Toward automated classification of pathological transcranial Doppler waveform morphology via spectral clustering
Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can provide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in Brain Ischemia (TIBI) flow grades are widely used for this purpose, but require subjective assessment by expert evaluators to be reliable. I...
Saved in:
Published in | PloS one Vol. 15; no. 2; p. e0228642 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
06.02.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can provide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in Brain Ischemia (TIBI) flow grades are widely used for this purpose, but require subjective assessment by expert evaluators to be reliable. In this work we seek to determine whether TCD morphology can be objectively assessed using an unsupervised machine learning approach to waveform categorization. TCD beat waveforms were recorded at multiple depths from the Middle Cerebral Arteries of 106 subjects; 33 with Large Vessel Occlusion (LVO). From each waveform, three morphological features were extracted, quantifying onset of maximal velocity, systolic canopy length, and the number/prominence of peaks/troughs. Spectral clustering identified groups implicit in the resultant three-dimensional feature space, with gap statistic criteria establishing the optimal cluster number. We found that gap statistic disparity was maximized at four clusters, referred to as flow types I, II, III, and IV. Types I and II were primarily composed of control subject waveforms, whereas types III and IV derived mainly from LVO patients. Cluster morphologies for types I and IV aligned clearly with Normal and Blunted TIBI flows, respectively. Types II and III represented commonly observed flow-types not delineated by TIBI, which nonetheless deviate from normal and blunted flows. We conclude that important morphological variability exists beyond that currently quantified by TIBI in populations experiencing or at-risk for acute ischemic stroke, and posit that the observed flow-types provide the foundation for objective methods of real-time automated flow type classification. |
---|---|
AbstractList | Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can provide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in Brain Ischemia (TIBI) flow grades are widely used for this purpose, but require subjective assessment by expert evaluators to be reliable. In this work we seek to determine whether TCD morphology can be objectively assessed using an unsupervised machine learning approach to waveform categorization. TCD beat waveforms were recorded at multiple depths from the Middle Cerebral Arteries of 106 subjects; 33 with Large Vessel Occlusion (LVO). From each waveform, three morphological features were extracted, quantifying onset of maximal velocity, systolic canopy length, and the number/prominence of peaks/troughs. Spectral clustering identified groups implicit in the resultant three-dimensional feature space, with gap statistic criteria establishing the optimal cluster number. We found that gap statistic disparity was maximized at four clusters, referred to as flow types I, II, III, and IV. Types I and II were primarily composed of control subject waveforms, whereas types III and IV derived mainly from LVO patients. Cluster morphologies for types I and IV aligned clearly with Normal and Blunted TIBI flows, respectively. Types II and III represented commonly observed flow-types not delineated by TIBI, which nonetheless deviate from normal and blunted flows. We conclude that important morphological variability exists beyond that currently quantified by TIBI in populations experiencing or at-risk for acute ischemic stroke, and posit that the observed flow-types provide the foundation for objective methods of real-time automated flow type classification.Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can provide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in Brain Ischemia (TIBI) flow grades are widely used for this purpose, but require subjective assessment by expert evaluators to be reliable. In this work we seek to determine whether TCD morphology can be objectively assessed using an unsupervised machine learning approach to waveform categorization. TCD beat waveforms were recorded at multiple depths from the Middle Cerebral Arteries of 106 subjects; 33 with Large Vessel Occlusion (LVO). From each waveform, three morphological features were extracted, quantifying onset of maximal velocity, systolic canopy length, and the number/prominence of peaks/troughs. Spectral clustering identified groups implicit in the resultant three-dimensional feature space, with gap statistic criteria establishing the optimal cluster number. We found that gap statistic disparity was maximized at four clusters, referred to as flow types I, II, III, and IV. Types I and II were primarily composed of control subject waveforms, whereas types III and IV derived mainly from LVO patients. Cluster morphologies for types I and IV aligned clearly with Normal and Blunted TIBI flows, respectively. Types II and III represented commonly observed flow-types not delineated by TIBI, which nonetheless deviate from normal and blunted flows. We conclude that important morphological variability exists beyond that currently quantified by TIBI in populations experiencing or at-risk for acute ischemic stroke, and posit that the observed flow-types provide the foundation for objective methods of real-time automated flow type classification. Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can provide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in Brain Ischemia (TIBI) flow grades are widely used for this purpose, but require subjective assessment by expert evaluators to be reliable. In this work we seek to determine whether TCD morphology can be objectively assessed using an unsupervised machine learning approach to waveform categorization. TCD beat waveforms were recorded at multiple depths from the Middle Cerebral Arteries of 106 subjects; 33 with Large Vessel Occlusion (LVO). From each waveform, three morphological features were extracted, quantifying onset of maximal velocity, systolic canopy length, and the number/prominence of peaks/troughs. Spectral clustering identified groups implicit in the resultant three-dimensional feature space, with gap statistic criteria establishing the optimal cluster number. We found that gap statistic disparity was maximized at four clusters, referred to as flow types I, II, III, and IV. Types I and II were primarily composed of control subject waveforms, whereas types III and IV derived mainly from LVO patients. Cluster morphologies for types I and IV aligned clearly with Normal and Blunted TIBI flows, respectively. Types II and III represented commonly observed flow-types not delineated by TIBI, which nonetheless deviate from normal and blunted flows. We conclude that important morphological variability exists beyond that currently quantified by TIBI in populations experiencing or at-risk for acute ischemic stroke, and posit that the observed flow-types provide the foundation for objective methods of real-time automated flow type classification. |
Audience | Academic |
Author | Scalzo, Fabien Wilk, Seth J. Thibeault, Corey M. Thorpe, Samuel G. Canac, Nicolas Jalaleddini, Kian Devlin, Thomas Hamilton, Robert B. Dorn, Amber |
AuthorAffiliation | 3 Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America University of Warwick, UNITED KINGDOM 1 Department of Research, Neural Analytics, Inc., Los Angeles, California, United States of America 2 Department of Neurology, Erlanger Medical Center, Chattanooga, Tennessee, United States of America |
AuthorAffiliation_xml | – name: 2 Department of Neurology, Erlanger Medical Center, Chattanooga, Tennessee, United States of America – name: 1 Department of Research, Neural Analytics, Inc., Los Angeles, California, United States of America – name: 3 Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America – name: University of Warwick, UNITED KINGDOM |
Author_xml | – sequence: 1 givenname: Samuel G. orcidid: 0000-0002-1825-4207 surname: Thorpe fullname: Thorpe, Samuel G. – sequence: 2 givenname: Corey M. surname: Thibeault fullname: Thibeault, Corey M. – sequence: 3 givenname: Nicolas surname: Canac fullname: Canac, Nicolas – sequence: 4 givenname: Kian surname: Jalaleddini fullname: Jalaleddini, Kian – sequence: 5 givenname: Amber orcidid: 0000-0002-3139-4183 surname: Dorn fullname: Dorn, Amber – sequence: 6 givenname: Seth J. surname: Wilk fullname: Wilk, Seth J. – sequence: 7 givenname: Thomas surname: Devlin fullname: Devlin, Thomas – sequence: 8 givenname: Fabien orcidid: 0000-0001-9755-8104 surname: Scalzo fullname: Scalzo, Fabien – sequence: 9 givenname: Robert B. orcidid: 0000-0003-3372-5561 surname: Hamilton fullname: Hamilton, Robert B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32027714$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW51Wh96UQjpaSEQaNPeirEkexVky5HkTfP2lXedsBtCKQbZHn3_L80wc5wcdLZTSfISozmmOf5wZQfXgZn3MTxHhBQZI0-SI1xSMssIogc734fJsfdXCC1okWXPkkNKEMlzzI6S_tLegJMpDMG2EJRMhQHvda0FBG271NZpD2FljW1iyKTBQedFXHT8-Wz73iiX3sBa1da1aWtdv2Fv07WG1PdKRIGJpoMPyumueZ48rcF49WJ6nyS_vn65PPs-O7_4tjw7PZ-JrCRhRgohoCpAshKXKquprEpcFYyCrEtUikyAILgglapkmVGJKsJqSklOFDAaEz9JXm99e2M9n4rlOaELgtiCLHAklltCWrjivdMtuFtuQfNNwLqGgwtaGMVxyQqk8EKSgjIhswpDlcsKs7yUspYien2aThuqVkmhujHtPdP9nU6veGPXPEeIUTRe991k4Oz1oHzgrfZCGQOdssP23hlDkYzomwfo49lNVAMxAd3VNp4rRlN-mmFK8aLALFLzR6j4SNVqETur1jG-J3i_J4hMUH9CA4P3fPnzx_-zF7_32bc77EqBCStvzTD2oN8HX-1W-r7Edy0dAbYFhLPeO1XfIxjxcXLuysXHyeHT5ETZxwcyocNmBGJFtPm3-C-6fiFq |
CitedBy_id | crossref_primary_10_1007_s40138_021_00234_9 crossref_primary_10_1016_j_ultrasmedbio_2022_12_007 crossref_primary_10_1007_s10439_022_02956_7 crossref_primary_10_1016_j_wneu_2021_12_004 crossref_primary_10_31728_jnn_2021_00110 crossref_primary_10_1007_s40846_025_00934_7 crossref_primary_10_1016_j_ibmed_2022_100075 crossref_primary_10_54709_jobesam_1306892 crossref_primary_10_1186_s12936_022_04163_0 crossref_primary_10_1016_j_bspc_2023_104882 crossref_primary_10_3389_fneur_2021_780324 crossref_primary_10_1007_s11192_021_04101_y crossref_primary_10_1016_j_cmpb_2023_107982 crossref_primary_10_1016_j_jocn_2020_09_062 crossref_primary_10_1177_15330338221105718 crossref_primary_10_3390_healthcare12100966 crossref_primary_10_1088_1361_6579_ac38bf crossref_primary_10_1152_japplphysiol_00170_2022 crossref_primary_10_1016_j_jbi_2021_103934 crossref_primary_10_3389_fneur_2024_1394435 crossref_primary_10_3390_diagnostics13122000 crossref_primary_10_1161_STROKEAHA_121_036091 |
Cites_doi | 10.1161/01.STR.0000259712.64772.85 10.1007/978-94-009-8204-8 10.1186/2045-8118-8-5 10.1212/WNL.62.9.1468 10.1109/TBME.2012.2227477 10.1161/CIRCRESAHA.116.307005 10.1111/1467-9868.00293 10.7863/ultra.32.6.1023 10.1042/CS20120259 10.1007/s11222-007-9033-z 10.1161/STROKEAHA.108.542704 10.1111/j.1600-0404.2010.01462.x 10.19026/rjaset.6.3638 10.1161/01.STR.0000257304.21967.ba 10.3171/jns.1988.68.5.0745 10.1007/978-3-7091-8864-4_4 10.1002/jcu.22645 10.1007/s12028-010-9471-x 10.1016/j.ultrasmedbio.2012.03.016 10.1097/01.gme.0000177905.94515.24 10.3389/fneur.2018.00200 10.1016/j.cmpb.2011.03.013 10.1016/j.neucom.2016.05.117 10.4103/0972-2327.112460 10.1002/ana.410420505 10.1161/CIR.0000000000000485 10.1001/jama.2016.13647 10.3171/jns.1982.57.6.0769 10.1161/01.STR.23.8.1073 10.1016/j.medengphy.2011.11.010 10.1002/9781118583906 10.1161/STROKEAHA.108.192616 10.1007/BF01727619 10.1007/s40534-016-0095-5 10.4330/wjc.v8.i7.383 10.1002/jum.14916 10.1002/ana.24474 10.1111/jon20001011 10.1161/01.STR.32.1.89 10.1249/MSS.0b013e3182249539 10.1542/peds.112.2.324 10.1161/01.STR.31.1.140 10.1111/j.1552-6569.2010.00523.x 10.1042/CS20050365 10.1007/s12028-016-0258-6 10.3171/jns.1983.59.5.0817 10.4103/aian.AIAN_417_17 10.1111/jon.12272 10.1385/NCC:4:1:014 10.1145/2023582.2023595 10.3389/fneur.2017.00651 10.1161/01.STR.20.7.899 10.1108/IJESM-02-2016-0005 10.1007/s12028-016-0356-5 10.3171/jns.1984.60.1.0037 10.1212/WNL.41.1.109 10.1161/01.STR.28.12.2465 10.3389/fneur.2018.00847 10.1161/01.STR.0000170622.07210.b4 10.1002/lt.21499 10.1002/9781444327373 10.1109/TBME.2008.2008636 10.3389/fneur.2019.01072 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Thorpe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Thorpe et al 2020 Thorpe et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Thorpe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Thorpe et al 2020 Thorpe et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0228642 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Spectral clustering of pathological TCD waveforms |
EISSN | 1932-6203 |
ExternalDocumentID | 2352045251 oai_doaj_org_article_19480e15d2834cd6b1ab7db1479ddfdc PMC7004309 A613315814 32027714 10_1371_journal_pone_0228642 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Los Angeles California United States--US California |
GeographicLocations_xml | – name: Los Angeles California – name: United States--US – name: California |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R43 NS105340 – fundername: ; grantid: 1R43NS105340 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c692t-28ccab8ad4919e6f3db91b843adf909c6cac2182bebd963d0b24f33272ea43193 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Aug 06 00:16:11 EDT 2023 Wed Aug 27 01:31:30 EDT 2025 Thu Aug 21 13:38:41 EDT 2025 Fri Jul 11 15:48:14 EDT 2025 Fri Jul 25 11:13:22 EDT 2025 Tue Jun 17 20:52:26 EDT 2025 Tue Jun 10 20:33:59 EDT 2025 Fri Jun 27 04:47:26 EDT 2025 Fri Jun 27 04:40:52 EDT 2025 Thu May 22 21:20:04 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Tue Jul 01 01:52:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-28ccab8ad4919e6f3db91b843adf909c6cac2182bebd963d0b24f33272ea43193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: At the time this research was conducted, authors ST, CT, KJ, AD, NC, SW, and RH were salaried employees of Neural Analytics, Inc., and TD was a paid consultant. FS is also a former paid consultant. All authors either hold stock or stock options in the company. The funding institution, Neural Analytics, Inc., holds numerous patents related to transcranial doppler technology from which the authors do not directly stand to benefit. Our commercial affiliation does not alter our adherence to PLOS ONE policies on sharing data and materials. This research was also supported in part by NINDS-1R43NS105340. |
ORCID | 0000-0001-9755-8104 0000-0003-3372-5561 0000-0002-1825-4207 0000-0002-3139-4183 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0228642 |
PMID | 32027714 |
PQID | 2352045251 |
PQPubID | 1436336 |
PageCount | e0228642 |
ParticipantIDs | plos_journals_2352045251 doaj_primary_oai_doaj_org_article_19480e15d2834cd6b1ab7db1479ddfdc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004309 proquest_miscellaneous_2352640093 proquest_journals_2352045251 gale_infotracmisc_A613315814 gale_infotracacademiconefile_A613315814 gale_incontextgauss_ISR_A613315814 gale_incontextgauss_IOV_A613315814 gale_healthsolutions_A613315814 pubmed_primary_32027714 crossref_primary_10_1371_journal_pone_0228642 crossref_citationtrail_10_1371_journal_pone_0228642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-06 |
PublicationDateYYYYMMDD | 2020-02-06 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | AV Alexandrov (pone.0228642.ref009) 2011 DT Larose (pone.0228642.ref066) 2005 IB Mohamad (pone.0228642.ref067) 2013; 6 RJ Adams (pone.0228642.ref018) 1992; 23 DM Bailey (pone.0228642.ref022) 2013; 124 S Kim (pone.0228642.ref045) 2011; 14 A Kurji (pone.0228642.ref047) 2006; 13 AY Ng (pone.0228642.ref059) 2002 L Zelnik-Manor (pone.0228642.ref060) 2004 D Cardim (pone.0228642.ref017) 2016; 25 F Scalzo (pone.0228642.ref053) 2012; 34 AD Wijnhoud (pone.0228642.ref011) 2011; 124 RR Rathod (pone.0228642.ref070) 2017; 11 D Cardim (pone.0228642.ref055) 2017; 26 B Schmidt (pone.0228642.ref016) 1997; 28 EJ Benjamin (pone.0228642.ref024) 2017; 135 MC Kral (pone.0228642.ref020) 2003; 112 N Canac (pone.0228642.ref063) 2019; 10 LI Xiang (pone.0228642.ref041) 2017 MJ Kushner (pone.0228642.ref039) 1991; 41 JS Minhas (pone.0228642.ref013) 2019; 47 A Schaafsma (pone.0228642.ref049) 2012; 38 D Purvis (pone.0228642.ref051) 2013; 32 F Pedregosa (pone.0228642.ref068) 2011; 12 M Saqqur (pone.0228642.ref028) 2007; 38 CJ Lockhart (pone.0228642.ref048) 2006; 111 EM Zanette (pone.0228642.ref040) 1989; 20 AV Alexandrov (pone.0228642.ref006) 2010 MP Spencer (pone.0228642.ref001) 1981 ER Cardoso (pone.0228642.ref042) 1983; 59 R Aaslid (pone.0228642.ref003) 1984; 60 Sunghan Kim (pone.0228642.ref046) 2013; 60 pone.0228642.ref052 S Aggarwal (pone.0228642.ref043) 2008; 14 K Malhotra (pone.0228642.ref036) 2017; 8 AM Demchuk (pone.0228642.ref026) 2000; 10 RE Latchaw (pone.0228642.ref038) 2009; 40 K Jalaleddini (pone.0228642.ref064) 2019 AM Brunser (pone.0228642.ref030) 2009; 40 M Seera (pone.0228642.ref057) 2017; 249 SG Thorpe (pone.0228642.ref058) 2018 X Hu (pone.0228642.ref065) 2009; 56 C Zerna (pone.0228642.ref033) 2016; 118 ME Wagshul (pone.0228642.ref044) 2011; 8 AV Alexandrov (pone.0228642.ref010) 2013 SA Sheth (pone.0228642.ref031) 2015; 78 R Tibshirani (pone.0228642.ref062) 2001; 63 AM Demchuk (pone.0228642.ref027) 2001; 32 S Kumar (pone.0228642.ref069) 2016; 24 MJ Alberts (pone.0228642.ref037) 2005; 36 MA Sloan (pone.0228642.ref005) 2004; 62 TK Len (pone.0228642.ref021) 2011; 43 SG Thorpe (pone.0228642.ref054) 2018; 9 AV Alexandrov (pone.0228642.ref007) 2012; 22 RJ Adams (pone.0228642.ref019) 1997; 42 R Aaslid (pone.0228642.ref002) 1982; 57 R Aaslid (pone.0228642.ref004) 1986 W Hassler (pone.0228642.ref015) 1988; 68 CM Thibeault (pone.0228642.ref023) 2018; 9 K Elzaafarany (pone.0228642.ref056) 2019; 38 H Uğuz (pone.0228642.ref050) 2012; 107 G Tsivgoulis (pone.0228642.ref029) 2007; 38 JL Saver (pone.0228642.ref032) 2016; 316 A D’Andrea (pone.0228642.ref008) 2016; 8 AM Demchuk (pone.0228642.ref025) 2000; 31 WS Smith (pone.0228642.ref034) 2006; 4 L Bathala (pone.0228642.ref071) 2013; 16 J Klingelhöfer (pone.0228642.ref014) 1987; 65 K Malhotra (pone.0228642.ref035) 2015; 25 U von Luxburg (pone.0228642.ref061) 2007; 17 R Aghoram (pone.0228642.ref012) 2018; 21 |
References_xml | – volume: 38 start-page: 1245 year: 2007 ident: pone.0228642.ref029 article-title: Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia publication-title: Stroke doi: 10.1161/01.STR.0000259712.64772.85 – volume-title: Cerebrovascular Evaluation with Doppler Ultrasound year: 1981 ident: pone.0228642.ref001 doi: 10.1007/978-94-009-8204-8 – volume: 8 start-page: 5 year: 2011 ident: pone.0228642.ref044 article-title: The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility publication-title: Fluids Barriers CNS doi: 10.1186/2045-8118-8-5 – volume: 62 start-page: 1468 year: 2004 ident: pone.0228642.ref005 article-title: Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology publication-title: Neurology doi: 10.1212/WNL.62.9.1468 – volume: 60 start-page: 1126 year: 2013 ident: pone.0228642.ref046 article-title: Noninvasive Intracranial Hypertension Detection Utilizing Semisupervised Learning publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2012.2227477 – start-page: 215 year: 2010 ident: pone.0228642.ref006 article-title: Views and Reviews Practice Standards for Transcranial Doppler (TCD) Ultrasound. Part II publication-title: Clinical Indications and Expected Outcomes – volume: 118 start-page: 1425 year: 2016 ident: pone.0228642.ref033 article-title: Evolving Treatments for Acute Ischemic Stroke publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.307005 – volume: 63 start-page: 411 year: 2001 ident: pone.0228642.ref062 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/1467-9868.00293 – volume: 32 start-page: 1023 year: 2013 ident: pone.0228642.ref051 article-title: A Novel Decision Tree Approach Based on Transcranial Doppler Sonography to Screen for Blunt Cervical Vascular Injuries publication-title: J Ultrasound Med doi: 10.7863/ultra.32.6.1023 – volume: 124 start-page: 177 year: 2013 ident: pone.0228642.ref022 article-title: Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers publication-title: Clin Sci doi: 10.1042/CS20120259 – volume: 17 start-page: 395 year: 2007 ident: pone.0228642.ref061 article-title: A tutorial on spectral clustering publication-title: Stat Comput doi: 10.1007/s11222-007-9033-z – volume: 40 start-page: 2037 year: 2009 ident: pone.0228642.ref030 article-title: Accuracy of transcranial doppler compared with CT angiography in diagnosing arterial obstructions in acute ischemic strokes publication-title: Stroke doi: 10.1161/STROKEAHA.108.542704 – year: 2017 ident: pone.0228642.ref041 article-title: Correlation between cerebral blood flow and cerebral infarction in patients with chronic middle cerebral artery occlusion detected by ultrasound publication-title: Chinese Journal of – volume: 124 start-page: 238 year: 2011 ident: pone.0228642.ref011 article-title: The prognostic value of pulsatility index, flow velocity, and their ratio, measured with TCD ultrasound, in patients with a recent TIA or ischemic stroke publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.2010.01462.x – volume: 6 start-page: 3299 year: 2013 ident: pone.0228642.ref067 article-title: Standardization and its effects on K-means clustering algorithm publication-title: Research Journal of Applied Sciences, Engineering and Technology doi: 10.19026/rjaset.6.3638 – volume: 38 start-page: 948 year: 2007 ident: pone.0228642.ref028 article-title: Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke publication-title: Stroke doi: 10.1161/01.STR.0000257304.21967.ba – volume: 68 start-page: 745 year: 1988 ident: pone.0228642.ref015 article-title: Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest publication-title: J Neurosurg doi: 10.3171/jns.1988.68.5.0745 – start-page: 39 volume-title: Transcranial Doppler Sonography year: 1986 ident: pone.0228642.ref004 doi: 10.1007/978-3-7091-8864-4_4 – start-page: 849 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: pone.0228642.ref059 – volume: 47 start-page: 14 year: 2019 ident: pone.0228642.ref013 article-title: Cerebral autoregulation in hemorrhagic stroke: A systematic review and meta-analysis of transcranial Doppler ultrasonography studies publication-title: J Clin Ultrasound doi: 10.1002/jcu.22645 – volume: 14 start-page: 229 year: 2011 ident: pone.0228642.ref045 article-title: Inter-Subject Correlation Exists Between Morphological Metrics of Cerebral Blood Flow Velocity and Intracranial Pressure Pulses publication-title: Neurocrit Care doi: 10.1007/s12028-010-9471-x – volume: 38 start-page: 1451 year: 2012 ident: pone.0228642.ref049 article-title: Improved parameterization of the transcranial Doppler signal publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2012.03.016 – volume: 13 start-page: 303 year: 2006 ident: pone.0228642.ref047 article-title: Differences between middle cerebral artery blood velocity waveforms of young and postmenopausal women publication-title: Menopause doi: 10.1097/01.gme.0000177905.94515.24 – volume: 9 start-page: 200 year: 2018 ident: pone.0228642.ref023 article-title: Cross-Sectional Study on Cerebral Hemodynamics After Mild Traumatic Brain Injury in a Pediatric Population publication-title: AFront Neurol doi: 10.3389/fneur.2018.00200 – volume: 107 start-page: 598 year: 2012 ident: pone.0228642.ref050 article-title: A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2011.03.013 – volume: 249 start-page: 337 year: 2017 ident: pone.0228642.ref057 article-title: Classification of transcranial Doppler signals using individual and ensemble recurrent neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.117 – volume: 16 start-page: 174 year: 2013 ident: pone.0228642.ref071 article-title: Transcranial doppler: Technique and common findings (Part 1) publication-title: Ann Indian Acad Neurol doi: 10.4103/0972-2327.112460 – volume: 42 start-page: 699 year: 1997 ident: pone.0228642.ref019 article-title: Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler publication-title: Ann Neurol doi: 10.1002/ana.410420505 – volume: 135 start-page: e146 year: 2017 ident: pone.0228642.ref024 article-title: Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000485 – volume: 316 start-page: 1279 year: 2016 ident: pone.0228642.ref032 article-title: Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis publication-title: JAMA doi: 10.1001/jama.2016.13647 – volume: 57 start-page: 769 year: 1982 ident: pone.0228642.ref002 article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries publication-title: J Neurosurg doi: 10.3171/jns.1982.57.6.0769 – volume: 23 start-page: 1073 year: 1992 ident: pone.0228642.ref018 article-title: Transcranial Doppler correlation with cerebral angiography in sickle cell disease publication-title: Stroke doi: 10.1161/01.STR.23.8.1073 – volume: 34 start-page: 1058 year: 2012 ident: pone.0228642.ref053 article-title: Intracranial hypertension prediction using extremely randomized decision trees publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.11.010 – year: 2018 ident: pone.0228642.ref058 article-title: Velocity Curvature Index: a Novel Diagnostic Biomarker for Large Vessel Occlusion publication-title: Transl Stroke Res – volume-title: Neurovascular Examination: The Rapid Evaluation of Stroke Patients Using Ultrasound Waveform Interpretation year: 2013 ident: pone.0228642.ref010 doi: 10.1002/9781118583906 – volume: 40 start-page: 3646 year: 2009 ident: pone.0228642.ref038 article-title: Recommendations for imaging of acute ischemic stroke: A scientific statement from the american heart association publication-title: Stroke doi: 10.1161/STROKEAHA.108.192616 – volume: 65 start-page: 542 year: 1987 ident: pone.0228642.ref014 article-title: Intracranial flow patterns at increasing intracranial pressure publication-title: Klin Wochenschr doi: 10.1007/BF01727619 – volume: 24 start-page: 62 year: 2016 ident: pone.0228642.ref069 article-title: A data mining approach to characterize road accident locations publication-title: Journal of Modern Transportation doi: 10.1007/s40534-016-0095-5 – volume: 8 start-page: 383 year: 2016 ident: pone.0228642.ref008 article-title: Transcranial Doppler ultrasonography: From methodology to major clinical applications publication-title: World J Cardiol doi: 10.4330/wjc.v8.i7.383 – volume: 38 start-page: 2191 year: 2019 ident: pone.0228642.ref056 article-title: Cerebral Artery Vasospasm Detection Using Transcranial Doppler Signal Analysis publication-title: J Ultrasound Med doi: 10.1002/jum.14916 – volume: 78 start-page: 584 year: 2015 ident: pone.0228642.ref031 article-title: Time to endovascular reperfusion and degree of disability in acute stroke publication-title: Ann Neurol doi: 10.1002/ana.24474 – volume: 10 start-page: 1 year: 2000 ident: pone.0228642.ref026 article-title: Accuracy and Criteria for Localizing Arterial Occlusion With Transcranial Doppler publication-title: J Neuroimaging doi: 10.1111/jon20001011 – volume: 32 start-page: 89 year: 2001 ident: pone.0228642.ref027 article-title: Thrombolysis in Brain Ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator publication-title: Stroke doi: 10.1161/01.STR.32.1.89 – volume: 43 start-page: 2241 year: 2011 ident: pone.0228642.ref021 article-title: Cerebrovascular reactivity impairment after sport-induced concussion publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e3182249539 – volume: 12 start-page: 2825 year: 2011 ident: pone.0228642.ref068 publication-title: Scikit-learn: Machine Learning in Python – volume-title: Self-tuning spectral clustering In: Advances in Neural Information Processing Systems (NIPS) year: 2004 ident: pone.0228642.ref060 – volume: 112 start-page: 324 year: 2003 ident: pone.0228642.ref020 article-title: Transcranial Doppler ultrasonography and neurocognitive functioning in children with sickle cell disease publication-title: Pediatrics doi: 10.1542/peds.112.2.324 – volume: 31 start-page: 140 year: 2000 ident: pone.0228642.ref025 article-title: Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion publication-title: Stroke doi: 10.1161/01.STR.31.1.140 – volume: 22 start-page: 215 year: 2012 ident: pone.0228642.ref007 article-title: Practice standards for transcranial Doppler (TCD) ultrasound. Part II. Clinical indications and expected outcomes publication-title: J Neuroimaging doi: 10.1111/j.1552-6569.2010.00523.x – volume: 111 start-page: 47 year: 2006 ident: pone.0228642.ref048 article-title: Nitric oxide modulation of ophthalmic artery blood flow velocity waveform morphology in healthy volunteers publication-title: Clin Sci doi: 10.1042/CS20050365 – volume: 25 start-page: 473 year: 2016 ident: pone.0228642.ref017 article-title: Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? publication-title: Neurocrit Care doi: 10.1007/s12028-016-0258-6 – volume: 59 start-page: 817 year: 1983 ident: pone.0228642.ref042 article-title: Analysis of the cerebrospinal fluid pulse wave in intracranial pressure publication-title: J Neurosurg doi: 10.3171/jns.1983.59.5.0817 – volume: 21 start-page: 193 year: 2018 ident: pone.0228642.ref012 article-title: Patterns of Transcranial Doppler Flow Velocities in Recent Ischemic Stroke Patients publication-title: Ann Indian Acad Neurol doi: 10.4103/aian.AIAN_417_17 – volume: 25 start-page: 517 year: 2015 ident: pone.0228642.ref035 article-title: Imaging in Endovascular Stroke Trials publication-title: J Neuroimaging doi: 10.1111/jon.12272 – volume: 4 start-page: 14 year: 2006 ident: pone.0228642.ref034 article-title: Prognostic significance of angiographically confirmed large vessel intracranial occlusion in patients presenting with acute brain ischemia publication-title: Neurocrit Care doi: 10.1385/NCC:4:1:014 – ident: pone.0228642.ref052 doi: 10.1145/2023582.2023595 – volume: 8 start-page: 651 year: 2017 ident: pone.0228642.ref036 article-title: Ischemic Strokes Due to Large-Vessel Occlusions Contribute Disproportionately to Stroke-Related Dependence and Death: A Review publication-title: Front Neurol doi: 10.3389/fneur.2017.00651 – volume: 20 start-page: 899 year: 1989 ident: pone.0228642.ref040 article-title: Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke publication-title: Stroke doi: 10.1161/01.STR.20.7.899 – volume: 11 start-page: 295 year: 2017 ident: pone.0228642.ref070 article-title: Design of electricity tariff plans using gap statistic for K-means clustering based on consumers monthly electricity consumption data publication-title: Int J Energy Sect Manage doi: 10.1108/IJESM-02-2016-0005 – volume: 26 start-page: 330 year: 2017 ident: pone.0228642.ref055 article-title: Transcranial Doppler Monitoring of Intracranial Pressure Plateau Waves publication-title: Neurocrit Care doi: 10.1007/s12028-016-0356-5 – volume: 60 start-page: 37 year: 1984 ident: pone.0228642.ref003 article-title: Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound publication-title: J Neurosurg doi: 10.3171/jns.1984.60.1.0037 – volume: 41 start-page: 109 year: 1991 ident: pone.0228642.ref039 article-title: Transcranial Doppler in acute hemispheric brain infarction publication-title: Neurology doi: 10.1212/WNL.41.1.109 – start-page: 1 volume-title: Discovering Knowledge in Data year: 2005 ident: pone.0228642.ref066 – volume: 28 start-page: 2465 year: 1997 ident: pone.0228642.ref016 article-title: Noninvasive prediction of intracranial pressure curves using transcranial Doppler ultrasonography and blood pressure curves publication-title: Stroke doi: 10.1161/01.STR.28.12.2465 – volume: 9 start-page: 847 year: 2018 ident: pone.0228642.ref054 article-title: Decision Criteria for Large Vessel Occlusion Using Transcranial Doppler Waveform Morphology publication-title: Front Neurol doi: 10.3389/fneur.2018.00847 – volume: 36 start-page: 1597 year: 2005 ident: pone.0228642.ref037 article-title: Recommendations for comprehensive stroke centers: a consensus statement from the Brain Attack Coalition publication-title: Stroke doi: 10.1161/01.STR.0000170622.07210.b4 – volume: 14 start-page: 1048 year: 2008 ident: pone.0228642.ref043 article-title: Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial doppler ultrasonography publication-title: Liver Transpl doi: 10.1002/lt.21499 – volume-title: Cerebrovascular Ultrasound in Stroke Prevention and Treatment year: 2011 ident: pone.0228642.ref009 doi: 10.1002/9781444327373 – year: 2019 ident: pone.0228642.ref064 article-title: Objective Assessment of Beat Quality in Transcranial Doppler Measurement of Blood Flow Velocity in Cerebral Arteries publication-title: IEEE Trans Biomed Eng – volume: 56 start-page: 696 year: 2009 ident: pone.0228642.ref065 article-title: Morphological clustering and analysis of continuous intracranial pressure publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2008636 – volume: 10 start-page: 1072 year: 2019 ident: pone.0228642.ref063 article-title: Algorithm for Reliable Detection of Pulse Onsets in Cerebral Blood Flow Velocity Signals publication-title: Front Neurol doi: 10.3389/fneur.2019.01072 |
SSID | ssj0053866 |
Score | 2.4202278 |
Snippet | Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can provide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0228642 |
SubjectTerms | Arteries Automation Biology and Life Sciences Blood flow Blood vessels Brain Ischemia - diagnosis Brain Ischemia - physiopathology Brain research Cerebral blood flow Cerebral ischemia Cerebrovascular Circulation - physiology Classification Cluster Analysis Clustering Feature extraction Female Flow velocity Genetic variability Health risks Humans Hypertension Ischemia Learning algorithms Machine Learning Male Medical schools Medicine and Health Sciences Middle Aged Middle Cerebral Artery Morphology Occlusion Physical Sciences Research and Analysis Methods Stenosis Stroke Stroke - diagnosis Stroke - physiopathology Subjective assessment Thrombolysis Thrombolytic drugs Time Troughs Ultrasonography, Doppler, Transcranial - classification Ultrasound Veins & arteries Waveforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0m9ix42N5VAUJkKBFvUV-BSqVZNUk5e8zYydRgyqVA5eVdj12dmfGM-PZ8TeEvNAZxODW8RRc9RpTNyo1hZbw1mujpfF5SOh_-iwOj_nHk-LkUqsvrAmL8MCRcXtwyC7XPisc-EFYVJhMG-lMBss6VzuL1hd83nSYijYYdrEQ40U5JrO9US67m7bxu4j4Ini-cEQBr3-2yqvNWdtdFXL-XTl5yRUd3Ca3xhiS7sfvvkVu-OYO2Rp3aUdfjVDSr--SzVGoiqV66FsITb2jFqNlLA8KEqFtTbEn8WQBaY-uy8ILqCV910KI6s_pb33hMbalv1qQSsjD04tTTcMtTXgQLDog3gJ4wXvk-OD90dvDdOyxkFqh8j7NSxChKbXjKlNe1MwZlZmSM-1qtVZWWG0R5N1442CvurXJec1YLkGWEHsodp-sGuDqNqEwT3DphWPc8NyuTaF0YUpssATHpNonhE0Mr-wIQI59MM6q8K-ahINI5F-FYqpGMSUknWdtIgDHNfRvUJYzLcJnhw9AqapRqarrlCohT1ETqngXdTYC1T4EPywryown5HmgQAiNBmt0fuih66oPX77_A9G3rwuilyNR3QI7gN_xXgT8JoTmWlDuLCjBENjF8Dbq7cSVrsohuEbE_CKDmZMuXz38bB7GRbHurvHtEGkEx7RXQh5E1Z85yzBvJvG5crEpFqxfjjSnPwOCuQxQc-rh_5DVI3IzxxwIVtKLHbLqzwf_GALF3jwJNuEPl_9qGA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDLRiEBBzSxonjxCdUHktBAiRoUW-RX2krlWS72S1_nxnHCQRVwGWlXU8eO-9Mxt8Q8lQxyMGN5TGE6gRLNzLWuSrgq1NaFdqlvqD_8ZPYP-QfjvKjUHDrQlvl4BO9o7atwRr5bgqZAsJ_5-zl4jzGqVH4djWM0LhKrjGINNjSVc7fDZ4YbFmIsF0uK9hukM7Oom3cDuK-CJ5OwpFH7R9982xx1naXJZ5_9k_-FpDmN8mNkEnSvV70G-SKa26RjWCrHX0eAKVf3CaLA98bS9V61UKC6iw1mDNjk5CXC21ripOJBz9IVxjADHyActI3LSSqbkl_qAuHGS793oJsfDWeXpwq6vdqwoXgpGtEXYBYeIcczt8evN6Pw6SF2AiZruK0BEHqUlkumXSizqyWTJc8U7aWiTTCKINQ79ppCxZrE53yOsvSAiQKGYjM7pJZA1zdJBSOE7xwwmZc89QkOpcq1yWOWYKHpdpFJBsYXpkAQ47TMM4q_26tgMeRnn8ViqkKYopIPB616GE4_kH_CmU50iKItv-hXR5XwSYrJnmZOJZbSLFAX4VmShdWM9BYa2trIvIINaHqd6SOrqDagxQoY3nJeESeeAoE0miwU-dYrbuuev_5238Qff0yIXoWiOoW2AH87ndHwH9CgK4J5daEEtyBmSxvot4OXOmqX4YDRw66fPny43EZT4rdd41r1z2N4Fj8isi9XvVHzmZYPSvwusXEKCasn640pycex7zwgHPy_t9v6wG5nmKNAzvlxRaZrZZrtw2J4Eo_9Nb-EzO_YKo priority: 102 providerName: ProQuest |
Title | Toward automated classification of pathological transcranial Doppler waveform morphology via spectral clustering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32027714 https://www.proquest.com/docview/2352045251 https://www.proquest.com/docview/2352640093 https://pubmed.ncbi.nlm.nih.gov/PMC7004309 https://doaj.org/article/19480e15d2834cd6b1ab7db1479ddfdc http://dx.doi.org/10.1371/journal.pone.0228642 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2TkJ7QYzbAqMYhAQ8pIoTJ04eENrGykDaQGNFfYvs2BmTSlKadsC_5xznogV1gpdIrY9d9Vzszyf2dwh5IRlg8ExzF5ZqD1M3iatCKeCjkUoKZXyb0D85jY4n_OM0nG6QtmZro8Bq7dYO60lNFrPRrx-_30LAv7FVGwRrO43mZWFGyOcCmHqTbMHaJLCmwQnv3itAdEdRc4Hupp7b5BbWFBf2Ys-1tcpS-ncT92A-K6t1qPTvw5XXVqvxHXK7gZl0v_aLHbJhirtkpwnkir5q2KZf3yPzc3twlsrVsgT0ajTNEFDjCSJrNFrmFMsWt5MkXeLqlsEDPJe-KwHFmgX9Ka8Mwl_6vQTD2VQ9vbqU1F7khB-CQVdIyQAL5X0yGR-dHx67TRkGN4sSf-n6MVhZxVLzhCUmygOtEqZiHkidJ16SRZnMkAdeGaUhnLWnfJ4HgS_A3ABPkuABGRSg4F1CoV_EhYl0wBX3M0-FiQxVjDWYYCeVG4cErcLTrOEox1IZs9S-eBOwV6n1l6LF0sZiDnG7XvOao-Mf8gdoy04WGbbtF-XiIm0CNmUJjz3DQg34C5w5UkwqoRUDd9Y615lDnqInpPV11W6eSPcBHwUsjBl3yHMrgSwbBR7juZCrqko_fPr6H0JfznpCLxuhvAR1gL7rqxPwn5C9qye515OEuSLrNe-i37ZaqVIf8DeS6ocMera-vL75WdeMg-LRvMKUq1om4pgZc8jD2vU7zbaB5BDRC4qe6vstxeU3S3IuLBtd8ujGMR-TbR9zH3iCPtojg-ViZZ4AQFyqIdkUUwHP-JDhc_x-SLYOjk4_nw1tymVo54Q_Pa1rhw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4QAX1PJqaKELAgEHt7G9XtsHhAolJPSBBGnV27Ivl0rFDnHSij_Fb2Rm_QCjCrj0EinZsb2ZnZ2ZHc98Q8gT6YMPrg3zwFQPMHSTeiqSMXy1UslY2cAF9PcP-OiQvT-OjpfIj6YWBtMqG53oFLUpNMbItwLwFBD-O_JfTb952DUK3642LTQqsdi13y_gyFa-HO_A-j4NguHbyZuRV3cV8DRPg7kXJDBplUjDUj-1PAuNSn2VsFCaLB2kmmupEdZcWWVAOs1ABSwLwyCG2YO1RfAlUPnXWAiWHCvTh-8azQ-6g_O6PC-M_a1aGjanRW43EWeGs6Bj_lyXgNYW9KZnRXmZo_tnvuZvBnC4TG7WnivdrkRthSzZ_BZZqXVDSZ_XANYvbpPpxOXiUrmYF-AQW0M1-uiYlOTkgBYZxU7Ijd6lczSYGj5gM9CdAhxjO6MX8tyiR02_FiALLvpPz08ldbWh8CC46QJRHsD23iGHV7IGd0kvB66uEgrXcRZbbkKmWKAHKkplpBJs6wSHs8z2SdgwXOga9hy7b5wJ9y4vhuNPxT-ByyTqZeoTr71qWsF-_IP-Na5lS4ug3e6HYnYiah0g_JQlA-tHBlw62B9c-VLFRvmwQ4zJjO6TDZQEUVXAtqpHbIPLFfpR4rM-eewoELgjx8ygE7koSzH-cPQfRJ8-doie1URZAewAflfVGPCfEBCsQ7neoQT1ozvDqyi3DVdK8WujwpWNLF8-_Kgdxptitl9ui0VFwxkG2_rkXiX6LWdDjNbF-Ny4syk6rO-O5KdfHG567ADu0vt_n9YGuT6a7O-JvfHB7hq5EWB8BbP0-TrpzWcL-wCc0Ll66HY-JZ-vWtX8BAoKnnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIiFeEOO2wGAGgYCHrE3i2MkDQmOlWhkMBBvaW_AtY9JIStNu4q_x6zjHuUDQBLzspVLr46Q-Pjfbx98h5JEMIAbXhvngqke4dZP6KpYCvlqppFA2dBv6b_f4zgF7fRgfrpAf7V0YTKtsbaIz1KbUuEc-DCFSQPjvOBjmTVrE-_HkxeybjxWk8KS1LadRi8iu_X4Gy7fq-XQMc_04DCev9rd3_KbCgK95Gi78MIEBqEQalgap5XlkVBqohEXS5Oko1VxLjRDnyioDkmpGKmR5FIUCRgKeF4GYwPxfEpFIUMeS7S69BOwI581VvUgEw0YyNmdlYTcRc4azsOcKXcWAzi8MZidldV7Q-2fu5m_OcHKNXG2iWLpVi90qWbHFdbLa2ImKPm3ArJ_dILN9l5dL5XJRQnBsDdUYr2OCkpMJWuYUqyK3Npgu0Hlq-ADFoOMSgmQ7p2fy1GJ0Tb-WIBfuJICeHkvq7onCi-ChS0R8AD98kxxcyBzcIoMCuLpGKPTjTFhuIqZYqEcqTmWsEizxBAu13Hokahme6QYCHStxnGTuXE_AUqjmX4bTlDXT5BG_6zWrIUD-Qf8S57KjRQBv90M5P8oae5AFKUtGNogNhHegK1wFUgmjAtAWY3KjPbKBkpDVt2E7M5RtQfgVBXESMI88dBQI4lGgOhzJZVVl03ef_oPo44ce0ZOGKC-BHcDv-mYGjAnBwXqU6z1KMEW617yGcttypcp-KS30bGX5_OYHXTM-FDP_ClsuaxrOcOPNI7dr0e84G-HOncD3ip5S9FjfbymOvzgMdeHA7tI7f_9bG-QyGJnszXRv9y65EuJWCybs83UyWMyX9h7Eowt13yk-JZ8v2tL8BMTXonU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+automated+classification+of+pathological+transcranial+Doppler+waveform+morphology+via+spectral+clustering&rft.jtitle=PloS+one&rft.au=Thorpe%2C+Samuel+G&rft.au=Thibeault%2C+Corey+M&rft.au=Canac%2C+Nicolas&rft.au=Jalaleddini%2C+Kian&rft.date=2020-02-06&rft.eissn=1932-6203&rft.volume=15&rft.issue=2&rft.spage=e0228642&rft_id=info:doi/10.1371%2Fjournal.pone.0228642&rft_id=info%3Apmid%2F32027714&rft.externalDocID=32027714 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |