref53 article-title: The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets publication-title: Plos One doi: 10.1371/journal.pone.0118432 – volume: 36 start-page: 291 issue: 3 year: 1991 ident: ref29 article-title: Validity and reliability of a scale to assess fatigue publication-title: Psychiatry research doi: 10.1016/0165-1781(91)90027-M – volume: 24 start-page: 1163 issue: 5 year: 2014 ident: ref51 article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-1324-4 – ident: ref19 doi: 10.1007/978-3-642-39454-6_24 – volume: 34 start-page: 400 year: 2014 ident: ref63 article-title: Drowsy Driving Detection by EEG Analysis Using Wavelet Transform and K-means Clustering publication-title: Procedia Computer Science doi: 10.1016/j.procs.2014.07.045 – volume: 51 start-page: 296 issue: 1 year: 2014 ident: ref76 article-title: Untangling drivers of species distributions: Global sensitivity and uncertainty analyses of MAXENT publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2013.10.001 – volume: 12 start-page: 596 issue: 2 year: 2011 ident: ref2 article-title: Driver Inattention Monitoring System for Intelligent Vehicles: A Review publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2010.2092770 – volume: 41 start-page: 1139 issue: 4 year: 2014 ident: ref12 article-title: Detecting driver drowsiness using feature-level fusion and user-specific classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.07.108 – volume: 14 start-page: 17915 issue: 10 year: 2014 ident: ref60 article-title: Mobile Healthcare for Automatic Driving Sleep-Onset Detection Using Wavelet-Based EEG and Respiration Signals publication-title: Sensors doi: 10.3390/s141017915 – ident: ref13 doi: 10.1109/ICCVW.2013.85 – ident: ref14 doi: 10.4108/eai.14-10-2015.2261628 – year: 2016 ident: ref32 article-title: Driving Fatigue Detecting Based on EEG Signals of Forehead Area publication-title: International Journal of Pattern Recognition and Artificial Intelligence – volume: 243 start-page: 18 year: 2015 ident: ref21 article-title: The detection of epileptic seizure signals based on fuzzy entropy publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2015.01.015 – start-page: 6442 year: 2012 ident: ref65 article-title: Assessment of Mental Fatigue During Car Driving by Using High Resolution EEG Activity and Neurophysiologic Indices – volume: 7 start-page: 401 issue: 4 year: 2012 ident: ref25 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2011.07.007 – ident: ref70 doi: 10.1109/IMCCC.2015.156 – volume: 29 start-page: 1085 issue: 4 year: 2015 ident: ref73 article-title: Design of optimal ecosystem monitoring networks: hotspot detection and biodiversity patterns publication-title: Stochastic Environmental Research & Risk Assessment doi: 10.1007/s00477-014-0999-8 – volume: 45 start-page: 677 year: 2012 ident: ref10 article-title: Reliability of simulator driving tool for evaluation of sleepiness, fatigue and driving performance publication-title: Accident Analysis & Prevention doi: 10.1016/j.aap.2011.09.046 – start-page: 1 issue: 99 year: 2016 ident: ref27 article-title: Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 9 start-page: 329 issue: 3 year: 2016 ident: ref26 article-title: Classifying Driving Fatigue Based on Combined Entropy Measure Using EEG Signals publication-title: International Journal of Control and Automation doi: 10.14257/ijca.2016.9.3.30 – ident: ref69 doi: 10.1109/IJCNN.2015.7280817 – year: 2012 ident: ref36 – volume: 27 start-page: 1750005 issue: 4 year: 2017 ident: ref64 article-title: Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation for Classification of Epileptiform EEG publication-title: International Journal of Neural Systems doi: 10.1142/S0129065717500058 – volume: 41 start-page: 349 issue: 2 year: 2013 ident: ref44 article-title: The appropriate use of approximate entropy and sample entropy with short data sets publication-title: Annals of biomedical engineering doi: 10.1007/s10439-012-0668-3 – year: 2011 ident: ref46 – volume: 122 start-page: 1168 issue: 6 year: 2011 ident: ref68 article-title: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2010.10.044 – volume: 86 start-page: 347 issue: 3 year: 2016 ident: ref72 article-title: Classification of driver fatigue state based on EEG using Emotiv EPOC+ publication-title: Journal of Theoretical & Applied Information Technology – start-page: 55 year: 1990 ident: ref30 article-title: Psychophysical scaling with applications in physical work and the perception of exertion publication-title: Scandinavian journal of work, environment & health doi: 10.5271/sjweh.1815 – volume: 61 start-page: 1649 issue: 6 year: 2012 ident: ref23 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2012.2187242 – start-page: 192 issue: 1 year: 2008 ident: ref59 article-title: EEG-Based Subject- and Session-independent Drowsiness Detection: An Unsupervised Approach publication-title: Eurasip Journal on Advances in Signal Processing – ident: ref7 doi: 10.1109/IVS.2016.7535570 – volume: 31 start-page: 231 issue: 2 year: 2006 ident: ref47 article-title: A GA-based feature selection and parameters optimizationfor support vector machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.024 – volume: 278 start-page: H2039 issue: 6 year: 2000 ident: ref40 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: American Journal of Physiology-Heart and Circulatory Physiology doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 5 start-page: 862 issue: 4 year: 2015 ident: ref15 article-title: Multi-feature authentication system based on event evoked electroencephalogram publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2015.1471 – volume: 44 start-page: 58 year: 2014 ident: ref54 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neuroscience & Biobehavioral Reviews doi: 10.1016/j.neubiorev.2012.10.003 – volume: 8 start-page: e65056 issue: 6 year: 2013 ident: ref75 article-title: Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management publication-title: Plos One doi: 10.1371/journal.pone.0065056 – volume: 15 start-page: 168 issue: 1 year: 2014 ident: ref28 article-title: Automated detection of driver fatigue based on entropy and complexity measures publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2275192 – ident: ref58 doi: 10.1109/IVS.2016.7535572 – volume: 99 start-page: 445 year: 2015 ident: ref5 article-title: The efficacy of objective and subjective predictors of driving performance during sleep restriction and circadian misalignment publication-title: Accident Analysis & Prevention doi: 10.1016/j.aap.2015.10.014 – volume: 7 start-page: 1157 issue: 3 year: 2011 ident: ref20 article-title: Automatic classification of driving mental fatigue with EEG by wavelet packet energy and KPCA-SVM publication-title: Int J Innov Comput Control – volume: 16 start-page: 6573 issue: 12 year: 2014 ident: ref22 article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques publication-title: Entropy doi: 10.3390/e16126573 – volume: 42 start-page: 7344 issue: 21 year: 2015 ident: ref56 article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.05.028 – volume: 44 start-page: 1054 issue: 12 year: 2011 ident: ref37 article-title: Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: Symbolic dynamics publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2011.08.012 – volume: 109 start-page: 30005 issue: 3 year: 2015 ident: ref62 article-title: Multiscale complex network for analyzing experimental multivariate time series publication-title: Epl doi: 10.1209/0295-5075/109/30005 – volume: 5 start-page: 223 issue: 19 year: 2008 ident: ref74 article-title: Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2007.1079 – volume: 13 start-page: 1 year: 2014 ident: ref9 article-title: Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces publication-title: Biomedical engineering online doi: 10.1186/1475-925X-13-S1-I1 – volume: 122 start-page: 1168 issue: 6 year: 2011 ident: ref18 article-title: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2010.10.044 – volume: 2 start-page: 493 issue: 6 year: 2012 ident: ref49 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews publication-title: Data Mining and Knowledge Discovery doi: 10.1002/widm.1072 – volume: 45 start-page: 1140 issue: 4 year: 2014 ident: ref6 article-title: Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator publication-title: Applied ergonomics doi: 10.1016/j.apergo.2014.02.001 – volume: 80 start-page: 187 issue: 3 year: 2005 ident: ref38 article-title: Entropies for detection of epilepsy in EEG publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2005.06.012 – year: 2014 ident: ref48 – volume: 34 start-page: 81 issue: 2 year: 2013 ident: ref8 article-title: EEG-based detection and evaluation of fatigue caused by watching 3DTV publication-title: Displays doi: 10.1016/j.displa.2013.01.002 – volume: 13 start-page: 297 issue: 5 year: 2010 ident: ref16 article-title: EEG signal analysis for the assessment and quantification of driver’s fatigue publication-title: Transportation research part F: traffic psychology and behaviour doi: 10.1016/j.trf.2010.06.006 – volume: 88 start-page: 2297 issue: 6 year: 1991 ident: ref39 article-title: Approximate entropy as a measure of system complexity publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.88.6.2297 – volume: 88 start-page: 85 issue: C year: 2015 ident: ref57 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.08.004 – volume: 26 start-page: 225 issue: 3 year: 2011 ident: ref42 article-title: Influence of the autoregressive model order on damage detection publication-title: Computer‐Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2010.00685.x – volume: 7 start-page: 266 issue: 7 year: 2015 ident: ref71 article-title: Mobile healthcare system for driver based on drowsy detection using EEG signal analysis publication-title: Metallurgical & Mining Industry – volume: 506 start-page: 235 issue: 2 year: 2012 ident: ref17 article-title: Evaluation of driver fatigue on two channels of EEG data publication-title: Neuroscience letters doi: 10.1016/j.neulet.2011.11.014 – volume: 5 start-page: 4245 issue: 3 year: 2014 ident: ref3 article-title: Driver drowsiness detection system and techniques: a review publication-title: International Journal of Computer Science and Information Technologies – year: 2006 ident: ref50 – volume: 18 start-page: 432 issue: 12 year: 2016 ident: ref43 article-title: EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes publication-title: Entropy doi: 10.3390/e18120432 – start-page: 1 year: 2016 ident: ref33 article-title: Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals publication-title: Healthcare Technology Letters – volume: 49 start-page: 574 issue: 4 year: 2012 ident: ref34 article-title: Regional brain wave activity changes associated with fatigue publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2011.01329.x – volume: 210 start-page: 132 issue: 2 year: 2012 ident: ref41 article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2012.07.003 – volume: 38 start-page: 2270 issue: 12 year: 2005 ident: ref45 article-title: Score normalization in multimodal biometric systems publication-title: Pattern recognition doi: 10.1016/j.patcog.2005.01.012 |
SSID | ssj0053866 |
Score | 2.5367656 |
Snippet | Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0188756 |
SubjectTerms | Autoregressive models Autoregressive processes Biology and Life Sciences Brain research Classification Classifiers Collaboration Comparative analysis Computer and Information Sciences Computer simulation Diagnosis Driver fatigue Driving ability Ecosystems EEG Electroencephalography Entropy Experiments Fatigue Health aspects Information technology Medicine and Health Sciences Methods Motor vehicle drivers Neural networks Physical Sciences Physiology Research and Analysis Methods Signal processing Studies Time series Traffic accidents & safety Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhLRiEBBzSJnYSJ8cCWwoSIAFFe7Mcj1MqVcmq2Rz675lJnGiDKpUDtyT-kt3Mwx47428Ye-UsxrWytCFGw2WYmLQMjY0grHC0UU4mKne0oP_la3Z6lnxepautUl-UEzbQAw-COyoqSACkS0DYBF87d6kAqrVpoHCxKKn3xTFvnEwNfTB6cZb5jXJSxUdeL4frpnaHUYyORQWrtwainq9_6pUX68umvSnk_DtzcmsoOrnP7vkYkh8P_32H3XH1A7bjvbTlbzyV9NuHbPXhivIueIXyP-8cB7fpU69q7uvz8DGhkNNPNetrXnW0fsaNJyvhF3TMl8uPIQ14wAfq50fs7GT58_1p6GsphDYrxCZMII_AmhjKMhJ4ycUZnqlY2KgEZ3MMDDMFmUldJvCkMihCK20uJM7fKgnyMVvUKL1dxvMsqiLICgALSVFGhYxB5ACFSkuZOhMwOQpWW080TvUuLnX_9UzhhGOQkyZ1aK-OgIXTXeuBaOMW_DvS2YQlmuz-AhqP9sajbzOegD0njethz-nk7PqYiMuIOk8E7GWPIKqMmnJxzk3XtvrTt1__APrxfQZ67UFVg-Kwxu9_wHciCq4Zcn-GRIe3s-Zdss9RKq2OcU6IHW9U5HjnaLM3N7-YmumhlF9Xu6brMWmEkXyKmCeDiU-SFYUQ9L05YGpm_DPRz1vqi989U3mqaIFRPf0futpjdwWFVJRKlO-zxeaqcwcYEG7KZ73v_wFG5GM6 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fj5QwEG50ffHFeP469NRqTNQH7koLFJ7MqXueJmqintk3Ap2yd8kFcFke_O-dgYKHuahvC_1Ydmc67XQ6_YaxZ9agX6sK46M3XPhhHhV-bgT4Jc422qpQJ5YC-h8_xccn4YdVtHIBt9alVY5jYj9QQ20oRn4QoOOLvUukyavmh09Vo2h31ZXQuMquEXUZpXTp1bTgQluOY3dcTungwGlnv6kruy8CNC8qW31hOupZ-6exedGc1-1ljuef-ZMXJqSjm-yG8yT54aD6HXbFVrfYjrPVlr9whNIvb7PV2w1lX_AStbDuLAe77ROwKu6q9PAxrZDTq-rmJy87iqLx3FGW8DP6zJfLdz5Ne8AHAug77ORo-e3Nse8qKvgmTuXWDyERYPIAikJIvGWDGK90II0owJoE3cNYQ5xHNpZ4UeYoQqNMIhWu4koF6i5bVCi9XcaTWJQC4hTAQJgWIlUByAQg1VGhIpt7TI2CzYyjG6eqF-dZv4emcdkxyCkjdWROHR7zp6eagW7jH_jXpLMJS2TZ_Y16s86c7WVpCSGAsiFIE6LlJDaSQOVac0AJyMJjj0nj2XDydDL57JDoy4hAT3rsaY8gwoyKMnLWede22fvP3_8D9PXLDPTcgcoaxWFydwoC_xMRcc2QezMkmr2ZNe9S_xyl0ma_DQSfHPvs5c1Ppmb6Usqyq2zd9ZhIoD8fIebe0MUnycpUStp19piedf6Z6Oct1dlpz1ceaQoz6vt__1kP2HVJLhOlCiV7bLHddPYhOnzb4lFv1b8A0cRYew priority: 102 providerName: ProQuest |
Title | Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29220351 https://www.proquest.com/docview/1974578098 https://www.proquest.com/docview/1975032658 https://pubmed.ncbi.nlm.nih.gov/PMC5722287 https://doaj.org/article/9fd4dd3e4d2c4ead8e52dce85ad9e12b http://dx.doi.org/10.1371/journal.pone.0188756 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRSDkICHTI6dxMkDQttoN5A20KCob1FiO2VSlZSmldh_z53jRAQVsZeoic-pch--s33-HSGvjIK4VuTKg2g494IszL1MMe0V4G2kEYGMDS7oX1xG59Pg0yyc7ZC2ZqtjYL11aof1pKarxdGvnzfvweDf2aoN0m87HS2r0hwxH8wmjHbJHvgmiaZ6EXT7CmDddvcSoxYv4ky4w3T_ekvPWVlM_27kHiwXVb0tLP07u_IPdzW5R-66OJMeN4qxT3ZMeZ_sO0uu6RsHN_32AZl9WGFuBi1ARvONodqsbXpWSV0NH9omHVL8q2p5Q4sNrrHRzAGa0Gv8TcfjMw-doqYNPPRDMp2Mv52ee67egqeihK-9QMdMq8zXec44PDJ-BHfS54rl2qgYgsdI6igLTcThpsiAnUqomAuY4xVCi0dkUAL3DgiNI1YwHSVaKx0kOUuEr3msdSLDXIQmGxLRMjZVDowca2IsUrvDJmFS0vApRXGkThxD4nW9lg0Yx3_oT1BmHS1CadsH1WqeOstMk0IHWgsTaK4CsKvYhFxjMddMAwd4PiTPUeJpcy61GxDSYwQ3Q3g9PiQvLQXCaZSYrzPPNnWdfvz8_RZEX696RK8dUVEBO1TmzkjANyFMV4_ysEcJg4LqNR-gfrZcqVMf5o0wOLMkhp6tzm5vftE140sxB6801cbShAyi_RBoHjcq3nGWJ5zjnvSQyJ7y91jfbymvf1g081DiIqR8cutPf0rucIytMKcoPiSD9WpjnkFkuM5HZFfOJFzjUx-vk7MR2TsZX365Gtm1lpEdDH4D8UtpXA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcIALorwaKHRBIODgdr1-HxAqNCWhDyRoq9yMvbMOlSo7xLFQ_xS_kRl7bWpUAZfeYu9nJ5n37s7OMPZcK4xrnVRZGA2nlpt4qZUoAVaG3ibQjhuEmhb0Dw798bH7cepNV9jP9iwMpVW2NrE21FAoWiPfsjHwRekSUfh2_t2irlG0u9q20GjEYk-f_8ApW_lmsoP8fSHl7ujo_dgyXQUs5UdyabkQClCJDWkqJN7Sto9XgS2VSEGrEEMkPwA_8bQv8SJL0CQoR4XSwZlM5oCD773GrqPjFaRRwbSb4CHQ983xPCewt4w0bM6LXG8KG9WZ2mRfcH91l4DOFwzmZ0V5WaD7Z77mBQe4e5vdMpEr325EbZWt6PwOWzW2oeSvTAHr13fZdGdB2R48Q67PKs1BL-uEr5ybrkC8TWPk9FXF_JxnFa3a8cSUSOGn9JmPRh8scrPAm4LT99jxldD6PhvkSL01xkNfZAL8CECBG6UicmyQIUAUeKnj6WTInJawsTLlzanLxllc79kFOM1p6BQTO2LDjiGzuqfmTXmPf-DfEc86LBXnrm8Ui1lsdD2OMnABHO2CVC5qaqg9CdQeNgGkgEyHbIM4HjcnXTsTE29TuTQq2CeH7FmNoAIdOWUAzZKqLOPJp5P_AH353AO9NKCsQHKoxJy6wP9Ehb96yPUeEs2M6g2vkXy2VCnj3wqJT7Yye_nw026YXkpZfbkuqhrjCZw_eIh50Ih4R1kZSUm73EMW9IS_R_r-SH76ra6P7gW0rBk8_PvP2mA3xkcH-_H-5HDvEbspKVyjNKVwnQ2Wi0o_xmBzmT6pNZyzr1dtUn4BAPSVVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmAGgYCHrImdxMkDQoN2rAwGYgz1LSQ-p0yaktIPof1r_HXcJU5Y0AS87K2Jf0nb8935bJ9_x9hjozGulZl2MBrOHD8NMifVLjg5jjbKSF9Fhhb03x-Ee0f-20kwWWM_m7MwlFbZ-MTKUUOpaY184GHgi9rlxtEgt2kRH4e7L2ffHaogRTutTTmNWkX2zekPnL4tXoyH2NdPhNgdfX6959gKA44OY7F0fIhc0KkHWeYKvGW8EK-UJ7SbgdERhkuhgjANTCjwIk_RPWipIyFxVpNLkPjeS-yykoFHNqYm7WQPgWFoj-pJ5Q2sZmzPysJsux6aNpXMPjMUVhUD2nGhNzspF-cFvX_mbp4ZDHevs2s2iuU7tdqtszVT3GDr1k8s-DNLZv38JpsM55T5wXPUgOnKcDDLKvmr4LZCEG9SGjl9VTk75fmKVvB4aulS-DF95qPRG4eGXOA1-fQtdnQhsr7NegVKb4PxKHRzF8IYQIMfZ24sPRARQKyCTAYm7TPZCDbRluqcKm6cJNX-ncIpTy2nhLojsd3RZ0771Kym-vgH_hX1WYslou7qRjmfJtbukzgHH0AaH4T20WojEwigUrEpoARE1mdb1ONJfeq1dTfJDlGnEXmf6LNHFYLIOgpS-2m6WiyS8Ycv_wE6_NQBPbWgvERx6NSewMD_RCRgHeRmB4kuR3eaN0g_G6kskt_GiU82Ont-88O2mV5KGX6FKVcVJnBxLhEg5k6t4q1kRSwE7Xj3meoof0f03Zbi-FvFlR4oWuJUd__-s7bYFXQmybvxwf49dlVQ5EYZS9Em6y3nK3Mf485l9qAycM6-XrRH-QXhApmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driver+fatigue+detection+through+multiple+entropy+fusion+analysis+in+an+EEG-based+system&rft.jtitle=PloS+one&rft.au=Min%2C+Jianliang&rft.au=Wang%2C+Ping&rft.au=Hu%2C+Jianfeng&rft.date=2017-12-08&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=12&rft.issue=12&rft.spage=e0188756&rft_id=info:doi/10.1371%2Fjournal.pone.0188756&rft.externalDocID=A517979432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |