Metabolomic derangements are associated with mortality in critically ill adult patients
To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. We performed metabolomic profiling of plasma from 90 ICU subje...
Saved in:
Published in | PloS one Vol. 9; no. 1; p. e87538 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
30.01.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults.
Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible.
We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study.
We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations).
Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients. |
---|---|
AbstractList | Objective To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Rationale Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. Methods We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. Results We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). Conclusion Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients. To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients. To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients. Objective To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Rationale Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. Methods We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. Results We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). Conclusion Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients. OBJECTIVETo identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. RATIONALEComprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. METHODSWe performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. RESULTSWe tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). CONCLUSIONBoth individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients. |
Audience | Academic |
Author | Gazourian, Lee Kingsmore, Stephen Matthay, Michael A Raby, Benjamin A Hunninghake, Gary M Langley, Ray J Baron, Rebecca M Nakahira, Kiichi Otero, Ronny M McGeachie, Michael Woods, Christopher W Rogers, Angela J Haspel, Jeffrey A Fowler, Vance G Choi, Augustine M K Rivers, Emanuel P Fredenburgh, Laura E |
AuthorAffiliation | 9 Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America 1 Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America 7 National Center for Genome Resources, Santa Fe, New Mexico, United States of America 4 Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America 2 Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America 6 Duke Institute for Genome Sciences and Policy, and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America 8 Lovelace Respiratory Research Institute, Santa Fe, New Mexico, United States of America Beth Israel Deaconess Medical Center, United States of America 3 Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, United States of America 5 D |
AuthorAffiliation_xml | – name: 5 Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America – name: 2 Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America – name: 6 Duke Institute for Genome Sciences and Policy, and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America – name: 1 Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America – name: 8 Lovelace Respiratory Research Institute, Santa Fe, New Mexico, United States of America – name: 7 National Center for Genome Resources, Santa Fe, New Mexico, United States of America – name: 3 Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, United States of America – name: 4 Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America – name: Beth Israel Deaconess Medical Center, United States of America – name: 9 Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America |
Author_xml | – sequence: 1 givenname: Angela J surname: Rogers fullname: Rogers, Angela J organization: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America ; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America ; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, United States of America – sequence: 2 givenname: Michael surname: McGeachie fullname: McGeachie, Michael organization: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 3 givenname: Rebecca M surname: Baron fullname: Baron, Rebecca M organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 4 givenname: Lee surname: Gazourian fullname: Gazourian, Lee organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 5 givenname: Jeffrey A surname: Haspel fullname: Haspel, Jeffrey A organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 6 givenname: Kiichi surname: Nakahira fullname: Nakahira, Kiichi organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America ; Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America – sequence: 7 givenname: Laura E surname: Fredenburgh fullname: Fredenburgh, Laura E organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 8 givenname: Gary M surname: Hunninghake fullname: Hunninghake, Gary M organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 9 givenname: Benjamin A surname: Raby fullname: Raby, Benjamin A organization: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America ; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America – sequence: 10 givenname: Michael A surname: Matthay fullname: Matthay, Michael A organization: Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America – sequence: 11 givenname: Ronny M surname: Otero fullname: Otero, Ronny M organization: Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America – sequence: 12 givenname: Vance G surname: Fowler fullname: Fowler, Vance G organization: Duke Institute for Genome Sciences and Policy, and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America – sequence: 13 givenname: Emanuel P surname: Rivers fullname: Rivers, Emanuel P organization: Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America – sequence: 14 givenname: Christopher W surname: Woods fullname: Woods, Christopher W organization: Duke Institute for Genome Sciences and Policy, and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America – sequence: 15 givenname: Stephen surname: Kingsmore fullname: Kingsmore, Stephen organization: National Center for Genome Resources, Santa Fe, New Mexico, United States of America – sequence: 16 givenname: Ray J surname: Langley fullname: Langley, Ray J organization: National Center for Genome Resources, Santa Fe, New Mexico, United States of America ; Lovelace Respiratory Research Institute, Santa Fe, New Mexico, United States of America – sequence: 17 givenname: Augustine M K surname: Choi fullname: Choi, Augustine M K organization: Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America ; Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24498130$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1r2zAUhs3oWNts_2BshsHYLpJJlmJJN4NS9hHoKOzzUhzLcqIgW6kkr-2_n7y4JR69GLqwffy879H5OM2OOtfpLHuO0QITht9tXe87sItdCi8Q4mxJ-KPsBAtSzMsCkaOD9-PsNIQtQgkpyyfZcUGp4Jigk-zXFx2hcta1RuW19tCtdau7GHLwOocQnDIQdZ1fm7jJW-cjWBNvc9PlyptoFFibvqzNoe5tzHcQzSB_mj1uwAb9bHzOsh8fP3w__zy_uPy0Oj-7mKtSFHFOKKJVxQWUnCsluCopoRWvEMJcFwUvFdRNo2nNGS6W6QikGat1VXCoWU3ILHu5991ZF-TYkyCxYIzSEtGBWO2J2sFW7rxpwd9KB0b-DTi_luBTIVZLaJAqoOAYkXQtJQRpsMINqZZlWSE2eL0fs_VVq2uVKvVgJ6bTP53ZyLX7LYlAbEl5MngzGnh31esQZWuC0tZCp12f7k2FwGk6qQ2z7NU_6MPVjdQaUgGma1zKqwZTeUYZ56QgyyHt4gEqnVqnuacFakyKTwRvJ4LERH0T19CHIFffvv4_e_lzyr4-YDcabNwEZ_toXBemIN2DyrsQvG7um4yRHPb_rhty2H857n-SvTgc0L3obuHJH_C2Agk |
CitedBy_id | crossref_primary_10_3390_metabo8040068 crossref_primary_10_1038_srep20391 crossref_primary_10_1134_S1061934817140131 crossref_primary_10_1152_ajplung_00131_2021 crossref_primary_10_1186_s13054_019_2597_0 crossref_primary_10_18632_aging_103362 crossref_primary_10_1016_j_ccc_2017_08_010 crossref_primary_10_1002_phar_1974 crossref_primary_10_1186_s13054_017_1794_y crossref_primary_10_1183_13993003_02417_2021 crossref_primary_10_1038_s41390_020_01343_z crossref_primary_10_1186_s13054_015_0737_8 crossref_primary_10_1038_s41598_021_99482_8 crossref_primary_10_1097_CCE_0000000000000881 crossref_primary_10_1038_nbt_3870 crossref_primary_10_1164_rccm_201404_0624OC crossref_primary_10_1038_s41390_020_0816_7 crossref_primary_10_1186_s12931_023_02447_w crossref_primary_10_1016_j_ccm_2014_08_006 crossref_primary_10_1016_j_ajpath_2019_05_021 crossref_primary_10_1016_j_cell_2024_05_035 crossref_primary_10_1371_journal_pone_0271137 crossref_primary_10_1038_s41598_017_09619_x crossref_primary_10_1186_s13054_020_03031_0 crossref_primary_10_1371_journal_pcbi_1003676 crossref_primary_10_3390_nu15163595 crossref_primary_10_1097_MCO_0000000000000253 crossref_primary_10_1186_s13054_020_03147_3 crossref_primary_10_1371_journal_pone_0175686 crossref_primary_10_1097_TIN_0000000000000350 crossref_primary_10_1097_CCE_0000000000000496 crossref_primary_10_1186_s12931_015_0283_6 crossref_primary_10_1186_s40635_022_00445_8 crossref_primary_10_3390_metabo12111026 crossref_primary_10_1007_s40279_023_01846_9 crossref_primary_10_1371_journal_pone_0230813 crossref_primary_10_1016_j_clnu_2021_05_008 crossref_primary_10_2217_fmb_15_133 crossref_primary_10_3390_metabo10020070 crossref_primary_10_35366_TI186D crossref_primary_10_1016_j_peptides_2016_10_006 crossref_primary_10_3390_metabo12010001 crossref_primary_10_1172_jci_insight_97102 crossref_primary_10_1172_JCI78253 crossref_primary_10_1152_ajplung_00376_2013 crossref_primary_10_1007_s12035_017_0706_0 crossref_primary_10_1172_JCI128075 crossref_primary_10_1097_SHK_0000000000001064 crossref_primary_10_1177_1751143719892788 crossref_primary_10_1097_CCM_0000000000002402 crossref_primary_10_3947_ic_2017_49_1_10 crossref_primary_10_1097_MCO_0000000000000151 crossref_primary_10_3390_nu15102392 crossref_primary_10_1016_j_ccm_2016_01_011 crossref_primary_10_1038_srep36097 crossref_primary_10_1159_000486362 crossref_primary_10_1016_j_meegid_2020_104571 crossref_primary_10_3390_molecules27154784 crossref_primary_10_1080_14737159_2020_1782193 crossref_primary_10_1002_wsbm_1489 crossref_primary_10_1152_ajplung_00278_2022 crossref_primary_10_1186_s13256_015_0587_7 crossref_primary_10_4196_kjpp_2018_22_4_399 crossref_primary_10_1038_s41598_017_16743_1 crossref_primary_10_3390_metabo11010051 crossref_primary_10_1007_s40291_017_0282_z crossref_primary_10_1016_j_isci_2023_105948 crossref_primary_10_4155_fdd_2020_0027 crossref_primary_10_1016_j_jcrc_2017_09_014 crossref_primary_10_1080_14787210_2018_1426460 crossref_primary_10_1186_s13054_019_2372_2 crossref_primary_10_1210_jendso_bvad001 crossref_primary_10_3390_metabo11110753 crossref_primary_10_1097_MCO_0000000000000451 crossref_primary_10_25557_0031_2991_2018_01_97_108 crossref_primary_10_1186_s13054_022_04174_y crossref_primary_10_3389_fnut_2024_1335242 crossref_primary_10_1186_s13054_016_1222_8 crossref_primary_10_1186_2001_1326_3_26 crossref_primary_10_3748_wjg_v29_i16_2502 crossref_primary_10_1080_1744666X_2019_1562336 crossref_primary_10_1186_s13073_014_0111_5 crossref_primary_10_3390_jcm11030627 crossref_primary_10_1186_s13054_018_2275_7 crossref_primary_10_3389_fneur_2020_533915 crossref_primary_10_1186_s12916_020_01546_5 crossref_primary_10_1038_s41598_021_89716_0 crossref_primary_10_3390_metabo12020092 crossref_primary_10_1002_nbm_4192 crossref_primary_10_1002_ped4_12405 crossref_primary_10_1177_0884533617706312 crossref_primary_10_1177_0148607116656164 crossref_primary_10_1016_j_clnesp_2021_04_002 crossref_primary_10_1186_s12879_021_06832_y crossref_primary_10_1038_s41598_020_70799_0 crossref_primary_10_15360_1813_9779_2018_5_96_119 crossref_primary_10_1002_iid3_61 crossref_primary_10_2147_IDR_S321385 crossref_primary_10_3390_metabo12050376 crossref_primary_10_1165_rcmb_2020_0206LE crossref_primary_10_1186_s13054_017_1653_x crossref_primary_10_1007_s40471_019_00187_4 crossref_primary_10_3390_ijms25126597 crossref_primary_10_1097_CCE_0000000000000478 crossref_primary_10_1016_j_jprot_2019_103627 crossref_primary_10_1371_journal_pone_0256784 crossref_primary_10_1186_s13054_015_1052_0 |
Cites_doi | 10.2307/2531595 10.1056/NEJMoa020266 10.2217/14622416.9.4.383 10.1038/nature06802 10.1002/mas.20108 10.1126/scitranslmed.3005893 10.1016/j.jemermed.2011.05.072 10.1164/rccm.201205-0854ED 10.1371/journal.pone.0040221 10.1056/NEJMoa010307 10.1186/cc12695 10.1016/j.jpsychires.2012.08.015 10.1128/JCM.01447-09 10.1172/JCI44442 10.1093/ajcn/82.3.497 10.1093/bioinformatics/bti505 10.1001/jama.283.8.1038 10.1056/NEJMoa1214969 10.1016/j.jbi.2005.02.008 10.1164/rccm.201003-0436OC 10.1007/BF00994016 10.1126/science.1218595 10.1164/rccm.201201-0003OC 10.1164/rccm.201209-1726OC 10.1038/nature07762 10.1186/gm339 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Rogers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2014 Rogers et al 2014 Rogers et al |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Rogers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2014 Rogers et al 2014 Rogers et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0087538 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Opposing Viewpoints Resource Center Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) https://resources.nclive.org/materials Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine Biology Mathematics |
DocumentTitleAlternate | Metabolomics & Mortality in Critically Ill Adults |
EISSN | 1932-6203 |
Editor | Parikh, Samir M. |
Editor_xml | – sequence: 1 givenname: Samir M. surname: Parikh fullname: Parikh, Samir M. |
EndPage | e87538 |
ExternalDocumentID | 1977446043 oai_doaj_org_article_af0c2a2810304bc993f1c1f3b566b073 A478832358 10_1371_journal_pone_0087538 24498130 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | New York California United States--US New Mexico Massachusetts |
GeographicLocations_xml | – name: New York – name: California – name: New Mexico – name: United States--US – name: Massachusetts |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL051854 – fundername: NHLBI NIH HHS grantid: T32 HL007680 – fundername: NHLBI NIH HHS grantid: K08 HL092222 – fundername: PHS HHS grantid: P01 108801 – fundername: NIAID NIH HHS grantid: U01 AI066569 – fundername: NCRR NIH HHS grantid: P20RR016480 – fundername: NCRR NIH HHS grantid: P20 RR016480 – fundername: NHLBI NIH HHS grantid: R01 HL079904 – fundername: PHS HHS grantid: HHSN266200400064C – fundername: NHLBI NIH HHS grantid: K12 HL089990 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF D1I D1J D1K DIK DU5 E3Z EAP EAS EBD ECM EIF EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ NPM O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RIG RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX CITATION AFPKN 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c692t-3404bb89a688cc98c6434b8b0018e2286cadffe4d8712525290e77deb28ad7d33 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Sun Jun 04 06:36:41 EDT 2023 Tue Oct 22 15:15:45 EDT 2024 Tue Sep 17 21:24:14 EDT 2024 Thu Oct 24 23:46:42 EDT 2024 Thu Oct 10 16:58:51 EDT 2024 Tue Nov 19 21:00:12 EST 2024 Tue Nov 12 23:21:15 EST 2024 Thu Aug 01 19:56:11 EDT 2024 Thu Aug 01 19:49:01 EDT 2024 Tue Aug 20 22:13:11 EDT 2024 Thu Nov 21 20:53:36 EST 2024 Wed Oct 16 00:45:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-3404bb89a688cc98c6434b8b0018e2286cadffe4d8712525290e77deb28ad7d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The CAPSOD trial was supported in part by Pfizer and Roche diagnostics. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. Conceived and designed the experiments: AJR MM RMB LG KN LF BAR RMO VGF EPR CWW SK RL AMC. Performed the experiments: LG RMB RL AMC. Analyzed the data: AJR MM GMH BAR AMC. Contributed reagents/materials/analysis tools: RL SK AMC. Wrote the paper: AJR MM MAM RMB LG JAH KN GMH SK AMC. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907548/ |
PMID | 24498130 |
PQID | 1977446043 |
PQPubID | 1436336 |
PageCount | e87538 |
ParticipantIDs | plos_journals_1977446043 doaj_primary_oai_doaj_org_article_af0c2a2810304bc993f1c1f3b566b073 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3907548 proquest_miscellaneous_1499124464 proquest_journals_1977446043 gale_infotracmisc_A478832358 gale_infotracacademiconefile_A478832358 gale_incontextgauss_ISR_A478832358 gale_incontextgauss_IOV_A478832358 gale_healthsolutions_A478832358 crossref_primary_10_1371_journal_pone_0087538 pubmed_primary_24498130 |
PublicationCentury | 2000 |
PublicationDate | 2014-01-30 |
PublicationDateYYYYMMDD | 2014-01-30 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | JE Zimmerman (ref2) 2013; 17 E Rivers (ref23) 2001; 345 M Focker (ref29) 2012; 46 A Sreekumar (ref17) 2009; 457 ref1 AH Hamrahian (ref26) 2004; 350 MJ Gibney (ref28) 2005; 82 J Weiner 3rd (ref10) 2012; 7 KA Lawton (ref16) 2008; 9 RJ Langley (ref12) 2013; 5 E Boonen (ref27) 2013; 368 B Mickiewicz (ref11) 2013; 187 G Li (ref3) 2011; 183 M Jain (ref8) 2012; 336 TA Lasko (ref19) 2005; 38 T Dolinay (ref13) 2012; 185 EL Tsalik (ref14) 2012; 43 ER DeLong (ref20) 1988; 44 K Dettmer (ref7) 2007; 26 D Heckerman (ref18) 1995; 20 ref22 ref21 CS Calfee (ref4) 2012; 186 AS Rodin (ref24) 2005; 21 EL Tsalik (ref15) 2010; 48 TD Veenstra (ref6) 2012; 4 D Annane (ref25) 2000; 283 EP Rhee (ref9) 2011; 121 RE Gerszten (ref5) 2008; 451 |
References_xml | – ident: ref1 – volume: 44 start-page: 837 year: 1988 ident: ref20 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 contributor: fullname: ER DeLong – volume: 350 start-page: 1629 year: 2004 ident: ref26 article-title: Measurements of serum free cortisol in critically ill patients publication-title: N Engl J Med doi: 10.1056/NEJMoa020266 contributor: fullname: AH Hamrahian – volume: 9 start-page: 383 year: 2008 ident: ref16 article-title: Analysis of the adult human plasma metabolome publication-title: Pharmacogenomics doi: 10.2217/14622416.9.4.383 contributor: fullname: KA Lawton – volume: 451 start-page: 949 year: 2008 ident: ref5 article-title: The search for new cardiovascular biomarkers publication-title: Nature doi: 10.1038/nature06802 contributor: fullname: RE Gerszten – volume: 26 start-page: 51 year: 2007 ident: ref7 article-title: Mass spectrometry-based metabolomics publication-title: Mass Spectrom Rev doi: 10.1002/mas.20108 contributor: fullname: K Dettmer – volume: 5 start-page: 195ra195 year: 2013 ident: ref12 article-title: An integrated clinico-metabolomic model improves prediction of death in sepsis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3005893 contributor: fullname: RJ Langley – volume: 43 start-page: 97 year: 2012 ident: ref14 article-title: Discriminative value of inflammatory biomarkers for suspected sepsis publication-title: J Emerg Med doi: 10.1016/j.jemermed.2011.05.072 contributor: fullname: EL Tsalik – ident: ref22 – volume: 186 start-page: 2 year: 2012 ident: ref4 article-title: The search for diagnostic markers in sepsis: many miles yet to go publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201205-0854ED contributor: fullname: CS Calfee – volume: 7 start-page: e40221 year: 2012 ident: ref10 article-title: Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients publication-title: PLoS One doi: 10.1371/journal.pone.0040221 contributor: fullname: J Weiner 3rd – volume: 345 start-page: 1368 year: 2001 ident: ref23 article-title: Early goal-directed therapy in the treatment of severe sepsis and septic shock publication-title: N Engl J Med doi: 10.1056/NEJMoa010307 contributor: fullname: E Rivers – volume: 17 start-page: R81 year: 2013 ident: ref2 article-title: Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012 publication-title: Crit Care doi: 10.1186/cc12695 contributor: fullname: JE Zimmerman – volume: 46 start-page: 1600 year: 2012 ident: ref29 article-title: Comparison of metabolic profiles of acutely ill and short-term weight recovered patients with anorexia nervosa reveals alterations of 33 out of 163 metabolites publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2012.08.015 contributor: fullname: M Focker – volume: 48 start-page: 26 year: 2010 ident: ref15 article-title: Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis publication-title: J Clin Microbiol doi: 10.1128/JCM.01447-09 contributor: fullname: EL Tsalik – volume: 121 start-page: 1402 year: 2011 ident: ref9 article-title: Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans publication-title: J Clin Invest doi: 10.1172/JCI44442 contributor: fullname: EP Rhee – volume: 82 start-page: 497 year: 2005 ident: ref28 article-title: Metabolomics in human nutrition: opportunities and challenges publication-title: Am J Clin Nutr doi: 10.1093/ajcn/82.3.497 contributor: fullname: MJ Gibney – volume: 21 start-page: 3273 year: 2005 ident: ref24 article-title: Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels) publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti505 contributor: fullname: AS Rodin – volume: 283 start-page: 1038 year: 2000 ident: ref25 article-title: A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin publication-title: JAMA doi: 10.1001/jama.283.8.1038 contributor: fullname: D Annane – volume: 368 start-page: 1477 year: 2013 ident: ref27 article-title: Reduced cortisol metabolism during critical illness publication-title: N Engl J Med doi: 10.1056/NEJMoa1214969 contributor: fullname: E Boonen – volume: 38 start-page: 404 year: 2005 ident: ref19 article-title: The use of receiver operating characteristic curves in biomedical informatics publication-title: J Biomed Inform doi: 10.1016/j.jbi.2005.02.008 contributor: fullname: TA Lasko – ident: ref21 – volume: 183 start-page: 59 year: 2011 ident: ref3 article-title: Eight-Year Trend of Acute Respiratory Distress Syndrome publication-title: American Journal of Respiratory and Critical Care Medicine doi: 10.1164/rccm.201003-0436OC contributor: fullname: G Li – volume: 20 start-page: 197 year: 1995 ident: ref18 article-title: Learning Bayesian networks: The combination of knowledge and statistical data publication-title: Machine Learning doi: 10.1007/BF00994016 contributor: fullname: D Heckerman – volume: 336 start-page: 1040 year: 2012 ident: ref8 article-title: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation publication-title: Science doi: 10.1126/science.1218595 contributor: fullname: M Jain – volume: 185 start-page: 1225 year: 2012 ident: ref13 article-title: Inflammasome-regulated cytokines are critical mediators of acute lung injury publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201201-0003OC contributor: fullname: T Dolinay – volume: 187 start-page: 967 year: 2013 ident: ref11 article-title: Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201209-1726OC contributor: fullname: B Mickiewicz – volume: 457 start-page: 910 year: 2009 ident: ref17 article-title: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression publication-title: Nature doi: 10.1038/nature07762 contributor: fullname: A Sreekumar – volume: 4 start-page: 40 year: 2012 ident: ref6 article-title: Metabolomics: the final frontier? publication-title: Genome Med doi: 10.1186/gm339 contributor: fullname: TD Veenstra |
SSID | ssj0053866 |
Score | 2.5091214 |
Snippet | To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults.
Comprehensive metabolomic profiling of plasma at ICU admission... Objective To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Rationale Comprehensive metabolomic profiling of... To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Comprehensive metabolomic profiling of plasma at ICU admission... OBJECTIVETo identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. RATIONALEComprehensive metabolomic profiling of plasma... To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults.Comprehensive metabolomic profiling of plasma at ICU admission... Objective To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Rationale Comprehensive metabolomic profiling of... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e87538 |
SubjectTerms | Adults Aged Amino acids Analysis Bayes Theorem Bayesian analysis Biology Biomarkers Biomarkers - metabolism Carbohydrates Community-Acquired Infections - metabolism Community-Acquired Infections - mortality Critical care Critical Illness - mortality Emergency medical care Enrollments Female Gene expression Genomes Genotype & phenotype Hormones Hospital Mortality Hospital patients Hospitals Humans Identification methods Infection Intensive care Intensive Care Units Lactates Lactic acid Lipid metabolism Lipids Male Mathematics Medicine Metabolism Metabolites Metabolomics Metabolomics - methods Middle Aged Mortality Nucleotides Patient outcomes Patients Prognosis Replication Sepsis Sepsis - metabolism Sepsis - mortality Sucrose Sugar |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQn3hBjK8FChiEBDxka2zPsR8HYhpIgAQM9mbZjj0mhbRa2v-fO8eNGjQJHlCfGp-q5j7s3yV3vyPkhQ6Wyzq6UjvRlILXodTM6jJGHaJTDmc7YLXFJ3l6Jj6cH53vjPrCmrCBHnhQ3KGNC88sUzgOSzgPx2msfBW5AxziwD_T7rtg22Rq2IMhiqXMjXK8rg6zXQ5Wyy4cJBJ37EfZOYgSX_-4K89W7bK_DnL-WTm5cxSd3Ca3Moakx8N_3yM3QneH7OUo7emrTCX9-i758TGswcotth5T5NjshlKXntqrQG02TWgoPo6lvxIUB1hOLzvq8wyEFr61LU08HTSzsPb3yNnJu29vT8s8SqH0UrN1yQUozyltpVLea-UBiAgwBc7kC4wp6W0TYxAN5E_sCD56Eeq6gbRb2aZuOL9PZh0ob59Qpy0D1IIvWL2oYm2VAlAYPKtCrKzUBSm3ejWrgTHDpNdmNWQag4IM2sFkOxTkDSp_lEW-63QBvMBkLzB_84KCPEXTmaF5dIxac4zTATi2AxfkeZJAzosOi2ou7KbvzfvP3_9B6OuXidDLLBSX4ATe5kYGuCfk0ppIzieSELl-sryPjrbVSm8qBONCLgTcz3zrfNcvPxuX8UexUK4Lyw3IQAaLkE2KgjwYfHXULFzWCjBLQeqJF09UP13pLn8mynGuAVoK9fB_2OoRuQmoE2ufSr6Yk9n6ahMeA7JbuycpiH8DLQFL8w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgkRAXRMujgQIGIQGHtEnsOvYJlcfSIi0goLQ3y3bsUmmVLM3ugX_PTOIsDaoQys2eTbLzymd7HoQ8U94wUQabKsurlLPSp6owKg1B-WClxd4OGG3xURwc8Q8neydxw62NYZWDT-wcddU43CPfzRGocJFx9mrxM8WuUXi6GltoXCXX8qIUGNInp-8HTwy2LERMl2Nlvhuls7Noar_TlXLHrJQLn6Ouav_aN08W86a9DHj-HT954YM0vUVuRiRJ93vRb5Arvt4k12fxrHyTbESzbemLWFv65W1yPPNLEPscc5HpWxis-9iXFu7j6SArX1Hcn6WzDpsDTqdnNR2aIsx_0cM5PBcLd9DPfVnW9g45mr779uYgjb0VUidUsUwZz7i1UhkhpXNKOkAmHGSDTfp8UUjhTBWC5xUsqIo9uFTmy7KCdbg0VVkxdpdMauDjFqFWmQJgDJ64Op6H0kgJKNG7IvchN0IlJB1YrBd9CQ3dnaOVsPToeaVRJDqKJCGvUQ5rWiyA3Q0056c62pM2IXOFKSR2SePWAcoKucsDswBPLbithDxGKeo-m3Rtxnof2wUwzA9OyNOOAotg1Bhlc2pWbasPP33_D6KvX0ZEzyNRaEAfnImZDfCfsLjWiHJ7RAmm7EbTW6hzA1da_Ufp4ZeDHl4-_WQ9jTfFyLnaNyuggSUtYjjBE3KvV9s1Z2FYSQAxCSlHCj1i_XimPvvR1SBnCrAml_f__VoPyA0AmBjmlLJsm0yW5yv_EEDc0j7qLPU3AuZGKw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_n-uKLeH5dddUogvrQpW1ybfIgcorHKZyCunpvJUmT86C263YX9L93Jk2LlRV8kH3aznSh89H8ZjP5DSGPpVUsL5yOpeZVzFlhY5kpGTsnrdNC42wH7LZ4l58s-duzw7M9MsxsDQbsdpZ2OE9qua4XP77_fAEJ_9xPbSjS4abFqm3swlO0M3GJXM5gbcQmr1M-7iuAIM_DAbq_3TlZoDyP__i2nq3qttsFRf_sqPxtiTq-Rq4GbEmP-mDYJ3u2uU72Q_Z29GmgmH52g3w5tRvwfo1HkilybzZ9C0xH1dpSFVxmK4p_09Jv3joA1-lFQ02YjVDDt7qmnr-DBnbW7iZZHr_-9OokDiMWYpPLbBMznnCthVS5EMZIYQCgcHARzuqzWSZyoyrnLK-grsoO4SMTWxQVlONCVUXF2C0ya8B4B4RqqTJAM7jxanjqCiUEgEVrstS6VOUyIvFg13LVM2mUfjutgAqkN1CJfiiDHyLyEo0_6iIPtr_Qrs_LkFalconJVCZwWBrXBsCWS03qmAaUquHtFZEH6LqyP1Q6ZnN5hFMDGB4Tjsgjr4FcGA0225yrbdeVb95__geljx8mSk-CkmshCIwKBxzgmZBja6I5n2hCRpuJ-AADbbBKV6YI0nmecHie-RB8u8UPRzH-KDbQNbbdgg5Utgjlch6R232sjpaFy1IAlolIMYniiemnkubiq6ciZxIgJxd3_oev7pIrgEaxJypmyZzMNuutvQeIb6Pv-yT-BRyTVpI priority: 102 providerName: Scholars Portal |
Title | Metabolomic derangements are associated with mortality in critically ill adult patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24498130 https://www.proquest.com/docview/1977446043 https://search.proquest.com/docview/1499124464 https://pubmed.ncbi.nlm.nih.gov/PMC3907548 https://doaj.org/article/af0c2a2810304bc993f1c1f3b566b073 http://dx.doi.org/10.1371/journal.pone.0087538 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2IhA7IFY-FiglICTgkLZJ3MQ-bmVlQ8qoBoPeItuxt0pdWi3tYf897yVOtKAdEKrkQ_waJe_D_r34fRDygWsRRrGRHpc082gYa48HgnvGcG0kk9jbAaMtzqKTC_ptPp7vkHGdC1MG7Su5GOTL60G-uCpjK9fXaljHiQ1nyQT89BiQ9nCX7ML2W7vo1fILBhxFNkcujP2hFclgvcr1oKzfHmKPPtjVOPMx9vnOdlRW7W_W5s56uSruA55_x0_e2ZCmT8kTiyTdw-qJ98mOzrvkYdVb8rZL9pKmIGvRJY8Se4beJfvWnAv3k605_fkZ-Z3oDajDEnOU3S9wMa9iYgq4v3ZrGerMxe-2blJidsDv7iJ362YJy1v3dAnPgwU93FlVrrV4Ti6mxz8nJ57tueCpiAcbL6QjKiXjImJMKc4UIBYKMsPmfToIWKREZoymGThawRh-fKTjOAP_nIkszsLwBenkwOoD4kouAoA3eBKrqG9iwRigR60CXxtfRNwhXs36dF2V1kjL87UYXJKKhylKLbVSc8gRyqehxcLY5YXVzWVq1SMVZqQCETDsnkalAvRlfOWbUAJslbCcOeQtSjetskwb804PsY1AiHnDDnlfUmBxjByjby7FtijS0--__oHox3mL6KMlMivQEyVsxgO8ExbdalH2WpRg4qo1fYC6WHOlSH1E7TQaUXifXq2f90-_a6bxphhRl-vVFmjA1UVsF1GHvKzUueFsbRwOiVuK3mJ9ewZMtaxNbk3z1X__8zV5DJgUI6O8cNQjnc3NVr8B3LeRfbD2eQwjm_g4Tr_2yYOj47PZeb_8kgJjQlm_XA3-AL4QXKU |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12223,12765,21388,24318,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,53791,53793,73745,74014,74035,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgkYALouXRQKEGIQGHtJvYTewTKoVqF7oFQQu9WbZjl0qrZGl2D_x7ZhInNKhCKDd78pqH_dmeByEvpNMsy72JpeFFzFnuYplqGXsvnTfCYG0H9LY4yiYn_MPp7mnYcKuDW2U3JjYDdVFZ3CPfSRCo8GzM2ZvFzxirRuHpaiihcZ3cgGk_R60W-72LB9hyloVwOZYnO0E624uqdNtNKneMSrk0HTVZ-_uxebSYV_VVwPNv_8lLE9LBXXInIEm614p-jVxz5Tq5OQtn5etkLZhtTV-F3NKv75HvM7cEsc8xFpm-g8ay9X2p4TmOdrJyBcX9WTprsDngdHpe0q4owvwXnc7hvZi4g35u07LW98nJwfvj_UkcaivENpPpMmZ8zI0RUmdCWCuFBWTCQTZYpM-lqcisLrx3vIAFVboLlxy7PC9gHS50kReMPSCjEvi4QaiROgUYgyeulic-10IASnQ2TZxPdCYjEncsVos2hYZqztFyWHq0vFIoEhVEEpG3KIeeFhNgNw3VxZkK9qS0H9tUpwKrpHFjAWX5xCaeGYCnBoatiGyhFFUbTdqbsdrDcgEM44Mj8ryhwCQYJXrZnOlVXavpp2__QfT1y4DoZSDyFeiD1SGyAf4Jk2sNKDcHlGDKdtC9gTrXcaVWf5Qe7uz08OruZ303PhQ950pXrYAGlrSI4TIekYet2vachWYpAMREJB8o9ID1w57y_EeTg5xJwJpcPPr3Z22RW5Pj2aE6nB59fExuA9hEl6eYjTfJaHmxck8A0C3N08ZqfwMsckjq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegSBMviI2PBQYzCAl4yNrEXmI_obExrUDHBAz2ZtmOPSZVSVnaB_577hInLGhCqG_2NU3vw_k5vvsdIS-k0yzLvYml4UXMWe5imWoZey-dN8JgbwfMtjjOjk75-7Pds5D_VIe0ym5NbBbqorL4jnycIFDh2YSzsQ9pEScHh28WP2PsIIUnraGdxk1yC7vMIY--2O_TPSCusyyUzrE8GQdL7Syq0u00tO5YoXLl0dQw-Pfr9Ggxr-rrQOjfuZRXHk6Hd8mdgCrpXusG6-SGKzfI2iycm2-Q9RDCNX0VeKZf3yPfZ24JLjDHumR6AINlmwdTw3Uc7ezmCorvaumswemA2elFSbsGCfNfdDqH30USD3rSUrTW98np4buv-0dx6LMQ20ymy5jxCTdGSJ0JYa0UFlAKBzthwz6XpiKzuvDe8QI2V-kufOTE5XkBe3Khi7xg7AEZlaDHTUKN1ClAGjx9tTzxuRYCEKOzaeJ8ojMZkbhTsVq0dBqqOVPLYRvS6kqhSVQwSUTeoh16WSTDbgaqy3MVYktpP7GpTgV2TOPGAuLyiU08MwBVDSxhEdlGK6q2srQPabWHrQMY1gpH5HkjgYQYJbrWuV7VtZp--vYfQl8-D4ReBiFfgT9YHaoc4D8h0dZAcmsgCWFtB9Ob6HOdVmr1JwDgm50fXj_9rJ_Gi2IWXemqFcjA9hbxXMYj8rB1216zMCwFAJqI5AOHHqh-OFNe_Gj4yJkE3MnFo3_f1jZZg4BVH6fHHx6T24A7MfspZpMtMlpertwTwHZL87QJ2t-V-00P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomic+derangements+are+associated+with+mortality+in+critically+ill+adult+patients&rft.jtitle=PloS+one&rft.au=Angela+J+Rogers&rft.au=Michael+McGeachie&rft.au=Rebecca+M+Baron&rft.au=Lee+Gazourian&rft.date=2014-01-30&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=9&rft.issue=1&rft.spage=e87538&rft_id=info:doi/10.1371%2Fjournal.pone.0087538&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af0c2a2810304bc993f1c1f3b566b073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |