A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity
Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic an...
Saved in:
Published in | PloS one Vol. 15; no. 9; p. e0239474 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
22.09.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable. |
---|---|
AbstractList | Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable. |
Audience | Academic |
Author | Halperin, Eran Brook, Rachel Adamson, Paul C Saab, Faysal G Balliu, Brunilda Chen, Zeyuan Sun, Nancy Eskin, Eleazar An, Ulzee Chiang, Jeffrey N Kordi, Misagh Hill, Brian L Manuel, Vladimir Rudas, Akos Rahmani, Elior Jew, Brandon Fulcher, Jennifer A Goodman-Meza, David Ebinger, Joseph Botting, Patrick |
AuthorAffiliation | 3 Faculty of Informatics, Eötvös Loránd University (ELTE), Budapest, Hungary 4 Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America 7 Department of Human Genetics, UCLA, Los Angeles, California, United States of America 6 Department of Computer Science, UCLA, Los Angeles, California, United States of America 5 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America 9 Faculty Practice Group, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America University of Pennsylvania, UNITED STATES 1 Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America 8 Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America 10 UCLA Clinical and Translational Science Institute, Los Angeles, California, United States of America 2 Department of Com |
AuthorAffiliation_xml | – name: 10 UCLA Clinical and Translational Science Institute, Los Angeles, California, United States of America – name: 5 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – name: University of Pennsylvania, UNITED STATES – name: 9 Faculty Practice Group, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – name: 2 Department of Computational Medicine, UCLA, Los Angeles, California, United States of America – name: 3 Faculty of Informatics, Eötvös Loránd University (ELTE), Budapest, Hungary – name: 4 Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America – name: 8 Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – name: 1 Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – name: 6 Department of Computer Science, UCLA, Los Angeles, California, United States of America – name: 7 Department of Human Genetics, UCLA, Los Angeles, California, United States of America |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0001-9382-3564 surname: Goodman-Meza fullname: Goodman-Meza, David organization: Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – sequence: 2 givenname: Akos surname: Rudas fullname: Rudas, Akos organization: Faculty of Informatics, Eötvös Loránd University (ELTE), Budapest, Hungary – sequence: 3 givenname: Jeffrey N orcidid: 0000-0002-6843-1355 surname: Chiang fullname: Chiang, Jeffrey N organization: Department of Computational Medicine, UCLA, Los Angeles, California, United States of America – sequence: 4 givenname: Paul C orcidid: 0000-0002-2776-6458 surname: Adamson fullname: Adamson, Paul C organization: Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – sequence: 5 givenname: Joseph surname: Ebinger fullname: Ebinger, Joseph organization: Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America – sequence: 6 givenname: Nancy surname: Sun fullname: Sun, Nancy organization: Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America – sequence: 7 givenname: Patrick surname: Botting fullname: Botting, Patrick organization: Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America – sequence: 8 givenname: Jennifer A orcidid: 0000-0001-9895-8636 surname: Fulcher fullname: Fulcher, Jennifer A organization: Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – sequence: 9 givenname: Faysal G orcidid: 0000-0002-4568-3613 surname: Saab fullname: Saab, Faysal G organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – sequence: 10 givenname: Rachel surname: Brook fullname: Brook, Rachel organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – sequence: 11 givenname: Eleazar surname: Eskin fullname: Eskin, Eleazar organization: Department of Human Genetics, UCLA, Los Angeles, California, United States of America – sequence: 12 givenname: Ulzee surname: An fullname: An, Ulzee organization: Department of Computer Science, UCLA, Los Angeles, California, United States of America – sequence: 13 givenname: Misagh surname: Kordi fullname: Kordi, Misagh organization: Department of Computational Medicine, UCLA, Los Angeles, California, United States of America – sequence: 14 givenname: Brandon surname: Jew fullname: Jew, Brandon organization: Department of Computational Medicine, UCLA, Los Angeles, California, United States of America – sequence: 15 givenname: Brunilda surname: Balliu fullname: Balliu, Brunilda organization: Department of Computational Medicine, UCLA, Los Angeles, California, United States of America – sequence: 16 givenname: Zeyuan surname: Chen fullname: Chen, Zeyuan organization: Department of Computer Science, UCLA, Los Angeles, California, United States of America – sequence: 17 givenname: Brian L orcidid: 0000-0002-6881-5770 surname: Hill fullname: Hill, Brian L organization: Department of Computer Science, UCLA, Los Angeles, California, United States of America – sequence: 18 givenname: Elior surname: Rahmani fullname: Rahmani, Elior organization: Department of Computer Science, UCLA, Los Angeles, California, United States of America – sequence: 19 givenname: Eran surname: Halperin fullname: Halperin, Eran organization: Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America – sequence: 20 givenname: Vladimir surname: Manuel fullname: Manuel, Vladimir organization: UCLA Clinical and Translational Science Institute, Los Angeles, California, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32960917$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkluL2zAQhU3Z0r20_6C0hkKhD0llybakl0JIb4GFQC_7Kiby2FGwpVRSSvffV9t4lxhaKH6QOfrmaDQ6l9mZdRaz7HlB5gXjxdudO3gL_Xyf5DmhTJa8fJRdFJLRWU0JOzv5P88uQ9gRUjFR10-yc0ZlTWTBL7L1Ih9Ab43FvEfw1tguh75z3sTtkEeXG6s9QsB8ub5ZvZ8VMil7iAZtzBsDnXUhGp1r2IM28fZp9riFPuCzcb3Kvn_88G35eXa9_rRaLq5nupY0zmjFuCjrkiPnBaEaqdggbUA3SBBrKRnRGhsOQktSEso5YVRUVFZIKmgEu8peHn33vQtqnEVQtCxLUbOKyESsjkTjYKf23gzgb5UDo_4IzncKfGq9R8UQNduIoi00KzlnUlAiqgZazqHZMExe78bTDpsBG50u76GfmE53rNmqzv1UvCKCCZ4MXo0G3v04YIj_aHmkOkhdGdu6ZKYHE7Ra1KwupEgvn6j5X6j0NTgYndLQmqRPCt5MChIT8Vfs4BCCWn398v_s-mbKvj5htwh93AbXH6JxNkzB8ghq70Lw2D5MriDqLsz301B3YVZjmFPZi9OpPxTdp5f9Bg3V75k |
CitedBy_id | crossref_primary_10_3390_diagnostics13101749 crossref_primary_10_2139_ssrn_4068372 crossref_primary_10_1371_journal_pone_0247176 crossref_primary_10_3389_fmed_2021_768467 crossref_primary_10_1038_s41598_022_05069_2 crossref_primary_10_1016_j_matpr_2021_11_549 crossref_primary_10_1007_s00607_022_01057_6 crossref_primary_10_1155_2022_7731618 crossref_primary_10_3390_su142114341 crossref_primary_10_3390_info12120528 crossref_primary_10_1145_3567431 crossref_primary_10_3390_v15020304 crossref_primary_10_3390_app122110869 crossref_primary_10_1007_s12539_021_00499_4 crossref_primary_10_1016_j_heliyon_2022_e11185 crossref_primary_10_52831_kjhs_1117894 crossref_primary_10_1007_s10916_022_01807_1 crossref_primary_10_1016_j_susoc_2021_04_003 crossref_primary_10_3389_fmed_2022_962101 crossref_primary_10_1080_23080477_2023_2246285 crossref_primary_10_2174_0118749445286599240311102956 crossref_primary_10_1080_00207179_2023_2204969 crossref_primary_10_1038_s41598_021_97990_1 crossref_primary_10_1109_JBHI_2022_3230663 crossref_primary_10_1108_DTA_06_2021_0153 crossref_primary_10_1055_s_0041_1726513 crossref_primary_10_1093_ajcp_aqab187 crossref_primary_10_3389_fpubh_2024_1347334 crossref_primary_10_1016_j_ijmedinf_2022_104791 crossref_primary_10_1016_j_imu_2021_100564 crossref_primary_10_1038_s41598_021_86735_9 crossref_primary_10_1016_j_imu_2022_100862 crossref_primary_10_1038_s41598_021_95957_w crossref_primary_10_22625_2072_6732_2022_14_5_14_25 crossref_primary_10_3390_v15071522 crossref_primary_10_3390_v14030625 crossref_primary_10_37394_23209_2024_21_10 |
Cites_doi | 10.1136/bmj.h5527 10.1016/S0140-6736(20)30566-3 10.7326/M20-1301 10.1038/d41587-020-00002-2 10.15585/mmwr.mm6915e4 10.1136/bmj.m1328 10.1056/NEJMoa2002032 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Goodman-Meza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Goodman-Meza et al 2020 Goodman-Meza et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Goodman-Meza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Goodman-Meza et al 2020 Goodman-Meza et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 5PM DOA |
DOI | 10.1371/journal.pone.0239474 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Opposing Viewpoints Resource Center Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) https://resources.nclive.org/materials Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine Public Health Computer Science |
DocumentTitleAlternate | Machine learning algorithm to diagnose COVID-19 |
EISSN | 1932-6203 |
Editor | Urbanowicz, Ryan J. |
Editor_xml | – sequence: 1 givenname: Ryan J. surname: Urbanowicz fullname: Urbanowicz, Ryan J. |
ExternalDocumentID | 2444863509 oai_doaj_org_article_3eec3b81f1c34773982085daf77adb3e A636198137 10_1371_journal_pone_0239474 32960917 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Los Angeles United States Los Angeles California United States--US California |
GeographicLocations_xml | – name: Los Angeles – name: United States – name: Los Angeles California – name: United States--US – name: California |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: K08 DA048163 – fundername: NIAID NIH HHS grantid: K08 AI124979 – fundername: NIMH NIH HHS grantid: R01 MH122569 – fundername: NIMH NIH HHS grantid: T32 MH080634 – fundername: NIMH NIH HHS grantid: R01 MH115979 – fundername: NIH HHS grantid: HG010505-02 – fundername: NCATS NIH HHS grantid: UL1 TR001881 – fundername: NIGMS NIH HHS grantid: R25 GM112625 – fundername: NIH HHS grantid: 5R25GM112625 – fundername: NHGRI NIH HHS grantid: R01 HG010505 – fundername: ; grantid: T32MH080634 – fundername: ; grantid: K08AI124979 – fundername: ; grantid: K08DA048163 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF D1I D1J D1K DIK DU5 E3Z EAP EAS EBD ECM EIF EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ NPM O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RIG RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX CITATION AFPKN 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c692t-253784647e77102ce28be2dacde0ee69930cced7a8c904027703285295e05ad83 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:37 EST 2021 Tue Oct 22 14:53:51 EDT 2024 Tue Sep 17 21:25:21 EDT 2024 Thu Oct 10 19:03:18 EDT 2024 Tue Nov 19 20:47:43 EST 2024 Tue Nov 12 22:53:34 EST 2024 Thu Aug 01 19:28:20 EDT 2024 Thu Aug 01 20:26:38 EDT 2024 Tue Aug 20 21:58:42 EDT 2024 Thu Nov 21 23:29:45 EST 2024 Sat Nov 02 12:28:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-253784647e77102ce28be2dacde0ee69930cced7a8c904027703285295e05ad83 |
Notes | Competing Interests: No authors have competing interests. These authors jointly supervised the work. |
ORCID | 0000-0002-6843-1355 0000-0002-2776-6458 0000-0002-6881-5770 0000-0001-9382-3564 0000-0002-4568-3613 0000-0001-9895-8636 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508387/ |
PMID | 32960917 |
PQID | 2444863509 |
PQPubID | 1436336 |
PageCount | e0239474 |
ParticipantIDs | plos_journals_2444863509 doaj_primary_oai_doaj_org_article_3eec3b81f1c34773982085daf77adb3e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7508387 proquest_journals_2444863509 gale_infotracmisc_A636198137 gale_infotracacademiconefile_A636198137 gale_incontextgauss_ISR_A636198137 gale_incontextgauss_IOV_A636198137 gale_healthsolutions_A636198137 crossref_primary_10_1371_journal_pone_0239474 pubmed_primary_32960917 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-22 |
PublicationDateYYYYMMDD | 2020-09-22 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | WJ Guan (pone.0239474.ref010) 2020; 382 F Zhou (pone.0239474.ref008) 2020; 395 L Wynants (pone.0239474.ref015) 2020; 369 R. Service (pone.0239474.ref007) 2020 AFdM Batista (pone.0239474.ref013) 2020 MP Cheng (pone.0239474.ref004) 2020 Zhi Feng CH (pone.0239474.ref014) 2020 S Ward (pone.0239474.ref005) 2020 Y Sun (pone.0239474.ref012) 2020 CC-R Team (pone.0239474.ref001) 2020; 69 MP Cheng (pone.0239474.ref003) 2020; 172 D Wang (pone.0239474.ref009) 2020 E Dong (pone.0239474.ref002) 2020 C Sheridan (pone.0239474.ref006) 2020; 38 PM Bossuyt (pone.0239474.ref017) 2015; 351 Z Meng (pone.0239474.ref016) 2020 CM Petrilli (pone.0239474.ref011) 2020 |
References_xml | – volume: 351 start-page: h5527 year: 2015 ident: pone.0239474.ref017 article-title: STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies publication-title: Bmj doi: 10.1136/bmj.h5527 contributor: fullname: PM Bossuyt – volume: 395 start-page: 1054 issue: 10229 year: 2020 ident: pone.0239474.ref008 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 contributor: fullname: F Zhou – volume: 172 start-page: 726 issue: 11 year: 2020 ident: pone.0239474.ref003 article-title: Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2 publication-title: Annals of Internal Medicine doi: 10.7326/M20-1301 contributor: fullname: MP Cheng – year: 2020 ident: pone.0239474.ref002 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect Dis contributor: fullname: E Dong – year: 2020 ident: pone.0239474.ref014 article-title: A Novel Triage Tool of Artificial Intelligence Assisted Diagnosis Aid System for Suspected COVID-19 Pneumonia in Fever Clinics publication-title: SSRN contributor: fullname: Zhi Feng CH – volume: 38 start-page: 382 issue: 4 year: 2020 ident: pone.0239474.ref006 article-title: Coronavirus and the race to distribute reliable diagnostics publication-title: Nature Biotechnology doi: 10.1038/d41587-020-00002-2 contributor: fullname: C Sheridan – volume: 69 start-page: 465 issue: 15 year: 2020 ident: pone.0239474.ref001 article-title: Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, February 12-April 7, 2020 publication-title: MMWR Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm6915e4 contributor: fullname: CC-R Team – year: 2020 ident: pone.0239474.ref005 article-title: Clinical Testing For Covid-19 publication-title: J Allergy Clin Immunol contributor: fullname: S Ward – year: 2020 ident: pone.0239474.ref011 article-title: Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. publication-title: medRxiv contributor: fullname: CM Petrilli – year: 2020 ident: pone.0239474.ref012 article-title: Epidemiological and Clinical Predictors of COVID-19 publication-title: Clin Infect Dis contributor: fullname: Y Sun – volume: 369 start-page: m1328 year: 2020 ident: pone.0239474.ref015 article-title: Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal publication-title: Bmj doi: 10.1136/bmj.m1328 contributor: fullname: L Wynants – year: 2020 ident: pone.0239474.ref004 article-title: Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus-2: A Narrative Review publication-title: Ann Intern Med contributor: fullname: MP Cheng – year: 2020 ident: pone.0239474.ref013 article-title: COVID-19 diagnosis prediction in emergency care patients: a machine learning approach publication-title: medRxiv contributor: fullname: AFdM Batista – year: 2020 ident: pone.0239474.ref016 article-title: Development and utilization of an intelligent application for aiding COVID-19 diagnosis publication-title: medRxiv contributor: fullname: Z Meng – year: 2020 ident: pone.0239474.ref009 article-title: Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China publication-title: JAMA contributor: fullname: D Wang – volume: 382 start-page: 1708 issue: 18 year: 2020 ident: pone.0239474.ref010 article-title: Clinical Characteristics of Coronavirus Disease 2019 in China publication-title: N Engl J Med doi: 10.1056/NEJMoa2002032 contributor: fullname: WJ Guan – year: 2020 ident: pone.0239474.ref007 article-title: The standard coronavirus test, if available, works well—but can new diagnostics help in this pandemic? publication-title: Science contributor: fullname: R. Service |
RelatedPersons | Geffen, David |
RelatedPersons_xml | – fullname: Geffen, David |
SSID | ssj0053866 |
Score | 2.5933573 |
Snippet | Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0239474 |
SubjectTerms | Adult Aged Algorithms Area Under Curve Betacoronavirus Biological markers Biology and life sciences Blood Cardiology Clinical Laboratory Techniques - methods Clinical Laboratory Techniques - standards Computer and Information Sciences Computer science Confidence intervals Coronavirus Infections - diagnosis Coronaviruses COVID-19 COVID-19 Testing Diagnosis Diagnostic systems Emergency medical care Emergency medical services Geffen, David Health aspects Hospitals Humans Identification and classification Infectious diseases Inpatients Laboratories Learning Learning algorithms Los Angeles Lymphocytes Machine Learning Mass Screening - methods Mass Screening - standards Medical diagnosis Medicine Medicine and Health Sciences Middle Aged Neutrophils Pandemics Physical Sciences Pneumonia, Viral - diagnosis Polymerase Chain Reaction Proteins Public health Research and Analysis Methods Retrospective Studies SARS-CoV-2 Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Standard deviation Supervision |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLZQT1wQY8AKY1gICThkS-wkzz6WwbRxoBKwaTfLdZ67SltSLdn_5zlxqwVNggO3KH5N2u_52Z_r5-8x9t773FuaaBOfWZHk4FRi6TJZeCB2jxj2DkO2xffy9Dz_dllc3iv1FXLCBnngAbgjiejkQmU-czIHkFqFqpKV9QC2WkjsR99UbBZTwxhMUVyW8aCchOwo-uVw3dR42FcDh3w0EfV6_dtRebK-btqHKOefmZP3pqKTp-xJ5JB8Nnz3HfYI62dsJ0Zpyz9GKelPu2w-4zd9tiTyWB5iye31srlddVc3vGv4qg6ssUV-PL84-5Jkmu5EqVVeDVl49BLuaEp1xNefs_OTr7-OT5NYQiFxpRZdIgoJxDByQAhUwqFQCxSVdRWmiCWRk9Q5rMAqpymcBUDQ1wubf5gWtlLyBZvUBNoe41ZIj2XhpPYu1-iVRw26UEqX1vsUpizZ4GnWg1KG6bfLgFYYAzAm4G8i_lP2OYC-tQ061_0N8r6J3jd_8_6UvQ0uM8Oh0W20mlkpaWWo6OVT9q63CFoXdUimWdq7tjVn84t_MPr5Y2T0IRr5hpzvbDzAQL8paGiNLPdHlhSxbtS8FzrYBpXWEMXKFTG_VNMnN53u4eaXQ__boiZFkAzM6Jkw6pkjWMct9eqqlxGHUAlAwav_4YfX7LEIf0SE7Tqxzybd7R2-IbbWLQ76wPwNmXw85w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegSAgJASuMFQZYCAl4yNbYac55QmNQNiSoBGzaW-Q6527SlpSl-_-5S5xC0IR4q-Jrk953fOffCfHK-8RbCrSRj62KEnAmsvQxmnug7B6Ra4fcbfE1PThKPp9MTsKGWx3aKjuf2DjqonK8R75LYSgxFB3H2bvlz4inRnF1NYzQuCluxQpSbukz00-dJyZbTtNwXE5DvBuks7OsStxpZoJD0gtHDWr_2jcPludVfV3i-Xf_5B8BafpA3AuZpNxrRb8hbmA5FPe7KQ0yGO1Q3P4SyudDcbfdpJPt2aOh2AhEtXwT4KffPhSzPXnRdFiiDCMlFtKeL4gXq9MLuarkWcmZZo1yf3Z8-CGKM7oS4Fll0Xbu0SNJR2HYUY7_SBxNP_7YP4jC2IXIpZlaRWqigbKSBBA4_XCozBxVYV2BY8SUEpqxc1iANS4jF6AAGJOPC4Y4ntjC6E0xKInFW0JapT2mE6cz75IMvfGYQTYxJkut92MYiajjfr5s0TXypsQG9FbSsjFnaeVBWiPxnkW0pmVs7OZCdbnIg6nlGtHpuYl97HQCoDPDc0gL6wFsMdc4Ei9YwHl70HRt4fleqult0tDNR-JlQ8H4GCU34CzsVV3nh7Pj_yD6_q1H9DoQ-YpUxdlw6IH-E-Nu9Si3e5Rk5a63vMXq2HGlzn_bA32zU9Hrlx-32rrmmlYMMxjTb0JPj3ts7a-UZ6cN9Djw9AADT_59y6fijuJtCS7eqW0xWF1e4TPK3Vbz542B_gJQA0Jo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGkdBepo1fKxtgISTgIVVrJ7HzgFAZTBsSVAI67S1ynHNXqUtK00nw33OXOIWgTuKtis-Ncr7Lfc6dv2PspXOhMxhoAzcyIgiV1YHBn0HmFKJ7AModUrXFl_hsGn66jC53WNuz1Suw2rq1o35S09Vi8PPHr3fo8G_rrg1q1E4aLMsCBnWvbxXeYXcFxkYq8vocbvIK6N1x7A_Q3TZzl92TgnjY6h5mf2JVTem_eXH3louy2oZK_y2u_Ctane6zPQ8z-bixiwO2A8V9duAdueKvPdv0mwdsMubXdUElcN9BYsbNYlau5uura74u-bwgYFkBP5lcnH8IRgle8WysPG8K9fAm3GLUtQjpH7Lp6cfvJ2eB77IQ2DgR60BEUiEICRUoQhsWhM5A5MbmMASIEb8MrYVcGW0T9HihFFHwUX4QhpHJtXzEegXq75BxI6SDOLIycTZMwGkHiUoirZPYODdUfRa0-kyXDZlGWmfUFG5CGsWktBSpX4o-e09K38gSFXZ9oVzNUu9ZqQSwMtMjN7IyVEommtqO5sYpZfJMQp89pyVLm3OlG4dOx7HEzaPGm_fZi1qC6DAKqreZmZuqSs8nF_8h9O1rR-iVF3IlLr41_owDPhPRbHUkjzuS6NS2M3xIBtZqpUoRhYUaweEwwZmt0W0fftzY30ZrrTX3mepYZket3ZFiflUzjStqFqDVk1v_84jtCvoAQWk6ccx669UNPEWUts6e1Y73GwYNOaE priority: 102 providerName: Scholars Portal |
Title | A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32960917 https://www.proquest.com/docview/2444863509 https://pubmed.ncbi.nlm.nih.gov/PMC7508387 https://doaj.org/article/3eec3b81f1c34773982085daf77adb3e http://dx.doi.org/10.1371/journal.pone.0239474 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLfa7LLLtO6r6drMmiZtO5AEDDxzTLNm7aQ2VbdWuSFj7DRSAlFI__8-G5ONqYdpF4PwQyTvA_-Mn3-PkE9ah1rgQOtpXwReCJJ7Ak-9TAOie6XM2qHJtriKz2_DH7NotkeiZi-MTdqX2aJfLFf9YnFvcyvXKzlo8sQG15djMBzmHAb7ZB-H32aKXr9-MYDj2O2RY-APnEn667JQfVsIHEwtHhYYqjVbpuz3cGRZ-3fv5s56WVZPAc-_8yf_GJAmL8kLhyTpqP7FB2RPFa_IgYvVin5xhNJfX5PpiK5szqSirkjEnIrlvNwstvcrui3pojDYsVJ0PL27-Ob5CV5xhKs0r3Px8CFU4sAqEbW_IbeTs1_jc88VUvBknARbL4gYIM4IQYEBFFIFPFNBLmSuhkrFCFGGUqocBJcJBnUAYFj2zBKgGkYi5-wt6RSov0NCRcC0iiPJEi3DRGmuVQJJxHkSC62H0CVeo890XfNlpHbRDHCeUSsmNaZInSm65NQofSdr2K7thXIzT53NU6aUZBn3tS9ZCMASbiqL5kIDiDxjqks-GJOl9dbRXcymo5jh_JDjw7vko5UwjBeFSamZi4eqSi-md_8g9POmJfTZCekSjS-F28aA_8kwabUkj1uSGLey1X1oHKzRSpUi0Ao54r9hgnc2Tvd097va_3Zaa7y5S6DlmS21tnswtiyZuIulo_--8z15HphvEGalLjgmne3mQZ0gUNtmPQzPGWDLx75pJ9975Nnp2dX1DR6tQ_fsJxBsL0Pes2H8CHsORI0 |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12223,12765,21388,24318,27924,27925,31719,33266,33373,33744,38516,43310,43579,43600,43805,43895,53791,53793,73745,74014,74035,74302,74412 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegSICEgJWPFQazEBLwkK2J09h5QqUwtbCtEmzT3izXOXeTtqQs2f_PXeIUgibEWxRfvu7Dd_Gdf8fYW-diZ9DRBi40URBLqwKDh8HCSYzuASh3SNUWh8n0OP56Ojr1C26lL6ts58R6os4KS2vku-iGYoXecZh-XP0MqGsUZVd9C43b7A66fUlarSbrEg-05STx2-WEDHe9dHZWRQ47dU9wGXfcUY3av56be6uLorwp8Py7fvIPh7T3mD30kSQfN6LfYLcg77NHbZcG7o22z-4e-PR5nz1oFul4s_eozzY8Ucnfe_jpD0_YfMwv6wpL4L6lxJKbiyXyojq75FXBz3OKNEvgk_nJ7HMQpnjGw7PyrKncw1fiFt2wxRj_KTve-3I0mQa-7UJgkzSqgmgkJEYlsQRJ4YeFSC0gyozNYAiQYEAztBYyaZRNcQqIpCRMPkoYwnBkMiWesV6OLN5k3ETCQTKyInU2TsEpB6lMR0qliXFuKAcsaLmvVw26hq5TbBL_Sho2apKW9tIasE8kojUtYWPXJ4qrpfampgWAFQsVutCKWEqRKupDmhknpckWAgZsmwSsm42mawvX40Tg36TChw_Ym5qC8DFyKsBZmuuy1LP5yX8Q_fjeIXrniVyBqmKN3_SA30S4Wx3KrQ4lWrntDG-SOrZcKfVve8ArWxW9efh5o61rromIYAZDvKfs6HGHrd2R_Pyshh6X1D1AyRf_fuQ2uzc9OtjX-7PDby_Z_YiWKCiRF22xXnV1Da8wjqsWr2tj_QVMxUUn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegSBMSGqwwVhjMQkjAQ9YmTmPnCZWOauVjRcCmvVmOc-4mbUm3dP8_d4lbCJoQb1F8-boP38V3_h1jr52LnUFHG7jQREEsrQoMHgaZkxjdA1DukKotjpLD4_jT6fDU1z9VvqxyNSfWE3VeWloj76MbihV6x0Had74s4tvB5P3iKqAOUpRp9e007rJ71GWOcPTVeF3ugXadJH7rnJBh30tqf1EWsF_3B5dxyzXVCP7rebqzuCir24LQv2sp_3BOk0ds00eVfNSowRa7A0WXPVx1bODegLts46tPpXfZg2bBjjf7kLpsyxNV_K2Hon73mM1G_LKutgTu20vMubmYIy-WZ5d8WfLzgqLOCvh4djI9CMIUz3ioVp43VXz4StyiS7YY7z9hx5OPP8eHgW_BENgkjZZBNBQSI5RYgqRQxEKkMohyY3MYACQY3AyshVwaZVOcDiIpCZ-PkocwGJpciW3WKZDFO4ybSDhIhlakzsYpOOUglelQqTQxzg1kjwUr7utFg7Sh63SbxD-Uho2apKW9tHrsA4loTUs42fWJ8nquvdlpAWBFpkIXWhFLKVJFPUlz46Q0eSagx_ZIwLrZdLq2dj1KBP5ZKnx4j72qKQgroyCtm5ubqtLT2cl_EP343iJ644lciapijd8Agd9EGFwtyt0WJVq8bQ3vkDquuFLp37aBV65U9Pbhp422rrkmIoIcDPGesqXHLba2R4rzsxqGXFInASWf_fuRe2wD7VR_mR59fs7uR7RaQTm9aJd1ltc38AJDumX2srbVX5BiSUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+algorithm+to+increase+COVID-19+inpatient+diagnostic+capacity&rft.jtitle=PloS+one&rft.au=Goodman-Meza%2C+David&rft.au=Rudas%2C+Akos&rft.au=Chiang%2C+Jeffrey+N&rft.au=Adamson%2C+Paul+C&rft.date=2020-09-22&rft.eissn=1932-6203&rft.volume=15&rft.issue=9&rft.spage=e0239474&rft_id=info:doi/10.1371%2Fjournal.pone.0239474&rft_id=info%3Apmid%2F32960917&rft.externalDocID=32960917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |