Predicting human decision making in psychological tasks with recurrent neural networks

Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the u...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 5; p. e0267907
Main Authors Lin, Baihan, Bouneffouf, Djallel, Cecchi, Guillermo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.05.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner’s Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner’s Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.
AbstractList Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.
Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner’s Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner’s Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.
Audience Academic
Author Bouneffouf, Djallel
Cecchi, Guillermo
Lin, Baihan
AuthorAffiliation 2 Department of Neuroscience, Columbia University, New York, NY, United States of America
Zhejiang University of Finance and Economics, CHINA
4 Department of Artificial Intelligence Foundations, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America
3 Department of Psychology, Columbia University, New York, NY, United States of America
5 Department of Healthcare and Life Sciences, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America
1 Department of Systems Biology, Columbia University, New York, NY, United States of America
AuthorAffiliation_xml – name: 2 Department of Neuroscience, Columbia University, New York, NY, United States of America
– name: Zhejiang University of Finance and Economics, CHINA
– name: 1 Department of Systems Biology, Columbia University, New York, NY, United States of America
– name: 3 Department of Psychology, Columbia University, New York, NY, United States of America
– name: 4 Department of Artificial Intelligence Foundations, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America
– name: 5 Department of Healthcare and Life Sciences, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America
Author_xml – sequence: 1
  givenname: Baihan
  orcidid: 0000-0002-7979-5509
  surname: Lin
  fullname: Lin, Baihan
– sequence: 2
  givenname: Djallel
  surname: Bouneffouf
  fullname: Bouneffouf, Djallel
– sequence: 3
  givenname: Guillermo
  surname: Cecchi
  fullname: Cecchi, Guillermo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35639730$$D View this record in MEDLINE/PubMed
BookMark eNqNk1uL1DAUx4usuBf9BqIFQfRhxrRpksYHYVm8DCyseNnXkKZpm9k0mU1S1_32pjsdmS6LSB4STn7nfy6cc5wcGGtkkjzPwDKDJHu3toMzXC830bwEOSYUkEfJUUZhvsA5gAd778Pk2Ps1AAiWGD9JDiHCkBIIjpLLr07WSgRl2rQbem7SWgrllTVpz69GqzLpxt-KzmrbKsF1Gri_8umNCl3qpBickyakRg4u_hkZbqy78k-Txw3XXj6b7pPk56ePP86-LM4vPq_OTs8XAtM8LPKmBhjVVQNwU1UlQYLQLMcS0aKGtOICUI4ELbOszgreVERWJYrWSnAqJS_gSfJyq7vR1rOpJZ7luCS4pATBSKy2RG35mm2c6rm7ZZYrdmewrmXcBSW0ZIIUsqJlyVEuC0wFr5omi9lBwgUiREStD1O0oeplLWLhseiZ6PzHqI619hejGSoAxVHgzSTg7PUgfWC98kJqzY20w5g3yWGOi7u8X91DH65uoloeC1CmsTGuGEXZKQEIxbBwDLt8gIqnlr0ScX4aFe0zh7czh8gE-Tu0fPCerb5_-3_24nLOvt5jO8l16LzVQ4jz5ufgi_1O_23xbnAj8H4LCGe9d7JhQgU-6sTSlGYZYOOW7JrGxi1h05ZE5-Ke807_n25_AO5SGEM
CitedBy_id crossref_primary_10_1177_00131644241262964
crossref_primary_10_1038_s41386_023_01592_6
crossref_primary_10_3390_sym15091723
Cites_doi 10.1257/aer.96.4.1029
10.1037/1040-3590.14.3.253
10.1126/science.7466396
10.1177/1745691617693393
10.1109/TAC.1974.1100705
10.1007/978-981-16-1288-6_2
10.1007/BF02294587
10.1002/cjce.5450850401
10.1257/aer.102.2.720
10.1162/neco.1997.9.8.1735
10.1257/aer.101.1.411
10.1017/S1930297500001200
10.3389/fnins.2012.00061
10.1080/01621459.1951.10500769
10.1016/j.geb.2008.07.003
10.1257/aer.102.1.337
10.1080/03640210802352992
10.1257/000282805775014434
10.1109/5.58337
10.1007/978-3-540-27752-1
10.2307/2234532
10.24963/ijcai.2019/913
10.1016/0010-0277(94)90018-3
10.1109/IJCNN55064.2022.9892963
10.1177/002200278002400101
10.1016/j.jmp.2009.10.002
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Lin et al 2022 Lin et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Lin et al 2022 Lin et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0267907
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database
CrossRef

MEDLINE




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Predicting human decision making in psychological tasks with recurrent neural networks
EISSN 1932-6203
ExternalDocumentID 2687689753
oai_doaj_org_article_c74eb988a52e469cabff15db37ac577c
PMC9154096
A705554036
35639730
10_1371_journal_pone_0267907
Genre Journal Article
GeographicLocations United States
United States--US
Iowa
GeographicLocations_xml – name: United States
– name: Iowa
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-2fd065dbf06fbb875c79126e594d39bac09a5c9811d14afb7eb85ac0bca9eea43
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:01 EDT 2023
Wed Aug 27 01:28:58 EDT 2025
Thu Aug 21 18:29:43 EDT 2025
Fri Jul 11 09:24:26 EDT 2025
Fri Jul 25 09:12:42 EDT 2025
Tue Jun 17 21:32:12 EDT 2025
Tue Jun 10 20:51:33 EDT 2025
Fri Jun 27 05:03:38 EDT 2025
Fri Jun 27 03:52:31 EDT 2025
Thu May 22 21:20:25 EDT 2025
Mon Jul 21 05:46:01 EDT 2025
Tue Jul 01 04:21:41 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-2fd065dbf06fbb875c79126e594d39bac09a5c9811d14afb7eb85ac0bca9eea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-7979-5509
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0267907
PMID 35639730
PQID 2687689753
PQPubID 1436336
PageCount e0267907
ParticipantIDs plos_journals_2687689753
doaj_primary_oai_doaj_org_article_c74eb988a52e469cabff15db37ac577c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9154096
proquest_miscellaneous_2672326453
proquest_journals_2687689753
gale_infotracmisc_A705554036
gale_infotracacademiconefile_A705554036
gale_incontextgauss_ISR_A705554036
gale_incontextgauss_IOV_A705554036
gale_healthsolutions_A705554036
pubmed_primary_35639730
crossref_citationtrail_10_1371_journal_pone_0267907
crossref_primary_10_1371_journal_pone_0267907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-31
PublicationDateYYYYMMDD 2022-05-31
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DJ Fridberg (pone.0267907.ref011) 2010; 54
pone.0267907.ref030
pone.0267907.ref013
pone.0267907.ref014
J Andreoni (pone.0267907.ref023) 1993; 103
pone.0267907.ref015
pone.0267907.ref016
pone.0267907.ref017
pone.0267907.ref018
R Axelrod (pone.0267907.ref004) 1980; 24
pone.0267907.ref019
PJ Werbos (pone.0267907.ref020) 1990; 78
FJ Massey (pone.0267907.ref033) 1951; 46
WY Ahn (pone.0267907.ref010) 2008; 32
PD Bó (pone.0267907.ref024) 2005; 95
T Yarkoni (pone.0267907.ref003) 2017; 12
J Duffy (pone.0267907.ref006) 2009; 66
JJ Nay (pone.0267907.ref007) 2016; 11
JR Busemeyer (pone.0267907.ref009) 2002; 14
R Axelrod (pone.0267907.ref022) 1981; 211
S Wu (pone.0267907.ref002) 2007; 85
MR Hagerty (pone.0267907.ref001) 1991; 56
H Kunreuther (pone.0267907.ref005) 2009; 4
A Horstmann (pone.0267907.ref012) 2012; 6
H Akaike (pone.0267907.ref032) 1974; 19
A Bechara (pone.0267907.ref008) 1994; 50
H Lütkepohl (pone.0267907.ref031) 2005
P Dal Bó (pone.0267907.ref026) 2011; 101
H Steingroever (pone.0267907.ref029) 2015; 3
S Hochreiter (pone.0267907.ref021) 1997; 9
D Friedman (pone.0267907.ref027) 2012; 102
D Fudenberg (pone.0267907.ref028) 2012; 102
Y Bereby-Meyer (pone.0267907.ref025) 2006; 96
References_xml – volume: 96
  start-page: 1029
  issue: 4
  year: 2006
  ident: pone.0267907.ref025
  article-title: The speed of learning in noisy games: Partial reinforcement and the sustainability of cooperation
  publication-title: American Economic Review
  doi: 10.1257/aer.96.4.1029
– volume: 14
  start-page: 253
  issue: 3
  year: 2002
  ident: pone.0267907.ref009
  article-title: A contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling task
  publication-title: Psychological assessment
  doi: 10.1037/1040-3590.14.3.253
– volume: 211
  start-page: 1390
  issue: 4489
  year: 1981
  ident: pone.0267907.ref022
  article-title: The evolution of cooperation
  publication-title: science
  doi: 10.1126/science.7466396
– volume: 3
  start-page: 340
  issue: 1
  year: 2015
  ident: pone.0267907.ref029
  article-title: Data from 617 healthy participants performing the Iowa gambling task: A “many labs” collaboration
  publication-title: Journal of Open Psychology Data
– volume: 12
  start-page: 1100
  issue: 6
  year: 2017
  ident: pone.0267907.ref003
  article-title: Choosing prediction over explanation in psychology: Lessons from machine learning
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691617693393
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: pone.0267907.ref032
  article-title: A new look at the statistical model identification
  publication-title: IEEE transactions on automatic control
  doi: 10.1109/TAC.1974.1100705
– ident: pone.0267907.ref019
– ident: pone.0267907.ref016
  doi: 10.1007/978-981-16-1288-6_2
– volume: 56
  start-page: 77
  issue: 1
  year: 1991
  ident: pone.0267907.ref001
  article-title: Comparing the predictive powers of alternative multiple regression models
  publication-title: Psychometrika
  doi: 10.1007/BF02294587
– volume: 85
  start-page: 386
  issue: 4
  year: 2007
  ident: pone.0267907.ref002
  article-title: The use of simplified or misspecified models: Linear case
  publication-title: The Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450850401
– ident: pone.0267907.ref017
– volume: 102
  start-page: 720
  issue: 2
  year: 2012
  ident: pone.0267907.ref028
  article-title: Slow to anger and fast to forgive: Cooperation in an uncertain world
  publication-title: American Economic Review
  doi: 10.1257/aer.102.2.720
– ident: pone.0267907.ref030
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: pone.0267907.ref021
  article-title: Long short-term memory
  publication-title: Neural computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 101
  start-page: 411
  issue: 1
  year: 2011
  ident: pone.0267907.ref026
  article-title: The evolution of cooperation in infinitely repeated games: Experimental evidence
  publication-title: American Economic Review
  doi: 10.1257/aer.101.1.411
– volume: 4
  start-page: 363
  issue: 5
  year: 2009
  ident: pone.0267907.ref005
  article-title: Bayesian analysis of deterministic and stochastic prisoner’s dilemma games
  publication-title: Judgment and Decision Making
  doi: 10.1017/S1930297500001200
– volume: 6
  start-page: 61
  year: 2012
  ident: pone.0267907.ref012
  article-title: Iowa Gambling Task: There is more to consider than long-term outcome. Using a linear equation model to disentangle the impact of outcome and frequency of gains and losses
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00061
– volume: 46
  start-page: 68
  issue: 253
  year: 1951
  ident: pone.0267907.ref033
  article-title: The Kolmogorov-Smirnov test for goodness of fit
  publication-title: Journal of the American statistical Association
  doi: 10.1080/01621459.1951.10500769
– volume: 66
  start-page: 785
  issue: 2
  year: 2009
  ident: pone.0267907.ref006
  article-title: Cooperative behavior and the frequency of social interaction
  publication-title: Games and Economic Behavior
  doi: 10.1016/j.geb.2008.07.003
– volume: 11
  issue: 5
  year: 2016
  ident: pone.0267907.ref007
  article-title: Predicting human cooperation
  publication-title: PloS one
– volume: 102
  start-page: 337
  issue: 1
  year: 2012
  ident: pone.0267907.ref027
  article-title: A continuous dilemma
  publication-title: American Economic Review
  doi: 10.1257/aer.102.1.337
– volume: 32
  start-page: 1376
  issue: 8
  year: 2008
  ident: pone.0267907.ref010
  article-title: Comparison of decision learning models using the generalization criterion method
  publication-title: Cognitive science
  doi: 10.1080/03640210802352992
– volume: 95
  start-page: 1591
  issue: 5
  year: 2005
  ident: pone.0267907.ref024
  article-title: Cooperation under the shadow of the future: experimental evidence from infinitely repeated games
  publication-title: American economic review
  doi: 10.1257/000282805775014434
– volume: 78
  start-page: 1550
  issue: 10
  year: 1990
  ident: pone.0267907.ref020
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58337
– volume-title: New introduction to multiple time series analysis
  year: 2005
  ident: pone.0267907.ref031
  doi: 10.1007/978-3-540-27752-1
– volume: 103
  start-page: 570
  issue: 418
  year: 1993
  ident: pone.0267907.ref023
  article-title: Rational cooperation in the finitely repeated prisoner’s dilemma: Experimental evidence
  publication-title: The economic journal
  doi: 10.2307/2234532
– ident: pone.0267907.ref015
  doi: 10.24963/ijcai.2019/913
– volume: 50
  start-page: 7
  issue: 1-3
  year: 1994
  ident: pone.0267907.ref008
  article-title: Insensitivity to future consequences following damage to human prefrontal cortex
  publication-title: Cognition
  doi: 10.1016/0010-0277(94)90018-3
– ident: pone.0267907.ref013
  doi: 10.1007/978-981-16-1288-6_2
– ident: pone.0267907.ref018
  doi: 10.1109/IJCNN55064.2022.9892963
– volume: 24
  start-page: 3
  issue: 1
  year: 1980
  ident: pone.0267907.ref004
  article-title: Effective choice in the prisoner’s dilemma
  publication-title: Journal of conflict resolution
  doi: 10.1177/002200278002400101
– volume: 54
  start-page: 28
  issue: 1
  year: 2010
  ident: pone.0267907.ref011
  article-title: Cognitive mechanisms underlying risky decision-making in chronic cannabis users
  publication-title: Journal of mathematical psychology
  doi: 10.1016/j.jmp.2009.10.002
– ident: pone.0267907.ref014
SSID ssj0053866
Score 2.4528599
Snippet Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions,...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0267907
SubjectTerms Analysis
Back propagation
Behavior
Bias
Biology and Life Sciences
Cognition
Cognitive ability
Computer and Information Sciences
Computer architecture
Cooperation
Decision Making
Evaluation
Gambling
Human subjects
Humans
Long short-term memory
Memory
Multiagent systems
Neural networks
Neural Networks, Computer
Physical Sciences
Prisoner Dilemma
Psychological aspects
Recurrent neural networks
Research and Analysis Methods
Sequences
Social Sciences
Theory of mind
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggCoUGWjAICTik3cSJHR_bqlVB4iGgVW-Wn1BRsqvN7v_vjOONNqhSOXCNv0TJzNieiWe-IeSN5pX2wUNY4h0EKMaJ3DS8yjUzwQUrnYgMfJ8-87Pz6uNlfbnR6gtzwnp64F5wB1ZU3sim0XXpIZSz2oRQ1M4woW0thMXVF_a8dTDVr8EwizlPhXJMFAdJL_vzWev3seeSxPaxGxtR5OsfVuXJ_HrW3eZy_p05ubEVnT4kD5IPSQ_7d98i93z7iGylWdrRd4lK-v1jcvF1gQcxmNpMYzc-6lJPHfontqGiVy2db66BdKm73x3F37N0gf_ikb2JIusljLV9zni3Tc5PT34cn-Wpk0JuuSyXeRkcuBrOhCkPxkCIYoUsSu5rWTkmjbZTqWsrm6JwRaWDEd40NVw1VkvvdcWekEkLstshtCnA46is5K7QANUaAmxjRAOBD_O8lBlha7Eqm2jGsdvFtYpnZwLCjV5KCpWhkjIykg93zXuajTvwR6ixAYsk2fECmI5KpqPuMp2MvER9q77idJjq6hAZhsCTZTwjryMCiTJazMT5qVddpz58ufgH0PdvI9DbBAozEIfVqfoBvgkJuEbI3RESprsdDe-gda6l0qmSw4bWYH003Lm22NuHXw3D-FDMrmv9bIUYAY41rxDztDfwQbKsxqNfNs2IGJn-SPTjkfbqV-Qpl-CeQ4T87H_o6jm5X2LhSczb2CWT5WLl98AdXJoXcebfAHxjYqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pNy87PqGCqAoSDwGt9mb52VZtk2Wz-_-ZcbxhgyrgGn-JkhmPM2PPfEPIC8VK5byDsMRZCFC05amuWZmqQnvrjbA8MPB9-swOj8qPs2oWN9y6mFa5XhPDQm1bg3vkezkDu62xDPTN_GeKXaPwdDW20LhObiB1GaZ08dkQcIEtMxbL5Qqe7UXt7M7bxu1i5yWBTWQ3fkeBtX9Ymyfzi7a7yvH8M39y44d0cJvcip4k3e9Vv0WuueYO2Yq22tFXkVD69V1y_HWBxzGY4ExDTz5qY2cdehmaUdGzhs43V0K6VN15R3GTli5wRx45nChyX8JY02eOd_fI0cH7H-8O09hPITVM5Ms09xYcDqv9lHmtIVAxXGQ5c5UobSG0MlOhKiPqLLNZqbzmTtcVXNVGCedUWdwnkwZkt01onYHfURrBbKYAqhSE2VrzGsKfwrFcJKRYi1WaSDaOPS8uZDhB4xB09FKSqAwZlZGQdLhr3pNt_AP_FjU2YJEqO1xoFycyWp40vHRa1LWqclcyYZT2PgMpFFyZinOTkKeob9nXnQ4GL_eRZwj82YIl5HlAIF1Gg_k4J2rVdfLDl-P_AH3_NgK9jCDfgjiMijUQ8E1IwzVC7oyQYPRmNLyNs3MtlU7-Ng-4cz1jrx5-NgzjQzHHrnHtCjEc3GtWIuZBP8EHyRYVHgAX04Tw0dQfiX480pydBrZyAU46xMkP__5aj8jNHAtLQl7GDpksFyv3GNy9pX4SbPoXRzhY-Q
  priority: 102
  providerName: ProQuest
Title Predicting human decision making in psychological tasks with recurrent neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/35639730
https://www.proquest.com/docview/2687689753
https://www.proquest.com/docview/2672326453
https://pubmed.ncbi.nlm.nih.gov/PMC9154096
https://doaj.org/article/c74eb988a52e469cabff15db37ac577c
http://dx.doi.org/10.1371/journal.pone.0267907
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd-GCGF8rG8UgJOCQqkkcOz4gtE0tA2ljGnTqLbIdZ0x0aWlaCS787bznuNGCitjFh_jnRHn-es9-7_cIeaU4U7awYJbYHAwUnYtAp5wFKtZFXhiZC8fAd3LKj8fs0ySZbJF1zlYvwGqjaYf5pMaLaf_nj1_vYcK_c1kbRLhu1J_PStvHjEoSw8u3YW8SOFVPWHOvALPb3V6i1hLwaBD7YLp_vaW1WTlO_2bl7syns2qTWvq3d-WN7Wp0n9zzeiY9qAfGDtmy5QOy42dyRd94uum3D8nF2QIva9D9mbqMfTT3eXfotUtVRa9KOr-5TtKlqr5XFI9w6QLP65HhiSIzJtSVtV959YiMR8OvR8eBz7YQGC6jZRAVOagjuS4GvNAazBgjZBhxm0iWx1IrM5AqMTINwzxkqtDC6jSBp9ooaa1i8WPSKUF2u4SmIWglzEiehwqgSoERrrVIwTiKLY9kl8RrsWbGU5FjRoxp5u7XBJgktZQy7IzMd0aXBE2reU3F8R_8IfZYg0UibfdgtrjM_LzMjGBWyzRVSWQZl0bpoghBCrFQJhHCdMlz7O-sjkptloPsAFmIQNuNeZe8dAgk0yjRW-dSraoq-_j54hagL-ct0GsPKmYgDqN8hAT8E5J0tZD7LSQsCaZVvYujcy2VKos4bHopxlBDy_WI3Vz9oqnGl6IHXmlnK8QIUL45Q8yTeoA3ko0TvB6OB10iWkO_Jfp2TXn1zXGZS1DhwYp-eovv7pG7EcaeONeNfdJZLlb2GWiES90jd8REQJkehViOPvTI9uHw9Oy8585Yem4RwPL38A8dQ2ji
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQdvOy4wNC5VHt0gcI2mpvqe04bdWSLJtdIf4Uv5EZxwkbVAGXXuMvUTIej2fimW8IeSpZJE1uICwxGQQoKuOeSljkyVDlWa5Fxi0D3-4eGx5EH8bxeIn8bGphMK2ysYnWUGelxn_kGwGDdZtgGejryTcPu0bh6WrTQqNWi23z4zuEbNWr0TuY32dBsPV-_-3Qc10FPM1EMPOCPINtN1P5gOVKgbuuufADZmIRZaFQUg-EjLVIfD_zI5krblQSw1WlpTBGRiE89wq5ChvvAFcUH7cBHtgOxlx5Xsj9DacN65OyMOvY6Ulg09qF7c92CWj3gt7kvKwucnT_zNdc2AC3bpIbznOlm7WqLZMlU9wiy842VPSFI7B-eZscfpri8Q8mVFPbA5BmrpMP_WqbX9HTgk4WLS-dyeqsovhTmE7xBAA5oyhybcJYUWeqV3fIwaVI-i7pFSC7FUITH_ycSAuW-RKgUkJYrxRPINwKDQtEn4SNWFPtyM2xx8Z5ak_sOAQ5tZRSnIzUTUafeO1dk5rc4x_4NzhjLRapue2FcnqcupWeah4ZJZJExoGJmNBS5bkPUgi51DHnuk_WcL7Tus61NTDpJvIagf8csj55YhFIz1Fg_s-xnFdVOvp4-B-gL587oOcOlJcgDi1dzQV8E9J-dZCrHSQYGd0ZXkHtbKRSpb-XI9zZaOzFw4_bYXwo5vQVppwjhoM7zyLE3KsVvJVsGOOBczjoE95R_Y7ouyPF6YllRxcQFEBcfv_vr7VGrg33d3fSndHe9gNyPcCiFpsTskp6s-ncPARXc6Ye2fVNydFlG5RfQoqX4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqQqEGgYBDupuXHR8QKpRVl0KpgFZ7C7bjtFVLsmx2hfhr_DpmHCdsUAVceo2_RMl4PJ6JZ74h5LFkkTS5gbDEZBCgqIx7KmGRJ0OVZ7kWGbcMfO_32M5B9HYST1bIz6YWBtMqG5toDXVWavxHPggYrNsEy0AHuUuL2N8evZx-87CDFJ60Nu00ahXZNT--Q_hWvRhvw1w_CYLRm8-vdzzXYcDTTARzL8gz2IIzlQ9ZrhS47poLP2AmFlEWCiX1UMhYi8T3Mz-SueJGJTFcVVoKY2QUwnMvkcs8jH1cY3zSBntgRxhzpXoh9wdOMzanZWE2seuTwAa2S1uh7RjQ7gu96VlZnef0_pm7ubQZjq6Ta86LpVu12q2SFVPcIKvOTlT0mSOzfn6THO7P8CgIk6up7QdIM9fVh361jbDoSUGny1aYzmV1WlH8QUxneBqA_FEUeTdhrKiz1qtb5OBCJH2b9AqQ3RqhiQ8-T6QFy3wJUCkhxFeKJxB6hYYFok_CRqypdkTn2G_jLLWndxwCnlpKKU5G6iajT7z2rmlN9PEP_CucsRaLNN32Qjk7St2qTzWPjBJJIuPARExoqfLcBymEXOqYc90nGzjfaV3z2hqbdAs5jsCXDlmfPLIIpOooUOmP5KKq0vGHw_8AffrYAT11oLwEcWjp6i_gm5ACrINc7yDB4OjO8BpqZyOVKv29NOHORmPPH37YDuNDMb-vMOUCMRxcexYh5k6t4K1kwxgPn8Nhn_CO6ndE3x0pTo4tU7qAAAFi9Lt_f60NcgVMSfpuvLd7j1wNsL7Fpoesk958tjD3weucqwd2eVPy5aLtyS8h9ZwW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+human+decision+making+in+psychological+tasks+with+recurrent+neural+networks&rft.jtitle=PloS+one&rft.au=Lin%2C+Baihan&rft.au=Bouneffouf%2C+Djallel&rft.au=Cecchi%2C+Guillermo&rft.date=2022-05-31&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=5&rft.spage=e0267907&rft_id=info:doi/10.1371%2Fjournal.pone.0267907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon