Haploid plants produced by centromere-mediated genome elimination
When plants go halves: haploids made easy Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also crucially in plant breeding, where they are used to create instant homozygous diploid lines, circumventing many generations of inbreeding. Mar...
Saved in:
Published in | Nature (London) Vol. 464; no. 7288; pp. 615 - 618 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.03.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When plants go halves: haploids made easy
Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also crucially in plant breeding, where they are used to create instant homozygous diploid lines, circumventing many generations of inbreeding. Maruthachalam Ravi and Simon Chan have now developed a simple method for producing haploid
Arabidopsis thaliana
via seeds that can be readily extended to crop plants. Previously haploid production involved tissue culture or genome elimination in wide crosses, and many species are intractable to these methods. The new technique involves engineering a single protein, the centromere-specific histone CENH3, to create strains whose genome is eliminated from the zygote after crossing to wild type. This generates haploid plants with chromosomes from the wild-type parent only. CENH3 plays a universal role at eukaryote centromeres, so in principle this should be transferable to all plant species.
Making haploid plants — which inherit chromosomes from only one parent — is useful for genetic research and also, crucially, for plant breeding. A new method for generating haploid
Arabidopsis
plants is now described, involving the manipulation of a single centromeric protein, CENH3. When
cenh3
null plants are crossed with wild-type plants, the mutant chromosomes are eliminated, producing haploid progeny.
Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding
1
,
2
,
3
. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants
4
, but many species and genotypes are recalcitrant to this process
2
,
5
. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization
6
,
7
,
8
,
9
,
10
,
11
. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss
12
,
13
,
14
. Here we show that haploid
Arabidopsis thaliana
plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When
cenh3
null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid
Arabidopsis
into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species. |
---|---|
AbstractList | Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding (1-3). Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells maybe regenerated into haploid plants (4), but many species and genotypes are recalcitrant to this process (2,5). Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization (6-11). The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss (12-14). Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species. Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species. When plants go halves: haploids made easy Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also crucially in plant breeding, where they are used to create instant homozygous diploid lines, circumventing many generations of inbreeding. Maruthachalam Ravi and Simon Chan have now developed a simple method for producing haploid Arabidopsis thaliana via seeds that can be readily extended to crop plants. Previously haploid production involved tissue culture or genome elimination in wide crosses, and many species are intractable to these methods. The new technique involves engineering a single protein, the centromere-specific histone CENH3, to create strains whose genome is eliminated from the zygote after crossing to wild type. This generates haploid plants with chromosomes from the wild-type parent only. CENH3 plays a universal role at eukaryote centromeres, so in principle this should be transferable to all plant species. Making haploid plants — which inherit chromosomes from only one parent — is useful for genetic research and also, crucially, for plant breeding. A new method for generating haploid Arabidopsis plants is now described, involving the manipulation of a single centromeric protein, CENH3. When cenh3 null plants are crossed with wild-type plants, the mutant chromosomes are eliminated, producing haploid progeny. Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding 1 , 2 , 3 . Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants 4 , but many species and genotypes are recalcitrant to this process 2 , 5 . Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization 6 , 7 , 8 , 9 , 10 , 11 . The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss 12 , 13 , 14 . Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species. Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic nonreduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species. [PUBLICATION ABSTRACT] |
Audience | Academic |
Author | Chan, Simon W. L. Ravi, Maruthachalam |
Author_xml | – sequence: 1 givenname: Maruthachalam surname: Ravi fullname: Ravi, Maruthachalam organization: Department of Plant Biology, University of California, Davis, Davis, California 95616, USA – sequence: 2 givenname: Simon W. L. surname: Chan fullname: Chan, Simon W. L. email: srchan@ucdavis.edu organization: Department of Plant Biology, University of California, Davis, Davis, California 95616, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22524847$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20336146$$D View this record in MEDLINE/PubMed |
BookMark | eNp10t1rFDEQAPAgFXutPvkuS4uI6NZ87SZ5PA61haKgFR9DLjs5Unaz22QX7H9vjjttT1byEJj8MjMkc4KOQh8AoZcEXxDM5IdgxikClpLTJ2hBuKhLXktxhBYYU1liyepjdJLSLca4IoI_Q8cUM1YTXi_Q8tIMbe-bYmhNGFMxxL6ZLDTF-r6wEMbYdxCh7KDxZszhDYQcKaD1nc-FfR-eo6fOtAle7PdT9OPTx5vVZXn99fPVanld2lrRsaRUVg4rTATjjjlWVbZSRglBRWU5htqppiZMOW5UIxVxa2mBULMGgbFgip2iN7u8ucW7CdKoO58stLlv6KekBWOSYMpolmf_yNt-iiE3pynmXHBKeUbnO7QxLWgfXD9GY7cp9ZJmgFUttqnKGZUfAaJp8zc4n8MH_mzG28Hf6cfoYgbl1UDn7WzWtwcXshnh17gxU0r66vu3Q_vu_3Z583P1ZVbb2KcUwekh-s7Ee02w3k6XfjRdWb_aP-y0zhPx1_4Zpwxe74FJ1rQummB9enC0olxykd37nUv5KGwgPvzQXN3fPAziNw |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1007_s11240_015_0866_4 crossref_primary_10_1038_s41467_022_35679_3 crossref_primary_10_1271_kagakutoseibutsu_58_606 crossref_primary_10_1007_s11032_015_0372_8 crossref_primary_10_1126_sciadv_abe2299 crossref_primary_10_1093_jxb_erz457 crossref_primary_10_1111_nph_19523 crossref_primary_10_7554_eLife_90253_3 crossref_primary_10_1111_tpj_15436 crossref_primary_10_1146_annurev_arplant_102720_013958 crossref_primary_10_1016_j_cpb_2014_04_001 crossref_primary_10_1093_hr_uhad081 crossref_primary_10_1126_science_1199682 crossref_primary_10_1016_j_yexcr_2020_111852 crossref_primary_10_1007_s11240_016_1082_6 crossref_primary_10_1007_s10681_022_03100_1 crossref_primary_10_1016_j_biotechadv_2020_107676 crossref_primary_10_1105_tpc_109_072181 crossref_primary_10_3389_fpls_2019_00256 crossref_primary_10_1016_j_pbi_2017_03_003 crossref_primary_10_1093_nar_gkae572 crossref_primary_10_1146_annurev_genet_022620_100039 crossref_primary_10_1534_genetics_110_121079 crossref_primary_10_1093_pcp_pcad021 crossref_primary_10_9787_PBB_2022_10_1_49 crossref_primary_10_1007_s00122_017_2873_9 crossref_primary_10_1093_jxb_ers393 crossref_primary_10_1146_annurev_arplant_042110_103924 crossref_primary_10_3389_fpls_2016_00414 crossref_primary_10_1007_s00497_023_00457_8 crossref_primary_10_1007_s40626_019_00144_y crossref_primary_10_1016_j_gde_2012_01_007 crossref_primary_10_1073_pnas_1504333112 crossref_primary_10_1016_j_tibtech_2010_09_002 crossref_primary_10_1371_journal_pgen_1006060 crossref_primary_10_3390_plants12020243 crossref_primary_10_1111_plb_13482 crossref_primary_10_3389_fpls_2024_1378421 crossref_primary_10_1038_cr_2016_117 crossref_primary_10_1016_j_gde_2011_11_005 crossref_primary_10_1016_j_tibs_2022_06_010 crossref_primary_10_1038_s41598_021_89237_w crossref_primary_10_1134_S1022795423030092 crossref_primary_10_1007_s10577_014_9454_4 crossref_primary_10_1002_bies_202000111 crossref_primary_10_1007_s00425_020_03461_8 crossref_primary_10_1111_pbr_12162 crossref_primary_10_1534_genetics_115_186205 crossref_primary_10_1038_s41477_023_01389_x crossref_primary_10_1007_s40502_022_00706_4 crossref_primary_10_7554_eLife_71061 crossref_primary_10_1038_nprot_2014_049 crossref_primary_10_3923_ja_2017_23_31 crossref_primary_10_1111_nph_18898 crossref_primary_10_1105_tpc_19_00832 crossref_primary_10_1093_jxb_eraa214 crossref_primary_10_1016_j_pbi_2014_02_011 crossref_primary_10_1038_ncomms6334 crossref_primary_10_1371_journal_pgen_1002121 crossref_primary_10_3390_agronomy10060839 crossref_primary_10_1016_j_tig_2019_07_005 crossref_primary_10_1002_tpg2_20209 crossref_primary_10_1007_s11105_018_1132_9 crossref_primary_10_1016_S1673_8527_09_60088_6 crossref_primary_10_3389_fpls_2017_01034 crossref_primary_10_1016_j_bbagen_2023_130539 crossref_primary_10_1111_j_1365_313X_2011_04715_x crossref_primary_10_3390_plants11091236 crossref_primary_10_1016_j_isci_2020_101279 crossref_primary_10_1111_pbr_12971 crossref_primary_10_1111_tpj_14444 crossref_primary_10_7717_peerj_5107 crossref_primary_10_1016_j_ijbiomac_2021_05_023 crossref_primary_10_1016_j_gene_2014_01_034 crossref_primary_10_7554_eLife_06516 crossref_primary_10_3389_fpls_2016_02019 crossref_primary_10_3389_fpls_2021_802222 crossref_primary_10_3390_genes14061161 crossref_primary_10_1016_j_gene_2021_146180 crossref_primary_10_1146_annurev_genet_022123_110824 crossref_primary_10_1007_s12298_022_01247_8 crossref_primary_10_1111_pbi_12805 crossref_primary_10_3389_fgene_2015_00349 crossref_primary_10_3390_genes12091410 crossref_primary_10_1038_s41467_018_05093_9 crossref_primary_10_1038_s41467_021_24234_1 crossref_primary_10_1371_journal_pbio_3000582 crossref_primary_10_1534_g3_117_041509 crossref_primary_10_1016_j_molp_2023_01_001 crossref_primary_10_7554_eLife_90253 crossref_primary_10_1038_s41477_020_0664_9 crossref_primary_10_1007_s00299_024_03159_1 crossref_primary_10_1016_j_hpj_2022_01_005 crossref_primary_10_3389_fpls_2023_1142866 crossref_primary_10_1016_j_tplants_2021_02_010 crossref_primary_10_1016_j_cub_2014_11_060 crossref_primary_10_1007_s00299_010_0984_8 crossref_primary_10_1016_j_pbi_2020_101993 crossref_primary_10_1126_sciadv_abk1151 crossref_primary_10_1126_science_1240561 crossref_primary_10_17660_ActaHortic_2020_1283_19 crossref_primary_10_7554_eLife_53944 crossref_primary_10_15252_embj_201796603 crossref_primary_10_3390_plants11030387 crossref_primary_10_1073_pnas_1103190108 crossref_primary_10_1111_pbi_13189 crossref_primary_10_1186_s12864_023_09456_5 crossref_primary_10_3389_fpls_2022_892055 crossref_primary_10_1016_j_copbio_2022_102877 crossref_primary_10_1021_acssynbio_3c00555 crossref_primary_10_1007_s10577_014_9426_8 crossref_primary_10_1016_j_jbiotec_2011_08_028 crossref_primary_10_1111_pbr_12590 crossref_primary_10_1111_jipb_13730 crossref_primary_10_3390_plants12030485 crossref_primary_10_3390_biom14060614 crossref_primary_10_15252_embj_201796735 crossref_primary_10_1111_pbi_13875 crossref_primary_10_3389_fpls_2019_00074 crossref_primary_10_1146_annurev_arplant_050312_120237 crossref_primary_10_1007_s10681_019_2435_0 crossref_primary_10_1007_s11427_015_4818_3 crossref_primary_10_1038_s41598_024_64432_7 crossref_primary_10_1007_s11240_020_01959_3 crossref_primary_10_1038_s41477_019_0576_8 crossref_primary_10_31857_S0016675823030098 crossref_primary_10_1007_s42535_024_00888_2 crossref_primary_10_1016_j_cub_2016_02_061 crossref_primary_10_1007_s00412_017_0640_y crossref_primary_10_1016_j_devcel_2016_03_021 crossref_primary_10_1111_ppa_12802 crossref_primary_10_1007_s13237_021_00348_1 crossref_primary_10_1007_s11240_023_02617_0 crossref_primary_10_1007_s13562_011_0038_5 crossref_primary_10_1186_s13007_019_0429_5 crossref_primary_10_1038_s41477_024_01630_1 crossref_primary_10_3390_ijms19123758 crossref_primary_10_1038_nature20827 crossref_primary_10_1007_s10577_016_9521_0 crossref_primary_10_3389_fpls_2023_1294551 crossref_primary_10_48130_SeedBio_2023_0010 crossref_primary_10_3389_fgeed_2022_937853 crossref_primary_10_1111_tpj_14518 crossref_primary_10_1007_s00497_015_0262_6 crossref_primary_10_1007_s00425_019_03099_1 crossref_primary_10_1111_j_1365_313X_2011_04544_x crossref_primary_10_1242_dev_052928 crossref_primary_10_1016_j_molp_2017_12_009 crossref_primary_10_1038_nbt_3057 crossref_primary_10_1371_journal_pone_0072431 crossref_primary_10_1111_pbi_13415 crossref_primary_10_3390_genes11070781 crossref_primary_10_1073_pnas_1110320108 crossref_primary_10_1111_nph_19414 crossref_primary_10_1093_jxb_eru354 crossref_primary_10_1186_s13007_023_01132_9 crossref_primary_10_48130_SeedBio_2023_0024 crossref_primary_10_7554_eLife_85832 crossref_primary_10_1007_s11427_015_4817_4 crossref_primary_10_3390_ijms241914659 crossref_primary_10_4161_cc_28296 crossref_primary_10_1007_s11033_020_05926_1 crossref_primary_10_1016_j_pbi_2019_02_008 crossref_primary_10_1016_j_tplants_2013_01_004 crossref_primary_10_3389_fbioe_2019_00031 crossref_primary_10_1270_jsbbs_15114 crossref_primary_10_1016_j_semcdb_2022_02_005 crossref_primary_10_1186_1756_8935_6_41 crossref_primary_10_1038_s41467_017_00969_8 crossref_primary_10_1038_s41587_020_0728_4 crossref_primary_10_1007_s10577_015_9477_5 crossref_primary_10_1007_s00122_011_1639_z crossref_primary_10_1093_plphys_kiad600 crossref_primary_10_1017_S0021859610000833 crossref_primary_10_1111_brv_12796 crossref_primary_10_1016_j_tibtech_2014_12_010 crossref_primary_10_1111_j_1365_313X_2011_04867_x crossref_primary_10_1093_pcp_pcae068 crossref_primary_10_3389_fpls_2023_1256338 crossref_primary_10_3389_fgeed_2022_825042 crossref_primary_10_1007_s00425_014_2233_9 crossref_primary_10_1371_journal_pbio_1001876 crossref_primary_10_7240_jeps_834978 crossref_primary_10_1007_s00018_016_2380_1 crossref_primary_10_1534_g3_116_031930 crossref_primary_10_1073_pnas_2201761119 crossref_primary_10_1038_s41477_022_01332_6 crossref_primary_10_1371_journal_pgen_1005494 crossref_primary_10_1016_j_biotechadv_2022_108007 crossref_primary_10_1093_hr_uhac150 crossref_primary_10_1371_journal_pone_0298072 crossref_primary_10_17660_ActaHortic_2019_1264_26 crossref_primary_10_3389_fpls_2022_864987 crossref_primary_10_1007_s11032_021_01204_5 crossref_primary_10_1007_s13237_013_0077_5 crossref_primary_10_1016_j_ijbiomac_2023_123401 crossref_primary_10_1111_nph_17744 crossref_primary_10_1007_s00709_019_01379_x crossref_primary_10_1007_s00497_024_00506_w crossref_primary_10_1038_s41598_023_28053_w crossref_primary_10_5010_JPB_2016_43_1_12 crossref_primary_10_1093_jxb_erq371 crossref_primary_10_1038_srep29017 crossref_primary_10_3390_plants9050614 crossref_primary_10_1007_s12041_019_1129_7 crossref_primary_10_1093_jxb_ers314 crossref_primary_10_1186_s13007_022_00938_3 crossref_primary_10_1038_nbt0510_423 crossref_primary_10_1038_s41477_024_01643_w crossref_primary_10_3390_biology10070685 crossref_primary_10_1111_j_1365_313X_2011_04664_x crossref_primary_10_1016_j_tig_2022_08_003 crossref_primary_10_1266_ggs_87_63 crossref_primary_10_1002_csc2_20261 crossref_primary_10_1007_s40011_017_0870_z crossref_primary_10_1002_bbb_1342 crossref_primary_10_1016_j_tibtech_2013_06_008 crossref_primary_10_1017_S1479262111000086 crossref_primary_10_1038_ng_2203 crossref_primary_10_1016_j_biotechadv_2015_07_001 crossref_primary_10_1016_j_copbio_2015_11_007 crossref_primary_10_1007_s00425_017_2772_y crossref_primary_10_1111_tpj_14990 crossref_primary_10_1038_s41587_019_0038_x crossref_primary_10_1111_jipb_13244 crossref_primary_10_1007_s00122_016_2788_x crossref_primary_10_1016_j_devcel_2016_03_009 crossref_primary_10_3390_plants8110487 crossref_primary_10_1038_news_2011_102 crossref_primary_10_1093_jxb_erac359 crossref_primary_10_1111_nph_17963 crossref_primary_10_1371_journal_pone_0247015 crossref_primary_10_1016_j_gde_2011_01_014 crossref_primary_10_1186_s12870_021_02981_z crossref_primary_10_1007_s10681_020_02609_7 crossref_primary_10_1186_s13072_024_00543_9 crossref_primary_10_1126_science_abi7489 crossref_primary_10_1134_S1022795418100058 crossref_primary_10_1093_plphys_kiae061 crossref_primary_10_3389_fpls_2017_01786 crossref_primary_10_1111_pbi_12879 crossref_primary_10_1534_genetics_114_172163 crossref_primary_10_3389_fpls_2015_01175 crossref_primary_10_1007_s13562_016_0368_4 crossref_primary_10_1101_gr_278409_123 crossref_primary_10_2135_cropsci2018_07_0461 crossref_primary_10_1007_s00412_011_0330_0 crossref_primary_10_18699_VJGB_22_85 crossref_primary_10_1007_s00122_023_04357_3 crossref_primary_10_1104_pp_110_166736 crossref_primary_10_1534_g3_112_002162 crossref_primary_10_1016_j_xplc_2022_100507 crossref_primary_10_3389_fpls_2016_00357 crossref_primary_10_3389_fpls_2014_00675 crossref_primary_10_3389_fpls_2023_1245433 crossref_primary_10_1007_s11240_014_0470_z crossref_primary_10_1371_journal_pgen_1003165 crossref_primary_10_1199_tab_0155 crossref_primary_10_1111_tpj_14606 crossref_primary_10_1007_s00425_019_03320_1 crossref_primary_10_1016_j_pbi_2012_03_013 crossref_primary_10_3390_plants12173118 crossref_primary_10_1266_ggs_86_357 crossref_primary_10_1007_s00122_018_3261_9 crossref_primary_10_1038_s41477_019_0575_9 crossref_primary_10_1534_genetics_111_133066 crossref_primary_10_1016_j_cpb_2014_09_002 crossref_primary_10_3390_cimb45100504 crossref_primary_10_1007_s11240_013_0303_5 crossref_primary_10_1007_s11240_020_01831_4 crossref_primary_10_3390_agronomy14020375 crossref_primary_10_4236_as_2019_107075 crossref_primary_10_1146_annurev_arplant_042916_040820 crossref_primary_10_1159_000363724 crossref_primary_10_1534_genetics_114_163105 crossref_primary_10_1007_s11240_019_01665_9 crossref_primary_10_3390_agronomy10091441 crossref_primary_10_1016_j_xplc_2023_100637 crossref_primary_10_1111_tpj_15233 crossref_primary_10_1104_pp_111_189845 crossref_primary_10_1007_s00122_019_03433_x crossref_primary_10_1111_nph_18753 crossref_primary_10_1134_S1022795414120114 crossref_primary_10_1007_s12042_012_9094_9 crossref_primary_10_1007_s00709_023_01837_7 crossref_primary_10_1007_s42994_019_00001_1 crossref_primary_10_1093_nar_gky209 crossref_primary_10_1038_s41477_024_01656_5 crossref_primary_10_1093_jxb_erab161 crossref_primary_10_1007_s00122_022_04220_x crossref_primary_10_1186_1746_4811_9_43 crossref_primary_10_1371_journal_pgen_1009779 crossref_primary_10_1016_j_gde_2023_102101 crossref_primary_10_3389_fpls_2018_01339 crossref_primary_10_1038_s41477_020_0658_7 crossref_primary_10_1073_pnas_1117277109 crossref_primary_10_1371_journal_pgen_1009418 crossref_primary_10_3389_fpls_2015_00147 crossref_primary_10_1016_j_tig_2019_12_006 crossref_primary_10_1134_S1022795417090046 crossref_primary_10_3389_fpls_2016_00979 crossref_primary_10_54112_bbasr_v2021i1_36 crossref_primary_10_1111_pbi_13359 crossref_primary_10_1038_s41477_023_01370_8 crossref_primary_10_1038_s41437_024_00705_1 crossref_primary_10_1371_journal_pone_0139672 crossref_primary_10_3390_agronomy13030676 crossref_primary_10_1093_pcp_pcae030 crossref_primary_10_1007_s00497_013_0222_y crossref_primary_10_1007_s00412_023_00788_5 crossref_primary_10_1134_S0026893322060127 crossref_primary_10_3390_genes12111760 crossref_primary_10_1111_tpj_13740 crossref_primary_10_1146_annurev_arplant_043014_114714 crossref_primary_10_1007_s13205_023_03857_9 crossref_primary_10_1016_j_pbi_2011_10_002 crossref_primary_10_1105_tpc_111_086017 crossref_primary_10_1111_pbi_13365 crossref_primary_10_1186_s12860_019_0186_3 crossref_primary_10_1371_journal_pone_0120604 crossref_primary_10_18619_2072_9146_2021_4_11_26 crossref_primary_10_1016_j_molp_2019_03_007 crossref_primary_10_1016_j_ydbio_2016_07_003 crossref_primary_10_1016_j_molp_2019_03_006 crossref_primary_10_29133_yyutbd_787094 crossref_primary_10_1007_s10577_014_9422_z crossref_primary_10_1007_s42976_023_00422_1 crossref_primary_10_1371_journal_pone_0098504 crossref_primary_10_1038_s41598_020_64977_3 crossref_primary_10_1038_s41598_018_26168_z crossref_primary_10_3390_genes11020134 crossref_primary_10_1371_journal_pgen_1005839 crossref_primary_10_9787_PBB_2019_7_2_95 crossref_primary_10_1104_pp_112_213256 crossref_primary_10_1007_s00425_022_03877_4 crossref_primary_10_1007_s42994_022_00080_7 crossref_primary_10_1038_s41477_018_0193_y crossref_primary_10_1128_EC_00002_13 crossref_primary_10_1134_S1022795422040044 crossref_primary_10_1038_s41556_022_00897_w crossref_primary_10_1007_s13580_023_00567_2 crossref_primary_10_1371_journal_pgen_1004970 crossref_primary_10_7554_eLife_01426 crossref_primary_10_1016_j_semcdb_2013_03_006 crossref_primary_10_1534_genetics_119_302843 crossref_primary_10_1007_s00497_013_0223_x crossref_primary_10_1007_s12033_017_0027_6 crossref_primary_10_1007_s00497_014_0251_1 crossref_primary_10_1534_genetics_110_120337 crossref_primary_10_1007_s11816_024_00898_1 crossref_primary_10_1016_j_molp_2024_06_005 crossref_primary_10_3389_fpls_2019_00928 crossref_primary_10_1007_s00299_020_02605_0 crossref_primary_10_1186_gb_2013_14_1_103 crossref_primary_10_1016_j_pbi_2014_05_009 crossref_primary_10_3390_agriculture12101595 |
Cites_doi | 10.1038/204497a0 10.1139/g89-537 10.1111/j.1365-313X.2006.02670.x 10.1007/BF00026787 10.1126/science.166.3911.1422 10.1016/S0044-328X(80)80084-5 10.1105/tpc.010425 10.1016/j.gde.2005.01.004 10.1086/282098 10.1111/j.1601-5223.1980.tb01375.x 10.2135/cropsci2000.4061742x 10.1104/pp.106.085274 10.1038/256410a0 10.1007/BF02858912 10.2135/cropsci2006.07.0489tpg 10.1016/j.tplants.2007.06.007 10.1007/BF00285861 10.1105/tpc.010496 10.1007/BF02261778 10.1105/tpc.106.047506 10.1105/tpc.018937 10.1038/1801209a0 10.1242/dev.127.24.5523 10.1007/978-1-4020-8854-4_1 10.1126/science.206.4418.585 10.1016/j.cub.2006.05.045 10.1038/225874a0 10.1038/166795a0 10.1007/BF00292839 10.1534/genetics.104.037788 10.1126/science.1062939 10.1002/9780470650301.ch3 10.1073/pnas.10.4.121 10.1007/BF00273874 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited. All rights reserved 2010 2015 INIST-CNRS COPYRIGHT 2010 Nature Publishing Group Copyright Nature Publishing Group Mar 25, 2010 |
Copyright_xml | – notice: Macmillan Publishers Limited. All rights reserved 2010 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 25, 2010 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature08842 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection Homework Central AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Psychology Journals ProQuest research library Science Journals (ProQuest Database) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic University of Michigan Technology Collection Technology Research Database SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 618 |
ExternalDocumentID | 2003891501 A222409672 10_1038_nature08842 20336146 22524847 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .HR .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3O- 3V. 4.4 41X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP ABAWZ ABDBF ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AFFDN AFFNX AFKRA AFLOW AFRAH AFRQD AFSHS AGAYW AGCDD AGEZK AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B-7 B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESTFP ESX EX3 EXGXG F20 F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YNT YOC YQT YR2 YXB YYP YZZ ZCA ZE2 ZHY ZKB ~02 ~7V ~88 ~8M ~G0 ~KM .GJ 08P 08R 0B8 1CY 1VW 354 3EH 41~ 42X 663 68V 79B 9M8 AADEA AADWK AAEXX AAGJQ AAJMP AAJWC AAJYS AAPBV AAUGY AAVBQ AAYJO AAYOK AAZLF ABEEJ ABEFU ABGFU ABGIJ ABPTK ABTAH ACBMV ACBNA ACBRV ACBTR ACBYP ACIGE ACTDY ACTTH ACVWB ADFPY ADMDM ADQMX ADRHT ADZGE AEDAW AEFTE AETEA AFDAS AFHKK AFMIJ AFNRJ AGGBP AHGBK AJDOV AJUXI AMRJV BKOMP DB5 FA8 FAC G8K HG6 I-U IQODW J5H MVM N4W PV9 QS- R4F RHI SKT TUD U1R UAO UBY UHB USG VOH X7L XFK XOL YJ6 YQI YQJ YV5 YXA YYQ ZA5 ZCG ZGI ZKG ZY4 AAYZH CGR CUY CVF ECM EIF NPM AAYXX AFBBN CITATION LGEZI LOTEE NADUK NXXTH ODYON AEQTP AGPPL AHPSJ 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PQEST PQUKI Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c692t-2285f0901734f3f355c59a977275c40e6f9d6139f4a9d891fb8ce12abe7007393 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 |
IngestDate | Fri Oct 25 04:41:14 EDT 2024 Thu Oct 10 21:12:47 EDT 2024 Thu Feb 22 23:48:44 EST 2024 Fri Feb 02 05:09:47 EST 2024 Tue Dec 12 21:21:20 EST 2023 Tue Nov 12 22:51:00 EST 2024 Thu Aug 01 20:24:38 EDT 2024 Thu Aug 01 19:58:15 EDT 2024 Thu Sep 26 18:40:10 EDT 2024 Tue Oct 15 23:38:05 EDT 2024 Sun Oct 29 17:09:37 EDT 2023 Fri Oct 11 20:36:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7288 |
Keywords | Cell culture Parent Eukaryote Chromosome Homozygosity Wild type Protein Heterozygosity Arabidopsis thaliana Haploidy Diploidy Centromere Cruciferae Dicotyledones Gametophyte Angiospermae Inbreeding Spermatophyta Inheritance(genetics) Experimental plant Genome |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-2285f0901734f3f355c59a977275c40e6f9d6139f4a9d891fb8ce12abe7007393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20336146 |
PQID | 204474224 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_733810232 proquest_journals_204474224 gale_infotracmisc_A222409672 gale_infotracgeneralonefile_A222409672 gale_infotraccpiq_222409672 gale_infotracacademiconefile_A222409672 gale_incontextgauss_ISR_A222409672 gale_incontextgauss_ATWCN_A222409672 crossref_primary_10_1038_nature08842 pubmed_primary_20336146 pascalfrancis_primary_22524847 springer_journals_10_1038_nature08842 |
PublicationCentury | 2000 |
PublicationDate | 2010-03-25 |
PublicationDateYYYYMMDD | 2010-03-25 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2010 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | AvetisovVAProduction of haploids during in vitro culturing of Arabidopsis thaliana (L.) Heynh anthers and isolated protoplastsGenetika1976121725 BainsGSHowardHWHaploid plants of Solanum demissumNature19501667951950Natur.166..795B1:STN:280:DyaG3M%2FgvFyisw%3D%3D10.1038/166795a014780261 LaurieDABennettMDThe timing of chromosome elimination in hexaploid wheat x maize crossesGenome19893295396110.1139/g89-537 WedzonyMAdvances in Haploid Production in Higher Plants200913310.1007/978-1-4020-8854-4_1 BennettMDFinchRABarclayIRThe time rate and mechanism of chromosome elimination in Hordeum hybridsChromosoma19765417520010.1007/BF00292839 ForsterBPHeberle-BorsEKashaKJTouraevAThe resurgence of haploids in higher plantsTrends Plant Sci.2007123683751:CAS:528:DC%2BD2sXosFGqu7s%3D10.1016/j.tplants.2007.06.00717629539 ComaiLHenikoffSTILLING: practical single-nucleotide mutation discoveryPlant J.2006456846941:CAS:528:DC%2BD28XislWitL4%3D10.1111/j.1365-313X.2006.02670.x16441355 HenryIMAneuploidy and genetic variation in the Arabidopsis thaliana triploid responseGenetics2005170197919881:CAS:528:DC%2BD2MXhtFeis7%2FF10.1534/genetics.104.037788159443631449780 OriNEshedYChuckGBowmanJLHakeSMechanisms that control knox gene expression in the Arabidopsis shootDevelopment2000127552355321:CAS:528:DC%2BD3MXltFWkug%3D%3D11076771 HenikoffSAhmadKMalikHSThe centromere paradox: stable inheritance with rapidly evolving DNAScience2001293109811021:CAS:528:DC%2BD3MXmtVWku7o%3D10.1126/science.106293911498581 HagbergAHagbergGHigh frequency of spontaneous haploids in the progeny of an induced mutation in barleyHereditas19809334134310.1111/j.1601-5223.1980.tb01375.x HougasHWPeloquinSJA haploid plant of the potato variety KatahdinNature1957180120912101957Natur.180.1209H10.1038/1801209a0 FinchRATissue-specific elimination of alternative whole parental genomes in one barley hybridChromosoma19838838639310.1007/BF00285861 KermicleJLAndrogenesis conditioned by a mutation in maizeScience1969166142214241969Sci...166.1422K1:STN:280:DC%2BC3cvgtVOksQ%3D%3D10.1126/science.166.3911.142217744972 EvansMMThe indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf developmentPlant Cell20071946621:CAS:528:DC%2BD2sXjtFynsbs%3D10.1105/tpc.106.047506172091261820972 GuhaSMaheshwariSCIn vitro production of embryos from anthers of DaturaNature19642044971964Natur.204..497G10.1038/204497a0 SchollRAmosJAIsolation of doubled-haploid plants through anther cultureZ. Pflanzenphysiol.19809640741410.1016/S0044-328X(80)80084-5 BarclayIRHigh frequencies of haploid production in wheat (Triticum aestivum) by chromosome eliminationNature19752564104111975Natur.256..410B10.1038/256410a0 BushellCSpielmanMScottRJThe basis of natural and artificial postzygotic hybridization barriers in Arabidopsis speciesPlant Cell200315143014421:CAS:528:DC%2BD3sXkvVektrg%3D10.1105/tpc.01049612782734156377 BurkLGGerstelDUWernsmanEAMaternal haploids of Nicotiana tabacum L. from seedScience19792065851979Sci...206..585B1:STN:280:DC%2BC3cvis1Gqtg%3D%3D10.1126/science.206.4418.58517759429 KashaKJKaoKNHigh frequency haploid production in barley (Hordeum vulgare L.)Nature19702258748761970Natur.225..874K1:STN:280:DC%2BD2MzpslWltQ%3D%3D10.1038/225874a016056782 JauharPPDogramaci-AltuntepeMPetersonTSAlmouslemABSeedset on synthetic haploids of durum wheat: cytological and molecular investigationsCrop Sci.2000401742174910.2135/cropsci2000.4061742x JinWMaize centromeres: organization and functional adaptation in the genetic background of oatPlant Cell2004165715811:CAS:528:DC%2BD2cXisFGkt78%3D10.1105/tpc.01893714973167385273 RossKJFranszPJonesGHA light microscopic atlas of meiosis in Arabidopsis thalianaChromosome Res.199645075161:CAS:528:DyaK28XntlSktrw%3D10.1007/BF022617788939362 ClausenREMannMCInheritance of Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progeniesProc. Natl Acad. Sci. USA1924101211241924PNAS...10..121C1:STN:280:DC%2BD28zhs1Cruw%3D%3D10.1073/pnas.10.4.121165767971085570 ChaseSSMonoploids and monoploid-derivatives of maize (Zea mays L.)Bot. Rev.19693511716810.1007/BF02858912 JosefssonCDilkesBComaiLParent-dependent loss of gene silencing during interspecies hybridizationCurr. Biol.200616132213281:CAS:528:DC%2BD28XmsFSltLg%3D10.1016/j.cub.2006.05.04516824920 UdallJAWendelJFPolyploidy and crop improvementCrop Sci.200646S3S1410.2135/cropsci2006.07.0489tpg FrancisKELamSYCopenhaverGPSeparation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase genePlant Physiol.2006142100410131:CAS:528:DC%2BD28Xht1ejurfM10.1104/pp.106.085274169805651630721 HeppichSTunnerHGGreilhuberJPremeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculentaTheor. Appl. Genet.1982611011041:STN:280:DC%2BC2c3gsVSisA%3D%3D10.1007/BF0027387424270328 PaulWHodgeRSmarttSDraperJScottRThe isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 genePlant Mol. Biol.1992196116221:CAS:528:DyaK3sXisV2is7g%3D10.1007/BF000267871627774 Dunwell, J. M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. (in the press) HenikoffSDalalYCentromeric chromatin: what makes it unique?Curr. Opin. Genet. Dev.2005151771841:CAS:528:DC%2BD2MXis1Kmu7k%3D10.1016/j.gde.2005.01.00415797200 CoeEHA line of maize with high haploid frequencyAm. Nat.19599338138210.1086/282098 TalbertPBMasuelliRTyagiAPComaiLHenikoffSCentromeric localization and adaptive evolution of an Arabidopsis histone H3 variantPlant Cell200214105310661:CAS:528:DC%2BD38XksVGqtr8%3D10.1105/tpc.01042512034896150606 ForsterBPThomasWTBPlant Breeding Reviews20055788 1627774 - Plant Mol Biol. 1992 Jul;19(4):611-22 16441355 - Plant J. 2006 Feb;45(4):684-94 16576797 - Proc Natl Acad Sci U S A. 1924 Apr;10(4):121-4 15944363 - Genetics. 2005 Aug;170(4):1979-88 17759429 - Science. 1979 Nov 2;206(4418):585 11076771 - Development. 2000 Dec;127(24):5523-32 11498581 - Science. 2001 Aug 10;293(5532):1098-102 14973167 - Plant Cell. 2004 Mar;16(3):571-81 12782734 - Plant Cell. 2003 Jun;15(6):1430-42 16980565 - Plant Physiol. 2006 Nov;142(3):1004-13 17209126 - Plant Cell. 2007 Jan;19(1):46-62 16056782 - Nature. 1970 Feb 28;225(5235):874-6 14780261 - Nature. 1950 Nov 4;166(4227):795 12034896 - Plant Cell. 2002 May;14(5):1053-66 15797200 - Curr Opin Genet Dev. 2005 Apr;15(2):177-84 20233334 - Plant Biotechnol J. 2010 May 1;8(4):377-424 17744972 - Science. 1969 Dec 12;166(3911):1422-4 8939362 - Chromosome Res. 1996 Nov;4(7):507-16 24270328 - Theor Appl Genet. 1982 Jun;61(2):101-4 17629539 - Trends Plant Sci. 2007 Aug;12(8):368-75 16824920 - Curr Biol. 2006 Jul 11;16(13):1322-8 C Bushell (BFnature08842_CR33) 2003; 15 IM Henry (BFnature08842_CR17) 2005; 170 S Heppich (BFnature08842_CR23) 1982; 61 MM Evans (BFnature08842_CR28) 2007; 19 PB Talbert (BFnature08842_CR15) 2002; 14 KE Francis (BFnature08842_CR32) 2006; 142 KJ Kasha (BFnature08842_CR11) 1970; 225 EH Coe (BFnature08842_CR25) 1959; 93 SS Chase (BFnature08842_CR18) 1969; 35 M Wedzony (BFnature08842_CR5) 2009 MD Bennett (BFnature08842_CR12) 1976; 54 S Guha (BFnature08842_CR4) 1964; 204 GS Bains (BFnature08842_CR6) 1950; 166 VA Avetisov (BFnature08842_CR20) 1976; 12 C Josefsson (BFnature08842_CR36) 2006; 16 HW Hougas (BFnature08842_CR10) 1957; 180 KJ Ross (BFnature08842_CR35) 1996; 4 BP Forster (BFnature08842_CR3) 2005 LG Burk (BFnature08842_CR8) 1979; 206 PP Jauhar (BFnature08842_CR19) 2000; 40 A Hagberg (BFnature08842_CR26) 1980; 93 S Henikoff (BFnature08842_CR30) 2001; 293 DA Laurie (BFnature08842_CR14) 1989; 32 RA Finch (BFnature08842_CR13) 1983; 88 W Jin (BFnature08842_CR24) 2004; 16 N Ori (BFnature08842_CR29) 2000; 127 IR Barclay (BFnature08842_CR7) 1975; 256 R Scholl (BFnature08842_CR21) 1980; 96 JA Udall (BFnature08842_CR22) 2006; 46 S Henikoff (BFnature08842_CR16) 2005; 15 L Comai (BFnature08842_CR31) 2006; 45 BFnature08842_CR1 JL Kermicle (BFnature08842_CR27) 1969; 166 W Paul (BFnature08842_CR34) 1992; 19 RE Clausen (BFnature08842_CR9) 1924; 10 BP Forster (BFnature08842_CR2) 2007; 12 |
References_xml | – volume: 204 start-page: 497 year: 1964 ident: BFnature08842_CR4 publication-title: Nature doi: 10.1038/204497a0 contributor: fullname: S Guha – volume: 32 start-page: 953 year: 1989 ident: BFnature08842_CR14 publication-title: Genome doi: 10.1139/g89-537 contributor: fullname: DA Laurie – volume: 45 start-page: 684 year: 2006 ident: BFnature08842_CR31 publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02670.x contributor: fullname: L Comai – volume: 19 start-page: 611 year: 1992 ident: BFnature08842_CR34 publication-title: Plant Mol. Biol. doi: 10.1007/BF00026787 contributor: fullname: W Paul – volume: 166 start-page: 1422 year: 1969 ident: BFnature08842_CR27 publication-title: Science doi: 10.1126/science.166.3911.1422 contributor: fullname: JL Kermicle – volume: 96 start-page: 407 year: 1980 ident: BFnature08842_CR21 publication-title: Z. Pflanzenphysiol. doi: 10.1016/S0044-328X(80)80084-5 contributor: fullname: R Scholl – volume: 14 start-page: 1053 year: 2002 ident: BFnature08842_CR15 publication-title: Plant Cell doi: 10.1105/tpc.010425 contributor: fullname: PB Talbert – volume: 15 start-page: 177 year: 2005 ident: BFnature08842_CR16 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2005.01.004 contributor: fullname: S Henikoff – volume: 93 start-page: 381 year: 1959 ident: BFnature08842_CR25 publication-title: Am. Nat. doi: 10.1086/282098 contributor: fullname: EH Coe – volume: 93 start-page: 341 year: 1980 ident: BFnature08842_CR26 publication-title: Hereditas doi: 10.1111/j.1601-5223.1980.tb01375.x contributor: fullname: A Hagberg – volume: 40 start-page: 1742 year: 2000 ident: BFnature08842_CR19 publication-title: Crop Sci. doi: 10.2135/cropsci2000.4061742x contributor: fullname: PP Jauhar – volume: 142 start-page: 1004 year: 2006 ident: BFnature08842_CR32 publication-title: Plant Physiol. doi: 10.1104/pp.106.085274 contributor: fullname: KE Francis – volume: 256 start-page: 410 year: 1975 ident: BFnature08842_CR7 publication-title: Nature doi: 10.1038/256410a0 contributor: fullname: IR Barclay – volume: 35 start-page: 117 year: 1969 ident: BFnature08842_CR18 publication-title: Bot. Rev. doi: 10.1007/BF02858912 contributor: fullname: SS Chase – volume: 12 start-page: 17 year: 1976 ident: BFnature08842_CR20 publication-title: Genetika contributor: fullname: VA Avetisov – volume: 46 start-page: S3 year: 2006 ident: BFnature08842_CR22 publication-title: Crop Sci. doi: 10.2135/cropsci2006.07.0489tpg contributor: fullname: JA Udall – volume: 12 start-page: 368 year: 2007 ident: BFnature08842_CR2 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2007.06.007 contributor: fullname: BP Forster – volume: 88 start-page: 386 year: 1983 ident: BFnature08842_CR13 publication-title: Chromosoma doi: 10.1007/BF00285861 contributor: fullname: RA Finch – volume: 15 start-page: 1430 year: 2003 ident: BFnature08842_CR33 publication-title: Plant Cell doi: 10.1105/tpc.010496 contributor: fullname: C Bushell – volume: 4 start-page: 507 year: 1996 ident: BFnature08842_CR35 publication-title: Chromosome Res. doi: 10.1007/BF02261778 contributor: fullname: KJ Ross – volume: 19 start-page: 46 year: 2007 ident: BFnature08842_CR28 publication-title: Plant Cell doi: 10.1105/tpc.106.047506 contributor: fullname: MM Evans – volume: 16 start-page: 571 year: 2004 ident: BFnature08842_CR24 publication-title: Plant Cell doi: 10.1105/tpc.018937 contributor: fullname: W Jin – volume: 180 start-page: 1209 year: 1957 ident: BFnature08842_CR10 publication-title: Nature doi: 10.1038/1801209a0 contributor: fullname: HW Hougas – volume: 127 start-page: 5523 year: 2000 ident: BFnature08842_CR29 publication-title: Development doi: 10.1242/dev.127.24.5523 contributor: fullname: N Ori – start-page: 1 volume-title: Advances in Haploid Production in Higher Plants year: 2009 ident: BFnature08842_CR5 doi: 10.1007/978-1-4020-8854-4_1 contributor: fullname: M Wedzony – volume: 206 start-page: 585 year: 1979 ident: BFnature08842_CR8 publication-title: Science doi: 10.1126/science.206.4418.585 contributor: fullname: LG Burk – volume: 16 start-page: 1322 year: 2006 ident: BFnature08842_CR36 publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.05.045 contributor: fullname: C Josefsson – volume: 225 start-page: 874 year: 1970 ident: BFnature08842_CR11 publication-title: Nature doi: 10.1038/225874a0 contributor: fullname: KJ Kasha – ident: BFnature08842_CR1 – volume: 166 start-page: 795 year: 1950 ident: BFnature08842_CR6 publication-title: Nature doi: 10.1038/166795a0 contributor: fullname: GS Bains – volume: 54 start-page: 175 year: 1976 ident: BFnature08842_CR12 publication-title: Chromosoma doi: 10.1007/BF00292839 contributor: fullname: MD Bennett – volume: 170 start-page: 1979 year: 2005 ident: BFnature08842_CR17 publication-title: Genetics doi: 10.1534/genetics.104.037788 contributor: fullname: IM Henry – volume: 293 start-page: 1098 year: 2001 ident: BFnature08842_CR30 publication-title: Science doi: 10.1126/science.1062939 contributor: fullname: S Henikoff – start-page: 57 volume-title: Plant Breeding Reviews year: 2005 ident: BFnature08842_CR3 doi: 10.1002/9780470650301.ch3 contributor: fullname: BP Forster – volume: 10 start-page: 121 year: 1924 ident: BFnature08842_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.10.4.121 contributor: fullname: RE Clausen – volume: 61 start-page: 101 year: 1982 ident: BFnature08842_CR23 publication-title: Theor. Appl. Genet. doi: 10.1007/BF00273874 contributor: fullname: S Heppich |
SSID | ssj0005174 |
Score | 2.5473716 |
Snippet | When plants go halves: haploids made easy
Haploid plants, inheriting chromosomes from one parent only, have important advantages in genetic research but also... Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous... Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding (1-3). Haploids generated from a heterozygous... |
SourceID | proquest gale crossref pubmed pascalfrancis springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 615 |
SubjectTerms | 631/1647/334/2244/710 631/449/2491 631/449/448/1358 631/80/103/90 Agronomy. Soil science and plant productions Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis thaliana Biological and medical sciences Cell Nucleus - genetics Centromere - metabolism Centromeres Chromosomes Crosses, Genetic Deoxyribonucleic acid Diploidy DNA Embryos Fundamental and applied biological sciences. Psychology Generalities. Genetics. Plant material Genetic aspects Genetic resources, diversity Genetics Genetics and breeding of economic plants Genome, Plant - genetics Genotypes Haploidy Histones - genetics Histones - metabolism Humanities and Social Sciences Inbreeding Interspecific and intergeneric hybridization, introgressions letter Methods multidisciplinary Physiological aspects Plant breeding Plant breeding: fundamental aspects and methodology Plant material Plant species Proteins Science Science (multidisciplinary) Structure |
Title | Haploid plants produced by centromere-mediated genome elimination |
URI | https://link.springer.com/article/10.1038/nature08842 https://www.ncbi.nlm.nih.gov/pubmed/20336146 https://www.proquest.com/docview/204474224 https://search.proquest.com/docview/733810232 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2Awxtp9Ze2CGN3Xg5gty5b8NLLQLBssjK5leROyPkohjd04edh_v5OtJPUW9uIXHYc4ne5-sk6_Q-jUpipRaaSJSzNLGDWWKEctKaxJtWdXcU0Xhe-TbHzJvk3TaajNqUNZ5TomNoHalNr_I4dDOmNwjKPsU3VLfNMof7kaOmjsoYOYcu7PXmL0ZVvh8RcJc3ieFyXiY8uaCTuM0U5CCmH5YaVqMJFre1vsAp__XJw2-Wj0GD0KQBIP2pU_RPfs_Ajdbwo6dX2EDsOmrfH7wCz94QkajFU1K68Nrma-_AVXDd2rNbj4jZsqzfLGLixpXpMAEsWewPXGYjtrWn_5JXyKLkdnF8MxCT0UiM5yuiSUitRFkPR5wlziAF3oNFcA-ihPNYts5nIDGT13TOVG5LErhLYxVYXlLVveM7Q_L-f2BcL-j06hheFaRMxAqhfaaR4XOS0M5HnRQ6drQ8qqpcqQzRV3IuQde4OYN7L05BNzX91ypVZ1LQcXv4YTOaAeYuQZB7HXu8S-_jzvCL0LQq5cLpRW4U0BTNjTWnUkjzuSurq-lXdG33ZGr9qF2aXmpCMIe1F3hvsdz9nYAaImZQAEYBprV5IhWNRy49o9hDejXrOvf5vbclVLnngmNkC_PfS8dcCt6ihJAGNlPfRm7ZFb1Tvs__K_UzhGD9r6iITQ9ATtLxcr-wpg17Looz0-5fAVw7jfbLQ-Ovh8Nvlx_gf9Ciwo |
link.rule.ids | 315,783,787,12068,12235,12777,21400,27936,27937,31731,31732,33278,33279,33385,33386,33756,33757,43322,43591,43612,43817,74073,74342,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgCIGE0DZuZRcsNG4PFqnjJM7TVFVMHWx9gE7szXJ8mSZ1Sda0D_x7jh23a0bFs48s6_hcPtvH30HoyCQylkmkiE1SQxjVhkhLDSmMTpRjV7G-i8L5OB1dsO-XyWWozWlCWeUyJvpArSvl7sjhkM4YHOMoO65viWsa5R5XQweNh-gRZP3c-SUfrlV43CNhDt_zoph_bVkzwcMY7SSkEJaf1bIBFdm2t8Um8PnPw6nPRyfb6HkAknjQ7vwOemDKXfTYF3SqZhftBKdt8OfALP3lBRqMZD2trjWup678Bdee7tVoXPzBvkqzujEzQ_xvEkCi2BG43hhspr71l9vCl-ji5NtkOCKhhwJRaU7nhFKe2AiSfhYzG1tAFyrJJYA-miWKRSa1uYaMnlsmc83zvi24Mn0qC5O1bHmv0FZZleYNwu5Gp1BcZ4pHTEOq58qqrF_ktNCQ53kPHS0VKeqWKkP4J-6YizV9g5hTsnDkE6WrbrmSi6YRg8nv4VgMqIMYeZqB2PtNYqe_fnaEPgUhW81nUsnwpwAW7GitOpJ7HUlVX9-KtdGPndGrdmM2TbPfEQRfVJ3hw47lrPQAUZMyAAKwjKUpiRAsGrEy7R7Cq1E3s6t_K021aEQWOyY2QL899Lo1wLupozgGjJX20IelRd5NvUH_b_-7hHfoyWhyfibOTsc_9tDTtlYiJjTZR1vz2cIcAASbF4fe0f4CX7wrkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgCDQJITYuKxvDQuP2YC11nMR5QlWh6rhUCDZtb5bjyzSpS7KmfeDfc-y4XQMVzz6yrONz-WwffwehI5PIWCaRIjZJDWFUGyItNaQwOlGOXcX6LgrfJ-n4jH25SC4CpVATyiqXMdEHal0pd0cOh3TG4BhH2bENVRE_Po0-1jfENZByD62hm8ZddA-SInPNDPhwrdrjL0Lm8FUvivlxy6AJ3sZoJzmFEP2wlg2oy7Z9LjYB0X8eUX1uGj1GjwKoxIPWCnbQHVPuovu-uFM1u2gnOHCD3weW6Q9P0GAs62l1pXE9daUwuPbUr0bj4jf2FZvVtZkZ4n-WACrFjsz12mAz9W3A3HY-RWejz6fDMQn9FIhKczonlPLERgAAspjZ2ALSUEkuAQDSLFEsMqnNNWT33DKZa573bcGV6VNZmKxlznuGtsqqNHsIu9udQnGdKR4xDWmfK6uyfpHTQkPO5z10tFSkqFvaDOGfu2Mu1vQNYk7JwhFRlG5PL-WiacTg9Hw4EQPq4EaeZiD2epPYya-fHaF3QchW85lUMvwvgAU7iquO5H5HUtVXN2Jt9G1n9LLdmE3THHQEwS9VZ_iwYzkrPUAEpQxAASxjaUoiBI5GrMy8h_Bq1M3sauFKUy0akcWOlQ2QcA89bw3wduoojgFvpT30ZmmRt1Nv0P-L_y7hFXoAPia-nUy-7qPttmwiJjQ5QFvz2cK8BDQ2Lw69n_0Brf4vvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haploid+plants+produced+by+centromere-mediated+genome+elimination&rft.jtitle=Nature+%28London%29&rft.au=Ravi%2C+Maruthachalam&rft.au=Chan%2C+Simon+W+L&rft.date=2010-03-25&rft.eissn=1476-4687&rft.volume=464&rft.issue=7288&rft.spage=615&rft.epage=618&rft_id=info:doi/10.1038%2Fnature08842&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |