Predicting human decision making in psychological tasks with recurrent neural networks
Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the u...
Saved in:
Published in | PloS one Vol. 17; no. 5; p. e0267907 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
31.05.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner’s Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner’s Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group. |
---|---|
AbstractList | Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group. Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner’s Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner’s Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group. |
Audience | Academic |
Author | Bouneffouf, Djallel Cecchi, Guillermo Lin, Baihan |
AuthorAffiliation | 2 Department of Neuroscience, Columbia University, New York, NY, United States of America Zhejiang University of Finance and Economics, CHINA 4 Department of Artificial Intelligence Foundations, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America 3 Department of Psychology, Columbia University, New York, NY, United States of America 5 Department of Healthcare and Life Sciences, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America 1 Department of Systems Biology, Columbia University, New York, NY, United States of America |
AuthorAffiliation_xml | – name: 2 Department of Neuroscience, Columbia University, New York, NY, United States of America – name: Zhejiang University of Finance and Economics, CHINA – name: 1 Department of Systems Biology, Columbia University, New York, NY, United States of America – name: 3 Department of Psychology, Columbia University, New York, NY, United States of America – name: 4 Department of Artificial Intelligence Foundations, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America – name: 5 Department of Healthcare and Life Sciences, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States of America |
Author_xml | – sequence: 1 givenname: Baihan orcidid: 0000-0002-7979-5509 surname: Lin fullname: Lin, Baihan – sequence: 2 givenname: Djallel surname: Bouneffouf fullname: Bouneffouf, Djallel – sequence: 3 givenname: Guillermo surname: Cecchi fullname: Cecchi, Guillermo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35639730$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk1uL1DAUx4usuBf9BqIFQfRhxrRpksYHYVm8DCyseNnXkKZpm9k0mU1S1_32pjsdmS6LSB4STn7nfy6cc5wcGGtkkjzPwDKDJHu3toMzXC830bwEOSYUkEfJUUZhvsA5gAd778Pk2Ps1AAiWGD9JDiHCkBIIjpLLr07WSgRl2rQbem7SWgrllTVpz69GqzLpxt-KzmrbKsF1Gri_8umNCl3qpBickyakRg4u_hkZbqy78k-Txw3XXj6b7pPk56ePP86-LM4vPq_OTs8XAtM8LPKmBhjVVQNwU1UlQYLQLMcS0aKGtOICUI4ELbOszgreVERWJYrWSnAqJS_gSfJyq7vR1rOpJZ7luCS4pATBSKy2RG35mm2c6rm7ZZYrdmewrmXcBSW0ZIIUsqJlyVEuC0wFr5omi9lBwgUiREStD1O0oeplLWLhseiZ6PzHqI619hejGSoAxVHgzSTg7PUgfWC98kJqzY20w5g3yWGOi7u8X91DH65uoloeC1CmsTGuGEXZKQEIxbBwDLt8gIqnlr0ScX4aFe0zh7czh8gE-Tu0fPCerb5_-3_24nLOvt5jO8l16LzVQ4jz5ufgi_1O_23xbnAj8H4LCGe9d7JhQgU-6sTSlGYZYOOW7JrGxi1h05ZE5-Ke807_n25_AO5SGEM |
CitedBy_id | crossref_primary_10_1177_00131644241262964 crossref_primary_10_1038_s41386_023_01592_6 crossref_primary_10_3390_sym15091723 |
Cites_doi | 10.1257/aer.96.4.1029 10.1037/1040-3590.14.3.253 10.1126/science.7466396 10.1177/1745691617693393 10.1109/TAC.1974.1100705 10.1007/978-981-16-1288-6_2 10.1007/BF02294587 10.1002/cjce.5450850401 10.1257/aer.102.2.720 10.1162/neco.1997.9.8.1735 10.1257/aer.101.1.411 10.1017/S1930297500001200 10.3389/fnins.2012.00061 10.1080/01621459.1951.10500769 10.1016/j.geb.2008.07.003 10.1257/aer.102.1.337 10.1080/03640210802352992 10.1257/000282805775014434 10.1109/5.58337 10.1007/978-3-540-27752-1 10.2307/2234532 10.24963/ijcai.2019/913 10.1016/0010-0277(94)90018-3 10.1109/IJCNN55064.2022.9892963 10.1177/002200278002400101 10.1016/j.jmp.2009.10.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Lin et al 2022 Lin et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Lin et al 2022 Lin et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0267907 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Predicting human decision making in psychological tasks with recurrent neural networks |
EISSN | 1932-6203 |
ExternalDocumentID | 2687689753 oai_doaj_org_article_c74eb988a52e469cabff15db37ac577c PMC9154096 A705554036 35639730 10_1371_journal_pone_0267907 |
Genre | Journal Article |
GeographicLocations | United States United States--US Iowa |
GeographicLocations_xml | – name: United States – name: Iowa – name: United States--US |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c692t-2fd065dbf06fbb875c79126e594d39bac09a5c9811d14afb7eb85ac0bca9eea43 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Aug 06 00:16:01 EDT 2023 Wed Aug 27 01:28:58 EDT 2025 Thu Aug 21 18:29:43 EDT 2025 Fri Jul 11 09:24:26 EDT 2025 Fri Jul 25 09:12:42 EDT 2025 Tue Jun 17 21:32:12 EDT 2025 Tue Jun 10 20:51:33 EDT 2025 Fri Jun 27 05:03:38 EDT 2025 Fri Jun 27 03:52:31 EDT 2025 Thu May 22 21:20:25 EDT 2025 Mon Jul 21 05:46:01 EDT 2025 Tue Jul 01 04:21:41 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-2fd065dbf06fbb875c79126e594d39bac09a5c9811d14afb7eb85ac0bca9eea43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-7979-5509 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0267907 |
PMID | 35639730 |
PQID | 2687689753 |
PQPubID | 1436336 |
PageCount | e0267907 |
ParticipantIDs | plos_journals_2687689753 doaj_primary_oai_doaj_org_article_c74eb988a52e469cabff15db37ac577c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9154096 proquest_miscellaneous_2672326453 proquest_journals_2687689753 gale_infotracmisc_A705554036 gale_infotracacademiconefile_A705554036 gale_incontextgauss_ISR_A705554036 gale_incontextgauss_IOV_A705554036 gale_healthsolutions_A705554036 pubmed_primary_35639730 crossref_citationtrail_10_1371_journal_pone_0267907 crossref_primary_10_1371_journal_pone_0267907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-31 |
PublicationDateYYYYMMDD | 2022-05-31 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | DJ Fridberg (pone.0267907.ref011) 2010; 54 pone.0267907.ref030 pone.0267907.ref013 pone.0267907.ref014 J Andreoni (pone.0267907.ref023) 1993; 103 pone.0267907.ref015 pone.0267907.ref016 pone.0267907.ref017 pone.0267907.ref018 R Axelrod (pone.0267907.ref004) 1980; 24 pone.0267907.ref019 PJ Werbos (pone.0267907.ref020) 1990; 78 FJ Massey (pone.0267907.ref033) 1951; 46 WY Ahn (pone.0267907.ref010) 2008; 32 PD Bó (pone.0267907.ref024) 2005; 95 T Yarkoni (pone.0267907.ref003) 2017; 12 J Duffy (pone.0267907.ref006) 2009; 66 JJ Nay (pone.0267907.ref007) 2016; 11 JR Busemeyer (pone.0267907.ref009) 2002; 14 R Axelrod (pone.0267907.ref022) 1981; 211 S Wu (pone.0267907.ref002) 2007; 85 MR Hagerty (pone.0267907.ref001) 1991; 56 H Kunreuther (pone.0267907.ref005) 2009; 4 A Horstmann (pone.0267907.ref012) 2012; 6 H Akaike (pone.0267907.ref032) 1974; 19 A Bechara (pone.0267907.ref008) 1994; 50 H Lütkepohl (pone.0267907.ref031) 2005 P Dal Bó (pone.0267907.ref026) 2011; 101 H Steingroever (pone.0267907.ref029) 2015; 3 S Hochreiter (pone.0267907.ref021) 1997; 9 D Friedman (pone.0267907.ref027) 2012; 102 D Fudenberg (pone.0267907.ref028) 2012; 102 Y Bereby-Meyer (pone.0267907.ref025) 2006; 96 |
References_xml | – volume: 96 start-page: 1029 issue: 4 year: 2006 ident: pone.0267907.ref025 article-title: The speed of learning in noisy games: Partial reinforcement and the sustainability of cooperation publication-title: American Economic Review doi: 10.1257/aer.96.4.1029 – volume: 14 start-page: 253 issue: 3 year: 2002 ident: pone.0267907.ref009 article-title: A contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling task publication-title: Psychological assessment doi: 10.1037/1040-3590.14.3.253 – volume: 211 start-page: 1390 issue: 4489 year: 1981 ident: pone.0267907.ref022 article-title: The evolution of cooperation publication-title: science doi: 10.1126/science.7466396 – volume: 3 start-page: 340 issue: 1 year: 2015 ident: pone.0267907.ref029 article-title: Data from 617 healthy participants performing the Iowa gambling task: A “many labs” collaboration publication-title: Journal of Open Psychology Data – volume: 12 start-page: 1100 issue: 6 year: 2017 ident: pone.0267907.ref003 article-title: Choosing prediction over explanation in psychology: Lessons from machine learning publication-title: Perspectives on Psychological Science doi: 10.1177/1745691617693393 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: pone.0267907.ref032 article-title: A new look at the statistical model identification publication-title: IEEE transactions on automatic control doi: 10.1109/TAC.1974.1100705 – ident: pone.0267907.ref019 – ident: pone.0267907.ref016 doi: 10.1007/978-981-16-1288-6_2 – volume: 56 start-page: 77 issue: 1 year: 1991 ident: pone.0267907.ref001 article-title: Comparing the predictive powers of alternative multiple regression models publication-title: Psychometrika doi: 10.1007/BF02294587 – volume: 85 start-page: 386 issue: 4 year: 2007 ident: pone.0267907.ref002 article-title: The use of simplified or misspecified models: Linear case publication-title: The Canadian Journal of Chemical Engineering doi: 10.1002/cjce.5450850401 – ident: pone.0267907.ref017 – volume: 102 start-page: 720 issue: 2 year: 2012 ident: pone.0267907.ref028 article-title: Slow to anger and fast to forgive: Cooperation in an uncertain world publication-title: American Economic Review doi: 10.1257/aer.102.2.720 – ident: pone.0267907.ref030 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: pone.0267907.ref021 article-title: Long short-term memory publication-title: Neural computation doi: 10.1162/neco.1997.9.8.1735 – volume: 101 start-page: 411 issue: 1 year: 2011 ident: pone.0267907.ref026 article-title: The evolution of cooperation in infinitely repeated games: Experimental evidence publication-title: American Economic Review doi: 10.1257/aer.101.1.411 – volume: 4 start-page: 363 issue: 5 year: 2009 ident: pone.0267907.ref005 article-title: Bayesian analysis of deterministic and stochastic prisoner’s dilemma games publication-title: Judgment and Decision Making doi: 10.1017/S1930297500001200 – volume: 6 start-page: 61 year: 2012 ident: pone.0267907.ref012 article-title: Iowa Gambling Task: There is more to consider than long-term outcome. Using a linear equation model to disentangle the impact of outcome and frequency of gains and losses publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00061 – volume: 46 start-page: 68 issue: 253 year: 1951 ident: pone.0267907.ref033 article-title: The Kolmogorov-Smirnov test for goodness of fit publication-title: Journal of the American statistical Association doi: 10.1080/01621459.1951.10500769 – volume: 66 start-page: 785 issue: 2 year: 2009 ident: pone.0267907.ref006 article-title: Cooperative behavior and the frequency of social interaction publication-title: Games and Economic Behavior doi: 10.1016/j.geb.2008.07.003 – volume: 11 issue: 5 year: 2016 ident: pone.0267907.ref007 article-title: Predicting human cooperation publication-title: PloS one – volume: 102 start-page: 337 issue: 1 year: 2012 ident: pone.0267907.ref027 article-title: A continuous dilemma publication-title: American Economic Review doi: 10.1257/aer.102.1.337 – volume: 32 start-page: 1376 issue: 8 year: 2008 ident: pone.0267907.ref010 article-title: Comparison of decision learning models using the generalization criterion method publication-title: Cognitive science doi: 10.1080/03640210802352992 – volume: 95 start-page: 1591 issue: 5 year: 2005 ident: pone.0267907.ref024 article-title: Cooperation under the shadow of the future: experimental evidence from infinitely repeated games publication-title: American economic review doi: 10.1257/000282805775014434 – volume: 78 start-page: 1550 issue: 10 year: 1990 ident: pone.0267907.ref020 article-title: Backpropagation through time: what it does and how to do it publication-title: Proceedings of the IEEE doi: 10.1109/5.58337 – volume-title: New introduction to multiple time series analysis year: 2005 ident: pone.0267907.ref031 doi: 10.1007/978-3-540-27752-1 – volume: 103 start-page: 570 issue: 418 year: 1993 ident: pone.0267907.ref023 article-title: Rational cooperation in the finitely repeated prisoner’s dilemma: Experimental evidence publication-title: The economic journal doi: 10.2307/2234532 – ident: pone.0267907.ref015 doi: 10.24963/ijcai.2019/913 – volume: 50 start-page: 7 issue: 1-3 year: 1994 ident: pone.0267907.ref008 article-title: Insensitivity to future consequences following damage to human prefrontal cortex publication-title: Cognition doi: 10.1016/0010-0277(94)90018-3 – ident: pone.0267907.ref013 doi: 10.1007/978-981-16-1288-6_2 – ident: pone.0267907.ref018 doi: 10.1109/IJCNN55064.2022.9892963 – volume: 24 start-page: 3 issue: 1 year: 1980 ident: pone.0267907.ref004 article-title: Effective choice in the prisoner’s dilemma publication-title: Journal of conflict resolution doi: 10.1177/002200278002400101 – volume: 54 start-page: 28 issue: 1 year: 2010 ident: pone.0267907.ref011 article-title: Cognitive mechanisms underlying risky decision-making in chronic cannabis users publication-title: Journal of mathematical psychology doi: 10.1016/j.jmp.2009.10.002 – ident: pone.0267907.ref014 |
SSID | ssj0053866 |
Score | 2.4528599 |
Snippet | Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions,... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0267907 |
SubjectTerms | Analysis Back propagation Behavior Bias Biology and Life Sciences Cognition Cognitive ability Computer and Information Sciences Computer architecture Cooperation Decision Making Evaluation Gambling Human subjects Humans Long short-term memory Memory Multiagent systems Neural networks Neural Networks, Computer Physical Sciences Prisoner Dilemma Psychological aspects Recurrent neural networks Research and Analysis Methods Sequences Social Sciences Theory of mind Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggCoUGWjAICTik3cSJHR_bqlVB4iGgVW-Wn1BRsqvN7v_vjOONNqhSOXCNv0TJzNieiWe-IeSN5pX2wUNY4h0EKMaJ3DS8yjUzwQUrnYgMfJ8-87Pz6uNlfbnR6gtzwnp64F5wB1ZU3sim0XXpIZSz2oRQ1M4woW0thMXVF_a8dTDVr8EwizlPhXJMFAdJL_vzWev3seeSxPaxGxtR5OsfVuXJ_HrW3eZy_p05ubEVnT4kD5IPSQ_7d98i93z7iGylWdrRd4lK-v1jcvF1gQcxmNpMYzc-6lJPHfontqGiVy2db66BdKm73x3F37N0gf_ikb2JIusljLV9zni3Tc5PT34cn-Wpk0JuuSyXeRkcuBrOhCkPxkCIYoUsSu5rWTkmjbZTqWsrm6JwRaWDEd40NVw1VkvvdcWekEkLstshtCnA46is5K7QANUaAmxjRAOBD_O8lBlha7Eqm2jGsdvFtYpnZwLCjV5KCpWhkjIykg93zXuajTvwR6ixAYsk2fECmI5KpqPuMp2MvER9q77idJjq6hAZhsCTZTwjryMCiTJazMT5qVddpz58ufgH0PdvI9DbBAozEIfVqfoBvgkJuEbI3RESprsdDe-gda6l0qmSw4bWYH003Lm22NuHXw3D-FDMrmv9bIUYAY41rxDztDfwQbKsxqNfNs2IGJn-SPTjkfbqV-Qpl-CeQ4T87H_o6jm5X2LhSczb2CWT5WLl98AdXJoXcebfAHxjYqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pNy87PqGCqAoSDwGt9mb52VZtk2Wz-_-ZcbxhgyrgGn-JkhmPM2PPfEPIC8VK5byDsMRZCFC05amuWZmqQnvrjbA8MPB9-swOj8qPs2oWN9y6mFa5XhPDQm1bg3vkezkDu62xDPTN_GeKXaPwdDW20LhObiB1GaZ08dkQcIEtMxbL5Qqe7UXt7M7bxu1i5yWBTWQ3fkeBtX9Ymyfzi7a7yvH8M39y44d0cJvcip4k3e9Vv0WuueYO2Yq22tFXkVD69V1y_HWBxzGY4ExDTz5qY2cdehmaUdGzhs43V0K6VN15R3GTli5wRx45nChyX8JY02eOd_fI0cH7H-8O09hPITVM5Ms09xYcDqv9lHmtIVAxXGQ5c5UobSG0MlOhKiPqLLNZqbzmTtcVXNVGCedUWdwnkwZkt01onYHfURrBbKYAqhSE2VrzGsKfwrFcJKRYi1WaSDaOPS8uZDhB4xB09FKSqAwZlZGQdLhr3pNt_AP_FjU2YJEqO1xoFycyWp40vHRa1LWqclcyYZT2PgMpFFyZinOTkKeob9nXnQ4GL_eRZwj82YIl5HlAIF1Gg_k4J2rVdfLDl-P_AH3_NgK9jCDfgjiMijUQ8E1IwzVC7oyQYPRmNLyNs3MtlU7-Ng-4cz1jrx5-NgzjQzHHrnHtCjEc3GtWIuZBP8EHyRYVHgAX04Tw0dQfiX480pydBrZyAU46xMkP__5aj8jNHAtLQl7GDpksFyv3GNy9pX4SbPoXRzhY-Q priority: 102 providerName: ProQuest |
Title | Predicting human decision making in psychological tasks with recurrent neural networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35639730 https://www.proquest.com/docview/2687689753 https://www.proquest.com/docview/2672326453 https://pubmed.ncbi.nlm.nih.gov/PMC9154096 https://doaj.org/article/c74eb988a52e469cabff15db37ac577c http://dx.doi.org/10.1371/journal.pone.0267907 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd-GCGF8rG8UgJOCQqkkcOz4gtE0tA2ljGnTqLbIdZ0x0aWlaCS787bznuNGCitjFh_jnRHn-es9-7_cIeaU4U7awYJbYHAwUnYtAp5wFKtZFXhiZC8fAd3LKj8fs0ySZbJF1zlYvwGqjaYf5pMaLaf_nj1_vYcK_c1kbRLhu1J_PStvHjEoSw8u3YW8SOFVPWHOvALPb3V6i1hLwaBD7YLp_vaW1WTlO_2bl7syns2qTWvq3d-WN7Wp0n9zzeiY9qAfGDtmy5QOy42dyRd94uum3D8nF2QIva9D9mbqMfTT3eXfotUtVRa9KOr-5TtKlqr5XFI9w6QLP65HhiSIzJtSVtV959YiMR8OvR8eBz7YQGC6jZRAVOagjuS4GvNAazBgjZBhxm0iWx1IrM5AqMTINwzxkqtDC6jSBp9ooaa1i8WPSKUF2u4SmIWglzEiehwqgSoERrrVIwTiKLY9kl8RrsWbGU5FjRoxp5u7XBJgktZQy7IzMd0aXBE2reU3F8R_8IfZYg0UibfdgtrjM_LzMjGBWyzRVSWQZl0bpoghBCrFQJhHCdMlz7O-sjkptloPsAFmIQNuNeZe8dAgk0yjRW-dSraoq-_j54hagL-ct0GsPKmYgDqN8hAT8E5J0tZD7LSQsCaZVvYujcy2VKos4bHopxlBDy_WI3Vz9oqnGl6IHXmlnK8QIUL45Q8yTeoA3ko0TvB6OB10iWkO_Jfp2TXn1zXGZS1DhwYp-eovv7pG7EcaeONeNfdJZLlb2GWiES90jd8REQJkehViOPvTI9uHw9Oy8585Yem4RwPL38A8dQ2ji |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQdvOy4wNC5VHt0gcI2mpvqe04bdWSLJtdIf4Uv5EZxwkbVAGXXuMvUTIej2fimW8IeSpZJE1uICwxGQQoKuOeSljkyVDlWa5Fxi0D3-4eGx5EH8bxeIn8bGphMK2ysYnWUGelxn_kGwGDdZtgGejryTcPu0bh6WrTQqNWi23z4zuEbNWr0TuY32dBsPV-_-3Qc10FPM1EMPOCPINtN1P5gOVKgbuuufADZmIRZaFQUg-EjLVIfD_zI5krblQSw1WlpTBGRiE89wq5ChvvAFcUH7cBHtgOxlx5Xsj9DacN65OyMOvY6Ulg09qF7c92CWj3gt7kvKwucnT_zNdc2AC3bpIbznOlm7WqLZMlU9wiy842VPSFI7B-eZscfpri8Q8mVFPbA5BmrpMP_WqbX9HTgk4WLS-dyeqsovhTmE7xBAA5oyhybcJYUWeqV3fIwaVI-i7pFSC7FUITH_ycSAuW-RKgUkJYrxRPINwKDQtEn4SNWFPtyM2xx8Z5ak_sOAQ5tZRSnIzUTUafeO1dk5rc4x_4NzhjLRapue2FcnqcupWeah4ZJZJExoGJmNBS5bkPUgi51DHnuk_WcL7Tus61NTDpJvIagf8csj55YhFIz1Fg_s-xnFdVOvp4-B-gL587oOcOlJcgDi1dzQV8E9J-dZCrHSQYGd0ZXkHtbKRSpb-XI9zZaOzFw4_bYXwo5vQVppwjhoM7zyLE3KsVvJVsGOOBczjoE95R_Y7ouyPF6YllRxcQFEBcfv_vr7VGrg33d3fSndHe9gNyPcCiFpsTskp6s-ncPARXc6Ye2fVNydFlG5RfQoqX4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqQqEGgYBDupuXHR8QKpRVl0KpgFZ7C7bjtFVLsmx2hfhr_DpmHCdsUAVceo2_RMl4PJ6JZ74h5LFkkTS5gbDEZBCgqIx7KmGRJ0OVZ7kWGbcMfO_32M5B9HYST1bIz6YWBtMqG5toDXVWavxHPggYrNsEy0AHuUuL2N8evZx-87CDFJ60Nu00ahXZNT--Q_hWvRhvw1w_CYLRm8-vdzzXYcDTTARzL8gz2IIzlQ9ZrhS47poLP2AmFlEWCiX1UMhYi8T3Mz-SueJGJTFcVVoKY2QUwnMvkcs8jH1cY3zSBntgRxhzpXoh9wdOMzanZWE2seuTwAa2S1uh7RjQ7gu96VlZnef0_pm7ubQZjq6Ta86LpVu12q2SFVPcIKvOTlT0mSOzfn6THO7P8CgIk6up7QdIM9fVh361jbDoSUGny1aYzmV1WlH8QUxneBqA_FEUeTdhrKiz1qtb5OBCJH2b9AqQ3RqhiQ8-T6QFy3wJUCkhxFeKJxB6hYYFok_CRqypdkTn2G_jLLWndxwCnlpKKU5G6iajT7z2rmlN9PEP_CucsRaLNN32Qjk7St2qTzWPjBJJIuPARExoqfLcBymEXOqYc90nGzjfaV3z2hqbdAs5jsCXDlmfPLIIpOooUOmP5KKq0vGHw_8AffrYAT11oLwEcWjp6i_gm5ACrINc7yDB4OjO8BpqZyOVKv29NOHORmPPH37YDuNDMb-vMOUCMRxcexYh5k6t4K1kwxgPn8Nhn_CO6ndE3x0pTo4tU7qAAAFi9Lt_f60NcgVMSfpuvLd7j1wNsL7Fpoesk958tjD3weucqwd2eVPy5aLtyS8h9ZwW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+human+decision+making+in+psychological+tasks+with+recurrent+neural+networks&rft.jtitle=PloS+one&rft.au=Lin%2C+Baihan&rft.au=Bouneffouf%2C+Djallel&rft.au=Cecchi%2C+Guillermo&rft.date=2022-05-31&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=5&rft.spage=e0267907&rft_id=info:doi/10.1371%2Fjournal.pone.0267907&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |