Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest t...
Saved in:
Published in | PloS one Vol. 14; no. 2; p. e0211558 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.02.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods. |
---|---|
AbstractList | Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods.Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods. Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods. |
Audience | Academic |
Author | Moore, P. J. Lyons, T. J. Gallacher, J. |
AuthorAffiliation | 1 Mathematical Institute, University of Oxford, Oxford, United Kingdom Nathan S Kline Institute, UNITED STATES 2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom |
AuthorAffiliation_xml | – name: 1 Mathematical Institute, University of Oxford, Oxford, United Kingdom – name: 2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom – name: Nathan S Kline Institute, UNITED STATES |
Author_xml | – sequence: 1 givenname: P. J. orcidid: 0000-0001-6171-4072 surname: Moore fullname: Moore, P. J. – sequence: 2 givenname: T. J. surname: Lyons fullname: Lyons, T. J. – sequence: 3 givenname: J. surname: Gallacher fullname: Gallacher, J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30763336$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9uK2zAQhk3Z0j20b1BaQ6G0F0l1sCy7F4Ww9BBYWNgeblVFGiVaFCsr2T1d9TX6en2SyhunxMtSii4sxt__j2aYOc4OGt9Alj3EaIopxy8ufRca6aabFJ4igjFj1Z3sCNeUTEqC6MHe_TA7jvESIUarsryXHVLES0ppeZR9vpCN9uvc-ACxzTcBtFWt9U3uTT5zP1Zg1xB-__wVc20jyAh5F22zzDfShq8pkkdwsFWYkIzaxKdYsJAUspX3s7tGuggPhu9J9vHN6w-n7yZn52_np7OziSpr0k4o0EojXWrGCgbYUF5jDkrymnFVF4VWBpfMKGQACClVzagmZFESziVQaehJ9njru3E-iqE5URBcoboiFOFEzLeE9vJSbIJdy_BdeGnFdcCHpZChtcqB0KpKriql0bjQYGrEiwozSYoFmErx5PVqyNYt1qAVNG2QbmQ6_tPYlVj6L6KknDHWGzwbDIK_6lLrxdpGBc7JBnx3_W7OcFERktAnN9DbqxuopUwF2Mb4lFf1pmLGeIEprnmdqOktVDoa1lalSTI2xUeC5yNBYlr41i5lF6OYv7_4f_b805h9useuQLp2Fb3r-kGKY_DRfqf_tng3wgl4uQVU8DEGMELZVvY-qTTrBEai35dd00S_L2LYlyQuboh3_v-U_QFCOhte |
CitedBy_id | crossref_primary_10_1155_2022_7513717 crossref_primary_10_1016_j_cmpb_2020_105765 crossref_primary_10_1016_j_matpr_2022_04_357 crossref_primary_10_3390_biomedicines12040896 crossref_primary_10_1186_s12944_024_02141_w crossref_primary_10_1155_2021_8439655 crossref_primary_10_1016_j_neucom_2022_09_009 crossref_primary_10_1007_s13042_024_02329_7 crossref_primary_10_1016_j_inffus_2022_11_028 crossref_primary_10_1109_ACCESS_2023_3328331 crossref_primary_10_3389_fnagi_2023_1277731 crossref_primary_10_1038_s41598_023_42796_6 crossref_primary_10_1186_s12874_023_02003_6 crossref_primary_10_3233_ADR_210314 crossref_primary_10_1093_jamiaopen_ooab052 crossref_primary_10_1093_jamiaopen_ooae087 crossref_primary_10_3389_fnagi_2022_935055 crossref_primary_10_1016_j_bspc_2021_102729 crossref_primary_10_3233_JAD_200906 crossref_primary_10_1016_j_future_2020_10_005 crossref_primary_10_1109_ACCESS_2023_3283148 crossref_primary_10_1109_ACCESS_2020_3043715 crossref_primary_10_1016_j_neuroimage_2023_119892 crossref_primary_10_1016_j_neucom_2020_05_087 crossref_primary_10_1038_s41598_024_51985_w crossref_primary_10_1016_j_autcon_2022_104261 crossref_primary_10_1109_TCBB_2022_3202707 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_1155_2022_4190023 crossref_primary_10_1080_24709360_2021_1913709 crossref_primary_10_3389_fnagi_2025_1542514 crossref_primary_10_1007_s00477_021_02160_4 crossref_primary_10_1109_MC_2024_3433669 crossref_primary_10_7717_peerj_cs_1985 crossref_primary_10_1007_s13755_022_00191_x crossref_primary_10_1371_journal_pone_0222212 crossref_primary_10_3390_ijerph192113962 crossref_primary_10_1038_s41598_021_82098_3 crossref_primary_10_1523_ENEURO_0475_20_2021 crossref_primary_10_1111_ggi_14670 crossref_primary_10_1007_s11548_022_02661_9 crossref_primary_10_3389_fnins_2022_807085 crossref_primary_10_1002_alz_13441 crossref_primary_10_1002_alz_12676 crossref_primary_10_1007_s10489_021_02845_x crossref_primary_10_1007_s41060_024_00514_z crossref_primary_10_1186_s12967_020_02550_2 crossref_primary_10_1109_ACCESS_2020_2991477 crossref_primary_10_3390_diagnostics11112103 crossref_primary_10_1016_j_asoc_2024_111749 crossref_primary_10_1016_j_neurobiolaging_2024_08_008 crossref_primary_10_1007_s41060_024_00654_2 crossref_primary_10_1109_ACCESS_2025_3548173 crossref_primary_10_1093_braincomms_fcab299 crossref_primary_10_1371_journal_pone_0244773 crossref_primary_10_1007_s00521_022_07263_9 crossref_primary_10_1016_j_jksuci_2020_12_009 crossref_primary_10_1016_j_arr_2022_101614 crossref_primary_10_1016_j_knosys_2020_106688 crossref_primary_10_1097_CCM_0000000000004510 crossref_primary_10_3233_THC_220598 crossref_primary_10_1016_j_bspc_2023_105767 crossref_primary_10_1016_j_drudis_2024_104216 crossref_primary_10_1371_journal_pone_0264118 crossref_primary_10_1016_j_trci_2019_07_001 crossref_primary_10_1016_j_npep_2024_102457 |
Cites_doi | 10.1016/j.jalz.2014.12.001 10.1023/A:1010920819831 10.1016/j.neuroimage.2016.02.079 10.1016/j.neuroimage.2015.01.048 10.4306/pi.2017.14.2.205 10.1038/nrn1433 10.1212/01.WNL.0000129697.01779.0A 10.3389/fnagi.2017.00329 10.1016/j.jneumeth.2017.12.010 10.1016/j.neuroimage.2015.08.006 10.1016/j.neuroimage.2014.10.002 10.1371/journal.pone.0082450 10.1023/A:1010933404324 10.1016/S1474-4422(07)70178-3 10.1016/j.neuroimage.2017.03.057 10.3233/JAD-131928 10.1016/j.nicl.2014.08.023 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Moore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Moore et al 2019 Moore et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Moore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Moore et al 2019 Moore et al |
CorporateAuthor | for the Alzheimer’s Disease Neuroimaging Initiative Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer’s Disease Neuroimaging Initiative – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0211558 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Random forest prediction of Alzheimer’s disease using pairwise selection from time series data |
EISSN | 1932-6203 |
ExternalDocumentID | 2180982301 oai_doaj_org_article_dc8ae3c6c9d14def9074815a24bef8c7 PMC6375557 A574131979 30763336 10_1371_journal_pone_0211558 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L023784/2 – fundername: Medical Research Council grantid: MR/L023784/1 – fundername: CIHR – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c692t-3e38d0d6d5545e1f37917eca7957c944dcf165fc0fee226c953d22b6277ae3af3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jul 02 11:04:16 EDT 2023 Wed Aug 27 01:30:37 EDT 2025 Thu Aug 21 18:14:40 EDT 2025 Fri Jul 11 06:16:50 EDT 2025 Sat Aug 23 12:26:43 EDT 2025 Tue Jun 17 21:35:47 EDT 2025 Tue Jun 10 20:45:17 EDT 2025 Fri Jun 27 05:12:43 EDT 2025 Fri Jun 27 04:10:12 EDT 2025 Thu May 22 21:22:34 EDT 2025 Mon Jul 21 05:36:17 EDT 2025 Tue Jul 01 02:14:39 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-3e38d0d6d5545e1f37917eca7957c944dcf165fc0fee226c953d22b6277ae3af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Membership of the Alzheimer’s Disease Neuroimaging Initiative can be found in the Acknowledgments section. Competing Interests: PM and JG received funding from the UK Medical Research Council (MRC) Dementias Platform, UK. The Dementias Platform is a multi-million pound public-private partnership, developed and led by the MRC, to accelerate progress in and open up dementias research. This does not alter our adherence to PLOS ONE policies on sharing data and materials. |
ORCID | 0000-0001-6171-4072 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0211558 |
PMID | 30763336 |
PQID | 2180982301 |
PQPubID | 1436336 |
PageCount | e0211558 |
ParticipantIDs | plos_journals_2180982301 doaj_primary_oai_doaj_org_article_dc8ae3c6c9d14def9074815a24bef8c7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6375557 proquest_miscellaneous_2187514822 proquest_journals_2180982301 gale_infotracmisc_A574131979 gale_infotracacademiconefile_A574131979 gale_incontextgauss_ISR_A574131979 gale_incontextgauss_IOV_A574131979 gale_healthsolutions_A574131979 pubmed_primary_30763336 crossref_citationtrail_10_1371_journal_pone_0211558 crossref_primary_10_1371_journal_pone_0211558 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-14 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | MR Arbabshirani (ref15) 2017; 145 EH Seo (ref5) 2017; 14 MW Weiner (ref7) 2017 B Dubois (ref3) 2007; 6 A Lebedev (ref9) 2014; 6 A Sarica (ref12) 2017; 9 ref20 DJ Hand (ref24) 2001; 45 PJ Nestor (ref1) 2004; 10 F Falahati (ref16) 2014; 41 L Breiman (ref23) 2001; 45 A Prestia (ref6) 2015; 11 CE Rasmussen (ref21) 2006; vol. 1 EE Bron (ref17) 2015; 111 ref18 M Ganz (ref8) 2015; 122 T Hastie (ref22) 2009; vol. 2 E Moradi (ref11) 2015; 104 S Dimitriadis (ref13) 2018; 302 S Rathore (ref14) 2017; 155 A Burns (ref2) H Li (ref10) 2014; 9 A Sarica (ref19) 2018 P Tiraboschi (ref4) 2004; 62 |
References_xml | – volume: 11 start-page: 1191 issue: 10 year: 2015 ident: ref6 article-title: Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2014.12.001 – volume: 45 start-page: 171 issue: 2 year: 2001 ident: ref24 article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems publication-title: Machine learning doi: 10.1023/A:1010920819831 – year: 2018 ident: ref19 article-title: Editorial on Special Issue: Machine learning on MCI publication-title: Editorial on Special Issue: Machine learning on MCI – year: 2017 ident: ref7 article-title: Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials publication-title: Alzheimer’s & Dementia – ident: ref20 – volume: 145 start-page: 137 year: 2017 ident: ref15 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 111 start-page: 562 year: 2015 ident: ref17 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.048 – volume: vol. 1 year: 2006 ident: ref21 article-title: Gaussian processes for machine learning – volume: 14 start-page: 205 issue: 2 year: 2017 ident: ref5 article-title: Structural MRI and Amyloid PET Imaging for Prediction of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis publication-title: Psychiatry investigation doi: 10.4306/pi.2017.14.2.205 – volume: 10 start-page: S34 issue: 7 year: 2004 ident: ref1 article-title: Advances in the early detection of Alzheimer’s disease publication-title: Nature medicine doi: 10.1038/nrn1433 – volume: 62 start-page: 1984 issue: 11 year: 2004 ident: ref4 article-title: The importance of neuritic plaques and tangles to the development and evolution of AD publication-title: Neurology doi: 10.1212/01.WNL.0000129697.01779.0A – volume: 9 start-page: 329 year: 2017 ident: ref12 article-title: Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2017.00329 – volume: 302 start-page: 14 year: 2018 ident: ref13 article-title: Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, cMCI and Alzheimer’s disease patients: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database publication-title: Journal of neuroscience methods doi: 10.1016/j.jneumeth.2017.12.010 – volume: 122 start-page: 131 year: 2015 ident: ref8 article-title: Relevant feature set estimation with a knock-out strategy and random forests publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.08.006 – volume: 104 start-page: 398 year: 2015 ident: ref11 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 9 start-page: e82450 issue: 1 year: 2014 ident: ref10 article-title: Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD) conversion publication-title: PloS one doi: 10.1371/journal.pone.0082450 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref23 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 6 start-page: 734 issue: 8 year: 2007 ident: ref3 article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(07)70178-3 – ident: ref18 – volume: vol. 2 year: 2009 ident: ref22 article-title: The elements of statistical learning – volume: 155 start-page: 530 year: 2017 ident: ref14 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 41 start-page: 685 issue: 3 year: 2014 ident: ref16 article-title: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-131928 – ident: ref2 article-title: Alzheimer’s disease publication-title: Alzheimer’s disease – volume: 6 start-page: 115 year: 2014 ident: ref9 article-title: Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.08.023 |
SSID | ssj0053866 |
Score | 2.5706835 |
Snippet | Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods... Time-dependent data collected in studies of Alzheimer’s disease usually has missing and irregularly sampled data points. For this reason time series methods... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0211558 |
SubjectTerms | Age Aged Aged, 80 and over Alzheimer Disease - diagnostic imaging Alzheimer's disease Alzheimers disease Artificial intelligence Benchmarking Biology and Life Sciences Biomarkers Brain research Classification Cognition & reasoning Cognitive ability Computer and Information Sciences Data points Data processing Dementia Demographic variables Demographics Diagnosis Diagnostic imaging Disease Progression Family medical history Female Health risks Humans Image Interpretation, Computer-Assisted Machine Learning Magnetic Resonance Imaging Male Management Medical diagnosis Medical imaging Medical records Medical research Medicine and Health Sciences Memory Middle Aged Neuroimaging Neurology Neurosciences NMR Nuclear magnetic resonance Pattern Recognition, Automated Physical Sciences Research and Analysis Methods Test procedures Time dependence Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhBQxCKhzSxvErOS6IqiABUqGoJyLHdtqVtkm02RUSv56ZxBs1qFI5cI2_rDfzsMfyzDeEvPauZFYwEeeJELHw4IpGeB2Xic4VOJgUAouTP39RJ2fi07k8v9bqC3PCBnrgQXBHzmbGc6ts7phwvsLDXMakSUXpq8z2deSw520PU8MaDJMoFQrluGZHQS-HbVP7Q9jVYBPNJhtRz9c_rsqzdtl0N4Wcf2dOXtuKju-TeyGGpPPhv--QO75-QHaCl3b0TaCSfvuQ_Dw1tWuuKESmMAFtV3gtg6qgTUXny9-XfnHlVwcdDfc0FNPgL2hrFqtf8IR2fZccxGMZCsVG9BRtFmbB1NJH5Oz4w_f3J3HoqBBblafrmHueucQpB0GE9KziGk5r3hqdS21zIZytmJKVTSrvIS6zueQuTUuVag1KMBV_TGY1yHCX0BSwnmHjYqOE1YlR1lmIBl2FVZm5iQjfirewgW4cu14si_4OTcOxY5BWgUopglIiEo9vtQPdxi34d6i5EYtk2f0DMKEimFBxmwlF5AXqvRgqT0eXL-YSwi1YonQekVc9AgkzaszIuTCbris-fv3xD6BvpxPQQQBVDYjDmlAFAd-ERFwT5P4ECW5vJ8O7aKVbqXRFikxseG3K4M2t5d48_HIcxh_FLLvaN5seoyUSw6YReTIY-ihZ2AsU51xFRE9cYCL66Ui9uOz5yhXXUkr99H_oao_chZA1x7x5JvbJbL3a-GcQFq7L5_0K8Afwi2L2 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZguXBBlL8GChiEBBzSJvFfckILoipIgFQo2ltwbGe70jYJya6QOPEavB5PwkzWGwiqgGs8jpMZjz32zHxDyCNni9jwmIdZxHnIHaii5k6FRaQyCQomOMfk5Ddv5dEJfz0TM3_h1vmwyu2a2C_UtjZ4R36QINAUeoXiZ83nEKtGoXfVl9C4SC4hdBmGdKnZcOCCoaT06XJMxQdeOvtNXbl92NtgK01H21GP2j-szZNmWXfnGZ5_xk_-tiEdXiVXvCVJpxvR75ALrrpGdryudvSJB5R-ep18OtaVrc8o2KcwAG1adM6gQGhd0uny66lbnLn2x7fvHfX-Gorh8HPa6EX7BZ7Qrq-Wgz0wHYViQXqKcxfGwRDTG-Tk8OWHF0ehr6wQGpklq5A5ltrISgvGhHBxyRSc2pzRKhPKZJxbU8ZSlCYqnQP7zGSC2SQpZKKUdkyX7CaZVMDFXUIToHUxFjDWkhsVaWmsAavQlpidmemAsC2Dc-Nhx7H6xTLvfWkKjh8bfuUoltyLJSDh0KvZwG78g_45ym6gRdDs_kHdznOvg7k1KXy9gd-xMbeuxHuBNBY64YUrU6MCch8ln28yUAfVz6cCzC5YqlQWkIc9BQJnVBiZM9frrstfvfv4H0Tvj0dEjz1RWQM7jPbZEPBPCMg1otwbUYL6m1HzLs7TLVe6_JeiQM_t3D2_-cHQjC_FaLvK1eueRgkEiE0Ccmsz1QfOwp4gGWMyIGqkBCPWj1uqxWmPWy6ZEkKo23__rDvkMhilGUbGx3yPTFbt2t0Fw29V3Ou1-yeyxFrx priority: 102 providerName: ProQuest |
Title | Random forest prediction of Alzheimer’s disease using pairwise selection from time series data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30763336 https://www.proquest.com/docview/2180982301 https://www.proquest.com/docview/2187514822 https://pubmed.ncbi.nlm.nih.gov/PMC6375557 https://doaj.org/article/dc8ae3c6c9d14def9074815a24bef8c7 http://dx.doi.org/10.1371/journal.pone.0211558 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF61qYR6QZRXDSUsCAk4OIrtfdgHhNKqoSC1oEBQbu5md51GSu1gJ-Jx4m_w9_glzDiOwSgIxMUH74zXnp3ZnfXOfEPII2vGnmYec6MuYy6zYIqKWemOuzISYGCcMUxOPj0TJ0P2asRHW2Rds7USYLFxa4f1pIb5rPPpw-fnYPDPyqoN0lszdeZZajuwZsESGW6THVibJJrqKavPFaBzIaoEuj9x7pIroPciCErU5p9rVQnpX0_crfksKzZ5pb8HV_6yWvWvkauVm0l7K73YI1s2vU72KkMu6JMKbfrpDXI-UKnJLik4r9ABned4coOjRbOE9mZfLuz00ubfv34raHWYQzFWfkLnapp_hDu0KEvpIAfmqlCsVk9RsaEfjD-9SYb943dHJ25VdsHVIvIXbmCD0HSNMOBpcOslgYQtndVKRlzqiDGjE0_wRHcTa8F50xEPjO-PhS-lsoFKgluklYJA9wn1gdZ6WN1YCaZlVwltNLiMJsHUzUg5JFgLONYVJjmWxpjF5UGbhL3JSl4xjlBcjZBD3JprvsLk-Av9IY5dTYuI2uWNLJ_ElYHGRofw9ho-x3jM2AR_GoQeVz4b2yTU0iH3ceTjVXpqPS_EPQ4-GcxjMnLIw5ICUTVSDNuZqGVRxC9fv_8HoreDBtHjiijJQBxaVakS8E2I1tWgPGhQwtygG837qKdrqRSxj3BteLbqAedadzc3P6ib8aEYipfabFnSSI7osb5Dbq9UvZbs2nAcIhtG0BB9syWdXpSg5iKQnHN5578575JdcGYjjKj32AFpLfKlvQcO42LcJttyJOEaHnl47b9ok53D47M3g3b5C6ZdzhE_AFGIc04 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKcIALomwNFGoQCDikTWLHnhwQGpZqhi5IpUVzSzO2Mx1pmoTJjCo48Tf4E_wofgnvJZ5AUAVceo2_LH5-m-O3EPLY6JGvuM_dyOPc5QZEMeFGuiNPRgIELOQck5P39kX_iL8bhsMV8n2ZC4NhlUudWClqnSv8R74VYKEpPBXyXxafXOwahaeryxYaNVvsmM9nsGUrXwzewPo-CYLtt4ev-67tKuAqEQVzlxnW1Z4WGgxpaPyUSdixGJXIKJQq4lyr1BdhqrzUGPBNVBQyHQQjEUiZGJakDJ57iVwGw-uhRMlhs8GDqQlh0_OY9LcsN2wWeWY2wZaC6e62zF_VJaCxBZ1impfnObp_xmv-ZgC3r5Nr1nOlvZrVVsmKyW6QVasbSvrMFrB-fpMcHySZzk8p-MPwAlrM8DAIGYDmKe1Nv5yYyamZ_fj6raT2fIhi-P2YFslkdgZXaFl158E7MP2FzgFPUVbgPRjSeoscXQjNb5NOBlRcIzQArPGxYXIiuJJeIpRW4IXqFLNBo8QhbEngWNky59htYxpXZ3cStjs1vWJcltgui0Pc5q6iLvPxD_wrXLsGi0W6qwv5bBxbmY-16sLXK5iO9rk2Kf6H6PphEvCRSbtKOmQDVz6uM14bVRP3QnDzQDXKyCGPKgQW6sgwEmicLMoyHrz_-B-gDwct0FMLSnMgh0ps9gXMCQuAtZDrLSSoG9UaXkM-XVKljH8JJty55N3zhx82w_hQjO7LTL6oMDLEgrSBQ-7UrN5QFmyQYIwJh8iWELRI3x7JJidVnXTBZBiG8u7fP2uDXOkf7u3Gu4P9nXvkKjjEEUbl-3yddOazhbkPTud89KCSdEqOL1q1_AQvcJgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VICE2iPJqoNABgYCFm9jzihcIBUrUUiiotCg715kZp5FS28SJKljxG_wKn8OXcK89MRhVwKZbz_Fj7tzXeO6DkIfWjHzNfe6FXc49bkEUY26VN-qqUIKACc4xOfntntw-5K-HYrhCvi9zYTCscqkTS0VtMo3_yDsBFprCUyG_k7iwiPdbg-f5Jw87SOFJ67KdRsUiu_bzKWzfimc7W7DWj4Jg8Org5bbnOgx4WobB3GOW9UzXSANGVVg_YQp2L1bHKhRKh5wbnfhSJLqbWAt-ig4FM0EwkoFSsWVxwuC5F8hFxYSPMqaG9WYPpimlS9Vjyu84ztjMs9Rugl0FM95rmMKyY0BtF1r5NCvOcnr_jN38zRgOrpIrzoul_YrtVsmKTa-RVacnCvrEFbN-ep0c7cepyU4o-MbwAprP8GAImYFmCe1PvxzbyYmd_fj6raDurIhiKP6Y5vFkdgpXaFF26sE7MBWGzgFPUW7gPRjeeoMcngvNb5JWClRcIzQArPWxeXIsuVbdWGqjwSM1CWaGhnGbsCWBI-1KnmPnjWlUnuMp2PpU9IpwWSK3LG3i1XflVcmPf-Bf4NrVWCzYXV7IZuPIyX9kdA--XsN0jM-NTfCfRM8XccBHNulp1SYbuPJRlf1aq52oL8DlAzWpwjZ5UCKwaEeK7D-OF0UR7bz7-B-gD_sN0GMHSjIgh45dJgbMCYuBNZDrDSSoHt0YXkM-XVKliH4JKdy55N2zh-_Xw_hQjPRLbbYoMUpgcdqgTW5VrF5TFuyRZIzJNlENIWiQvjmSTo7LmumSKSGEuv33z9ogl0CpRG929nbvkMvgG4cYoO_zddKazxb2Lvif89G9UtApOTpvzfITKD-cVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+prediction+of+Alzheimer%E2%80%99s+disease+using+pairwise+selection+from+time+series+data&rft.jtitle=PloS+one&rft.au=Moore%2C+P.+J.&rft.au=Lyons%2C+T.+J.&rft.au=Gallacher%2C+J.&rft.date=2019-02-14&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0211558&rft_id=info%3Apmid%2F30763336&rft.externalDocID=PMC6375557 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |