Principal Networks
Graph representations of brain connectivity have attracted a lot of recent interest, but existing methods for dividing such graphs into connected subnetworks have a number of limitations in the context of neuroimaging. This is an important problem because most cognitive functions would be expected t...
Saved in:
Published in | PloS one Vol. 8; no. 4; p. e60997 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
22.04.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Graph representations of brain connectivity have attracted a lot of recent interest, but existing methods for dividing such graphs into connected subnetworks have a number of limitations in the context of neuroimaging. This is an important problem because most cognitive functions would be expected to involve some but not all brain regions. In this paper we outline a simple approach for decomposing graphs, which may be based on any measure of interregional association, into coherent "principal networks". The technique is based on an eigendecomposition of the association matrix, and is closely related to principal components analysis. We demonstrate the technique using cortical thickness and diffusion tractography data, showing that the subnetworks which emerge are stable, meaningful and reproducible. Graph-theoretic measures of network cost and efficiency may be calculated separately for each principal network. Unlike some other approaches, all available connectivity information is taken into account, and vertices may appear in none or several of the subnetworks. Subject-by-subject "scores" for each principal network may also be obtained, under certain circumstances, and related to demographic or cognitive variables of interest. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: JDC CAC. Performed the experiments: JDC. Analyzed the data: JDC. Contributed reagents/materials/analysis tools: MD CAC. Wrote the paper: JDC MD CAC. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0060997 |