Haploid plants produced by centromere-mediated genome elimination

When plants go halves: haploids made easy Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also crucially in plant breeding, where they are used to create instant homozygous diploid lines, circumventing many generations of inbreeding. Mar...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 464; no. 7288; pp. 615 - 618
Main Authors Ravi, Maruthachalam, Chan, Simon W. L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.03.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When plants go halves: haploids made easy Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also crucially in plant breeding, where they are used to create instant homozygous diploid lines, circumventing many generations of inbreeding. Maruthachalam Ravi and Simon Chan have now developed a simple method for producing haploid Arabidopsis thaliana via seeds that can be readily extended to crop plants. Previously haploid production involved tissue culture or genome elimination in wide crosses, and many species are intractable to these methods. The new technique involves engineering a single protein, the centromere-specific histone CENH3, to create strains whose genome is eliminated from the zygote after crossing to wild type. This generates haploid plants with chromosomes from the wild-type parent only. CENH3 plays a universal role at eukaryote centromeres, so in principle this should be transferable to all plant species. Making haploid plants — which inherit chromosomes from only one parent — is useful for genetic research and also, crucially, for plant breeding. A new method for generating haploid Arabidopsis plants is now described, involving the manipulation of a single centromeric protein, CENH3. When cenh3 null plants are crossed with wild-type plants, the mutant chromosomes are eliminated, producing haploid progeny. Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding 1 , 2 , 3 . Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants 4 , but many species and genotypes are recalcitrant to this process 2 , 5 . Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization 6 , 7 , 8 , 9 , 10 , 11 . The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss 12 , 13 , 14 . Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.
AbstractList Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding (1-3). Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells maybe regenerated into haploid plants (4), but many species and genotypes are recalcitrant to this process (2,5). Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization (6-11). The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss (12-14). Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.
Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.
When plants go halves: haploids made easy Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also crucially in plant breeding, where they are used to create instant homozygous diploid lines, circumventing many generations of inbreeding. Maruthachalam Ravi and Simon Chan have now developed a simple method for producing haploid Arabidopsis thaliana via seeds that can be readily extended to crop plants. Previously haploid production involved tissue culture or genome elimination in wide crosses, and many species are intractable to these methods. The new technique involves engineering a single protein, the centromere-specific histone CENH3, to create strains whose genome is eliminated from the zygote after crossing to wild type. This generates haploid plants with chromosomes from the wild-type parent only. CENH3 plays a universal role at eukaryote centromeres, so in principle this should be transferable to all plant species. Making haploid plants — which inherit chromosomes from only one parent — is useful for genetic research and also, crucially, for plant breeding. A new method for generating haploid Arabidopsis plants is now described, involving the manipulation of a single centromeric protein, CENH3. When cenh3 null plants are crossed with wild-type plants, the mutant chromosomes are eliminated, producing haploid progeny. Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding 1 , 2 , 3 . Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants 4 , but many species and genotypes are recalcitrant to this process 2 , 5 . Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization 6 , 7 , 8 , 9 , 10 , 11 . The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss 12 , 13 , 14 . Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.
Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic nonreduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species. [PUBLICATION ABSTRACT]
Audience Academic
Author Chan, Simon W. L.
Ravi, Maruthachalam
Author_xml – sequence: 1
  givenname: Maruthachalam
  surname: Ravi
  fullname: Ravi, Maruthachalam
  organization: Department of Plant Biology, University of California, Davis, Davis, California 95616, USA
– sequence: 2
  givenname: Simon W. L.
  surname: Chan
  fullname: Chan, Simon W. L.
  email: srchan@ucdavis.edu
  organization: Department of Plant Biology, University of California, Davis, Davis, California 95616, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22524847$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20336146$$D View this record in MEDLINE/PubMed
BookMark eNp10t1rFDEQAPAgFXutPvkuS4uI6NZ87SZ5PA61haKgFR9DLjs5Unaz22QX7H9vjjttT1byEJj8MjMkc4KOQh8AoZcEXxDM5IdgxikClpLTJ2hBuKhLXktxhBYYU1liyepjdJLSLca4IoI_Q8cUM1YTXi_Q8tIMbe-bYmhNGFMxxL6ZLDTF-r6wEMbYdxCh7KDxZszhDYQcKaD1nc-FfR-eo6fOtAle7PdT9OPTx5vVZXn99fPVanld2lrRsaRUVg4rTATjjjlWVbZSRglBRWU5htqppiZMOW5UIxVxa2mBULMGgbFgip2iN7u8ucW7CdKoO58stLlv6KekBWOSYMpolmf_yNt-iiE3pynmXHBKeUbnO7QxLWgfXD9GY7cp9ZJmgFUttqnKGZUfAaJp8zc4n8MH_mzG28Hf6cfoYgbl1UDn7WzWtwcXshnh17gxU0r66vu3Q_vu_3Z583P1ZVbb2KcUwekh-s7Ee02w3k6XfjRdWb_aP-y0zhPx1_4Zpwxe74FJ1rQummB9enC0olxykd37nUv5KGwgPvzQXN3fPAziNw
CODEN NATUAS
CitedBy_id crossref_primary_10_1007_s11240_015_0866_4
crossref_primary_10_1038_s41467_022_35679_3
crossref_primary_10_1271_kagakutoseibutsu_58_606
crossref_primary_10_1007_s11032_015_0372_8
crossref_primary_10_1126_sciadv_abe2299
crossref_primary_10_1093_jxb_erz457
crossref_primary_10_1111_nph_19523
crossref_primary_10_7554_eLife_90253_3
crossref_primary_10_1111_tpj_15436
crossref_primary_10_1146_annurev_arplant_102720_013958
crossref_primary_10_1016_j_cpb_2014_04_001
crossref_primary_10_1093_hr_uhad081
crossref_primary_10_1126_science_1199682
crossref_primary_10_1016_j_yexcr_2020_111852
crossref_primary_10_1007_s11240_016_1082_6
crossref_primary_10_1007_s10681_022_03100_1
crossref_primary_10_1016_j_biotechadv_2020_107676
crossref_primary_10_1105_tpc_109_072181
crossref_primary_10_3389_fpls_2019_00256
crossref_primary_10_1016_j_pbi_2017_03_003
crossref_primary_10_1093_nar_gkae572
crossref_primary_10_1146_annurev_genet_022620_100039
crossref_primary_10_1534_genetics_110_121079
crossref_primary_10_1093_pcp_pcad021
crossref_primary_10_9787_PBB_2022_10_1_49
crossref_primary_10_1007_s00122_017_2873_9
crossref_primary_10_1093_jxb_ers393
crossref_primary_10_1146_annurev_arplant_042110_103924
crossref_primary_10_3389_fpls_2016_00414
crossref_primary_10_1007_s00497_023_00457_8
crossref_primary_10_1007_s40626_019_00144_y
crossref_primary_10_1016_j_gde_2012_01_007
crossref_primary_10_1073_pnas_1504333112
crossref_primary_10_1016_j_tibtech_2010_09_002
crossref_primary_10_1371_journal_pgen_1006060
crossref_primary_10_3390_plants12020243
crossref_primary_10_1111_plb_13482
crossref_primary_10_3389_fpls_2024_1378421
crossref_primary_10_1038_cr_2016_117
crossref_primary_10_1016_j_gde_2011_11_005
crossref_primary_10_1016_j_tibs_2022_06_010
crossref_primary_10_1038_s41598_021_89237_w
crossref_primary_10_1134_S1022795423030092
crossref_primary_10_1007_s10577_014_9454_4
crossref_primary_10_1002_bies_202000111
crossref_primary_10_1007_s00425_020_03461_8
crossref_primary_10_1111_pbr_12162
crossref_primary_10_1534_genetics_115_186205
crossref_primary_10_1038_s41477_023_01389_x
crossref_primary_10_1007_s40502_022_00706_4
crossref_primary_10_7554_eLife_71061
crossref_primary_10_1038_nprot_2014_049
crossref_primary_10_3923_ja_2017_23_31
crossref_primary_10_1111_nph_18898
crossref_primary_10_1105_tpc_19_00832
crossref_primary_10_1093_jxb_eraa214
crossref_primary_10_1016_j_pbi_2014_02_011
crossref_primary_10_1038_ncomms6334
crossref_primary_10_1371_journal_pgen_1002121
crossref_primary_10_3390_agronomy10060839
crossref_primary_10_1016_j_tig_2019_07_005
crossref_primary_10_1002_tpg2_20209
crossref_primary_10_1007_s11105_018_1132_9
crossref_primary_10_1016_S1673_8527_09_60088_6
crossref_primary_10_3389_fpls_2017_01034
crossref_primary_10_1016_j_bbagen_2023_130539
crossref_primary_10_1111_j_1365_313X_2011_04715_x
crossref_primary_10_3390_plants11091236
crossref_primary_10_1016_j_isci_2020_101279
crossref_primary_10_1111_pbr_12971
crossref_primary_10_1111_tpj_14444
crossref_primary_10_7717_peerj_5107
crossref_primary_10_1016_j_ijbiomac_2021_05_023
crossref_primary_10_1016_j_gene_2014_01_034
crossref_primary_10_7554_eLife_06516
crossref_primary_10_3389_fpls_2016_02019
crossref_primary_10_3389_fpls_2021_802222
crossref_primary_10_3390_genes14061161
crossref_primary_10_1016_j_gene_2021_146180
crossref_primary_10_1146_annurev_genet_022123_110824
crossref_primary_10_1007_s12298_022_01247_8
crossref_primary_10_1111_pbi_12805
crossref_primary_10_3389_fgene_2015_00349
crossref_primary_10_3390_genes12091410
crossref_primary_10_1038_s41467_018_05093_9
crossref_primary_10_1038_s41467_021_24234_1
crossref_primary_10_1371_journal_pbio_3000582
crossref_primary_10_1534_g3_117_041509
crossref_primary_10_1016_j_molp_2023_01_001
crossref_primary_10_7554_eLife_90253
crossref_primary_10_1038_s41477_020_0664_9
crossref_primary_10_1007_s00299_024_03159_1
crossref_primary_10_1016_j_hpj_2022_01_005
crossref_primary_10_3389_fpls_2023_1142866
crossref_primary_10_1016_j_tplants_2021_02_010
crossref_primary_10_1016_j_cub_2014_11_060
crossref_primary_10_1007_s00299_010_0984_8
crossref_primary_10_1016_j_pbi_2020_101993
crossref_primary_10_1126_sciadv_abk1151
crossref_primary_10_1126_science_1240561
crossref_primary_10_17660_ActaHortic_2020_1283_19
crossref_primary_10_7554_eLife_53944
crossref_primary_10_15252_embj_201796603
crossref_primary_10_3390_plants11030387
crossref_primary_10_1073_pnas_1103190108
crossref_primary_10_1111_pbi_13189
crossref_primary_10_1186_s12864_023_09456_5
crossref_primary_10_3389_fpls_2022_892055
crossref_primary_10_1016_j_copbio_2022_102877
crossref_primary_10_1021_acssynbio_3c00555
crossref_primary_10_1007_s10577_014_9426_8
crossref_primary_10_1016_j_jbiotec_2011_08_028
crossref_primary_10_1111_pbr_12590
crossref_primary_10_1111_jipb_13730
crossref_primary_10_3390_plants12030485
crossref_primary_10_3390_biom14060614
crossref_primary_10_15252_embj_201796735
crossref_primary_10_1111_pbi_13875
crossref_primary_10_3389_fpls_2019_00074
crossref_primary_10_1146_annurev_arplant_050312_120237
crossref_primary_10_1007_s10681_019_2435_0
crossref_primary_10_1007_s11427_015_4818_3
crossref_primary_10_1038_s41598_024_64432_7
crossref_primary_10_1007_s11240_020_01959_3
crossref_primary_10_1038_s41477_019_0576_8
crossref_primary_10_31857_S0016675823030098
crossref_primary_10_1007_s42535_024_00888_2
crossref_primary_10_1016_j_cub_2016_02_061
crossref_primary_10_1007_s00412_017_0640_y
crossref_primary_10_1016_j_devcel_2016_03_021
crossref_primary_10_1111_ppa_12802
crossref_primary_10_1007_s13237_021_00348_1
crossref_primary_10_1007_s11240_023_02617_0
crossref_primary_10_1007_s13562_011_0038_5
crossref_primary_10_1186_s13007_019_0429_5
crossref_primary_10_1038_s41477_024_01630_1
crossref_primary_10_3390_ijms19123758
crossref_primary_10_1038_nature20827
crossref_primary_10_1007_s10577_016_9521_0
crossref_primary_10_3389_fpls_2023_1294551
crossref_primary_10_48130_SeedBio_2023_0010
crossref_primary_10_3389_fgeed_2022_937853
crossref_primary_10_1111_tpj_14518
crossref_primary_10_1007_s00497_015_0262_6
crossref_primary_10_1007_s00425_019_03099_1
crossref_primary_10_1111_j_1365_313X_2011_04544_x
crossref_primary_10_1242_dev_052928
crossref_primary_10_1016_j_molp_2017_12_009
crossref_primary_10_1038_nbt_3057
crossref_primary_10_1371_journal_pone_0072431
crossref_primary_10_1111_pbi_13415
crossref_primary_10_3390_genes11070781
crossref_primary_10_1073_pnas_1110320108
crossref_primary_10_1111_nph_19414
crossref_primary_10_1093_jxb_eru354
crossref_primary_10_1186_s13007_023_01132_9
crossref_primary_10_48130_SeedBio_2023_0024
crossref_primary_10_7554_eLife_85832
crossref_primary_10_1007_s11427_015_4817_4
crossref_primary_10_3390_ijms241914659
crossref_primary_10_4161_cc_28296
crossref_primary_10_1007_s11033_020_05926_1
crossref_primary_10_1016_j_pbi_2019_02_008
crossref_primary_10_1016_j_tplants_2013_01_004
crossref_primary_10_3389_fbioe_2019_00031
crossref_primary_10_1270_jsbbs_15114
crossref_primary_10_1016_j_semcdb_2022_02_005
crossref_primary_10_1186_1756_8935_6_41
crossref_primary_10_1038_s41467_017_00969_8
crossref_primary_10_1038_s41587_020_0728_4
crossref_primary_10_1007_s10577_015_9477_5
crossref_primary_10_1007_s00122_011_1639_z
crossref_primary_10_1093_plphys_kiad600
crossref_primary_10_1017_S0021859610000833
crossref_primary_10_1111_brv_12796
crossref_primary_10_1016_j_tibtech_2014_12_010
crossref_primary_10_1111_j_1365_313X_2011_04867_x
crossref_primary_10_1093_pcp_pcae068
crossref_primary_10_3389_fpls_2023_1256338
crossref_primary_10_3389_fgeed_2022_825042
crossref_primary_10_1007_s00425_014_2233_9
crossref_primary_10_1371_journal_pbio_1001876
crossref_primary_10_7240_jeps_834978
crossref_primary_10_1007_s00018_016_2380_1
crossref_primary_10_1534_g3_116_031930
crossref_primary_10_1073_pnas_2201761119
crossref_primary_10_1038_s41477_022_01332_6
crossref_primary_10_1371_journal_pgen_1005494
crossref_primary_10_1016_j_biotechadv_2022_108007
crossref_primary_10_1093_hr_uhac150
crossref_primary_10_1371_journal_pone_0298072
crossref_primary_10_17660_ActaHortic_2019_1264_26
crossref_primary_10_3389_fpls_2022_864987
crossref_primary_10_1007_s11032_021_01204_5
crossref_primary_10_1007_s13237_013_0077_5
crossref_primary_10_1016_j_ijbiomac_2023_123401
crossref_primary_10_1111_nph_17744
crossref_primary_10_1007_s00709_019_01379_x
crossref_primary_10_1007_s00497_024_00506_w
crossref_primary_10_1038_s41598_023_28053_w
crossref_primary_10_5010_JPB_2016_43_1_12
crossref_primary_10_1093_jxb_erq371
crossref_primary_10_1038_srep29017
crossref_primary_10_3390_plants9050614
crossref_primary_10_1007_s12041_019_1129_7
crossref_primary_10_1093_jxb_ers314
crossref_primary_10_1186_s13007_022_00938_3
crossref_primary_10_1038_nbt0510_423
crossref_primary_10_1038_s41477_024_01643_w
crossref_primary_10_3390_biology10070685
crossref_primary_10_1111_j_1365_313X_2011_04664_x
crossref_primary_10_1016_j_tig_2022_08_003
crossref_primary_10_1266_ggs_87_63
crossref_primary_10_1002_csc2_20261
crossref_primary_10_1007_s40011_017_0870_z
crossref_primary_10_1002_bbb_1342
crossref_primary_10_1016_j_tibtech_2013_06_008
crossref_primary_10_1017_S1479262111000086
crossref_primary_10_1038_ng_2203
crossref_primary_10_1016_j_biotechadv_2015_07_001
crossref_primary_10_1016_j_copbio_2015_11_007
crossref_primary_10_1007_s00425_017_2772_y
crossref_primary_10_1111_tpj_14990
crossref_primary_10_1038_s41587_019_0038_x
crossref_primary_10_1111_jipb_13244
crossref_primary_10_1007_s00122_016_2788_x
crossref_primary_10_1016_j_devcel_2016_03_009
crossref_primary_10_3390_plants8110487
crossref_primary_10_1038_news_2011_102
crossref_primary_10_1093_jxb_erac359
crossref_primary_10_1111_nph_17963
crossref_primary_10_1371_journal_pone_0247015
crossref_primary_10_1016_j_gde_2011_01_014
crossref_primary_10_1186_s12870_021_02981_z
crossref_primary_10_1007_s10681_020_02609_7
crossref_primary_10_1186_s13072_024_00543_9
crossref_primary_10_1126_science_abi7489
crossref_primary_10_1134_S1022795418100058
crossref_primary_10_1093_plphys_kiae061
crossref_primary_10_3389_fpls_2017_01786
crossref_primary_10_1111_pbi_12879
crossref_primary_10_1534_genetics_114_172163
crossref_primary_10_3389_fpls_2015_01175
crossref_primary_10_1007_s13562_016_0368_4
crossref_primary_10_1101_gr_278409_123
crossref_primary_10_2135_cropsci2018_07_0461
crossref_primary_10_1007_s00412_011_0330_0
crossref_primary_10_18699_VJGB_22_85
crossref_primary_10_1007_s00122_023_04357_3
crossref_primary_10_1104_pp_110_166736
crossref_primary_10_1534_g3_112_002162
crossref_primary_10_1016_j_xplc_2022_100507
crossref_primary_10_3389_fpls_2016_00357
crossref_primary_10_3389_fpls_2014_00675
crossref_primary_10_3389_fpls_2023_1245433
crossref_primary_10_1007_s11240_014_0470_z
crossref_primary_10_1371_journal_pgen_1003165
crossref_primary_10_1199_tab_0155
crossref_primary_10_1111_tpj_14606
crossref_primary_10_1007_s00425_019_03320_1
crossref_primary_10_1016_j_pbi_2012_03_013
crossref_primary_10_3390_plants12173118
crossref_primary_10_1266_ggs_86_357
crossref_primary_10_1007_s00122_018_3261_9
crossref_primary_10_1038_s41477_019_0575_9
crossref_primary_10_1534_genetics_111_133066
crossref_primary_10_1016_j_cpb_2014_09_002
crossref_primary_10_3390_cimb45100504
crossref_primary_10_1007_s11240_013_0303_5
crossref_primary_10_1007_s11240_020_01831_4
crossref_primary_10_3390_agronomy14020375
crossref_primary_10_4236_as_2019_107075
crossref_primary_10_1146_annurev_arplant_042916_040820
crossref_primary_10_1159_000363724
crossref_primary_10_1534_genetics_114_163105
crossref_primary_10_1007_s11240_019_01665_9
crossref_primary_10_3390_agronomy10091441
crossref_primary_10_1016_j_xplc_2023_100637
crossref_primary_10_1111_tpj_15233
crossref_primary_10_1104_pp_111_189845
crossref_primary_10_1007_s00122_019_03433_x
crossref_primary_10_1111_nph_18753
crossref_primary_10_1134_S1022795414120114
crossref_primary_10_1007_s12042_012_9094_9
crossref_primary_10_1007_s00709_023_01837_7
crossref_primary_10_1007_s42994_019_00001_1
crossref_primary_10_1093_nar_gky209
crossref_primary_10_1038_s41477_024_01656_5
crossref_primary_10_1093_jxb_erab161
crossref_primary_10_1007_s00122_022_04220_x
crossref_primary_10_1186_1746_4811_9_43
crossref_primary_10_1371_journal_pgen_1009779
crossref_primary_10_1016_j_gde_2023_102101
crossref_primary_10_3389_fpls_2018_01339
crossref_primary_10_1038_s41477_020_0658_7
crossref_primary_10_1073_pnas_1117277109
crossref_primary_10_1371_journal_pgen_1009418
crossref_primary_10_3389_fpls_2015_00147
crossref_primary_10_1016_j_tig_2019_12_006
crossref_primary_10_1134_S1022795417090046
crossref_primary_10_3389_fpls_2016_00979
crossref_primary_10_54112_bbasr_v2021i1_36
crossref_primary_10_1111_pbi_13359
crossref_primary_10_1038_s41477_023_01370_8
crossref_primary_10_1038_s41437_024_00705_1
crossref_primary_10_1371_journal_pone_0139672
crossref_primary_10_3390_agronomy13030676
crossref_primary_10_1093_pcp_pcae030
crossref_primary_10_1007_s00497_013_0222_y
crossref_primary_10_1007_s00412_023_00788_5
crossref_primary_10_1134_S0026893322060127
crossref_primary_10_3390_genes12111760
crossref_primary_10_1111_tpj_13740
crossref_primary_10_1146_annurev_arplant_043014_114714
crossref_primary_10_1007_s13205_023_03857_9
crossref_primary_10_1016_j_pbi_2011_10_002
crossref_primary_10_1105_tpc_111_086017
crossref_primary_10_1111_pbi_13365
crossref_primary_10_1186_s12860_019_0186_3
crossref_primary_10_1371_journal_pone_0120604
crossref_primary_10_18619_2072_9146_2021_4_11_26
crossref_primary_10_1016_j_molp_2019_03_007
crossref_primary_10_1016_j_ydbio_2016_07_003
crossref_primary_10_1016_j_molp_2019_03_006
crossref_primary_10_29133_yyutbd_787094
crossref_primary_10_1007_s10577_014_9422_z
crossref_primary_10_1007_s42976_023_00422_1
crossref_primary_10_1371_journal_pone_0098504
crossref_primary_10_1038_s41598_020_64977_3
crossref_primary_10_1038_s41598_018_26168_z
crossref_primary_10_3390_genes11020134
crossref_primary_10_1371_journal_pgen_1005839
crossref_primary_10_9787_PBB_2019_7_2_95
crossref_primary_10_1104_pp_112_213256
crossref_primary_10_1007_s00425_022_03877_4
crossref_primary_10_1007_s42994_022_00080_7
crossref_primary_10_1038_s41477_018_0193_y
crossref_primary_10_1128_EC_00002_13
crossref_primary_10_1134_S1022795422040044
crossref_primary_10_1038_s41556_022_00897_w
crossref_primary_10_1007_s13580_023_00567_2
crossref_primary_10_1371_journal_pgen_1004970
crossref_primary_10_7554_eLife_01426
crossref_primary_10_1016_j_semcdb_2013_03_006
crossref_primary_10_1534_genetics_119_302843
crossref_primary_10_1007_s00497_013_0223_x
crossref_primary_10_1007_s12033_017_0027_6
crossref_primary_10_1007_s00497_014_0251_1
crossref_primary_10_1534_genetics_110_120337
crossref_primary_10_1007_s11816_024_00898_1
crossref_primary_10_1016_j_molp_2024_06_005
crossref_primary_10_3389_fpls_2019_00928
crossref_primary_10_1007_s00299_020_02605_0
crossref_primary_10_1186_gb_2013_14_1_103
crossref_primary_10_1016_j_pbi_2014_05_009
crossref_primary_10_3390_agriculture12101595
Cites_doi 10.1038/204497a0
10.1139/g89-537
10.1111/j.1365-313X.2006.02670.x
10.1007/BF00026787
10.1126/science.166.3911.1422
10.1016/S0044-328X(80)80084-5
10.1105/tpc.010425
10.1016/j.gde.2005.01.004
10.1086/282098
10.1111/j.1601-5223.1980.tb01375.x
10.2135/cropsci2000.4061742x
10.1104/pp.106.085274
10.1038/256410a0
10.1007/BF02858912
10.2135/cropsci2006.07.0489tpg
10.1016/j.tplants.2007.06.007
10.1007/BF00285861
10.1105/tpc.010496
10.1007/BF02261778
10.1105/tpc.106.047506
10.1105/tpc.018937
10.1038/1801209a0
10.1242/dev.127.24.5523
10.1007/978-1-4020-8854-4_1
10.1126/science.206.4418.585
10.1016/j.cub.2006.05.045
10.1038/225874a0
10.1038/166795a0
10.1007/BF00292839
10.1534/genetics.104.037788
10.1126/science.1062939
10.1002/9780470650301.ch3
10.1073/pnas.10.4.121
10.1007/BF00273874
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2010
2015 INIST-CNRS
COPYRIGHT 2010 Nature Publishing Group
Copyright Nature Publishing Group Mar 25, 2010
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2010
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 25, 2010
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature08842
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
Homework Central
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Psychology Journals
ProQuest research library
Science Journals (ProQuest Database)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
University of Michigan
Technology Collection
Technology Research Database
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 618
ExternalDocumentID 2003891501
A222409672
10_1038_nature08842
20336146
22524847
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.HR
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3O-
3V.
4.4
41X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
ABAWZ
ABDBF
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABVXF
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFRQD
AFSHS
AGAYW
AGCDD
AGEZK
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B-7
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESTFP
ESX
EX3
EXGXG
F20
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YNT
YOC
YQT
YR2
YXB
YYP
YZZ
ZCA
ZE2
ZHY
ZKB
~02
~7V
~88
~8M
~G0
~KM
.GJ
08P
08R
0B8
1CY
1VW
354
3EH
41~
42X
663
68V
79B
9M8
AADEA
AADWK
AAEXX
AAGJQ
AAJMP
AAJWC
AAJYS
AAPBV
AAUGY
AAVBQ
AAYJO
AAYOK
AAZLF
ABEEJ
ABEFU
ABGFU
ABGIJ
ABPTK
ABTAH
ACBMV
ACBNA
ACBRV
ACBTR
ACBYP
ACIGE
ACTDY
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADRHT
ADZGE
AEDAW
AEFTE
AETEA
AFDAS
AFHKK
AFMIJ
AFNRJ
AGGBP
AHGBK
AJDOV
AJUXI
AMRJV
BKOMP
DB5
FA8
FAC
G8K
HG6
I-U
IQODW
J5H
MVM
N4W
PV9
QS-
R4F
RHI
SKT
TUD
U1R
UAO
UBY
UHB
USG
VOH
X7L
XFK
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZA5
ZCG
ZGI
ZKG
ZY4
AAYZH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFBBN
CITATION
LGEZI
LOTEE
NADUK
NXXTH
ODYON
AEQTP
AGPPL
AHPSJ
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PQEST
PQUKI
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c692t-2285f0901734f3f355c59a977275c40e6f9d6139f4a9d891fb8ce12abe7007393
IEDL.DBID 8FG
ISSN 0028-0836
IngestDate Fri Oct 25 04:41:14 EDT 2024
Thu Oct 10 21:12:47 EDT 2024
Thu Feb 22 23:48:44 EST 2024
Fri Feb 02 05:09:47 EST 2024
Tue Dec 12 21:21:20 EST 2023
Tue Nov 12 22:51:00 EST 2024
Thu Aug 01 20:24:38 EDT 2024
Thu Aug 01 19:58:15 EDT 2024
Thu Sep 26 18:40:10 EDT 2024
Tue Oct 15 23:38:05 EDT 2024
Sun Oct 29 17:09:37 EDT 2023
Fri Oct 11 20:36:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7288
Keywords Cell culture
Parent
Eukaryote
Chromosome
Homozygosity
Wild type
Protein
Heterozygosity
Arabidopsis thaliana
Haploidy
Diploidy
Centromere
Cruciferae
Dicotyledones
Gametophyte
Angiospermae
Inbreeding
Spermatophyta
Inheritance(genetics)
Experimental plant
Genome
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-2285f0901734f3f355c59a977275c40e6f9d6139f4a9d891fb8ce12abe7007393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20336146
PQID 204474224
PQPubID 40569
PageCount 4
ParticipantIDs proquest_miscellaneous_733810232
proquest_journals_204474224
gale_infotracmisc_A222409672
gale_infotracgeneralonefile_A222409672
gale_infotraccpiq_222409672
gale_infotracacademiconefile_A222409672
gale_incontextgauss_ISR_A222409672
gale_incontextgauss_ATWCN_A222409672
crossref_primary_10_1038_nature08842
pubmed_primary_20336146
pascalfrancis_primary_22524847
springer_journals_10_1038_nature08842
PublicationCentury 2000
PublicationDate 2010-03-25
PublicationDateYYYYMMDD 2010-03-25
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References AvetisovVAProduction of haploids during in vitro culturing of Arabidopsis thaliana (L.) Heynh anthers and isolated protoplastsGenetika1976121725
BainsGSHowardHWHaploid plants of Solanum demissumNature19501667951950Natur.166..795B1:STN:280:DyaG3M%2FgvFyisw%3D%3D10.1038/166795a014780261
LaurieDABennettMDThe timing of chromosome elimination in hexaploid wheat x maize crossesGenome19893295396110.1139/g89-537
WedzonyMAdvances in Haploid Production in Higher Plants200913310.1007/978-1-4020-8854-4_1
BennettMDFinchRABarclayIRThe time rate and mechanism of chromosome elimination in Hordeum hybridsChromosoma19765417520010.1007/BF00292839
ForsterBPHeberle-BorsEKashaKJTouraevAThe resurgence of haploids in higher plantsTrends Plant Sci.2007123683751:CAS:528:DC%2BD2sXosFGqu7s%3D10.1016/j.tplants.2007.06.00717629539
ComaiLHenikoffSTILLING: practical single-nucleotide mutation discoveryPlant J.2006456846941:CAS:528:DC%2BD28XislWitL4%3D10.1111/j.1365-313X.2006.02670.x16441355
HenryIMAneuploidy and genetic variation in the Arabidopsis thaliana triploid responseGenetics2005170197919881:CAS:528:DC%2BD2MXhtFeis7%2FF10.1534/genetics.104.037788159443631449780
OriNEshedYChuckGBowmanJLHakeSMechanisms that control knox gene expression in the Arabidopsis shootDevelopment2000127552355321:CAS:528:DC%2BD3MXltFWkug%3D%3D11076771
HenikoffSAhmadKMalikHSThe centromere paradox: stable inheritance with rapidly evolving DNAScience2001293109811021:CAS:528:DC%2BD3MXmtVWku7o%3D10.1126/science.106293911498581
HagbergAHagbergGHigh frequency of spontaneous haploids in the progeny of an induced mutation in barleyHereditas19809334134310.1111/j.1601-5223.1980.tb01375.x
HougasHWPeloquinSJA haploid plant of the potato variety KatahdinNature1957180120912101957Natur.180.1209H10.1038/1801209a0
FinchRATissue-specific elimination of alternative whole parental genomes in one barley hybridChromosoma19838838639310.1007/BF00285861
KermicleJLAndrogenesis conditioned by a mutation in maizeScience1969166142214241969Sci...166.1422K1:STN:280:DC%2BC3cvgtVOksQ%3D%3D10.1126/science.166.3911.142217744972
EvansMMThe indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf developmentPlant Cell20071946621:CAS:528:DC%2BD2sXjtFynsbs%3D10.1105/tpc.106.047506172091261820972
GuhaSMaheshwariSCIn vitro production of embryos from anthers of DaturaNature19642044971964Natur.204..497G10.1038/204497a0
SchollRAmosJAIsolation of doubled-haploid plants through anther cultureZ. Pflanzenphysiol.19809640741410.1016/S0044-328X(80)80084-5
BarclayIRHigh frequencies of haploid production in wheat (Triticum aestivum) by chromosome eliminationNature19752564104111975Natur.256..410B10.1038/256410a0
BushellCSpielmanMScottRJThe basis of natural and artificial postzygotic hybridization barriers in Arabidopsis speciesPlant Cell200315143014421:CAS:528:DC%2BD3sXkvVektrg%3D10.1105/tpc.01049612782734156377
BurkLGGerstelDUWernsmanEAMaternal haploids of Nicotiana tabacum L. from seedScience19792065851979Sci...206..585B1:STN:280:DC%2BC3cvis1Gqtg%3D%3D10.1126/science.206.4418.58517759429
KashaKJKaoKNHigh frequency haploid production in barley (Hordeum vulgare L.)Nature19702258748761970Natur.225..874K1:STN:280:DC%2BD2MzpslWltQ%3D%3D10.1038/225874a016056782
JauharPPDogramaci-AltuntepeMPetersonTSAlmouslemABSeedset on synthetic haploids of durum wheat: cytological and molecular investigationsCrop Sci.2000401742174910.2135/cropsci2000.4061742x
JinWMaize centromeres: organization and functional adaptation in the genetic background of oatPlant Cell2004165715811:CAS:528:DC%2BD2cXisFGkt78%3D10.1105/tpc.01893714973167385273
RossKJFranszPJonesGHA light microscopic atlas of meiosis in Arabidopsis thalianaChromosome Res.199645075161:CAS:528:DyaK28XntlSktrw%3D10.1007/BF022617788939362
ClausenREMannMCInheritance of Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progeniesProc. Natl Acad. Sci. USA1924101211241924PNAS...10..121C1:STN:280:DC%2BD28zhs1Cruw%3D%3D10.1073/pnas.10.4.121165767971085570
ChaseSSMonoploids and monoploid-derivatives of maize (Zea mays L.)Bot. Rev.19693511716810.1007/BF02858912
JosefssonCDilkesBComaiLParent-dependent loss of gene silencing during interspecies hybridizationCurr. Biol.200616132213281:CAS:528:DC%2BD28XmsFSltLg%3D10.1016/j.cub.2006.05.04516824920
UdallJAWendelJFPolyploidy and crop improvementCrop Sci.200646S3S1410.2135/cropsci2006.07.0489tpg
FrancisKELamSYCopenhaverGPSeparation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase genePlant Physiol.2006142100410131:CAS:528:DC%2BD28Xht1ejurfM10.1104/pp.106.085274169805651630721
HeppichSTunnerHGGreilhuberJPremeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculentaTheor. Appl. Genet.1982611011041:STN:280:DC%2BC2c3gsVSisA%3D%3D10.1007/BF0027387424270328
PaulWHodgeRSmarttSDraperJScottRThe isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 genePlant Mol. Biol.1992196116221:CAS:528:DyaK3sXisV2is7g%3D10.1007/BF000267871627774
Dunwell, J. M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. (in the press)
HenikoffSDalalYCentromeric chromatin: what makes it unique?Curr. Opin. Genet. Dev.2005151771841:CAS:528:DC%2BD2MXis1Kmu7k%3D10.1016/j.gde.2005.01.00415797200
CoeEHA line of maize with high haploid frequencyAm. Nat.19599338138210.1086/282098
TalbertPBMasuelliRTyagiAPComaiLHenikoffSCentromeric localization and adaptive evolution of an Arabidopsis histone H3 variantPlant Cell200214105310661:CAS:528:DC%2BD38XksVGqtr8%3D10.1105/tpc.01042512034896150606
ForsterBPThomasWTBPlant Breeding Reviews20055788
1627774 - Plant Mol Biol. 1992 Jul;19(4):611-22
16441355 - Plant J. 2006 Feb;45(4):684-94
16576797 - Proc Natl Acad Sci U S A. 1924 Apr;10(4):121-4
15944363 - Genetics. 2005 Aug;170(4):1979-88
17759429 - Science. 1979 Nov 2;206(4418):585
11076771 - Development. 2000 Dec;127(24):5523-32
11498581 - Science. 2001 Aug 10;293(5532):1098-102
14973167 - Plant Cell. 2004 Mar;16(3):571-81
12782734 - Plant Cell. 2003 Jun;15(6):1430-42
16980565 - Plant Physiol. 2006 Nov;142(3):1004-13
17209126 - Plant Cell. 2007 Jan;19(1):46-62
16056782 - Nature. 1970 Feb 28;225(5235):874-6
14780261 - Nature. 1950 Nov 4;166(4227):795
12034896 - Plant Cell. 2002 May;14(5):1053-66
15797200 - Curr Opin Genet Dev. 2005 Apr;15(2):177-84
20233334 - Plant Biotechnol J. 2010 May 1;8(4):377-424
17744972 - Science. 1969 Dec 12;166(3911):1422-4
8939362 - Chromosome Res. 1996 Nov;4(7):507-16
24270328 - Theor Appl Genet. 1982 Jun;61(2):101-4
17629539 - Trends Plant Sci. 2007 Aug;12(8):368-75
16824920 - Curr Biol. 2006 Jul 11;16(13):1322-8
C Bushell (BFnature08842_CR33) 2003; 15
IM Henry (BFnature08842_CR17) 2005; 170
S Heppich (BFnature08842_CR23) 1982; 61
MM Evans (BFnature08842_CR28) 2007; 19
PB Talbert (BFnature08842_CR15) 2002; 14
KE Francis (BFnature08842_CR32) 2006; 142
KJ Kasha (BFnature08842_CR11) 1970; 225
EH Coe (BFnature08842_CR25) 1959; 93
SS Chase (BFnature08842_CR18) 1969; 35
M Wedzony (BFnature08842_CR5) 2009
MD Bennett (BFnature08842_CR12) 1976; 54
S Guha (BFnature08842_CR4) 1964; 204
GS Bains (BFnature08842_CR6) 1950; 166
VA Avetisov (BFnature08842_CR20) 1976; 12
C Josefsson (BFnature08842_CR36) 2006; 16
HW Hougas (BFnature08842_CR10) 1957; 180
KJ Ross (BFnature08842_CR35) 1996; 4
BP Forster (BFnature08842_CR3) 2005
LG Burk (BFnature08842_CR8) 1979; 206
PP Jauhar (BFnature08842_CR19) 2000; 40
A Hagberg (BFnature08842_CR26) 1980; 93
S Henikoff (BFnature08842_CR30) 2001; 293
DA Laurie (BFnature08842_CR14) 1989; 32
RA Finch (BFnature08842_CR13) 1983; 88
W Jin (BFnature08842_CR24) 2004; 16
N Ori (BFnature08842_CR29) 2000; 127
IR Barclay (BFnature08842_CR7) 1975; 256
R Scholl (BFnature08842_CR21) 1980; 96
JA Udall (BFnature08842_CR22) 2006; 46
S Henikoff (BFnature08842_CR16) 2005; 15
L Comai (BFnature08842_CR31) 2006; 45
BFnature08842_CR1
JL Kermicle (BFnature08842_CR27) 1969; 166
W Paul (BFnature08842_CR34) 1992; 19
RE Clausen (BFnature08842_CR9) 1924; 10
BP Forster (BFnature08842_CR2) 2007; 12
References_xml – volume: 204
  start-page: 497
  year: 1964
  ident: BFnature08842_CR4
  publication-title: Nature
  doi: 10.1038/204497a0
  contributor:
    fullname: S Guha
– volume: 32
  start-page: 953
  year: 1989
  ident: BFnature08842_CR14
  publication-title: Genome
  doi: 10.1139/g89-537
  contributor:
    fullname: DA Laurie
– volume: 45
  start-page: 684
  year: 2006
  ident: BFnature08842_CR31
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02670.x
  contributor:
    fullname: L Comai
– volume: 19
  start-page: 611
  year: 1992
  ident: BFnature08842_CR34
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00026787
  contributor:
    fullname: W Paul
– volume: 166
  start-page: 1422
  year: 1969
  ident: BFnature08842_CR27
  publication-title: Science
  doi: 10.1126/science.166.3911.1422
  contributor:
    fullname: JL Kermicle
– volume: 96
  start-page: 407
  year: 1980
  ident: BFnature08842_CR21
  publication-title: Z. Pflanzenphysiol.
  doi: 10.1016/S0044-328X(80)80084-5
  contributor:
    fullname: R Scholl
– volume: 14
  start-page: 1053
  year: 2002
  ident: BFnature08842_CR15
  publication-title: Plant Cell
  doi: 10.1105/tpc.010425
  contributor:
    fullname: PB Talbert
– volume: 15
  start-page: 177
  year: 2005
  ident: BFnature08842_CR16
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2005.01.004
  contributor:
    fullname: S Henikoff
– volume: 93
  start-page: 381
  year: 1959
  ident: BFnature08842_CR25
  publication-title: Am. Nat.
  doi: 10.1086/282098
  contributor:
    fullname: EH Coe
– volume: 93
  start-page: 341
  year: 1980
  ident: BFnature08842_CR26
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1980.tb01375.x
  contributor:
    fullname: A Hagberg
– volume: 40
  start-page: 1742
  year: 2000
  ident: BFnature08842_CR19
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2000.4061742x
  contributor:
    fullname: PP Jauhar
– volume: 142
  start-page: 1004
  year: 2006
  ident: BFnature08842_CR32
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.085274
  contributor:
    fullname: KE Francis
– volume: 256
  start-page: 410
  year: 1975
  ident: BFnature08842_CR7
  publication-title: Nature
  doi: 10.1038/256410a0
  contributor:
    fullname: IR Barclay
– volume: 35
  start-page: 117
  year: 1969
  ident: BFnature08842_CR18
  publication-title: Bot. Rev.
  doi: 10.1007/BF02858912
  contributor:
    fullname: SS Chase
– volume: 12
  start-page: 17
  year: 1976
  ident: BFnature08842_CR20
  publication-title: Genetika
  contributor:
    fullname: VA Avetisov
– volume: 46
  start-page: S3
  year: 2006
  ident: BFnature08842_CR22
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2006.07.0489tpg
  contributor:
    fullname: JA Udall
– volume: 12
  start-page: 368
  year: 2007
  ident: BFnature08842_CR2
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2007.06.007
  contributor:
    fullname: BP Forster
– volume: 88
  start-page: 386
  year: 1983
  ident: BFnature08842_CR13
  publication-title: Chromosoma
  doi: 10.1007/BF00285861
  contributor:
    fullname: RA Finch
– volume: 15
  start-page: 1430
  year: 2003
  ident: BFnature08842_CR33
  publication-title: Plant Cell
  doi: 10.1105/tpc.010496
  contributor:
    fullname: C Bushell
– volume: 4
  start-page: 507
  year: 1996
  ident: BFnature08842_CR35
  publication-title: Chromosome Res.
  doi: 10.1007/BF02261778
  contributor:
    fullname: KJ Ross
– volume: 19
  start-page: 46
  year: 2007
  ident: BFnature08842_CR28
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.047506
  contributor:
    fullname: MM Evans
– volume: 16
  start-page: 571
  year: 2004
  ident: BFnature08842_CR24
  publication-title: Plant Cell
  doi: 10.1105/tpc.018937
  contributor:
    fullname: W Jin
– volume: 180
  start-page: 1209
  year: 1957
  ident: BFnature08842_CR10
  publication-title: Nature
  doi: 10.1038/1801209a0
  contributor:
    fullname: HW Hougas
– volume: 127
  start-page: 5523
  year: 2000
  ident: BFnature08842_CR29
  publication-title: Development
  doi: 10.1242/dev.127.24.5523
  contributor:
    fullname: N Ori
– start-page: 1
  volume-title: Advances in Haploid Production in Higher Plants
  year: 2009
  ident: BFnature08842_CR5
  doi: 10.1007/978-1-4020-8854-4_1
  contributor:
    fullname: M Wedzony
– volume: 206
  start-page: 585
  year: 1979
  ident: BFnature08842_CR8
  publication-title: Science
  doi: 10.1126/science.206.4418.585
  contributor:
    fullname: LG Burk
– volume: 16
  start-page: 1322
  year: 2006
  ident: BFnature08842_CR36
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.05.045
  contributor:
    fullname: C Josefsson
– volume: 225
  start-page: 874
  year: 1970
  ident: BFnature08842_CR11
  publication-title: Nature
  doi: 10.1038/225874a0
  contributor:
    fullname: KJ Kasha
– ident: BFnature08842_CR1
– volume: 166
  start-page: 795
  year: 1950
  ident: BFnature08842_CR6
  publication-title: Nature
  doi: 10.1038/166795a0
  contributor:
    fullname: GS Bains
– volume: 54
  start-page: 175
  year: 1976
  ident: BFnature08842_CR12
  publication-title: Chromosoma
  doi: 10.1007/BF00292839
  contributor:
    fullname: MD Bennett
– volume: 170
  start-page: 1979
  year: 2005
  ident: BFnature08842_CR17
  publication-title: Genetics
  doi: 10.1534/genetics.104.037788
  contributor:
    fullname: IM Henry
– volume: 293
  start-page: 1098
  year: 2001
  ident: BFnature08842_CR30
  publication-title: Science
  doi: 10.1126/science.1062939
  contributor:
    fullname: S Henikoff
– start-page: 57
  volume-title: Plant Breeding Reviews
  year: 2005
  ident: BFnature08842_CR3
  doi: 10.1002/9780470650301.ch3
  contributor:
    fullname: BP Forster
– volume: 10
  start-page: 121
  year: 1924
  ident: BFnature08842_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.10.4.121
  contributor:
    fullname: RE Clausen
– volume: 61
  start-page: 101
  year: 1982
  ident: BFnature08842_CR23
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00273874
  contributor:
    fullname: S Heppich
SSID ssj0005174
Score 2.5473716
Snippet When plants go halves: haploids made easy Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also...
Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous...
Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding (1-3). Haploids generated from a heterozygous...
SourceID proquest
gale
crossref
pubmed
pascalfrancis
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 615
SubjectTerms 631/1647/334/2244/710
631/449/2491
631/449/448/1358
631/80/103/90
Agronomy. Soil science and plant productions
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis thaliana
Biological and medical sciences
Cell Nucleus - genetics
Centromere - metabolism
Centromeres
Chromosomes
Crosses, Genetic
Deoxyribonucleic acid
Diploidy
DNA
Embryos
Fundamental and applied biological sciences. Psychology
Generalities. Genetics. Plant material
Genetic aspects
Genetic resources, diversity
Genetics
Genetics and breeding of economic plants
Genome, Plant - genetics
Genotypes
Haploidy
Histones - genetics
Histones - metabolism
Humanities and Social Sciences
Inbreeding
Interspecific and intergeneric hybridization, introgressions
letter
Methods
multidisciplinary
Physiological aspects
Plant breeding
Plant breeding: fundamental aspects and methodology
Plant material
Plant species
Proteins
Science
Science (multidisciplinary)
Structure
Title Haploid plants produced by centromere-mediated genome elimination
URI https://link.springer.com/article/10.1038/nature08842
https://www.ncbi.nlm.nih.gov/pubmed/20336146
https://www.proquest.com/docview/204474224
https://search.proquest.com/docview/733810232
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2Awxtp9Ze2CGN3Xg5gty5b8NLLQLBssjK5leROyPkohjd04edh_v5OtJPUW9uIXHYc4ne5-sk6_Q-jUpipRaaSJSzNLGDWWKEctKaxJtWdXcU0Xhe-TbHzJvk3TaajNqUNZ5TomNoHalNr_I4dDOmNwjKPsU3VLfNMof7kaOmjsoYOYcu7PXmL0ZVvh8RcJc3ieFyXiY8uaCTuM0U5CCmH5YaVqMJFre1vsAp__XJw2-Wj0GD0KQBIP2pU_RPfs_Ajdbwo6dX2EDsOmrfH7wCz94QkajFU1K68Nrma-_AVXDd2rNbj4jZsqzfLGLixpXpMAEsWewPXGYjtrWn_5JXyKLkdnF8MxCT0UiM5yuiSUitRFkPR5wlziAF3oNFcA-ihPNYts5nIDGT13TOVG5LErhLYxVYXlLVveM7Q_L-f2BcL-j06hheFaRMxAqhfaaR4XOS0M5HnRQ6drQ8qqpcqQzRV3IuQde4OYN7L05BNzX91ypVZ1LQcXv4YTOaAeYuQZB7HXu8S-_jzvCL0LQq5cLpRW4U0BTNjTWnUkjzuSurq-lXdG33ZGr9qF2aXmpCMIe1F3hvsdz9nYAaImZQAEYBprV5IhWNRy49o9hDejXrOvf5vbclVLnngmNkC_PfS8dcCt6ihJAGNlPfRm7ZFb1Tvs__K_UzhGD9r6iITQ9ATtLxcr-wpg17Looz0-5fAVw7jfbLQ-Ovh8Nvlx_gf9Ciwo
link.rule.ids 315,783,787,12068,12235,12777,21400,27936,27937,31731,31732,33278,33279,33385,33386,33756,33757,43322,43591,43612,43817,74073,74342,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgCIGE0DZuZRcsNG4PFqnjJM7TVFVMHWx9gE7szXJ8mSZ1Sda0D_x7jh23a0bFs48s6_hcPtvH30HoyCQylkmkiE1SQxjVhkhLDSmMTpRjV7G-i8L5OB1dsO-XyWWozWlCWeUyJvpArSvl7sjhkM4YHOMoO65viWsa5R5XQweNh-gRZP3c-SUfrlV43CNhDt_zoph_bVkzwcMY7SSkEJaf1bIBFdm2t8Um8PnPw6nPRyfb6HkAknjQ7vwOemDKXfTYF3SqZhftBKdt8OfALP3lBRqMZD2trjWup678Bdee7tVoXPzBvkqzujEzQ_xvEkCi2BG43hhspr71l9vCl-ji5NtkOCKhhwJRaU7nhFKe2AiSfhYzG1tAFyrJJYA-miWKRSa1uYaMnlsmc83zvi24Mn0qC5O1bHmv0FZZleYNwu5Gp1BcZ4pHTEOq58qqrF_ktNCQ53kPHS0VKeqWKkP4J-6YizV9g5hTsnDkE6WrbrmSi6YRg8nv4VgMqIMYeZqB2PtNYqe_fnaEPgUhW81nUsnwpwAW7GitOpJ7HUlVX9-KtdGPndGrdmM2TbPfEQRfVJ3hw47lrPQAUZMyAAKwjKUpiRAsGrEy7R7Cq1E3s6t_K021aEQWOyY2QL899Lo1wLupozgGjJX20IelRd5NvUH_b_-7hHfoyWhyfibOTsc_9tDTtlYiJjTZR1vz2cIcAASbF4fe0f4CX7wrkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgCDQJITYuKxvDQuP2YC11nMR5QlWh6rhUCDZtb5bjyzSpS7KmfeDfc-y4XQMVzz6yrONz-WwffwehI5PIWCaRIjZJDWFUGyItNaQwOlGOXcX6LgrfJ-n4jH25SC4CpVATyiqXMdEHal0pd0cOh3TG4BhH2bENVRE_Po0-1jfENZByD62hm8ZddA-SInPNDPhwrdrjL0Lm8FUvivlxy6AJ3sZoJzmFEP2wlg2oy7Z9LjYB0X8eUX1uGj1GjwKoxIPWCnbQHVPuovu-uFM1u2gnOHCD3weW6Q9P0GAs62l1pXE9daUwuPbUr0bj4jf2FZvVtZkZ4n-WACrFjsz12mAz9W3A3HY-RWejz6fDMQn9FIhKczonlPLERgAAspjZ2ALSUEkuAQDSLFEsMqnNNWT33DKZa573bcGV6VNZmKxlznuGtsqqNHsIu9udQnGdKR4xDWmfK6uyfpHTQkPO5z10tFSkqFvaDOGfu2Mu1vQNYk7JwhFRlG5PL-WiacTg9Hw4EQPq4EaeZiD2epPYya-fHaF3QchW85lUMvwvgAU7iquO5H5HUtVXN2Jt9G1n9LLdmE3THHQEwS9VZ_iwYzkrPUAEpQxAASxjaUoiBI5GrMy8h_Bq1M3sauFKUy0akcWOlQ2QcA89bw3wduoojgFvpT30ZmmRt1Nv0P-L_y7hFXoAPia-nUy-7qPttmwiJjQ5QFvz2cK8BDQ2Lw69n_0Brf4vvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haploid+plants+produced+by+centromere-mediated+genome+elimination&rft.jtitle=Nature+%28London%29&rft.au=Ravi%2C+Maruthachalam&rft.au=Chan%2C+Simon+W+L&rft.date=2010-03-25&rft.eissn=1476-4687&rft.volume=464&rft.issue=7288&rft.spage=615&rft.epage=618&rft_id=info:doi/10.1038%2Fnature08842&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon