Glycaemia and body weight are regulated by sodium-glucose cotransporter 1 (SGLT1) expression via O-GlcNAcylation in the intestine

The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and...

Full description

Saved in:
Bibliographic Details
Published inMolecular metabolism (Germany) Vol. 59; p. 101458
Main Authors Nishimura, Kimihiro, Fujita, Yukihiro, Ida, Shogo, Yanagimachi, Tsuyoshi, Ohashi, Natsuko, Nishi, Kiyoto, Nishida, Atsushi, Iwasaki, Yasumasa, Morino, Katsutaro, Ugi, Satoshi, Nishi, Eiichiro, Andoh, Akira, Maegawa, Hiroshi
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.05.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2212-8778
2212-8778
DOI10.1016/j.molmet.2022.101458

Cover

Abstract The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression. First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells. Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway. Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes. [Display omitted] •Intestine-specific OGT depletion results in weight loss and hypoglycaemia.•It reduces SGLT1 expression, resulting in glucose absorption from the gut.•OGT knockdown may contribute to diminish glucose-induced incretin secretion.•OGT may regulate SGLT1 expression via the cAMP/CREB-dependent pathway.•O-GlcNAcylation regulates SGLT1 expression in the intestine and the kidney.
AbstractList The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression. First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells. Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway. Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes.
The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression. First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells. Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway. Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes. [Display omitted] •Intestine-specific OGT depletion results in weight loss and hypoglycaemia.•It reduces SGLT1 expression, resulting in glucose absorption from the gut.•OGT knockdown may contribute to diminish glucose-induced incretin secretion.•OGT may regulate SGLT1 expression via the cAMP/CREB-dependent pathway.•O-GlcNAcylation regulates SGLT1 expression in the intestine and the kidney.
The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression.OBJECTIVEThe intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression.First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells.METHODSFirst, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells.Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway.RESULTSFasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway.Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes.CONCLUSIONCollectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes.
Objective: The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression. Methods: First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells. Results: Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway. Conclusion: Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes.
Image 1 • Intestine-specific OGT depletion results in weight loss and hypoglycaemia. • It reduces SGLT1 expression, resulting in glucose absorption from the gut. • OGT knockdown may contribute to diminish glucose-induced incretin secretion. • OGT may regulate SGLT1 expression via the cAMP/CREB-dependent pathway. • O -GlcNAcylation regulates SGLT1 expression in the intestine and the kidney.
ArticleNumber 101458
Author Andoh, Akira
Fujita, Yukihiro
Ida, Shogo
Ugi, Satoshi
Yanagimachi, Tsuyoshi
Nishi, Eiichiro
Ohashi, Natsuko
Nishimura, Kimihiro
Maegawa, Hiroshi
Morino, Katsutaro
Iwasaki, Yasumasa
Nishida, Atsushi
Nishi, Kiyoto
Author_xml – sequence: 1
  givenname: Kimihiro
  surname: Nishimura
  fullname: Nishimura, Kimihiro
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 2
  givenname: Yukihiro
  surname: Fujita
  fullname: Fujita, Yukihiro
  email: fujita@belle.shiga-med.ac.jp
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 3
  givenname: Shogo
  surname: Ida
  fullname: Ida, Shogo
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 4
  givenname: Tsuyoshi
  surname: Yanagimachi
  fullname: Yanagimachi, Tsuyoshi
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 5
  givenname: Natsuko
  surname: Ohashi
  fullname: Ohashi, Natsuko
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 6
  givenname: Kiyoto
  surname: Nishi
  fullname: Nishi, Kiyoto
  organization: Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 7
  givenname: Atsushi
  surname: Nishida
  fullname: Nishida, Atsushi
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 8
  givenname: Yasumasa
  surname: Iwasaki
  fullname: Iwasaki, Yasumasa
  organization: Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Mie 510-029, Japan
– sequence: 9
  givenname: Katsutaro
  surname: Morino
  fullname: Morino, Katsutaro
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 10
  givenname: Satoshi
  surname: Ugi
  fullname: Ugi, Satoshi
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 11
  givenname: Eiichiro
  surname: Nishi
  fullname: Nishi, Eiichiro
  organization: Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 12
  givenname: Akira
  surname: Andoh
  fullname: Andoh, Akira
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
– sequence: 13
  givenname: Hiroshi
  surname: Maegawa
  fullname: Maegawa, Hiroshi
  organization: Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35189429$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbQf4CQj-WwYe39sBehSlUFoVJED5Sz5bUniYPXDrY3sEf-OU7SoraX-DLWfDxjvzOvsxPrLGTZW1xMcYGbD-tp70wPcUoKQnauqmYvsjNCMMkZpezk0f00Ow9hXaTDmqap8avstKwxayvSnmV_Z2aUAnotkLAKdU6N6Dfo5Soi4QF5WA5GREiREQWn9NDnSzNIFwBJF72wYeN8BI8wuvg-m9_h9wj-bDyEoJ1F24S9zWdGfruSY-LsfNqiuIJkIoSoLbzJXi6ECXB-byfZjy-f766_5vPb2c311TyXTUtiXhLW0kUnOkE7KmkruqKjtZC0aISqcatY-msHpGWihI4StcCUlmofYwvVlJPs5sBVTqz5xute-JE7ofne4fySCx-1NMAZE6wSDS0pYRUWdddCUq6qa1HVStE2sS4PrM3Q9aAk2CSFeQJ9GrF6xZduy1lbkIbgBLi4B3j3a0hC8F4HCcYIC24InDQlZk1dpDdMsnePe_1v8jDDlPDxkCC9C8HDgksd91qn1tpwXPDdzvA1P-wM3-0MP-xMKq6eFT_wj5TdCwBpYlsNngepwUpQ2oOMSVJ9DPDpGUAabbUU5ieMx8v_ATrt8rU
CitedBy_id crossref_primary_10_1016_j_foodres_2025_116291
crossref_primary_10_1016_j_heliyon_2024_e34490
crossref_primary_10_1016_j_scitotenv_2025_179102
crossref_primary_10_1186_s10020_023_00684_9
crossref_primary_10_3389_fimmu_2022_921613
crossref_primary_10_1210_endocr_bqae100
crossref_primary_10_1186_s12929_022_00851_w
crossref_primary_10_1039_D3FO05148J
crossref_primary_10_1002_jsfa_13197
crossref_primary_10_3389_fcell_2024_1344039
crossref_primary_10_1016_j_ecoenv_2024_115936
Cites_doi 10.1111/dom.12982
10.1016/j.tem.2013.02.002
10.1016/j.celrep.2020.108013
10.1146/annurev-physiol-021113-170315
10.1038/nrm.2017.22
10.1007/s00125-017-4327-y
10.2337/db11-1029
10.1111/acel.12449
10.1124/mol.114.097352
10.1385/CBB:36:2-3:115
10.1161/JAHA.119.014046
10.1016/j.coph.2013.08.013
10.2337/dcS13-2011
10.1530/JOE-14-0161
10.1042/bj2950211
10.1080/09168451.2014.912121
10.1152/ajpgi.2000.278.4.G591
10.1002/1873-3468.13381
10.1146/annurev.physiol.010908.163145
10.1046/j.0014-2956.2001.02488.x
10.1074/jbc.M806067200
10.1074/jbc.AW119.003226
10.1007/s001250051092
10.1139/o59-099
10.1152/advan.00094.2009
10.1016/j.cmet.2006.01.004
10.1074/jbc.M005040200
10.1186/1475-2840-12-101
10.1093/ibd/izx014
10.1038/ng0296-216
10.1002/jcp.24599
10.1007/s00424-020-02439-5
10.1124/jpet.117.240820
10.1093/jn/129.5.953
10.15252/emmm.201708736
10.1007/s00125-016-3919-2
10.1016/j.tem.2008.09.001
10.1016/S0014-5793(01)03176-3
10.1586/14789450.2013.820536
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.molmet.2022.101458
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2212-8778
ExternalDocumentID oai_doaj_org_article_88a84a67372841a5b9e666455a45dd79
PMC8902621
35189429
10_1016_j_molmet_2022_101458
S2212877822000278
Genre Journal Article
GroupedDBID -IN
.1-
.FO
0R~
1P~
457
4G.
53G
5VS
7-5
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OB0
OK1
ON-
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c692t-32897fbaba7b7c79ab0b75ac706ad519d8877be298a3eb72df1773dad5198fd63
IEDL.DBID M48
ISSN 2212-8778
IngestDate Wed Aug 27 00:56:20 EDT 2025
Thu Aug 21 18:17:58 EDT 2025
Thu Sep 04 20:16:42 EDT 2025
Thu Apr 03 07:08:20 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Tue Jul 01 04:29:51 EDT 2025
Sat Jul 13 15:31:05 EDT 2024
Tue Aug 26 16:41:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Glucose absorption
O-GlcNAcylation
GLP-1
Intestine
SGLT1
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-32897fbaba7b7c79ab0b75ac706ad519d8877be298a3eb72df1773dad5198fd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.molmet.2022.101458
PMID 35189429
PQID 2631865067
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_88a84a67372841a5b9e666455a45dd79
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8902621
proquest_miscellaneous_2631865067
pubmed_primary_35189429
crossref_citationtrail_10_1016_j_molmet_2022_101458
crossref_primary_10_1016_j_molmet_2022_101458
elsevier_sciencedirect_doi_10_1016_j_molmet_2022_101458
elsevier_clinicalkey_doi_10_1016_j_molmet_2022_101458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular metabolism (Germany)
PublicationTitleAlternate Mol Metab
PublicationYear 2022
Publisher Elsevier GmbH
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier
References Cho, Fujita, Kieffer (bib4) 2014; 76
Weinstein, Yin, Beigneux, Davies, Gin, Estrada (bib19) 2008; 283
Zhao, Xiong, Ren, Xu, Cheng, Sahu (bib28) 2018; 10
Powell, Smith, Doree, Harris, Greer, DaCosta (bib30) 2017; 362
Xie, Jin, Gu, Shi, Sun, Chu (bib35) 2016; 15
Yang, Qian (bib11) 2017; 18
Wang, Feng, Yang, Han, Cao, Xu (bib16) 2016; 59
Miyamoto, Hase, Takagi, Fujii, Taketani, Minami (bib26) 1993; 295
Suh, Lee, Kim, Ryu, Han (bib38) 2014; 229
Goodman (bib2) 2010; 34
Wright, Turk, Martin (bib9) 2002; 36
Martín, Wang, Solorzano-Vargas, Lam, Turk, Wright (bib36) 2000; 278
Ogata, Seino, Harada, Iida, Suzuki, Izumoto (bib21) 2014; 222
Vayro, Wood, Dyer, Shirazi-Beechey (bib37) 2001; 268
DeFronzo, Eldor, Abdul-Ghani (bib5) 2013; 36
Reinoso Webb, den Bakker, Koboziev, Jones-Hall, Rao Kottapalli, Ostanin (bib29) 2018; 24
Lee, Loflin, Clancey, Peng, Lever (bib33) 2000; 275
Zhao, Ren, Xiong, Cheng, Zhang, Huang (bib31) 2020; 32
Drucker (bib3) 2006; 3
Kishi, Tanaka, Igawa, Takase, Goda (bib27) 1999; 129
Wang, Su, Huang, Huang, Chan, Kuo (bib34) 2015; 88
Gorboulev, Schürmann, Vallon, Kipp, Jaschke, Klessen (bib10) 2012; 61
Masaki, Feng, Bretón-Romero, Inagaki, Weisbrod, Fetterman (bib17) 2020; 9
Ezcurra, Reimann, Gribble, Emery (bib24) 2013; 13
Zhang, Xie, Li, Zhang, Ying, Liu (bib39) 2019; 593
Bligh, Dyer (bib20) 1959; 37
Ma, Hart (bib13) 2013; 10
Issad, Kuo (bib14) 2008; 19
Hart (bib23) 2019; 294
Martín, Turk, Lostao, Kerner, Wright (bib8) 1996; 12
Ida, Morino, Sekine, Ohashi, Kume, Chano (bib18) 2017; 60
Koepsell (bib7) 2020; 472
Loflin, Lever (bib32) 2001; 509
van der Flier, Clevers (bib1) 2009; 71
Cox, Marsh (bib15) 2013; 12
DeFronzo (bib6) 2017; 19
Honma, Masuda, Mochizuki, Goda (bib25) 2014; 78
Ruan, Singh, Li, Wu, Yang (bib12) 2013; 24
Fujita, Kojima, Hidaka, Fujimiya, Kashiwagi, Kikkawa (bib22) 1998; 41
Zhang (10.1016/j.molmet.2022.101458_bib39) 2019; 593
Zhao (10.1016/j.molmet.2022.101458_bib28) 2018; 10
Ogata (10.1016/j.molmet.2022.101458_bib21) 2014; 222
Vayro (10.1016/j.molmet.2022.101458_bib37) 2001; 268
Yang (10.1016/j.molmet.2022.101458_bib11) 2017; 18
Ma (10.1016/j.molmet.2022.101458_bib13) 2013; 10
DeFronzo (10.1016/j.molmet.2022.101458_bib5) 2013; 36
Kishi (10.1016/j.molmet.2022.101458_bib27) 1999; 129
Loflin (10.1016/j.molmet.2022.101458_bib32) 2001; 509
Ruan (10.1016/j.molmet.2022.101458_bib12) 2013; 24
Miyamoto (10.1016/j.molmet.2022.101458_bib26) 1993; 295
Honma (10.1016/j.molmet.2022.101458_bib25) 2014; 78
Fujita (10.1016/j.molmet.2022.101458_bib22) 1998; 41
DeFronzo (10.1016/j.molmet.2022.101458_bib6) 2017; 19
Reinoso Webb (10.1016/j.molmet.2022.101458_bib29) 2018; 24
Martín (10.1016/j.molmet.2022.101458_bib8) 1996; 12
Wang (10.1016/j.molmet.2022.101458_bib16) 2016; 59
Masaki (10.1016/j.molmet.2022.101458_bib17) 2020; 9
Zhao (10.1016/j.molmet.2022.101458_bib31) 2020; 32
Cho (10.1016/j.molmet.2022.101458_bib4) 2014; 76
Lee (10.1016/j.molmet.2022.101458_bib33) 2000; 275
Xie (10.1016/j.molmet.2022.101458_bib35) 2016; 15
Drucker (10.1016/j.molmet.2022.101458_bib3) 2006; 3
Wright (10.1016/j.molmet.2022.101458_bib9) 2002; 36
Cox (10.1016/j.molmet.2022.101458_bib15) 2013; 12
Ida (10.1016/j.molmet.2022.101458_bib18) 2017; 60
Powell (10.1016/j.molmet.2022.101458_bib30) 2017; 362
Bligh (10.1016/j.molmet.2022.101458_bib20) 1959; 37
Hart (10.1016/j.molmet.2022.101458_bib23) 2019; 294
Goodman (10.1016/j.molmet.2022.101458_bib2) 2010; 34
Martín (10.1016/j.molmet.2022.101458_bib36) 2000; 278
Ezcurra (10.1016/j.molmet.2022.101458_bib24) 2013; 13
Koepsell (10.1016/j.molmet.2022.101458_bib7) 2020; 472
Wang (10.1016/j.molmet.2022.101458_bib34) 2015; 88
Suh (10.1016/j.molmet.2022.101458_bib38) 2014; 229
Weinstein (10.1016/j.molmet.2022.101458_bib19) 2008; 283
van der Flier (10.1016/j.molmet.2022.101458_bib1) 2009; 71
Gorboulev (10.1016/j.molmet.2022.101458_bib10) 2012; 61
Issad (10.1016/j.molmet.2022.101458_bib14) 2008; 19
References_xml – volume: 71
  start-page: 241
  year: 2009
  end-page: 260
  ident: bib1
  article-title: Stem cells, self-renewal, and differentiation in the intestinal epithelium
  publication-title: Annual Review of Physiology
– volume: 12
  start-page: 101
  year: 2013
  ident: bib15
  article-title: Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart
  publication-title: Cardiovascular Diabetology
– volume: 78
  start-page: 1071
  year: 2014
  end-page: 1073
  ident: bib25
  article-title: Re-feeding rats a high-sucrose diet after 3 days of starvation enhances histone H3 acetylation in transcribed region and expression of jejunal GLUT5 gene
  publication-title: Bioscience Biotechnology & Biochemistry
– volume: 12
  start-page: 216
  year: 1996
  end-page: 220
  ident: bib8
  article-title: Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption
  publication-title: Nature Genetics
– volume: 278
  start-page: G591
  year: 2000
  end-page: G603
  ident: bib36
  article-title: Regulation of the human Na(+)-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1
  publication-title: American Journal of Physiology – Gastrointestinal and Liver Physiology
– volume: 41
  start-page: 1459
  year: 1998
  end-page: 1466
  ident: bib22
  article-title: Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty rats
  publication-title: Diabetologia
– volume: 61
  start-page: 187
  year: 2012
  end-page: 196
  ident: bib10
  article-title: Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion
  publication-title: Diabetes
– volume: 9
  year: 2020
  ident: bib17
  article-title: O-GlcNAcylation mediates glucose-induced alterations in endothelial cell phenotype in human diabetes mellitus
  publication-title: Journal of American Heart Association
– volume: 18
  start-page: 452
  year: 2017
  end-page: 465
  ident: bib11
  article-title: Protein O-GlcNAcylation: emerging mechanisms and functions
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 3
  start-page: 153
  year: 2006
  end-page: 165
  ident: bib3
  article-title: The biology of incretin hormones
  publication-title: Cell Metabolism
– volume: 295
  start-page: 211
  year: 1993
  end-page: 215
  ident: bib26
  article-title: Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars
  publication-title: Biochemical Journal
– volume: 10
  start-page: 365
  year: 2013
  end-page: 380
  ident: bib13
  article-title: Protein O-GlcNAcylation in diabetes and diabetic complications
  publication-title: Expert Review of Proteomics
– volume: 24
  start-page: 361
  year: 2018
  end-page: 379
  ident: bib29
  article-title: Differential susceptibility to T cell-induced colitis in mice: role of the intestinal microbiota
  publication-title: Inflammatory Bowel Diseases
– volume: 294
  start-page: 2211
  year: 2019
  end-page: 2231
  ident: bib23
  article-title: Nutrient regulation of signaling and transcription
  publication-title: Journal of Biological Chemistry
– volume: 34
  start-page: 44
  year: 2010
  end-page: 53
  ident: bib2
  article-title: Insights into digestion and absorption of major nutrients in humans
  publication-title: Advances in Physiology Education
– volume: 59
  start-page: 1287
  year: 2016
  end-page: 1296
  ident: bib16
  article-title: O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis
  publication-title: Diabetologia
– volume: 36
  start-page: S127
  year: 2013
  end-page: S138
  ident: bib5
  article-title: Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes
  publication-title: Diabetes Care
– volume: 268
  start-page: 5460
  year: 2001
  end-page: 5470
  ident: bib37
  article-title: Transcriptional regulation of the ovine intestinal Na+/glucose cotransporter SGLT1 gene. Role of HNF-1 in glucose activation of promoter function
  publication-title: European Journal of Biochemistry
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: bib20
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Canadian Journal of Biochemistry and Physiology
– volume: 509
  start-page: 267
  year: 2001
  end-page: 271
  ident: bib32
  article-title: HuR binds a cyclic nucleotide-dependent, stabilizing domain in the 3′ untranslated region of Na(+)/glucose cotransporter (SGLT1) mRNA
  publication-title: FEBS Letters
– volume: 593
  start-page: 1050
  year: 2019
  end-page: 1060
  ident: bib39
  article-title: Hepatocyte nuclear factor 1 alpha (HNF1A) regulates transcription of O-GlcNAc transferase in a negative feedback mechanism
  publication-title: FEBS Letters
– volume: 13
  start-page: 922
  year: 2013
  end-page: 927
  ident: bib24
  article-title: Molecular mechanisms of incretin hormone secretion
  publication-title: Current Opinion in Pharmacology
– volume: 472
  start-page: 1207
  year: 2020
  end-page: 1248
  ident: bib7
  article-title: Glucose transporters in the small intestine in health and disease
  publication-title: Pflügers Archiv
– volume: 36
  start-page: 115
  year: 2002
  end-page: 121
  ident: bib9
  article-title: Molecular basis for glucose-galactose malabsorption
  publication-title: Cell Biochemistry and Biophysics
– volume: 129
  start-page: 953
  year: 1999
  end-page: 956
  ident: bib27
  article-title: Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum
  publication-title: Journal of Nutrition
– volume: 283
  start-page: 34511
  year: 2008
  end-page: 34518
  ident: bib19
  article-title: Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice
  publication-title: Journal of Biological Chemistry
– volume: 229
  start-page: 1557
  year: 2014
  end-page: 1568
  ident: bib38
  article-title: Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells
  publication-title: Journal of Cellular Physiology
– volume: 275
  start-page: 33998
  year: 2000
  end-page: 34008
  ident: bib33
  article-title: Cyclic nucleotide regulation of Na+/glucose cotransporter (SGLT1) mRNA stability. Interaction of a nucleocytoplasmic protein with a regulatory domain in the 3′-untranslated region critical for stabilization
  publication-title: Journal of Biological Chemistry
– volume: 24
  start-page: 301
  year: 2013
  end-page: 309
  ident: bib12
  article-title: Cracking the O-GlcNAc code in metabolism
  publication-title: Trends in Endocrinology & Metabolism
– volume: 60
  start-page: 1761
  year: 2017
  end-page: 1769
  ident: bib18
  article-title: Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice
  publication-title: Diabetologia
– volume: 76
  start-page: 535
  year: 2014
  end-page: 559
  ident: bib4
  article-title: Glucagon-like peptide-1: glucose homeostasis and beyond
  publication-title: Annual Review of Physiology
– volume: 88
  start-page: 1072
  year: 2015
  end-page: 1083
  ident: bib34
  article-title: An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of Na+/glucose cotransporter 1 gene expression
  publication-title: Molecular Pharmacology
– volume: 362
  start-page: 85
  year: 2017
  end-page: 97
  ident: bib30
  article-title: LX2761, a sodium/glucose cotransporter 1 inhibitor restricted to the intestine, improves glycemic control in mice
  publication-title: Journal of Pharmacology and Experimental Therapeutics
– volume: 10
  year: 2018
  ident: bib28
  article-title: Deficiency in intestinal epithelial O-GlcNAcylation predisposes to gut inflammation
  publication-title: EMBO Molecular Medicine
– volume: 15
  start-page: 455
  year: 2016
  end-page: 464
  ident: bib35
  article-title: O-GlcNAcylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and memory deficits in Alzheimer's disease
  publication-title: Aging Cell
– volume: 19
  start-page: 1353
  year: 2017
  end-page: 1362
  ident: bib6
  article-title: Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor
  publication-title: Diabetes, Obesity and Metabolism
– volume: 32
  start-page: 108013
  year: 2020
  ident: bib31
  article-title: Protein O-GlcNAc modification links dietary and gut microbial cues to the differentiation of enteroendocrine L cells
  publication-title: Cell Reports
– volume: 19
  start-page: 380
  year: 2008
  end-page: 389
  ident: bib14
  article-title: O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity
  publication-title: Trends in Endocrinology & Metabolism
– volume: 222
  start-page: 191
  year: 2014
  end-page: 200
  ident: bib21
  article-title: KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state
  publication-title: Journal of Endocrinology
– volume: 19
  start-page: 1353
  issue: 10
  year: 2017
  ident: 10.1016/j.molmet.2022.101458_bib6
  article-title: Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor
  publication-title: Diabetes, Obesity and Metabolism
  doi: 10.1111/dom.12982
– volume: 24
  start-page: 301
  issue: 6
  year: 2013
  ident: 10.1016/j.molmet.2022.101458_bib12
  article-title: Cracking the O-GlcNAc code in metabolism
  publication-title: Trends in Endocrinology & Metabolism
  doi: 10.1016/j.tem.2013.02.002
– volume: 32
  start-page: 108013
  issue: 6
  year: 2020
  ident: 10.1016/j.molmet.2022.101458_bib31
  article-title: Protein O-GlcNAc modification links dietary and gut microbial cues to the differentiation of enteroendocrine L cells
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2020.108013
– volume: 76
  start-page: 535
  year: 2014
  ident: 10.1016/j.molmet.2022.101458_bib4
  article-title: Glucagon-like peptide-1: glucose homeostasis and beyond
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev-physiol-021113-170315
– volume: 18
  start-page: 452
  issue: 7
  year: 2017
  ident: 10.1016/j.molmet.2022.101458_bib11
  article-title: Protein O-GlcNAcylation: emerging mechanisms and functions
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm.2017.22
– volume: 60
  start-page: 1761
  issue: 9
  year: 2017
  ident: 10.1016/j.molmet.2022.101458_bib18
  article-title: Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4327-y
– volume: 61
  start-page: 187
  issue: 1
  year: 2012
  ident: 10.1016/j.molmet.2022.101458_bib10
  article-title: Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion
  publication-title: Diabetes
  doi: 10.2337/db11-1029
– volume: 15
  start-page: 455
  issue: 3
  year: 2016
  ident: 10.1016/j.molmet.2022.101458_bib35
  article-title: O-GlcNAcylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and memory deficits in Alzheimer's disease
  publication-title: Aging Cell
  doi: 10.1111/acel.12449
– volume: 88
  start-page: 1072
  issue: 6
  year: 2015
  ident: 10.1016/j.molmet.2022.101458_bib34
  article-title: An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of Na+/glucose cotransporter 1 gene expression
  publication-title: Molecular Pharmacology
  doi: 10.1124/mol.114.097352
– volume: 36
  start-page: 115
  issue: 2–3
  year: 2002
  ident: 10.1016/j.molmet.2022.101458_bib9
  article-title: Molecular basis for glucose-galactose malabsorption
  publication-title: Cell Biochemistry and Biophysics
  doi: 10.1385/CBB:36:2-3:115
– volume: 9
  issue: 12
  year: 2020
  ident: 10.1016/j.molmet.2022.101458_bib17
  article-title: O-GlcNAcylation mediates glucose-induced alterations in endothelial cell phenotype in human diabetes mellitus
  publication-title: Journal of American Heart Association
  doi: 10.1161/JAHA.119.014046
– volume: 13
  start-page: 922
  issue: 6
  year: 2013
  ident: 10.1016/j.molmet.2022.101458_bib24
  article-title: Molecular mechanisms of incretin hormone secretion
  publication-title: Current Opinion in Pharmacology
  doi: 10.1016/j.coph.2013.08.013
– volume: 36
  start-page: S127
  issue: Suppl. 2
  year: 2013
  ident: 10.1016/j.molmet.2022.101458_bib5
  article-title: Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dcS13-2011
– volume: 222
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.molmet.2022.101458_bib21
  article-title: KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state
  publication-title: Journal of Endocrinology
  doi: 10.1530/JOE-14-0161
– volume: 295
  start-page: 211
  issue: Pt 1
  year: 1993
  ident: 10.1016/j.molmet.2022.101458_bib26
  article-title: Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars
  publication-title: Biochemical Journal
  doi: 10.1042/bj2950211
– volume: 78
  start-page: 1071
  issue: 6
  year: 2014
  ident: 10.1016/j.molmet.2022.101458_bib25
  article-title: Re-feeding rats a high-sucrose diet after 3 days of starvation enhances histone H3 acetylation in transcribed region and expression of jejunal GLUT5 gene
  publication-title: Bioscience Biotechnology & Biochemistry
  doi: 10.1080/09168451.2014.912121
– volume: 278
  start-page: G591
  issue: 4
  year: 2000
  ident: 10.1016/j.molmet.2022.101458_bib36
  article-title: Regulation of the human Na(+)-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1
  publication-title: American Journal of Physiology – Gastrointestinal and Liver Physiology
  doi: 10.1152/ajpgi.2000.278.4.G591
– volume: 593
  start-page: 1050
  issue: 10
  year: 2019
  ident: 10.1016/j.molmet.2022.101458_bib39
  article-title: Hepatocyte nuclear factor 1 alpha (HNF1A) regulates transcription of O-GlcNAc transferase in a negative feedback mechanism
  publication-title: FEBS Letters
  doi: 10.1002/1873-3468.13381
– volume: 71
  start-page: 241
  year: 2009
  ident: 10.1016/j.molmet.2022.101458_bib1
  article-title: Stem cells, self-renewal, and differentiation in the intestinal epithelium
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev.physiol.010908.163145
– volume: 268
  start-page: 5460
  issue: 20
  year: 2001
  ident: 10.1016/j.molmet.2022.101458_bib37
  article-title: Transcriptional regulation of the ovine intestinal Na+/glucose cotransporter SGLT1 gene. Role of HNF-1 in glucose activation of promoter function
  publication-title: European Journal of Biochemistry
  doi: 10.1046/j.0014-2956.2001.02488.x
– volume: 283
  start-page: 34511
  issue: 50
  year: 2008
  ident: 10.1016/j.molmet.2022.101458_bib19
  article-title: Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M806067200
– volume: 294
  start-page: 2211
  issue: 7
  year: 2019
  ident: 10.1016/j.molmet.2022.101458_bib23
  article-title: Nutrient regulation of signaling and transcription
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.AW119.003226
– volume: 41
  start-page: 1459
  issue: 12
  year: 1998
  ident: 10.1016/j.molmet.2022.101458_bib22
  article-title: Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty rats
  publication-title: Diabetologia
  doi: 10.1007/s001250051092
– volume: 37
  start-page: 911
  issue: 8
  year: 1959
  ident: 10.1016/j.molmet.2022.101458_bib20
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Canadian Journal of Biochemistry and Physiology
  doi: 10.1139/o59-099
– volume: 34
  start-page: 44
  issue: 2
  year: 2010
  ident: 10.1016/j.molmet.2022.101458_bib2
  article-title: Insights into digestion and absorption of major nutrients in humans
  publication-title: Advances in Physiology Education
  doi: 10.1152/advan.00094.2009
– volume: 3
  start-page: 153
  issue: 3
  year: 2006
  ident: 10.1016/j.molmet.2022.101458_bib3
  article-title: The biology of incretin hormones
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2006.01.004
– volume: 275
  start-page: 33998
  issue: 43
  year: 2000
  ident: 10.1016/j.molmet.2022.101458_bib33
  article-title: Cyclic nucleotide regulation of Na+/glucose cotransporter (SGLT1) mRNA stability. Interaction of a nucleocytoplasmic protein with a regulatory domain in the 3′-untranslated region critical for stabilization
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M005040200
– volume: 12
  start-page: 101
  year: 2013
  ident: 10.1016/j.molmet.2022.101458_bib15
  article-title: Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart
  publication-title: Cardiovascular Diabetology
  doi: 10.1186/1475-2840-12-101
– volume: 24
  start-page: 361
  issue: 2
  year: 2018
  ident: 10.1016/j.molmet.2022.101458_bib29
  article-title: Differential susceptibility to T cell-induced colitis in mice: role of the intestinal microbiota
  publication-title: Inflammatory Bowel Diseases
  doi: 10.1093/ibd/izx014
– volume: 12
  start-page: 216
  issue: 2
  year: 1996
  ident: 10.1016/j.molmet.2022.101458_bib8
  article-title: Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption
  publication-title: Nature Genetics
  doi: 10.1038/ng0296-216
– volume: 229
  start-page: 1557
  issue: 10
  year: 2014
  ident: 10.1016/j.molmet.2022.101458_bib38
  article-title: Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells
  publication-title: Journal of Cellular Physiology
  doi: 10.1002/jcp.24599
– volume: 472
  start-page: 1207
  issue: 9
  year: 2020
  ident: 10.1016/j.molmet.2022.101458_bib7
  article-title: Glucose transporters in the small intestine in health and disease
  publication-title: Pflügers Archiv
  doi: 10.1007/s00424-020-02439-5
– volume: 362
  start-page: 85
  issue: 1
  year: 2017
  ident: 10.1016/j.molmet.2022.101458_bib30
  article-title: LX2761, a sodium/glucose cotransporter 1 inhibitor restricted to the intestine, improves glycemic control in mice
  publication-title: Journal of Pharmacology and Experimental Therapeutics
  doi: 10.1124/jpet.117.240820
– volume: 129
  start-page: 953
  issue: 5
  year: 1999
  ident: 10.1016/j.molmet.2022.101458_bib27
  article-title: Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum
  publication-title: Journal of Nutrition
  doi: 10.1093/jn/129.5.953
– volume: 10
  issue: 8
  year: 2018
  ident: 10.1016/j.molmet.2022.101458_bib28
  article-title: Deficiency in intestinal epithelial O-GlcNAcylation predisposes to gut inflammation
  publication-title: EMBO Molecular Medicine
  doi: 10.15252/emmm.201708736
– volume: 59
  start-page: 1287
  issue: 6
  year: 2016
  ident: 10.1016/j.molmet.2022.101458_bib16
  article-title: O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-3919-2
– volume: 19
  start-page: 380
  issue: 10
  year: 2008
  ident: 10.1016/j.molmet.2022.101458_bib14
  article-title: O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity
  publication-title: Trends in Endocrinology & Metabolism
  doi: 10.1016/j.tem.2008.09.001
– volume: 509
  start-page: 267
  issue: 2
  year: 2001
  ident: 10.1016/j.molmet.2022.101458_bib32
  article-title: HuR binds a cyclic nucleotide-dependent, stabilizing domain in the 3′ untranslated region of Na(+)/glucose cotransporter (SGLT1) mRNA
  publication-title: FEBS Letters
  doi: 10.1016/S0014-5793(01)03176-3
– volume: 10
  start-page: 365
  issue: 4
  year: 2013
  ident: 10.1016/j.molmet.2022.101458_bib13
  article-title: Protein O-GlcNAcylation in diabetes and diabetic complications
  publication-title: Expert Review of Proteomics
  doi: 10.1586/14789450.2013.820536
SSID ssj0000866651
Score 2.3382394
Snippet The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational...
Image 1 • Intestine-specific OGT depletion results in weight loss and hypoglycaemia. • It reduces SGLT1 expression, resulting in glucose absorption from the...
Objective: The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101458
SubjectTerms Animals
Blood Glucose - metabolism
Body Weight
GLP-1
Glucose - metabolism
Glucose absorption
Intestine
Intestines - metabolism
Mice
O-GlcNAcylation
Obesity
Original
SGLT1
Sodium-Glucose Transporter 1 - genetics
Tamoxifen
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJSQ2CMprgCIjsYBFIHESP5YF0akQlAWt1J3lV0SqmQRNZ1qy7J_32k6iCSyGBdv4JdvX18fx8T0IvSlykwlhRWKpSZOiMiwRLtOJc7A_EKq4C1oE307o8Vnx5bw835L68pywGB44DtwHzhUvVFBT4UWmSi0cIO6iLFVRWsvC071UpFuHqeCDOWQK2osEfDMsecaHd3OB3LX0fH9PpSTkfVCr5ZN9KYTvn2xPf8PPP1mUW9vS0QN0v8eT-DD24yG645p9dDcqTHaP0M180RnllrXCqrFYt7bD1-FvKFYrh1dRid5BSocvW1tvlgOJHZt2PQY-X-EMv_0x_3qavcPud8-dbfAVVPs9mS_MyaHpIqkO1w0GTIl9GArwHo17jM6OPp9-Ok561YXEUEHWSQ5HMFZppRXTzDChdKpZqQxLqbKA9yy4JaYdEVzlTjNiq4yx3IY0XlmaP0F7Tdu4ZwgDVACHQU1pYClqYnleFdZVlXCMC1IVM5QPYy5NH5LcK2Ms5MA9u5BxpqSfKRlnaoaSsdSvGJJjR_6PfjrHvD6gdvgAZiZ7M5O7zGyGysEY5PBmFbwsVFTvaJyN5XpME7HKP5R8PdichCXv73FU49rNpSQUHDEga8pm6Gm0wbFzeZlxARgD2p1Y56T305Sm_hnCivsbZ0qy5_9juF6ge74rkRn6Eu2tVxt3AOhtrV-FhXoLwZZA5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-Wl4zEAQ5mN07ix7Gt6FYIyqGttLfIr0Cq3aRKd4Ec-eeM7SQicCjiuLGdl8fffBt_M4PQ6yw1iZRWEsvMgmSl4US6RBPnwD9QpoQLtQg-nbKTi-zDKl_toaMhFsbLKnvsj5ge0Lo_Mu_f5vyqquZnFFBXcO_h4v4Z4LCPKvVBfKvD8TsLUHbGQhVG35_4AUMEXZB5bbzy34sqKX0X6taKiYcKifwnjupvIvqnnvI3B3V8F93pmSU-iDd_D-25-j66FWtNdg_Qz-W6M8ptKoVVbbFubIe_h--iWLUOt7EmvYOWDl83ttptBjk7Ns12TIHe4gS_OVt-PE_eYvejV9HW-Buc9jNZrs3pgemivA5XNQZ2iX1CCsCR2j1EF8fvz49OSF9_gRgm6Zak8GeMl1ppxTU3XCq90DxXhi-YssD8LAAU145KoVKnObVlwnlqQ5soLUsfof26qd0ThIE0AHQwkxtYlJpakZaZdWUpHReSltkMpcM7L0yfnNzXyFgXgwrtsogzVfiZKuJMzRAZR13F5Bw39D_00zn29am1w4Gm_VL0tlUIoUSmQvkekSUq19KBBWV5rrLcWi5nKB-MoRiiVwFv4UTVDRfn47iJhf_DyFeDzRWw-P2Ojqpds7suKANIBo7N-Aw9jjY4PlyaJ0IC24DrTqxz8vTTlrr6GhKM-71nRpOn_33Hz9Bt_ysKQ5-j_W27cy-AvG31y7A6fwHyg0M8
  priority: 102
  providerName: Elsevier
Title Glycaemia and body weight are regulated by sodium-glucose cotransporter 1 (SGLT1) expression via O-GlcNAcylation in the intestine
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2212877822000278
https://dx.doi.org/10.1016/j.molmet.2022.101458
https://www.ncbi.nlm.nih.gov/pubmed/35189429
https://www.proquest.com/docview/2631865067
https://pubmed.ncbi.nlm.nih.gov/PMC8902621
https://doaj.org/article/88a84a67372841a5b9e666455a45dd79
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6VVqBeEGsJSzRIHODgKh7bsxwQShFNobRI0IjcrNkMQYndOgnUR_45b8ZLCYuKuPjgmedt3rz3jf35fQg9iSMdCmFEYKgeBHGmWSBsqAJrIT8QKrn1WgRHx_RgHL-ZJJMN1Gq2Ng9w8celndOTGpez3fOz6gVM-OcXXK25o-87ZiQhu158ll9BW5CbqFuOHTWA38dmDnA9Cdt_6P5ivI2uRUnIReyB50W68lX917LW76j0V3LlT9lq_wa63sBMPKz94ibasPktdLUWnqxuo--jWaWlnU8llrnBqjAV_uZfkmJZWlzWAvUWWiq8KMx0NW-57VgXy64eeolD_PTD6O1J-Azb84ZSm-OvcNh3wWimj4e6qrl2eJpjgJrYVaeAoJLbO2i8_-rk5UHQiDEEmgqyDCJYmbFMSSWZYpoJqQaKJVKzAZUGYKCBaMWUJYLLyCpGTBYyFhnfxjNDo7toMy9yew9hQBAQR6hONMxQRQyPstjYLBOWcUGyuIei9pmnuqlU7gQzZmlLSfuS1oOWukFL60HroaCzOq0rdVzSf88NZ9fX1dn2O4ryU9pM25RzyWPptXx4HMpECQsOFCeJjBNjmOihpHWGtP2VFYIvHGh6yclZZ9dAnRrC_IPl49bnUogE7vOOzG2xWqSEQnwGwE1ZD-3UPtjdXOvOcN4171y7-_WWfPrZVxt3H6IpCe__t-UDtO2uv2aJPkSby3JlHwGSW6o-2hoevv942PdvQmD7erLX9xP2B48rTYs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSQOcAhtnMSP4-6KbRe65bBdqbfIr0BQm6y6LdAj_5yxnUQEDou4xpkkjsfffIk_zyD0Ok10LIQRkaF6FKWFZpGwsYqshfhAqOTW1yI4ndHJefphkS320FG7F8bJKhvsD5ju0bo5Mmze5vCiLIdnBFCXMxfhwvrZNXQd2AB1CfRPFofdjxbg7JT6MozOIHIW7RY6r_NaOem_U1US8s4XruW9EOUz-fci1d9M9E9B5W8R6vgOut1QS3wQnv4u2rPVPXQjFJvc3Uc_x8udlnZVSiwrg1Vtdvi7_zGK5dridShKb6Flhy9rU25XrZ4d63rT5UBf4xi_ORtP5_FbbH80MtoKf4PLforGSz070Lugr8NlhYFeYpeRAoCksg_Q-fH7-dEkagowRJoKsokS-BpjhZJKMsU0E1KNFMukZiMqDVA_AwjFlCWCy8QqRkwRM5YY38YLQ5OHaL-qK_sYYWANgB1UZxpmpSKGJ0VqbFEIy7ggRTpASfvOc91kJ3dFMpZ5K0P7moeRyt1I5WGkBijqrC5Cdo4rzj90w9md63Jr-wP1-nPeOFfOueSp9PV7eBrLTAkLHpRmmUwzY5gYoKx1hrzdvgqACxcqr7g56-x6Lv4Plq9an8th9rslHVnZenuZEwqYDCSbsgF6FHyw61ySxVwA3YD79ryz1_t-S1V-8RnG3eIzJfGT_37il-jmZH46zacns49P0S3XElSiz9D-Zr21z4HJbdQLP1N_ATR4RmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycaemia+and+body+weight+are+regulated+by+sodium-glucose+cotransporter+1+%28SGLT1%29+expression+via+O-GlcNAcylation+in+the+intestine&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Nishimura%2C+Kimihiro&rft.au=Fujita%2C+Yukihiro&rft.au=Ida%2C+Shogo&rft.au=Yanagimachi%2C+Tsuyoshi&rft.date=2022-05-01&rft.pub=Elsevier&rft.eissn=2212-8778&rft.volume=59&rft_id=info:doi/10.1016%2Fj.molmet.2022.101458&rft_id=info%3Apmid%2F35189429&rft.externalDocID=PMC8902621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon