Multi-group diagnostic classification of high-dimensional data using differential scanning calorimetry plasma thermograms

The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood plasma samples and relate these to a subject's health status. The analysis and classification of thermograms is challenging because of the...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 8; p. e0220765
Main Authors Rai, Shesh N., Srivastava, Sudhir, Pan, Jianmin, Wu, Xiaoyong, Rai, Somesh P., Mekmaysy, Chongkham S., DeLeeuw, Lynn, Chaires, Jonathan B., Garbett, Nichola C.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.08.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0220765

Cover

Loading…
Abstract The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood plasma samples and relate these to a subject's health status. The analysis and classification of thermograms is challenging because of the high-dimensionality of the dataset. There are various methods for group classification using high-dimensional data sets; however, the impact of using high-dimensional data sets for cancer classification has been poorly understood. In the present article, we proposed a statistical approach for data reduction and a parametric method (PM) for modeling of high-dimensional data sets for two- and three- group classification using DSC and demographic data. We compared the PM to the non-parametric classification method K-nearest neighbors (KNN) and the semi-parametric classification method KNN with dynamic time warping (DTW). We evaluated the performance of these methods for multiple two-group classifications: (i) normal versus cervical cancer, (ii) normal versus lung cancer, (iii) normal versus cancer (cervical + lung), (iv) lung cancer versus cervical cancer as well as for three-group classification: normal versus cervical cancer versus lung cancer. In general, performance for two-group classification was high whereas three-group classification was more challenging, with all three methods predicting normal samples more accurately than cancer samples. Moreover, specificity of the PM method was mostly higher or the same as KNN and DTW-KNN with lower sensitivity. The performance of KNN and DTW-KNN decreased with the inclusion of demographic data, whereas similar performance was observed for the PM which could be explained by the fact that the PM uses fewer parameters as compared to KNN and DTW-KNN methods and is thus less susceptible to the risk of overfitting. More importantly the accuracy of the PM can be increased by using a greater number of quantile data points and by the inclusion of additional demographic and clinical data, providing a substantial advantage over KNN and DTW-KNN methods.
AbstractList The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood plasma samples and relate these to a subject’s health status. The analysis and classification of thermograms is challenging because of the high-dimensionality of the dataset. There are various methods for group classification using high-dimensional data sets; however, the impact of using high-dimensional data sets for cancer classification has been poorly understood. In the present article, we proposed a statistical approach for data reduction and a parametric method (PM) for modeling of high-dimensional data sets for two- and three- group classification using DSC and demographic data. We compared the PM to the non-parametric classification method K-nearest neighbors (KNN) and the semi-parametric classification method KNN with dynamic time warping (DTW). We evaluated the performance of these methods for multiple two-group classifications: (i) normal versus cervical cancer, (ii) normal versus lung cancer, (iii) normal versus cancer (cervical + lung), (iv) lung cancer versus cervical cancer as well as for three-group classification: normal versus cervical cancer versus lung cancer. In general, performance for two-group classification was high whereas three-group classification was more challenging, with all three methods predicting normal samples more accurately than cancer samples. Moreover, specificity of the PM method was mostly higher or the same as KNN and DTW-KNN with lower sensitivity. The performance of KNN and DTW-KNN decreased with the inclusion of demographic data, whereas similar performance was observed for the PM which could be explained by the fact that the PM uses fewer parameters as compared to KNN and DTW-KNN methods and is thus less susceptible to the risk of overfitting. More importantly the accuracy of the PM can be increased by using a greater number of quantile data points and by the inclusion of additional demographic and clinical data, providing a substantial advantage over KNN and DTW-KNN methods.
The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood plasma samples and relate these to a subject's health status. The analysis and classification of thermograms is challenging because of the high-dimensionality of the dataset. There are various methods for group classification using high-dimensional data sets; however, the impact of using high-dimensional data sets for cancer classification has been poorly understood. In the present article, we proposed a statistical approach for data reduction and a parametric method (PM) for modeling of high-dimensional data sets for two- and three- group classification using DSC and demographic data. We compared the PM to the non-parametric classification method K-nearest neighbors (KNN) and the semi-parametric classification method KNN with dynamic time warping (DTW). We evaluated the performance of these methods for multiple two-group classifications: (i) normal versus cervical cancer, (ii) normal versus lung cancer, (iii) normal versus cancer (cervical + lung), (iv) lung cancer versus cervical cancer as well as for three-group classification: normal versus cervical cancer versus lung cancer. In general, performance for two-group classification was high whereas three-group classification was more challenging, with all three methods predicting normal samples more accurately than cancer samples. Moreover, specificity of the PM method was mostly higher or the same as KNN and DTW-KNN with lower sensitivity. The performance of KNN and DTW-KNN decreased with the inclusion of demographic data, whereas similar performance was observed for the PM which could be explained by the fact that the PM uses fewer parameters as compared to KNN and DTW-KNN methods and is thus less susceptible to the risk of overfitting. More importantly the accuracy of the PM can be increased by using a greater number of quantile data points and by the inclusion of additional demographic and clinical data, providing a substantial advantage over KNN and DTW-KNN methods.The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood plasma samples and relate these to a subject's health status. The analysis and classification of thermograms is challenging because of the high-dimensionality of the dataset. There are various methods for group classification using high-dimensional data sets; however, the impact of using high-dimensional data sets for cancer classification has been poorly understood. In the present article, we proposed a statistical approach for data reduction and a parametric method (PM) for modeling of high-dimensional data sets for two- and three- group classification using DSC and demographic data. We compared the PM to the non-parametric classification method K-nearest neighbors (KNN) and the semi-parametric classification method KNN with dynamic time warping (DTW). We evaluated the performance of these methods for multiple two-group classifications: (i) normal versus cervical cancer, (ii) normal versus lung cancer, (iii) normal versus cancer (cervical + lung), (iv) lung cancer versus cervical cancer as well as for three-group classification: normal versus cervical cancer versus lung cancer. In general, performance for two-group classification was high whereas three-group classification was more challenging, with all three methods predicting normal samples more accurately than cancer samples. Moreover, specificity of the PM method was mostly higher or the same as KNN and DTW-KNN with lower sensitivity. The performance of KNN and DTW-KNN decreased with the inclusion of demographic data, whereas similar performance was observed for the PM which could be explained by the fact that the PM uses fewer parameters as compared to KNN and DTW-KNN methods and is thus less susceptible to the risk of overfitting. More importantly the accuracy of the PM can be increased by using a greater number of quantile data points and by the inclusion of additional demographic and clinical data, providing a substantial advantage over KNN and DTW-KNN methods.
Audience Academic
Author Rai, Shesh N.
Srivastava, Sudhir
DeLeeuw, Lynn
Pan, Jianmin
Wu, Xiaoyong
Mekmaysy, Chongkham S.
Chaires, Jonathan B.
Rai, Somesh P.
Garbett, Nichola C.
AuthorAffiliation Universidad de Granada, SPAIN
2 Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
1 Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
4 School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, United States of America
3 Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
6 Biophysical Core Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
5 Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
AuthorAffiliation_xml – name: 1 Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
– name: 4 School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, United States of America
– name: 6 Biophysical Core Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
– name: 5 Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
– name: 3 Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
– name: 2 Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
– name: Universidad de Granada, SPAIN
Author_xml – sequence: 1
  givenname: Shesh N.
  orcidid: 0000-0002-8377-353X
  surname: Rai
  fullname: Rai, Shesh N.
– sequence: 2
  givenname: Sudhir
  surname: Srivastava
  fullname: Srivastava, Sudhir
– sequence: 3
  givenname: Jianmin
  surname: Pan
  fullname: Pan, Jianmin
– sequence: 4
  givenname: Xiaoyong
  surname: Wu
  fullname: Wu, Xiaoyong
– sequence: 5
  givenname: Somesh P.
  surname: Rai
  fullname: Rai, Somesh P.
– sequence: 6
  givenname: Chongkham S.
  surname: Mekmaysy
  fullname: Mekmaysy, Chongkham S.
– sequence: 7
  givenname: Lynn
  surname: DeLeeuw
  fullname: DeLeeuw, Lynn
– sequence: 8
  givenname: Jonathan B.
  surname: Chaires
  fullname: Chaires, Jonathan B.
– sequence: 9
  givenname: Nichola C.
  surname: Garbett
  fullname: Garbett, Nichola C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31430304$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWNts_2BshsHYLpLpw5ajXQxK2Uego7CvW3EiS46KLKWSPJZ_P7lJS1LKGL6QOXre90gvOqfFkfNOFcVzjGaYNvjdlR-CAztb5_IMEYIaVj8qTjCnZMoIokd7_8fFaYxXCNV0ztiT4pjiiiKKqpNi83WwyUy74Id12RronI_JyFJaiNFoIyEZ70qvy5XpVtPW9MrFXAFbtpCgHKJxXRZqrYJyyeR6lODcWJVgfciCFDblOvv1UKaVCr3vAvTxafFYg43q2W6dFD8_ffxx_mV6cfl5cX52MZWMkzStUF4lZi1QBg3RS4YJoZy1jHCFNa6JqrHWmDWKVxlFRNMl4UuadxtaUzopXm5919ZHsUstCkIaNqd0NJsUiy3RergS63xkCBvhwYibgg-dgJBDsUrwijbQEl5Lzat2rkEqkHyO66bmvG5Hrw-7bsOyV63MmQSwB6aHO86sROd_C9Yg3DSjwZudQfDXg4pJ9CZKZS045Yfx3PMaI8yrJqOv7qEP325HdZAvYJz2ua8cTcVZzRmnufGY0uwBKn-t6o3MT0ybXD8QvD0QZCapP6mDIUax-P7t_9nLX4fs6z12pcCmVfR2GJ9hPARf7Cd9F_Ht285AtQVk8DEGpe8QjMQ4QrdxiXGExG6Esuz9PZk06WYKciLG_lv8F-CLIx4
CitedBy_id crossref_primary_10_1371_journal_pone_0271008
crossref_primary_10_3390_cancers14246147
crossref_primary_10_15406_bbij_2020_09_00305
crossref_primary_10_2174_0929866529666220416164305
crossref_primary_10_1021_acssensors_0c01837
crossref_primary_10_3390_cancers13215326
crossref_primary_10_1007_s10973_020_10162_7
crossref_primary_10_3390_cancers14163884
Cites_doi 10.1227/01.neu.0000430296.23799.cd
10.1529/biophysj.107.119453
10.1007/BFb0100551
10.1145/1143844.1143959
10.1371/journal.pone.0186232
10.1007/s10973-009-0602-6
10.1017/CBO9780511812651
10.1093/biomet/52.3-4.591
10.1373/clinchem.2007.091165
10.1016/j.bbagen.2018.04.020
10.1007/s10973-011-1800-6
10.1007/BF00994018
10.1016/j.semnephrol.2007.09.004
10.1007/s10973-015-4426-2
10.1016/j.bbagen.2013.05.007
10.1016/j.yexmp.2008.12.001
10.1109/TPAMI.2007.1093
10.1371/journal.pone.0084710
10.1016/j.bbagen.2015.10.004
10.1016/j.tca.2011.06.019
10.1021/ac202055m
10.1016/j.bpc.2010.09.007
10.1007/978-0-387-21706-2
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0220765
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints (Gale in Context)
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database

MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
DocumentTitleAlternate Multi-group diagnostic classification of high-dimensional data
EISSN 1932-6203
ExternalDocumentID 2276833122
oai_doaj_org_article_9437ad295cf94d8faceac981575995d2
PMC6701772
A596937013
31430304
10_1371_journal_pone_0220765
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Louisville Kentucky
United States--US
GeographicLocations_xml – name: Louisville Kentucky
– name: United States--US
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA187345
– fundername: NIAID NIH HHS
  grantid: R01 AI129959
– fundername: NIGMS NIH HHS
  grantid: P20 GM103482
– fundername: NCRR NIH HHS
  grantid: P20 RR018733
– fundername: ;
  grantid: P20 RR018733
– fundername: ;
  grantid: P20 GM103482
– fundername: ;
  grantid: W81XWH-15-1-0178
– fundername: ;
  grantid: COMMFUND-1517-RFP-017
– fundername: ;
  grantid: R21CA187345
– fundername: ;
  grantid: GB170558
– fundername: ;
  grantid: R01AI129959
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-40c69c16da36a72fb6122396d629e1f152e51ff167e94c6902f3b29b39e173533
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:03:57 EDT 2023
Wed Aug 27 01:13:12 EDT 2025
Thu Aug 21 13:53:52 EDT 2025
Fri Jul 11 04:01:00 EDT 2025
Fri Jul 25 11:19:58 EDT 2025
Tue Jun 17 21:17:38 EDT 2025
Tue Jun 10 20:50:30 EDT 2025
Fri Jun 27 03:30:42 EDT 2025
Fri Jun 27 04:32:11 EDT 2025
Thu May 22 21:17:21 EDT 2025
Wed Feb 19 02:30:38 EST 2025
Tue Jul 01 02:55:47 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Creative Commons CC0 public domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-40c69c16da36a72fb6122396d629e1f152e51ff167e94c6902f3b29b39e173533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: NCG is a co-inventor on a patent application describing approaches for the analysis of DSC plasma thermogram data and their use for diagnostic classification (Garbett, N.C., and Brock, G.N. “Methods of Characterizing and/or Predicting Risk Associated with a Biological Sample Using Thermal Stability Profiles,” U.S. PCT Application PCT/US16/57416, Oct. 2016). NCG is a consultant for TA Instruments, Inc., a supplier of calorimetry instrumentation but not the supplier of the DSC instrument used to collect data for this study. This does not alter the authors’ adherence to all journal policies on sharing data and materials.
ORCID 0000-0002-8377-353X
OpenAccessLink https://doaj.org/article/9437ad295cf94d8faceac981575995d2
PMID 31430304
PQID 2276833122
PQPubID 1436336
PageCount e0220765
ParticipantIDs plos_journals_2276833122
doaj_primary_oai_doaj_org_article_9437ad295cf94d8faceac981575995d2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6701772
proquest_miscellaneous_2285101947
proquest_journals_2276833122
gale_infotracmisc_A596937013
gale_infotracacademiconefile_A596937013
gale_incontextgauss_ISR_A596937013
gale_incontextgauss_IOV_A596937013
gale_healthsolutions_A596937013
pubmed_primary_31430304
crossref_primary_10_1371_journal_pone_0220765
crossref_citationtrail_10_1371_journal_pone_0220765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-20
PublicationDateYYYYMMDD 2019-08-20
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SK Kendrick (pone.0220765.ref015) 2017; 12
WN Venables (pone.0220765.ref025) 2002
SN Rai (pone.0220765.ref016) 2013; 3
CC Chang (pone.0220765.ref032) 2011; 2
AA Chagovetz (pone.0220765.ref010) 2013; 73
NC Garbett (pone.0220765.ref007) 2007; 27
S Todinova (pone.0220765.ref013) 2011; 83
K Crammer (pone.0220765.ref033) 2002; 2
L Kikalishvili (pone.0220765.ref014) 2015; 120
Y Sun (pone.0220765.ref020) 2007; 29
NC Garbett (pone.0220765.ref001) 2013; 1830
NC Garbett (pone.0220765.ref030) 2008; 94
S Vega (pone.0220765.ref018) 2015; 5
C Cortes (pone.0220765.ref031) 1995; 20
S Todinova (pone.0220765.ref017) 2016; 20
E Mayoraz (pone.0220765.ref034) 1999; 1607
TJ Hastie (pone.0220765.ref024) 1992
T Fekecs (pone.0220765.ref011) 2012; 108
DJ Fish (pone.0220765.ref008) 2010; 152
pone.0220765.ref019
A Velazquez-Campoy (pone.0220765.ref021) 2018; 1862
BD Ripley (pone.0220765.ref027) 1996
A Michnik (pone.0220765.ref012) 2010; 102
T Giorgino (pone.0220765.ref028) 2009; 31
NC Garbett (pone.0220765.ref002) 2014; 9
J Fox (pone.0220765.ref022) 2011
M Kuhn (pone.0220765.ref026) 2008; 28
NC Garbett (pone.0220765.ref006) 2007; 53
D Xiang (pone.0220765.ref005) 2010; 28
NC Garbett (pone.0220765.ref004) 2009; 86
I Zapf (pone.0220765.ref009) 2011; 524
SS Shapiro (pone.0220765.ref023) 1965; 52
NC Garbett (pone.0220765.ref003) 2016; 1860
R Core Team (pone.0220765.ref029) 2018
References_xml – volume: 73
  start-page: 289
  issue: 2
  year: 2013
  ident: pone.0220765.ref010
  article-title: Differential scanning calorimetry of gliomas: a new tool in brain cancer diagnostics?
  publication-title: Neurosurgery
  doi: 10.1227/01.neu.0000430296.23799.cd
– volume: 94
  start-page: 1377
  issue: 4
  year: 2008
  ident: pone.0220765.ref030
  article-title: Calorimetry outside the box: A new window into the plasma proteome
  publication-title: Biophys J
  doi: 10.1529/biophysj.107.119453
– volume: 1607
  start-page: 833
  year: 1999
  ident: pone.0220765.ref034
  article-title: Support vector machines for multi-class classification
  publication-title: Lect Notes Comput Sc
  doi: 10.1007/BFb0100551
– ident: pone.0220765.ref019
  doi: 10.1145/1143844.1143959
– volume: 12
  issue: 11
  year: 2017
  ident: pone.0220765.ref015
  article-title: Application and interpretation of functional data analysis techniques to differential scanning calorimetry data from lupus patients
  publication-title: Plos One
  doi: 10.1371/journal.pone.0186232
– volume: 102
  start-page: 57
  issue: 1
  year: 2010
  ident: pone.0220765.ref012
  article-title: Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-009-0602-6
– volume-title: Pattern Recognition and Neural Networks
  year: 1996
  ident: pone.0220765.ref027
  doi: 10.1017/CBO9780511812651
– volume-title: R: A language and environment for statistical computing
  year: 2018
  ident: pone.0220765.ref029
– volume: 52
  start-page: 591
  issue: 3–4
  year: 1965
  ident: pone.0220765.ref023
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 53
  start-page: 2012
  issue: 11
  year: 2007
  ident: pone.0220765.ref006
  article-title: Interrogation of the plasma proteome with differential scanning calorimetry
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2007.091165
– volume: 1862
  start-page: 1701
  issue: 8
  year: 2018
  ident: pone.0220765.ref021
  article-title: Thermal liquid biopsy for monitoring melanoma patients under surveillance during treatment: A pilot study
  publication-title: Biochim Biophys Acta Gen Subj
  doi: 10.1016/j.bbagen.2018.04.020
– volume: 28
  issue: 15
  year: 2010
  ident: pone.0220765.ref005
  article-title: Differential scanning calorimetry of blood plasma for lune cancer diagnosis
  publication-title: J Clin Oncol
– volume: 108
  start-page: 149
  issue: 1
  year: 2012
  ident: pone.0220765.ref011
  article-title: Differential scanning calorimetry (DSC) analysis of human plasma in melanoma patients with or without regional lymph node metastases
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-011-1800-6
– volume: 5
  year: 2015
  ident: pone.0220765.ref018
  article-title: Deconvolution Analysis for Classifying Gastric Adenocarcinoma Patients Based on Differential Scanning Calorimetry Serum Thermograms
  publication-title: Sci Rep-Uk
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: pone.0220765.ref031
  article-title: Support-Vector Networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 27
  start-page: 621
  issue: 6
  year: 2007
  ident: pone.0220765.ref007
  article-title: Calorimetric analysis of the plasma proteome
  publication-title: Semin Nephrol
  doi: 10.1016/j.semnephrol.2007.09.004
– volume: 120
  start-page: 501
  issue: 1
  year: 2015
  ident: pone.0220765.ref014
  article-title: Thermal stability of blood plasma proteins of breast cancer patients, DSC study
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-015-4426-2
– volume: 1830
  start-page: 4675
  issue: 10
  year: 2013
  ident: pone.0220765.ref001
  article-title: Calorimetric analysis of the plasma proteome: Identification of type 1 diabetes patients with early renal function decline
  publication-title: Bba-Gen Subjects
  doi: 10.1016/j.bbagen.2013.05.007
– volume: 86
  start-page: 186
  issue: 3
  year: 2009
  ident: pone.0220765.ref004
  article-title: Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring
  publication-title: Exp Mol Pathol
  doi: 10.1016/j.yexmp.2008.12.001
– volume: 29
  start-page: 1035
  issue: 6
  year: 2007
  ident: pone.0220765.ref020
  article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1093
– volume: 9
  start-page: e84710
  issue: 1
  year: 2014
  ident: pone.0220765.ref002
  article-title: Detection of cervical cancer biomarker patterns in blood plasma and urine by differential scanning calorimetry and mass spectrometry
  publication-title: Plos One
  doi: 10.1371/journal.pone.0084710
– volume: 1860
  start-page: 981
  issue: 5
  year: 2016
  ident: pone.0220765.ref003
  article-title: Differential scanning calorimetry as a complementary diagnostic tool for the evaluation of biological samples
  publication-title: Bba-Gen Subjects
  doi: 10.1016/j.bbagen.2015.10.004
– volume-title: Chapter 6 of Statistical Models in S
  year: 1992
  ident: pone.0220765.ref024
– volume: 28
  issue: 5
  year: 2008
  ident: pone.0220765.ref026
  article-title: Caret package
  publication-title: Journal of Statistical Software
– volume: 524
  start-page: 88
  issue: 1
  year: 2011
  ident: pone.0220765.ref009
  article-title: DSC analysis of human plasma in breast cancer patients
  publication-title: Thermochimica Acta
  doi: 10.1016/j.tca.2011.06.019
– volume: 20
  start-page: 115
  issue: 1
  year: 2016
  ident: pone.0220765.ref017
  article-title: Blood plasma thermograms dataset analysis by means of intercriteria and correlation analyses for the case of colorectal cancer
  publication-title: International Journal Bioautomation
– volume: 2
  issue: 3
  year: 2011
  ident: pone.0220765.ref032
  article-title: LIBSVM: A Library for Support Vector Machines
  publication-title: Acm T Intel Syst Tec
– volume-title: An {R} Companion to Applied Regression
  year: 2011
  ident: pone.0220765.ref022
– volume: 3
  start-page: 1
  year: 2013
  ident: pone.0220765.ref016
  article-title: Group classification based on high-dimensional data: application to differential scanning calorimetry plasma thermogram analysis of cervical cancer and control samples
  publication-title: Dove Press Journal, Open Access Medical Statistics
– volume: 83
  start-page: 7992
  issue: 20
  year: 2011
  ident: pone.0220765.ref013
  article-title: Microcalorimetry of blood serum proteome: a modified interaction network in the multiple myeloma case
  publication-title: Anal Chem
  doi: 10.1021/ac202055m
– volume: 2
  start-page: 265
  issue: 2
  year: 2002
  ident: pone.0220765.ref033
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: J Mach Learn Res
– volume: 31
  start-page: 24
  issue: 7
  year: 2009
  ident: pone.0220765.ref028
  publication-title: Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package
– volume: 152
  start-page: 184
  issue: 1–3
  year: 2010
  ident: pone.0220765.ref008
  article-title: Statistical analysis of plasma thermograms measured by differential scanning calorimetry
  publication-title: Biophys Chem
  doi: 10.1016/j.bpc.2010.09.007
– volume-title: Modern Applied Statistics with S
  year: 2002
  ident: pone.0220765.ref025
  doi: 10.1007/978-0-387-21706-2
SSID ssj0053866
Score 2.3585
Snippet The thermoanalytical technique differential scanning calorimetry (DSC) has been applied to characterize protein denaturation patterns (thermograms) in blood...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0220765
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Bioinformatics
Biology and Life Sciences
Biopolymer denaturation
Blood plasma
Blood Proteins - chemistry
Calorimetry
Calorimetry, Differential Scanning - methods
Care and treatment
Cervical cancer
Cervix
Classification
Comparative analysis
Computer and Information Sciences
Consent
Data points
Data reduction
Datasets
Demographics
Diagnostic systems
Differential scanning calorimetry
Disease
Female
Generalized linear models
Health care
Heat measurement
Humans
Lung cancer
Lung diseases
Lung Neoplasms - blood
Lung Neoplasms - diagnosis
Male
Medical diagnosis
Medicine
Medicine and Health Sciences
Methods
Middle Aged
People and Places
Physical Sciences
Protein Denaturation
Regression Analysis
Review boards
Statistical methods
Uterine Cervical Neoplasms - blood
Uterine Cervical Neoplasms - diagnosis
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDLRiEBBzSJnbsxMeCqAoSIAFFvUWO7RSkbbJqdg_9952xnWiDKpUDp5XWYys7Mx4_b2beEPKaN3CjtplOmbVZWkhXpdoIlVqROWQEBCfAeucvX-XJafH5TJxttfrCnLBADxwUd6gKXmrLlDCtKmzVagNrqCrHxpJKWB994cwbL1MhBsMuljIWyvEyP4x2OVj1nTvA2tISD5Otg8jz9U9RebFa9sNNkPPvzMmto-j4PrkXMSQ9Cs--Q-647gHZibt0oG8jlfS7h-TK19emvnSD2pBVB5OoQcyMSULeLrRvKdIWpxap_gNNB8XUUYpZ8ed0bKICwWBJBxO6HFEwbo-9AdaXV3QF611oimDywud7DY_I6fHHnx9O0thsITVSsTXcI-HT5NJqLnXJ2gagD-NKWsmUy1s45p3I2zaXpVMFiGasBTurhsNoyQE0PiaLDtS7S6hileEccKgQruCONY10omFMM2OdroqE8FHztYlM5NgQY1n712sl3EiCImu0Vx3tlZB0mrUKTBy3yL9Ho06yyKPtvwDvqqN31bd5V0JeoEvUoSh1igb1kVASgB3g54S88hLIpdFhss653gxD_enbr38Q-vF9JvQmCrU9qMPoWCABvwk5umaSezNJiAhmNryLDjxqZagZg0sl52BQmDk69c3DL6dhXBQT8DrXb1CmwuitijIhT8IemDTLAXPjG_aElLPdMVP9fKT789tTmUt4XrjfPf0ftnpG7gKaVfiHP8v2yGJ9uXH7gBjXzXMfHK4BU1Jr_w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVgkRAXRMtHUwoYhAQc0iZ24sQnVBBVQSpIQNHeIsd2tkjbJN3sHvrvmXGc0KAKOK20HkfJjD1-tmfeEPKSl7CjNpEKmTFRmAibh0qnMjRpZJEREAYB5juffBbHp8mneTr3B26dD6scfKJz1KbReEZ-wBgAY85jxt62FyFWjcLbVV9C4ya5hdRlGNKVzccNF8xlIXy6HM_iA2-d_bap7T5mmGa4pFxZjhxr_-ibZ-2y6a4Dnn_GT15ZkI7ukbseSdLD3vRb5Iatt8ntE39Xvk22_LTt6GvPLf3mPrl0Cbehy-Wgpg-zg_5UI4jGqCFnKNpUFHmMQ4Pc_z1vB8VYUoph8gs6VFUB77Ckne7LHlGwdoPFAtarS9rC884VRXR57gLAugfk9OjD9_fHoa--EGoh2Ro2lvCrY2EUFypjVQlYiHEpjGDSxhWs-zaNqyoWmZUJiEasAsPLkkNrxgFFPiSzGjS9Q6hkueYcgGma2oRbVpbCpiVjimljVZ4EhA9GKLSnJscKGcvC3bdlsEXpdVqg6QpvuoCEY6-2p-b4h_w7tO8oi8Ta7o9mtSj8PC1kwjNlmEx1JROTV0rDkJV5jHVMZWpYQJ7h6Cj6LNXRPRSHqRSA9ABQB-SFk0ByjRqjdxZq03XFxy8__kPo29eJ0CsvVDWgDq18xgR8E5J2TST3JpLgIvSkeQfH8qCVrvg9maDnML6vb34-NuNDMSKvts0GZXJ05zLJAvKonw6jZjmAcLxyD0g2mSgT1U9b6p9njttcwPvChm_376_1mNwB4CrxbJ9Fe2S2Xm3sEwCH6_Kp8wC_ABlHZlk
  priority: 102
  providerName: ProQuest
Title Multi-group diagnostic classification of high-dimensional data using differential scanning calorimetry plasma thermograms
URI https://www.ncbi.nlm.nih.gov/pubmed/31430304
https://www.proquest.com/docview/2276833122
https://www.proquest.com/docview/2285101947
https://pubmed.ncbi.nlm.nih.gov/PMC6701772
https://doaj.org/article/9437ad295cf94d8faceac981575995d2
http://dx.doi.org/10.1371/journal.pone.0220765
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYBSDkICHTImd2PEDQtu0MpA20KCob1FiOx1Sl5Smleh_z52TRgQVsZdUqs9Je747_y6-D0Je8Rw8ahNkPjMm8CNhEz_TsfJNHFisCAhCgPnOF5fifBx9msSTHbLp2doysN7q2mE_qfFidvTr5_o9KPw717VBhptJR_OqtEeYOSpFvEv2YG-SqKoXUXeuANrtTi8RtfiCBbxNpvvXXXqblavp31nuwXxW1dtg6d_RlX9sV6N75G6LM-lxIxj7ZMeW98l-q8k1fdOWm377gKxdDq7v0juoaSLvYBLViKsxkMitHa0KiqWNfYPtAJpSHhTDSylGzk_pptEKGIwZrXXTCYmCAFTYP2C5WNM53O8mowg4b1xMWP2QjEdn307P_bYhg6-FYkvwNeFTh8JkXGSSFTnAI8aVMIIpGxYABWwcFkUopFURkAasAFlQOYdRyQFYPiKDEth7QKhiieYcsGoc24hblufCxjljGdPGZknkEb7hfKrbauXYNGOWuiM4CV5Lw8gU1ytt18sjfjdr3lTr-A_9CS5qR4u1tt0X1WKatqqbqojLzDAV60JFJikyDVKskhBbm6rYMI88R5FIm8TVzmKkx7ESAP4AY3vkpaPAehslBvRMs1Vdpx8_f78F0derHtHrlqiogB06a5Mo4D9hHa8e5WGPEqyG7g0foABvuFKnjIHjyTksKMzcCPX24RfdMN4Ug_RKW62QJkELryLpkceNDnSc5YDL8RTeI7KnHT3W90fKH9eu3LmA3ws-4JNbPPcpuQOAVuE7fxYcksFysbLPADQu8yHZlRMJ1-Q0xOvow5DsnZxdfrkautcwQ2cnfgP1iHIA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQEviI2PBQYzCAQ8ZEvsxIkfEBofU8vWIcGG-hYS2ylIXVKaVqj_FH8jd4kTFjQBL3uqVF-i5O5897v4Pgh5wjOIqLWXukxrzw2Eid1UhdLVoWewIyAoAdY7j47F4DR4Pw7Ha-RnWwuDaZWtTawNtS4VfiPfYwyAMec-Y69m312cGoWnq-0IjUYtDs3qB4Rs1cvhW5DvU8YO3p28Gbh2qoCrhGQLCJjgV_lCp1ykEcsz8PGMS6EFk8bPwZ-Z0M9zX0RGBkDqsRxeSGYcViMe4gdQMPlXwPF6uKOicRfgge0Qwpbn8cjfs9qwOysLs4sVrRG6sHPur54S0PmC9dm0rC4Cun_ma55zgAc3yQ2LXOl-o2obZM0Um-TqyJ7Nb5INayYq-tz2sn5xi6zqAl-3rh2huknrg-upQtCOWUq1YtAyp9g32dU4a6DpE0Ixd5ViWv6EtlNcwBpNaaWaMUsUtKvE4QSL-YrO4H5nKUU0e1YnnFW3yemlyOUOWS-A01uEShYrzgEIh6EJuGFZJkyYMZYypU0aBw7hrRASZVuh40SOaVKf70UQEjU8TVB0iRWdQ9zuqlnTCuQf9K9Rvh0tNvKu_yjnk8TahUQGPEo1k6HKZaDjPFWwRWTs49xUGWrmkB3UjqSpiu3MUbIfSgHIEgC8Qx7XFNjMo8BsoUm6rKpk-OHzfxB9-tgjemaJ8hLYoVJboQHvhE3CepTbPUowSaq3vIW63HKlSn5vXriy1e-Llx91y3hTzAAsTLlEmhjdhwwih9xttkPHWQ6gH4_4HRL1NkqP9f2V4tvXupe6gOeFAPPe3x9rh1wbnIyOkqPh8eF9ch1As8RzBeZtk_XFfGkeADBdZA9ra0DJl8s2P78A2kuhMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1JqKNHFBbHwsbDCDQMAha2MnTnxAaDCqlbGBgKHeQmI7HVKXlKYV6l_j1_Fe4oQFTcBlp0b1c5S87xe_D0Ie8xQiaj1IXKb1wPWFidxEBdLVwcBgR0BgAqx3Pj4Rh6f-23EwXiM_m1oYTKtsdGKlqHWh8Bt5nzFwjDn3GOtnNi3iw8Hw5ey7ixOk8KS1GadRs8iRWf2A8K18MToAWj9hbPjm8-tD104YcJWQbAHBE_wqT-iEiyRkWQr2nnEptGDSeBnYNhN4WeaJ0EgfQAcsg5eTKYfVkAf4MRTU_zW49FDGwnEb7IEeEcKW6vHQ61vO2JsVudnD6tYQzdkFU1hNDGjtQm82LcrLnN4_czcvGMPhTXLDerF0v2a7DbJm8k2yfmzP6TfJhlUZJX1m-1o_v0VWVbGvW9WRUF2n-MF-qtCBx4yliklokVHsoexqnDtQ9wyhmMdKMUV_QpuJLqCZprRU9cglCpxW4KCCxXxFZ3C_84SiZ3teJZ-Vt8npldDlDunlgOktQiWLFOfgFAeB8blhaSpMkDKWMKVNEvkO4Q0RYmXbouN0jmlcnfWFEB7VOI2RdLElnUPcdtesbgvyD_hXSN8WFpt6V38U80lsdUQsfR4mmslAZdLXUZYoEBcZeThDVQaaOWQXuSOuK2Rb1RTvB1KAlwnOvEMeVRDY2CNHEZkky7KMR--__AfQp48doKcWKCsAHSqx1RrwTtgwrAO504EE9aQ6y1vIyw1Wyvi3IMPOhr8vX37YLuNNMRswN8USYSI0JdIPHXK3FocWsxwCADzud0jYEZQO6rsr-bezqq-6gOeFYPPe3x9rl6yD4onfjU6Otsl18J8lHjGwwQ7pLeZLcx981EX6oFIGlHy9au3zC3S7pWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-group+diagnostic+classification+of+high-dimensional+data+using+differential+scanning+calorimetry+plasma+thermograms&rft.jtitle=PloS+one&rft.au=Rai%2C+Shesh+N&rft.au=Srivastava%2C+Sudhir&rft.au=Pan%2C+Jianmin&rft.au=Wu%2C+Xiaoyong&rft.date=2019-08-20&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=8&rft.spage=e0220765&rft_id=info:doi/10.1371%2Fjournal.pone.0220765&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon