Random forest prediction of Alzheimer’s disease using pairwise selection from time series data

Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest t...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 2; p. e0211558
Main Authors Moore, P. J., Lyons, T. J., Gallacher, J.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.02.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods.
AbstractList Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods.Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods.
Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a random forest to learn the relationship between pairs of data points at different time separations. The input vector is a summary of the time series history and it includes both demographic and non-time varying variables such as genetic data. To test the method we use data from the TADPOLE grand challenge, an initiative which aims to predict the evolution of subjects at risk of Alzheimer's disease using demographic, physical and cognitive input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and comparable with other methods.
Audience Academic
Author Moore, P. J.
Lyons, T. J.
Gallacher, J.
AuthorAffiliation 1 Mathematical Institute, University of Oxford, Oxford, United Kingdom
Nathan S Kline Institute, UNITED STATES
2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom
AuthorAffiliation_xml – name: 1 Mathematical Institute, University of Oxford, Oxford, United Kingdom
– name: 2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom
– name: Nathan S Kline Institute, UNITED STATES
Author_xml – sequence: 1
  givenname: P. J.
  orcidid: 0000-0001-6171-4072
  surname: Moore
  fullname: Moore, P. J.
– sequence: 2
  givenname: T. J.
  surname: Lyons
  fullname: Lyons, T. J.
– sequence: 3
  givenname: J.
  surname: Gallacher
  fullname: Gallacher, J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30763336$$D View this record in MEDLINE/PubMed
BookMark eNqNk9uK2zAQhk3Z0j20b1BaQ6G0F0l1sCy7F4Ww9BBYWNgeblVFGiVaFCsr2T1d9TX6en2SyhunxMtSii4sxt__j2aYOc4OGt9Alj3EaIopxy8ufRca6aabFJ4igjFj1Z3sCNeUTEqC6MHe_TA7jvESIUarsryXHVLES0ppeZR9vpCN9uvc-ACxzTcBtFWt9U3uTT5zP1Zg1xB-__wVc20jyAh5F22zzDfShq8pkkdwsFWYkIzaxKdYsJAUspX3s7tGuggPhu9J9vHN6w-n7yZn52_np7OziSpr0k4o0EojXWrGCgbYUF5jDkrymnFVF4VWBpfMKGQACClVzagmZFESziVQaehJ9njru3E-iqE5URBcoboiFOFEzLeE9vJSbIJdy_BdeGnFdcCHpZChtcqB0KpKriql0bjQYGrEiwozSYoFmErx5PVqyNYt1qAVNG2QbmQ6_tPYlVj6L6KknDHWGzwbDIK_6lLrxdpGBc7JBnx3_W7OcFERktAnN9DbqxuopUwF2Mb4lFf1pmLGeIEprnmdqOktVDoa1lalSTI2xUeC5yNBYlr41i5lF6OYv7_4f_b805h9useuQLp2Fb3r-kGKY_DRfqf_tng3wgl4uQVU8DEGMELZVvY-qTTrBEai35dd00S_L2LYlyQuboh3_v-U_QFCOhte
CitedBy_id crossref_primary_10_1155_2022_7513717
crossref_primary_10_1016_j_cmpb_2020_105765
crossref_primary_10_1016_j_matpr_2022_04_357
crossref_primary_10_3390_biomedicines12040896
crossref_primary_10_1186_s12944_024_02141_w
crossref_primary_10_1155_2021_8439655
crossref_primary_10_1016_j_neucom_2022_09_009
crossref_primary_10_1007_s13042_024_02329_7
crossref_primary_10_1016_j_inffus_2022_11_028
crossref_primary_10_1109_ACCESS_2023_3328331
crossref_primary_10_3389_fnagi_2023_1277731
crossref_primary_10_1038_s41598_023_42796_6
crossref_primary_10_1186_s12874_023_02003_6
crossref_primary_10_3233_ADR_210314
crossref_primary_10_1093_jamiaopen_ooab052
crossref_primary_10_1093_jamiaopen_ooae087
crossref_primary_10_3389_fnagi_2022_935055
crossref_primary_10_1016_j_bspc_2021_102729
crossref_primary_10_3233_JAD_200906
crossref_primary_10_1016_j_future_2020_10_005
crossref_primary_10_1109_ACCESS_2023_3283148
crossref_primary_10_1109_ACCESS_2020_3043715
crossref_primary_10_1016_j_neuroimage_2023_119892
crossref_primary_10_1016_j_neucom_2020_05_087
crossref_primary_10_1038_s41598_024_51985_w
crossref_primary_10_1016_j_autcon_2022_104261
crossref_primary_10_1109_TCBB_2022_3202707
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_1155_2022_4190023
crossref_primary_10_1080_24709360_2021_1913709
crossref_primary_10_3389_fnagi_2025_1542514
crossref_primary_10_1007_s00477_021_02160_4
crossref_primary_10_1109_MC_2024_3433669
crossref_primary_10_7717_peerj_cs_1985
crossref_primary_10_1007_s13755_022_00191_x
crossref_primary_10_1371_journal_pone_0222212
crossref_primary_10_3390_ijerph192113962
crossref_primary_10_1038_s41598_021_82098_3
crossref_primary_10_1523_ENEURO_0475_20_2021
crossref_primary_10_1111_ggi_14670
crossref_primary_10_1007_s11548_022_02661_9
crossref_primary_10_3389_fnins_2022_807085
crossref_primary_10_1002_alz_13441
crossref_primary_10_1002_alz_12676
crossref_primary_10_1007_s10489_021_02845_x
crossref_primary_10_1007_s41060_024_00514_z
crossref_primary_10_1186_s12967_020_02550_2
crossref_primary_10_1109_ACCESS_2020_2991477
crossref_primary_10_3390_diagnostics11112103
crossref_primary_10_1016_j_asoc_2024_111749
crossref_primary_10_1016_j_neurobiolaging_2024_08_008
crossref_primary_10_1007_s41060_024_00654_2
crossref_primary_10_1109_ACCESS_2025_3548173
crossref_primary_10_1093_braincomms_fcab299
crossref_primary_10_1371_journal_pone_0244773
crossref_primary_10_1007_s00521_022_07263_9
crossref_primary_10_1016_j_jksuci_2020_12_009
crossref_primary_10_1016_j_arr_2022_101614
crossref_primary_10_1016_j_knosys_2020_106688
crossref_primary_10_1097_CCM_0000000000004510
crossref_primary_10_3233_THC_220598
crossref_primary_10_1016_j_bspc_2023_105767
crossref_primary_10_1016_j_drudis_2024_104216
crossref_primary_10_1371_journal_pone_0264118
crossref_primary_10_1016_j_trci_2019_07_001
crossref_primary_10_1016_j_npep_2024_102457
Cites_doi 10.1016/j.jalz.2014.12.001
10.1023/A:1010920819831
10.1016/j.neuroimage.2016.02.079
10.1016/j.neuroimage.2015.01.048
10.4306/pi.2017.14.2.205
10.1038/nrn1433
10.1212/01.WNL.0000129697.01779.0A
10.3389/fnagi.2017.00329
10.1016/j.jneumeth.2017.12.010
10.1016/j.neuroimage.2015.08.006
10.1016/j.neuroimage.2014.10.002
10.1371/journal.pone.0082450
10.1023/A:1010933404324
10.1016/S1474-4422(07)70178-3
10.1016/j.neuroimage.2017.03.057
10.3233/JAD-131928
10.1016/j.nicl.2014.08.023
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Moore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Moore et al 2019 Moore et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Moore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Moore et al 2019 Moore et al
CorporateAuthor for the Alzheimer’s Disease Neuroimaging Initiative
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer’s Disease Neuroimaging Initiative
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0211558
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Agricultural Science Database




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
EISSN 1932-6203
ExternalDocumentID 2180982301
oai_doaj_org_article_dc8ae3c6c9d14def9074815a24bef8c7
PMC6375557
A574131979
30763336
10_1371_journal_pone_0211558
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L023784/2
– fundername: Medical Research Council
  grantid: MR/L023784/1
– fundername: CIHR
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-3e38d0d6d5545e1f37917eca7957c944dcf165fc0fee226c953d22b6277ae3af3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:04:16 EDT 2023
Wed Aug 27 01:30:37 EDT 2025
Thu Aug 21 18:14:40 EDT 2025
Fri Jul 11 06:16:50 EDT 2025
Sat Aug 23 12:26:43 EDT 2025
Tue Jun 17 21:35:47 EDT 2025
Tue Jun 10 20:45:17 EDT 2025
Fri Jun 27 05:12:43 EDT 2025
Fri Jun 27 04:10:12 EDT 2025
Thu May 22 21:22:34 EDT 2025
Mon Jul 21 05:36:17 EDT 2025
Tue Jul 01 02:14:39 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-3e38d0d6d5545e1f37917eca7957c944dcf165fc0fee226c953d22b6277ae3af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Membership of the Alzheimer’s Disease Neuroimaging Initiative can be found in the Acknowledgments section.
Competing Interests: PM and JG received funding from the UK Medical Research Council (MRC) Dementias Platform, UK. The Dementias Platform is a multi-million pound public-private partnership, developed and led by the MRC, to accelerate progress in and open up dementias research. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0001-6171-4072
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0211558
PMID 30763336
PQID 2180982301
PQPubID 1436336
PageCount e0211558
ParticipantIDs plos_journals_2180982301
doaj_primary_oai_doaj_org_article_dc8ae3c6c9d14def9074815a24bef8c7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6375557
proquest_miscellaneous_2187514822
proquest_journals_2180982301
gale_infotracmisc_A574131979
gale_infotracacademiconefile_A574131979
gale_incontextgauss_ISR_A574131979
gale_incontextgauss_IOV_A574131979
gale_healthsolutions_A574131979
pubmed_primary_30763336
crossref_citationtrail_10_1371_journal_pone_0211558
crossref_primary_10_1371_journal_pone_0211558
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MR Arbabshirani (ref15) 2017; 145
EH Seo (ref5) 2017; 14
MW Weiner (ref7) 2017
B Dubois (ref3) 2007; 6
A Lebedev (ref9) 2014; 6
A Sarica (ref12) 2017; 9
ref20
DJ Hand (ref24) 2001; 45
PJ Nestor (ref1) 2004; 10
F Falahati (ref16) 2014; 41
L Breiman (ref23) 2001; 45
A Prestia (ref6) 2015; 11
CE Rasmussen (ref21) 2006; vol. 1
EE Bron (ref17) 2015; 111
ref18
M Ganz (ref8) 2015; 122
T Hastie (ref22) 2009; vol. 2
E Moradi (ref11) 2015; 104
S Dimitriadis (ref13) 2018; 302
S Rathore (ref14) 2017; 155
A Burns (ref2)
H Li (ref10) 2014; 9
A Sarica (ref19) 2018
P Tiraboschi (ref4) 2004; 62
References_xml – volume: 11
  start-page: 1191
  issue: 10
  year: 2015
  ident: ref6
  article-title: Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2014.12.001
– volume: 45
  start-page: 171
  issue: 2
  year: 2001
  ident: ref24
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Machine learning
  doi: 10.1023/A:1010920819831
– year: 2018
  ident: ref19
  article-title: Editorial on Special Issue: Machine learning on MCI
  publication-title: Editorial on Special Issue: Machine learning on MCI
– year: 2017
  ident: ref7
  article-title: Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials
  publication-title: Alzheimer’s & Dementia
– ident: ref20
– volume: 145
  start-page: 137
  year: 2017
  ident: ref15
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 111
  start-page: 562
  year: 2015
  ident: ref17
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: vol. 1
  year: 2006
  ident: ref21
  article-title: Gaussian processes for machine learning
– volume: 14
  start-page: 205
  issue: 2
  year: 2017
  ident: ref5
  article-title: Structural MRI and Amyloid PET Imaging for Prediction of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis
  publication-title: Psychiatry investigation
  doi: 10.4306/pi.2017.14.2.205
– volume: 10
  start-page: S34
  issue: 7
  year: 2004
  ident: ref1
  article-title: Advances in the early detection of Alzheimer’s disease
  publication-title: Nature medicine
  doi: 10.1038/nrn1433
– volume: 62
  start-page: 1984
  issue: 11
  year: 2004
  ident: ref4
  article-title: The importance of neuritic plaques and tangles to the development and evolution of AD
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000129697.01779.0A
– volume: 9
  start-page: 329
  year: 2017
  ident: ref12
  article-title: Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2017.00329
– volume: 302
  start-page: 14
  year: 2018
  ident: ref13
  article-title: Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, cMCI and Alzheimer’s disease patients: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
  publication-title: Journal of neuroscience methods
  doi: 10.1016/j.jneumeth.2017.12.010
– volume: 122
  start-page: 131
  year: 2015
  ident: ref8
  article-title: Relevant feature set estimation with a knock-out strategy and random forests
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.08.006
– volume: 104
  start-page: 398
  year: 2015
  ident: ref11
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 9
  start-page: e82450
  issue: 1
  year: 2014
  ident: ref10
  article-title: Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD) conversion
  publication-title: PloS one
  doi: 10.1371/journal.pone.0082450
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref23
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 6
  start-page: 734
  issue: 8
  year: 2007
  ident: ref3
  article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(07)70178-3
– ident: ref18
– volume: vol. 2
  year: 2009
  ident: ref22
  article-title: The elements of statistical learning
– volume: 155
  start-page: 530
  year: 2017
  ident: ref14
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 41
  start-page: 685
  issue: 3
  year: 2014
  ident: ref16
  article-title: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-131928
– ident: ref2
  article-title: Alzheimer’s disease
  publication-title: Alzheimer’s disease
– volume: 6
  start-page: 115
  year: 2014
  ident: ref9
  article-title: Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.08.023
SSID ssj0053866
Score 2.5706835
Snippet Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods...
Time-dependent data collected in studies of Alzheimer’s disease usually has missing and irregularly sampled data points. For this reason time series methods...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0211558
SubjectTerms Age
Aged
Aged, 80 and over
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Alzheimers disease
Artificial intelligence
Benchmarking
Biology and Life Sciences
Biomarkers
Brain research
Classification
Cognition & reasoning
Cognitive ability
Computer and Information Sciences
Data points
Data processing
Dementia
Demographic variables
Demographics
Diagnosis
Diagnostic imaging
Disease Progression
Family medical history
Female
Health risks
Humans
Image Interpretation, Computer-Assisted
Machine Learning
Magnetic Resonance Imaging
Male
Management
Medical diagnosis
Medical imaging
Medical records
Medical research
Medicine and Health Sciences
Memory
Middle Aged
Neuroimaging
Neurology
Neurosciences
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated
Physical Sciences
Research and Analysis Methods
Test procedures
Time dependence
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhBQxCKhzSxvErOS6IqiABUqGoJyLHdtqVtkm02RUSv56ZxBs1qFI5cI2_rDfzsMfyzDeEvPauZFYwEeeJELHw4IpGeB2Xic4VOJgUAouTP39RJ2fi07k8v9bqC3PCBnrgQXBHzmbGc6ts7phwvsLDXMakSUXpq8z2deSw520PU8MaDJMoFQrluGZHQS-HbVP7Q9jVYBPNJhtRz9c_rsqzdtl0N4Wcf2dOXtuKju-TeyGGpPPhv--QO75-QHaCl3b0TaCSfvuQ_Dw1tWuuKESmMAFtV3gtg6qgTUXny9-XfnHlVwcdDfc0FNPgL2hrFqtf8IR2fZccxGMZCsVG9BRtFmbB1NJH5Oz4w_f3J3HoqBBblafrmHueucQpB0GE9KziGk5r3hqdS21zIZytmJKVTSrvIS6zueQuTUuVag1KMBV_TGY1yHCX0BSwnmHjYqOE1YlR1lmIBl2FVZm5iQjfirewgW4cu14si_4OTcOxY5BWgUopglIiEo9vtQPdxi34d6i5EYtk2f0DMKEimFBxmwlF5AXqvRgqT0eXL-YSwi1YonQekVc9AgkzaszIuTCbris-fv3xD6BvpxPQQQBVDYjDmlAFAd-ERFwT5P4ECW5vJ8O7aKVbqXRFikxseG3K4M2t5d48_HIcxh_FLLvaN5seoyUSw6YReTIY-ihZ2AsU51xFRE9cYCL66Ui9uOz5yhXXUkr99H_oao_chZA1x7x5JvbJbL3a-GcQFq7L5_0K8Afwi2L2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZguXBBlL8GChiEBBzSJvFfckILoipIgFQo2ltwbGe70jYJya6QOPEavB5PwkzWGwiqgGs8jpMZjz32zHxDyCNni9jwmIdZxHnIHaii5k6FRaQyCQomOMfk5Ddv5dEJfz0TM3_h1vmwyu2a2C_UtjZ4R36QINAUeoXiZ83nEKtGoXfVl9C4SC4hdBmGdKnZcOCCoaT06XJMxQdeOvtNXbl92NtgK01H21GP2j-szZNmWXfnGZ5_xk_-tiEdXiVXvCVJpxvR75ALrrpGdryudvSJB5R-ep18OtaVrc8o2KcwAG1adM6gQGhd0uny66lbnLn2x7fvHfX-Gorh8HPa6EX7BZ7Qrq-Wgz0wHYViQXqKcxfGwRDTG-Tk8OWHF0ehr6wQGpklq5A5ltrISgvGhHBxyRSc2pzRKhPKZJxbU8ZSlCYqnQP7zGSC2SQpZKKUdkyX7CaZVMDFXUIToHUxFjDWkhsVaWmsAavQlpidmemAsC2Dc-Nhx7H6xTLvfWkKjh8bfuUoltyLJSDh0KvZwG78g_45ym6gRdDs_kHdznOvg7k1KXy9gd-xMbeuxHuBNBY64YUrU6MCch8ln28yUAfVz6cCzC5YqlQWkIc9BQJnVBiZM9frrstfvfv4H0Tvj0dEjz1RWQM7jPbZEPBPCMg1otwbUYL6m1HzLs7TLVe6_JeiQM_t3D2_-cHQjC_FaLvK1eueRgkEiE0Ccmsz1QfOwp4gGWMyIGqkBCPWj1uqxWmPWy6ZEkKo23__rDvkMhilGUbGx3yPTFbt2t0Fw29V3Ou1-yeyxFrx
  priority: 102
  providerName: ProQuest
Title Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
URI https://www.ncbi.nlm.nih.gov/pubmed/30763336
https://www.proquest.com/docview/2180982301
https://www.proquest.com/docview/2187514822
https://pubmed.ncbi.nlm.nih.gov/PMC6375557
https://doaj.org/article/dc8ae3c6c9d14def9074815a24bef8c7
http://dx.doi.org/10.1371/journal.pone.0211558
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF61qYR6QZRXDSUsCAk4OIrtfdgHhNKqoSC1oEBQbu5md51GSu1gJ-Jx4m_w9_glzDiOwSgIxMUH74zXnp3ZnfXOfEPII2vGnmYec6MuYy6zYIqKWemOuzISYGCcMUxOPj0TJ0P2asRHW2Rds7USYLFxa4f1pIb5rPPpw-fnYPDPyqoN0lszdeZZajuwZsESGW6THVibJJrqKavPFaBzIaoEuj9x7pIroPciCErU5p9rVQnpX0_crfksKzZ5pb8HV_6yWvWvkauVm0l7K73YI1s2vU72KkMu6JMKbfrpDXI-UKnJLik4r9ABned4coOjRbOE9mZfLuz00ubfv34raHWYQzFWfkLnapp_hDu0KEvpIAfmqlCsVk9RsaEfjD-9SYb943dHJ25VdsHVIvIXbmCD0HSNMOBpcOslgYQtndVKRlzqiDGjE0_wRHcTa8F50xEPjO-PhS-lsoFKgluklYJA9wn1gdZ6WN1YCaZlVwltNLiMJsHUzUg5JFgLONYVJjmWxpjF5UGbhL3JSl4xjlBcjZBD3JprvsLk-Av9IY5dTYuI2uWNLJ_ElYHGRofw9ho-x3jM2AR_GoQeVz4b2yTU0iH3ceTjVXpqPS_EPQ4-GcxjMnLIw5ICUTVSDNuZqGVRxC9fv_8HoreDBtHjiijJQBxaVakS8E2I1tWgPGhQwtygG837qKdrqRSxj3BteLbqAedadzc3P6ib8aEYipfabFnSSI7osb5Dbq9UvZbs2nAcIhtG0BB9syWdXpSg5iKQnHN5578575JdcGYjjKj32AFpLfKlvQcO42LcJttyJOEaHnl47b9ok53D47M3g3b5C6ZdzhE_AFGIc04
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKcIALomwNFGoQCDikTWLHnhwQGpZqhi5IpUVzSzO2Mx1pmoTJjCo48Tf4E_wofgnvJZ5AUAVceo2_LH5-m-O3EPLY6JGvuM_dyOPc5QZEMeFGuiNPRgIELOQck5P39kX_iL8bhsMV8n2ZC4NhlUudWClqnSv8R74VYKEpPBXyXxafXOwahaeryxYaNVvsmM9nsGUrXwzewPo-CYLtt4ev-67tKuAqEQVzlxnW1Z4WGgxpaPyUSdixGJXIKJQq4lyr1BdhqrzUGPBNVBQyHQQjEUiZGJakDJ57iVwGw-uhRMlhs8GDqQlh0_OY9LcsN2wWeWY2wZaC6e62zF_VJaCxBZ1impfnObp_xmv-ZgC3r5Nr1nOlvZrVVsmKyW6QVasbSvrMFrB-fpMcHySZzk8p-MPwAlrM8DAIGYDmKe1Nv5yYyamZ_fj6raT2fIhi-P2YFslkdgZXaFl158E7MP2FzgFPUVbgPRjSeoscXQjNb5NOBlRcIzQArPGxYXIiuJJeIpRW4IXqFLNBo8QhbEngWNky59htYxpXZ3cStjs1vWJcltgui0Pc5q6iLvPxD_wrXLsGi0W6qwv5bBxbmY-16sLXK5iO9rk2Kf6H6PphEvCRSbtKOmQDVz6uM14bVRP3QnDzQDXKyCGPKgQW6sgwEmicLMoyHrz_-B-gDwct0FMLSnMgh0ps9gXMCQuAtZDrLSSoG9UaXkM-XVKljH8JJty55N3zhx82w_hQjO7LTL6oMDLEgrSBQ-7UrN5QFmyQYIwJh8iWELRI3x7JJidVnXTBZBiG8u7fP2uDXOkf7u3Gu4P9nXvkKjjEEUbl-3yddOazhbkPTud89KCSdEqOL1q1_AQvcJgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VICE2iPJqoNABgYCFm9jzihcIBUrUUiiotCg715kZp5FS28SJKljxG_wKn8OXcK89MRhVwKZbz_Fj7tzXeO6DkIfWjHzNfe6FXc49bkEUY26VN-qqUIKACc4xOfntntw-5K-HYrhCvi9zYTCscqkTS0VtMo3_yDsBFprCUyG_k7iwiPdbg-f5Jw87SOFJ67KdRsUiu_bzKWzfimc7W7DWj4Jg8Org5bbnOgx4WobB3GOW9UzXSANGVVg_YQp2L1bHKhRKh5wbnfhSJLqbWAt-ig4FM0EwkoFSsWVxwuC5F8hFxYSPMqaG9WYPpimlS9Vjyu84ztjMs9Rugl0FM95rmMKyY0BtF1r5NCvOcnr_jN38zRgOrpIrzoul_YrtVsmKTa-RVacnCvrEFbN-ep0c7cepyU4o-MbwAprP8GAImYFmCe1PvxzbyYmd_fj6raDurIhiKP6Y5vFkdgpXaFF26sE7MBWGzgFPUW7gPRjeeoMcngvNb5JWClRcIzQArPWxeXIsuVbdWGqjwSM1CWaGhnGbsCWBI-1KnmPnjWlUnuMp2PpU9IpwWSK3LG3i1XflVcmPf-Bf4NrVWCzYXV7IZuPIyX9kdA--XsN0jM-NTfCfRM8XccBHNulp1SYbuPJRlf1aq52oL8DlAzWpwjZ5UCKwaEeK7D-OF0UR7bz7-B-gD_sN0GMHSjIgh45dJgbMCYuBNZDrDSSoHt0YXkM-XVKliH4JKdy55N2zh-_Xw_hQjPRLbbYoMUpgcdqgTW5VrF5TFuyRZIzJNlENIWiQvjmSTo7LmumSKSGEuv33z9ogl0CpRG929nbvkMvgG4cYoO_zddKazxb2Lvif89G9UtApOTpvzfITKD-cVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+prediction+of+Alzheimer%E2%80%99s+disease+using+pairwise+selection+from+time+series+data&rft.jtitle=PloS+one&rft.au=Moore%2C+P.+J.&rft.au=Lyons%2C+T.+J.&rft.au=Gallacher%2C+J.&rft.date=2019-02-14&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0211558&rft_id=info%3Apmid%2F30763336&rft.externalDocID=PMC6375557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon