Hypercomplex extreme learning machine with its application in multispectral palmprint recognition
An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory gene...
Saved in:
Published in | PloS one Vol. 14; no. 4; p. e0209083 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
15.04.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d. |
---|---|
AbstractList | An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d. An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d . An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d.An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d. |
Audience | Academic |
Author | Zhang, Xinman Lu, Longbin Xu, Xuebin |
AuthorAffiliation | 2 Guangdong Xi'an Jiaotong University Academy, Foshan, Guangdong, China The University of Memphis, UNITED STATES 1 MOE Key Lab for Intelligent Networks and Network Security, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
AuthorAffiliation_xml | – name: 2 Guangdong Xi'an Jiaotong University Academy, Foshan, Guangdong, China – name: 1 MOE Key Lab for Intelligent Networks and Network Security, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China – name: The University of Memphis, UNITED STATES |
Author_xml | – sequence: 1 givenname: Longbin orcidid: 0000-0002-8858-8501 surname: Lu fullname: Lu, Longbin – sequence: 2 givenname: Xinman surname: Zhang fullname: Zhang, Xinman – sequence: 3 givenname: Xuebin orcidid: 0000-0002-9554-3782 surname: Xu fullname: Xu, Xuebin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30986209$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuB_6D0QLgujFjPlo08QLYVnUXVhY8Os2ZNLTmSxpUpNUd_-96cyszCyLSC9aTp_zJuflPcfFgfMOiuI5RnNMG_zu2o_BKTsfcnmOCBKI00fFERaUzBhB9GDn-7A4jvEaoZpyxp4UhxQJnuviqFDntwME7fvBwk0JNylAD6UFFZxxy7JXemUclL9NWpUmxVINgzVaJeNdaVzZjzaZOIBOQdlyULYfgnGpDKD90pkJe1o87pSN8Gz7Pim-f_r47ex8dnn1-eLs9HKmmSBpRhhu6w51THAqgFVQU0IaxbjAjCHGSVcvaNdBQ3QFWLBOc0I4qXFXdQ1wRE-Klxvdwfoot-5ESQjGpOGoopm42BCtV9cyX7RX4VZ6ZeS64MNSqpCMtiA1EYy2WitKUFXVQhCRJVjdskWD2gXJWh-2p42LHloNbnJgT3T_jzMrufS_JKtYhXmVBd5sBYL_OUJMsjdRg7XKgR_X90YEE1JN6Kt76MPTbamlygMY1_l8rp5E5WnNyTREwzM1f4DKTwu90TlKncn1vYa3ew2ZSTkmSzXGKC--fvl_9urHPvt6h12BsmkVvR2nyMR98MWu038tvstwBt5vAB18jAE6qU1aJzSPZqzESE4Lc2eanBZGbhcmN1f3mu_0_9n2B59oGbM |
CitedBy_id | crossref_primary_10_1016_j_jcmds_2022_100032 crossref_primary_10_4103_jioh_jioh_162_24 crossref_primary_10_1007_s11042_021_11007_7 crossref_primary_10_1007_s11063_022_10822_9 crossref_primary_10_1016_j_dcan_2022_10_006 crossref_primary_10_1109_MSP_2024_3365463 crossref_primary_10_2478_ecce_2020_0005 crossref_primary_10_1109_TIM_2020_3038229 |
Cites_doi | 10.3390/s120404633 10.1109/5.58323 10.1371/journal.pone.0178432 10.1016/j.eswa.2010.08.052 10.1109/TCYB.2014.2363492 10.1016/j.eswa.2013.06.070 10.1109/TNNLS.2012.2202289 10.1109/TIP.2009.2035882 10.1002/wics.101 10.1007/s00521-012-0851-3 10.1016/j.eswa.2016.07.009 10.1109/TGRS.2014.2381602 10.1109/TIP.2006.884955 10.1016/j.neucom.2015.10.070 10.1016/j.neucom.2005.12.126 10.3390/s18051575 10.1109/TNNLS.2012.2218616 10.1109/TNN.2006.880583 10.1109/TIM.2009.2028772 10.1016/j.neucom.2010.02.019 10.1109/TSMCB.2011.2168604 10.1007/s00521-014-1570-8 10.1016/0893-6080(92)90008-7 10.1016/j.neucom.2012.12.063 10.1109/TCYB.2015.2511149 10.1109/TNN.2003.809401 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Lu et al 2019 Lu et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Lu et al 2019 Lu et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0209083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Multispectral palmprint recognition |
EISSN | 1932-6203 |
ExternalDocumentID | 2211278043 oai_doaj_org_article_c2963dcca320445992980465d6b70db2 PMC6464184 A582459978 30986209 10_1371_journal_pone_0209083 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 2015B010104002 – fundername: ; grantid: 61673316 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c692t-261d5f0f69839e64e53227a6891660682f5b3ffe72c4e196fc8228251f4f7e803 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:32 EST 2021 Wed Aug 27 01:31:44 EDT 2025 Thu Aug 21 18:20:35 EDT 2025 Fri Jul 11 11:52:41 EDT 2025 Fri Jul 25 10:19:22 EDT 2025 Tue Jun 17 20:28:18 EDT 2025 Tue Jun 10 20:48:12 EDT 2025 Fri Jun 27 04:22:56 EDT 2025 Fri Jun 27 03:47:30 EDT 2025 Thu May 22 20:24:12 EDT 2025 Wed Feb 19 02:31:02 EST 2025 Thu Apr 24 22:50:38 EDT 2025 Tue Jul 01 01:07:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-261d5f0f69839e64e53227a6891660682f5b3ffe72c4e196fc8228251f4f7e803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-9554-3782 0000-0002-8858-8501 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0209083 |
PMID | 30986209 |
PQID | 2211278043 |
PQPubID | 1436336 |
PageCount | e0209083 |
ParticipantIDs | plos_journals_2211278043 doaj_primary_oai_doaj_org_article_c2963dcca320445992980465d6b70db2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6464184 proquest_miscellaneous_2210212244 proquest_journals_2211278043 gale_infotracmisc_A582459978 gale_infotracacademiconefile_A582459978 gale_incontextgauss_ISR_A582459978 gale_incontextgauss_IOV_A582459978 gale_healthsolutions_A582459978 pubmed_primary_30986209 crossref_citationtrail_10_1371_journal_pone_0209083 crossref_primary_10_1371_journal_pone_0209083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Y Chen (ref20) 2016; 64 D Zhang (ref30) 2011; 38 D Han (ref32) 2008 W Li (ref21) 2015; 53 Y Yang (ref9) 2012; 23 Q He (ref10) 2014; 128 ref33 GB Huang (ref3) 2003; 14 J Tang (ref18) 2015 A. Meraoumia (ref2) 2017 A Gumaei (ref26) 2018 WY Deng (ref13) 2009 NY Liang (ref14) 2006; 17 R Hecht-Nielsen (ref6) 1992 LB Lu (ref24) 2017; 12 GB Huang (ref12) 2012; 42 D Lam (ref11) 2017; 47 TA Ell (ref23) 2007; 16 XB Xu (ref25) 2016; 27 B Zhang (ref35) 2010; 19 D Zhang (ref29) 2010; 59 B Widrow (ref5) 2002; 78 GB Huang (ref4) 2006; 70 H Zhou (ref16) 2015; 45 A Gumaei (ref28) 2018 JF Sun (ref36) 2005; 5985 JL Song (ref19) 2016; 175 A Van Ooyen (ref7) 1992; 5 J Tang (ref17) 2016; 27 S Koike (ref38) 2008 I Fister (ref22) 2013; 40 A Gumaei (ref27) 2018; 18 GB Huang (ref8) 2010; 74 X Xu (ref39) 2012; 12 Y Zhou (ref1) 2017 Q Zhu (ref37) 2013; 23 D Zhang (ref31) 2010; 32 H Abdi (ref34) 2010; 2 Z Man (ref15) 2012; 23 |
References_xml | – start-page: 175 year: 2015 ident: ref18 – volume: 12 start-page: 4633 issue: 4 year: 2012 ident: ref39 article-title: Multispectral palmprint recognition using a quaternion matrix publication-title: Sensors doi: 10.3390/s120404633 – volume: 78 start-page: 1415 issue: 9 year: 2002 ident: ref5 article-title: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation publication-title: Proceedings of the IEEE doi: 10.1109/5.58323 – volume: 5985 start-page: 739 year: 2005 ident: ref36 article-title: A study of PCA image fusion techniques on remote sensing publication-title: Proceedings of SPIE – start-page: 395 year: 2008 ident: ref38 – start-page: 389 year: 2009 ident: ref13 – year: 2017 ident: ref2 article-title: Biometric Security and Privacy. – volume: 12 start-page: e0178432 issue: 5 year: 2017 ident: ref24 article-title: Multispectral image fusion for illumination-invariant paimprint recognition publication-title: PLOS ONE doi: 10.1371/journal.pone.0178432 – volume: 38 start-page: 2621 issue: 3 year: 2011 ident: ref30 article-title: Online joint palmprint and palmvein verification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.08.052 – year: 2018 ident: ref26 article-title: An improved multispectral palmprint recognition system using autoencoder with regularized extreme learning machine publication-title: Computational Intelligence and Neuroscience – volume: 45 start-page: 2013 issue: 9 year: 2015 ident: ref16 article-title: Stacked extreme learning machines publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2363492 – start-page: 1 issue: 3 year: 2017 ident: ref1 article-title: Predicting movie box-office revenues using deep neural networks publication-title: Neural Computing & Applications – year: 1992 ident: ref6 article-title: Neural networks for perception – year: 2018 ident: ref28 article-title: Anti-spoofing cloud-based multi-spectral biometric identification system for enterprise security and privacy-preservation publication-title: Journal of Parallel and Distributed Computing – volume: 40 start-page: 7220 issue: 18 year: 2013 ident: ref22 article-title: Modified firefly algorithm using quaternion representation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.06.070 – volume: 23 start-page: 1498 issue: 9 year: 2012 ident: ref9 article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2012.2202289 – volume: 19 start-page: 533 issue: 2 year: 2010 ident: ref35 article-title: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor publication-title: IEEE transactions on image processing doi: 10.1109/TIP.2009.2035882 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: ref34 article-title: Principal component analysis publication-title: Wiley interdisciplinary reviews: computational statistics doi: 10.1002/wics.101 – volume: 23 start-page: 169 issue: 1 year: 2013 ident: ref37 article-title: Multi-directional two-dimensional pca with matching score level fusion for face recognition publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-0851-3 – start-page: 2074 year: 2008 ident: ref32 – volume: 64 year: 2016 ident: ref20 article-title: Multimodal biometrics recognition based on local fusion visual features and variational bayesian extreme learning machine publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.07.009 – volume: 53 start-page: 3681 issue: 7 year: 2015 ident: ref21 article-title: Local binary patterns and extreme learning machine for hyperspectral imagery classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2014.2381602 – volume: 16 start-page: 22 issue: 1 year: 2007 ident: ref23 article-title: Hypercomplex Fourier transforms of color images publication-title: IEEE Transactions on image processing doi: 10.1109/TIP.2006.884955 – volume: 175 start-page: 383 year: 2016 ident: ref19 article-title: Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.070 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: ref4 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 18 start-page: 1575 issue: 5 year: 2018 ident: ref27 article-title: An effective palmprint recognition approach for visible and multispectral sensor images publication-title: Sensors doi: 10.3390/s18051575 – volume: 23 start-page: 1974 issue: 12 year: 2012 ident: ref15 article-title: Robust single-hidden layer feedforward network-based pattern classifier publication-title: IEEE Transactions on Neural Networks & Learning Systems doi: 10.1109/TNNLS.2012.2218616 – volume: 27 start-page: 809 issue: 4 year: 2016 ident: ref17 article-title: Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks & publication-title: Learning Systems – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: ref14 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.880583 – volume: 59 start-page: 480 issue: 2 year: 2010 ident: ref29 article-title: An online system of multispectral palmprint verification publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2028772 – volume: 74 start-page: 155 issue: 1–3 year: 2010 ident: ref8 article-title: Optimization method based extreme learning machine for classification. publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.019 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: ref12 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics doi: 10.1109/TSMCB.2011.2168604 – volume: 27 start-page: 143 issue: 1 year: 2016 ident: ref25 article-title: Multispectral palmprint recognition using multiclass projection extreme learning machine and digital shearlet transform publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1570-8 – volume: 32 start-page: 120 issue: 2 year: 2010 ident: ref31 article-title: Empirical study of light source selection for palmprint recognition publication-title: Pattern Recognition Letters – volume: 5 start-page: 465 issue: 3 year: 1992 ident: ref7 article-title: Improving the convergence of the back-propagation algorithm publication-title: Neural Networks doi: 10.1016/0893-6080(92)90008-7 – volume: 128 start-page: 88 issue: 5 year: 2014 ident: ref10 article-title: Clustering in extreme learning machine feature space publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.063 – volume: 47 start-page: 224 issue: 1 year: 2017 ident: ref11 article-title: Unsupervised feature learning classification with radial basis function extreme learning machine using graphic processors publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2511149 – ident: ref33 – volume: 14 start-page: 274 issue: 2 year: 2003 ident: ref3 article-title: Learning capability and storage capacity of two-hidden-layer feedforward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.809401 |
SSID | ssj0053866 |
Score | 2.3470306 |
Snippet | An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0209083 |
SubjectTerms | Adult Algorithms Artificial intelligence Artificial neural networks Biology and Life Sciences Biometric identification Biometrics Biometry Classification Computer and Information Sciences Dermatoglyphics Downloading Engineering and Technology Feedforward Female Fourier transforms Humans Learning Learning algorithms Machine Learning Male Methods Middle Aged Musical groups Neural networks Neural Networks, Computer Novels Object recognition Pattern recognition (Computers) Pattern Recognition, Automated - methods Physical Sciences Principal components analysis Remote sensing Research and Analysis Methods Sensors Source code Spectral bands Teaching methods Theory Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBBQxCAg5ps4lfORZEtSABElDUm-U4dllpm6yarMTPZ8bxRhtUqRy4rifOZl6esWc-E_KKGQdBcWnTrJJZyph0qRKcpdzmVlamhtQZu5E_fxHLM_bpnJ_vXfWFNWEDPPDAuGObg4rU8J4izxjjJSznCnI6XguYvK6C94U1b5dMDT4YrFiI2ChXyMVxlMvRpm3cEQRIZaaKyUIU8PpHrzzbrNvuupDz78rJvaXo9C65E2NIejL89wNyyzX3yEG00o6-iVDSb-8Ts4Q08yqUjbvfFPww7gbSeFPEBb0MlZSO4mYsXfUd3TvOpquGhmrD0IsJ09GNWV_iNmBPx6qjtnlAzk4__Hi_TOOlCqkVZd6nkDHV3GdelBAaOcEcB5OWRiiIEyGZUbnnVeG9k7llDszTWwghsL_VMy-dyoqHZNYAGw-xKorLrKwLo3zJuHJKcW5AKgWrmFNOJKTYcVjbiDiOF1-sdThGk5B5DAzTKBcd5ZKQdHxqMyBu3ED_DoU30iJedvgBtEhHLdI3aVFCnqPo9dB8Olq9PuEqR3KpEvIyUCBmRoNFORdm23X649ef_0D0_duE6HUk8i2ww5rYCAHfhFhcE8r5hBIs306GD1FRd1zpdA7ZfI6IUsCU-U55rx9-MQ7jpFho17h2G2gQ9B-CvoQ8GnR95GyRlZD_ZmVC5MQKJqyfjjSrXwGyXDDBFoo9_h-yekJuQ9QajvQWfE5m_dXWPYXIsK-eBSfwByjEYH0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5ps_EzJ1QQy4IESEBRb1HiONuVtknYZCV-PjOOExpUAdf1JMrOy9-MZ8aEPOOZBVCcmDDKVRRyrmyopeChMLFReVZA6IzdyB8_yeUJ_3AqTn3CrfVllYNPdI66qA3myI9iiFRinJbDXjU_Qrw1Ck9X_RUaV8m1Oew0WNKlF-8GTwy2LKVvl2NqfuSlc9jUlT0EmJREmk22Ize1f_TNs2ZTt5cBzz_rJy9sSIub5IZHkvS4F_0euWKrW2TP22pLX_iB0i9vk2wJwebWFY_bnxS8MeYEqb8vYkXPXT2lpZiSpeuupRcOtem6oq7m0HVkwutok23OMRnY0bH2qK7ukJPF229vlqG_WiE0Mom7EOKmQpRRKRMASFZyK8CwVSY1oEUIaXRcipyVpVWx4RaMtDQAJLDLteSlsjpid8msAjbuY22UUFFSsEyXCRfaai1EBoJnPOdWWxkQNnA4NX7uOF5_sUndYZqC-KNnWIpySb1cAhKOTzX93I1_0L9G4Y20ODXb_VBvV6k3wtTE4G4K0FkWR5yLBKAhKJQUhYTvLfI4II9R9GnfgjrafnosdIzkSgfkqaPAyRkVluassl3bpu8_f_8Poq9fJkTPPVFZAztM5tsh4D_hRK4J5cGEEuzfTJb3UVEHrrTpb0uBJwflvXz5ybiML8Vyu8rWO0eDo_8B-gXkXq_rI2dZlEAUHCUBURMrmLB-ulKtz9zgcskln2t-_--f9YBcB1Tqjuzm4oDMuu3OPgTk1-WPnHn_AprEWOs priority: 102 providerName: ProQuest |
Title | Hypercomplex extreme learning machine with its application in multispectral palmprint recognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30986209 https://www.proquest.com/docview/2211278043 https://www.proquest.com/docview/2210212244 https://pubmed.ncbi.nlm.nih.gov/PMC6464184 https://doaj.org/article/c2963dcca320445992980465d6b70db2 http://dx.doi.org/10.1371/journal.pone.0209083 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF616YULorxqCGFBSMDBlbPelw8ItVVCQGpBhaDcLD_WIVJqhziRyoXfzsxmY9UoqFx8yI5X8ezM7De78yDkFU8MgOIo84NUBT7nyvhaCu6LjGUqTXJwnTEb-fxCjsb800RM9si2Z6tjYL3TtcN-UuPl_Pj656_3oPDvbNcG1d--dLyoSnMM8CcCWLFPDmBvUtjT4Jw39wqg3fb2ElGLL1kQumS6f83S2qxsTf_GcncW86reBUv_jq68sV0N75G7DmfSk41gHJI9U94nh06Ta_rGlZt--4AkI3BFlza03FxTsNV4YkhdN4kpvbLRlobigS2drWp648qbzkpqIxJtviZMRxfJ_AqPCle0iUyqyodkPBx8Oxv5rvGCn8mIrXzwqnJRBIWMAD4ZyY0AtVeJ1IAlweHRrBBpWBRGsYwbUOEiA5iBObAFL5TRQfiIdEpg4xFGTgkVRHmY6CLiQhuthUhALEKecqON9Ei45XCcuark2BxjHturNgXeyYZhMa5L7NbFI37z1mJTleMW-lNcvIYWa2rbH6rlNHYqGmcMjFEOEh2ygHMRAXDUAZcil_B_85R55DkufbxJUG0sQ3wiNENypT3y0lJgXY0SA3emybqu44-fv_8H0dfLFtFrR1RUwI4scckS8E1Yr6tF2W1RgnXIWsNHKKhbrtQxA4-fYdUpYEp3K7y7h180wzgpBuOVplpbGmwMAMDQI483st5wNgwi8JGDyCOqpQUt1rdHytkPW9Zccsn7mj-5lc1PyR2ArfZOry-6pLNars0zgIartEf21UTBU5_18Tn80CMHp4OLL5c9e9jSs9YAn78HfwAWv2g1 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALank1tFCDQMAhbdaxHeeAUHksu_SBBG3VW8jDWVbaJstmV8Cf4jcy4zihQRVw6TWeWMnMePyNPQ9CHvNYAygOU9dLAs_lPNCukoK7ImVpkMQZuM6YjXxwKIfH_P2pOF0hP5tcGAyrbGyiMdRZmeIZ-Q4DT4VhtRz_5eyri12j8Ha1aaFRq8We_vENXLbqxegNyPcJY4O3R6-Hru0q4KYyZAsXXIZM5F4uQ8AGWnItQKeDWCoASoDmFctF4ue5DljKNehnnsIeigmeOc8DrTwf5r1CrnIfdnLMTB-8ayw_2A4pbXqeH_R3rDZsz8pCbwMsCz3ld7Y_0yWg3Qt6s2lZXQR0_4zXPLcBDlbJDYtc6W6tamtkRRc3yZq1DRV9ZgtYP79F4iE4t3MTrK6_U7D-eAZJbX-KMT0z8Zua4hEwnSwqeu4SnU4KamIcTQYoTEdn8fQMDx8XtI11Kovb5PhSmH6H9Apg4zrGYonACzM_VnnIhdJKCRGDovk84Vpp6RC_4XCU2jrn2G5jGpnLuwD8nZphEcolsnJxiNu-NavrfPyD_hUKr6XFKt3mQTkfR3bRRykD85bBGvGZx7kIAYqCAkuRSfjeLGEO2ULRR3XKa2trol2hGJIHyiGPDAVW6igwFGgcL6sqGn04-Q-iTx87RE8tUV4CO9LYpl_AP2EFsA7lZocS7E3aGV5HRW24UkW_Vya82SjvxcMP22GcFMP7Cl0uDQ22GgCo6ZC7ta63nPW9ELxuL3RI0FkFHdZ3R4rJF1MoXXLJ-4rf-_tnbZFrw6OD_Wh_dLi3Qa4DIjbXhX2xSXqL-VLfB9S5SB6YpU7J58u2Lb8A_NGTrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VICEuiPKqodAFgYCDG2e9Lx8QKi1RSqEgoKg348c6RErtECcC_hq_jpn1xtSoAi69ZseWM_vt7De78yDkIU8MkOIo84NUBT7nyvhaCu6LjGUqTXJwnTEb-c2hHB3xV8fieI38XOXCYFjlyiZaQ51XGZ6R9xl4Kgyr5YT9woVFvNsbPp999bGDFN60rtppNBA5MD--gftWP9vfg7l-xNjw5cfdke86DPiZjNjCB_chF0VQyAh4gpHcCMC3SqQG0gTMXrNCpGFRGMUybgCrRQb7KSZ7FrxQRgchvPcCuahCpXGN6d02vATsiJQuVS9Ug75DxvasKs02ULQo0GFnK7QdA9p9oTebVvVZpPfP2M1Tm-HwKrniWCzdaWC3TtZMeY2sOztR0yeumPXT6yQZgaM7t4Hr5jsFdeJ5JHW9Ksb0xMZyGorHwXSyqOmpC3U6KamNd7TZoPA6OkumJ3gQuaBt3FNV3iBH56L0m6RXgho3MC5LqCDKw0QXERfaaC1EAqALecqNNtIj4UrDceZqnmPrjWlsL_IU-D6NwmKcl9jNi0f89qlZU_PjH_IvcPJaWazYbX-o5uPYGYA4Y2DqclgvIQs4FxHQUgCzFLmE781T5pEtnPq4SX9t7U68IzRDcaU98sBKYNWOEvE_TpZ1He-__fQfQh_ed4QeO6GiAnVkiUvFgP-E1cA6kpsdSbA9WWd4A4G60kod_16l8OQKvGcP32-H8aUY6leaamllsO0A0E6P3Gqw3mo2DCLwwIPII6qzCjqq746Uky-2aLrkkg80v_33z9oil8CqxK_3Dw_ukMtAju3N4UBskt5ivjR3gYAu0nt2pVPy-bxNyy9_O5ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercomplex+extreme+learning+machine+with+its+application+in+multispectral+palmprint+recognition&rft.jtitle=PloS+one&rft.au=Xu%2C+Xuebin&rft.au=Zhang%2C+Xinman&rft.au=Lu%2C+Longbin&rft.date=2019-04-15&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=4&rft.spage=e0209083&rft_id=info:doi/10.1371%2Fjournal.pone.0209083&rft.externalDBID=n%2Fa&rft.externalDocID=A582459978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |