Simultaneous EEG-fMRI during a Working Memory Task: Modulations in Low and High Frequency Bands
EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found t...
Saved in:
Published in | PloS one Vol. 5; no. 4; p. e10298 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
22.04.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.
In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.
We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.
We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM. |
---|---|
AbstractList | EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM. BACKGROUND: EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. METHODOLOGY: In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. PRINCIPAL FINDINGS: We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects. CONCLUSIONS: We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM. EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects. We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM. Background EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. Methodology In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5–7 Hz), alpha1 (8–10), alpha2 (10–12 Hz), beta1 (13–20), beta2 (20–30 Hz), and gamma (30–40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. Principal Findings We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and—with one exception—beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects. Conclusions We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM. EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.BACKGROUNDEEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.METHODOLOGYIn 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.PRINCIPAL FINDINGSWe found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.CONCLUSIONSWe conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM. |
Audience | Academic |
Author | Michels, Lars Jeanmonod, Daniel Bucher, Kerstin Klaver, Peter Brandeis, Daniel Martin, Ernst Lüchinger, Rafael |
AuthorAffiliation | 5 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany 1 Functional Neurosurgery, University Hospital Zürich, Zürich, Switzerland Ecole Polytechnique Fédérale de Lausanne, Switzerland 2 MR-Center, University Children's Hospital, Zürich, Switzerland 3 Department of Child and Adolescent Psychiatry, University of Zürich, Zürich, Switzerland 4 Zürich Center for Integrative Human Physiology (ZIHP), Zürich, Switzerland |
AuthorAffiliation_xml | – name: 5 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany – name: 1 Functional Neurosurgery, University Hospital Zürich, Zürich, Switzerland – name: 2 MR-Center, University Children's Hospital, Zürich, Switzerland – name: Ecole Polytechnique Fédérale de Lausanne, Switzerland – name: 3 Department of Child and Adolescent Psychiatry, University of Zürich, Zürich, Switzerland – name: 4 Zürich Center for Integrative Human Physiology (ZIHP), Zürich, Switzerland |
Author_xml | – sequence: 1 givenname: Lars surname: Michels fullname: Michels, Lars – sequence: 2 givenname: Kerstin surname: Bucher fullname: Bucher, Kerstin – sequence: 3 givenname: Rafael surname: Lüchinger fullname: Lüchinger, Rafael – sequence: 4 givenname: Peter surname: Klaver fullname: Klaver, Peter – sequence: 5 givenname: Ernst surname: Martin fullname: Martin, Ernst – sequence: 6 givenname: Daniel surname: Jeanmonod fullname: Jeanmonod, Daniel – sequence: 7 givenname: Daniel surname: Brandeis fullname: Brandeis, Daniel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20421978$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11r2zAUhs3oWD-2fzA2w2BjF8n0YUtyLwZdSdtAQqEN26WQJdlRa1uZZG_Lv5-SuCUuZQxfWBw_7yvp9TnH0UFjGx1FbyEYQ0zhlzvbuUZU41UojwGAAGXsRXQEM4xGBAF8sLc-jI69vwMgxYyQV9EhAgmCGWVHEb81dVe1otG28_Fkcjkq5jfTWHXONGUs4h_W3W9Wc11bt44Xwt-fxnOrukq0xjY-Nk08s79j0aj4ypTL-MLpn51u5Dr-Fmr-dfSyEJXXb_r3SbS4mCzOr0az68vp-dlsJEkG25ESIlVaY0RlhgukNEioyhkjSKJC61xhJTOJc00FUqQAikCioEpBRinMET6J3u9sV5X1vI_Gc4hYliSYJTgQ0x2hrLjjK2dq4dbcCsO3BetKLlxrZKV5gUKUrMgEJXnCSMI0UglkNCGYagZg8Pra79bltVZSN60T1cB0-KUxS17aXxyxlJE0CwafegNnQ1q-5bXxUlfV7j9winEGCYSbY394Qj5_uZ4qRTi_aQobtpUbT36WUMwySmAaqPEzVHiUro0MbVSYUB8IPg8EgWn1n7YUnfd8envz_-z19yH7cY9dalG1S2-rbttRQ_DdftCPCT_0bwCSHSCd9d7p4hGBgG_G5CEuvhkT3o9JkJ0-kUnTbhs6JGKqf4v_AsfbFzk |
CitedBy_id | crossref_primary_10_3233_THC_209008 crossref_primary_10_3758_s13415_022_00983_4 crossref_primary_10_1093_cercor_bhz119 crossref_primary_10_3389_fnsys_2019_00068 crossref_primary_10_1088_1741_2552_ac8b38 crossref_primary_10_3389_fnhum_2016_00015 crossref_primary_10_7717_peerj_15992 crossref_primary_10_1016_j_neures_2019_10_011 crossref_primary_10_1016_j_apergo_2023_104082 crossref_primary_10_1016_j_neuron_2013_03_007 crossref_primary_10_1002_hbm_23248 crossref_primary_10_1038_s41598_017_12890_7 crossref_primary_10_1007_s10339_013_0563_3 crossref_primary_10_1016_j_neuropsychologia_2015_06_009 crossref_primary_10_1016_j_neuropsychologia_2025_109096 crossref_primary_10_1523_JNEUROSCI_1063_22_2022 crossref_primary_10_3389_fnins_2014_00137 crossref_primary_10_1007_s10548_012_0265_7 crossref_primary_10_1002_hbm_25541 crossref_primary_10_1016_j_clinph_2012_07_021 crossref_primary_10_1016_j_ijpsycho_2015_10_004 crossref_primary_10_1093_cercor_bhaa281 crossref_primary_10_1002_wcs_153 crossref_primary_10_1016_j_jaac_2022_08_001 crossref_primary_10_1016_j_jsurg_2019_01_005 crossref_primary_10_1371_journal_pone_0023960 crossref_primary_10_1016_j_neuroimage_2018_09_022 crossref_primary_10_1038_s41598_018_26863_x crossref_primary_10_18632_aging_103515 crossref_primary_10_1016_j_procs_2022_11_036 crossref_primary_10_1126_sciadv_aav3687 crossref_primary_10_1002_hbm_23997 crossref_primary_10_1080_2326263X_2021_1972633 crossref_primary_10_3390_s24175754 crossref_primary_10_1002_hbm_22545 crossref_primary_10_1016_j_biopsycho_2019_107762 crossref_primary_10_1016_j_neuroimage_2012_01_031 crossref_primary_10_1371_journal_pone_0031933 crossref_primary_10_1016_j_bandc_2019_04_001 crossref_primary_10_1016_j_biopsycho_2019_107766 crossref_primary_10_1016_j_clinph_2024_11_013 crossref_primary_10_1016_j_jocn_2019_03_054 crossref_primary_10_3390_mti8040034 crossref_primary_10_1016_j_clinph_2020_05_028 crossref_primary_10_1371_journal_pone_0066241 crossref_primary_10_3109_15622975_2015_1112034 crossref_primary_10_1016_j_ijpsycho_2016_06_014 crossref_primary_10_1002_hbm_22058 crossref_primary_10_1002_hbm_23943 crossref_primary_10_3389_fnins_2022_790057 crossref_primary_10_1007_s10548_015_0433_7 crossref_primary_10_1093_braincomms_fcaa094 crossref_primary_10_3389_fpsyg_2019_00365 crossref_primary_10_1371_journal_pbio_3002512 crossref_primary_10_1002_cnm_3404 crossref_primary_10_1016_j_neuroimage_2013_05_044 crossref_primary_10_3389_fnhum_2017_00061 crossref_primary_10_1007_s11682_015_9404_6 crossref_primary_10_3390_s19040808 crossref_primary_10_1016_j_neuroimage_2014_10_021 crossref_primary_10_1017_S1355617719000602 crossref_primary_10_1111_jsr_14230 crossref_primary_10_1016_j_neuroimage_2018_12_016 crossref_primary_10_1088_1741_2552_aaefda crossref_primary_10_3389_fnins_2018_00181 crossref_primary_10_1016_j_neuroimage_2011_02_062 crossref_primary_10_1002_hbm_23178 crossref_primary_10_1016_j_clinph_2011_12_019 crossref_primary_10_1016_j_bandl_2016_08_003 crossref_primary_10_1111_psyp_14009 crossref_primary_10_2139_ssrn_2542157 crossref_primary_10_3389_fnhum_2014_00832 crossref_primary_10_1162_jocn_a_00151 crossref_primary_10_1016_j_bandc_2010_11_013 crossref_primary_10_1016_j_cub_2022_03_045 crossref_primary_10_1089_neur_2021_0047 crossref_primary_10_3390_ijerph19063564 crossref_primary_10_3390_biomedicines11020630 crossref_primary_10_3389_fnhum_2018_00478 crossref_primary_10_3390_e22121380 crossref_primary_10_1007_s10548_014_0361_y crossref_primary_10_1186_s12868_017_0344_5 crossref_primary_10_3390_brainsci13060875 crossref_primary_10_1371_journal_pone_0039447 crossref_primary_10_1016_j_biopsycho_2023_108721 crossref_primary_10_1016_j_cortex_2012_03_006 crossref_primary_10_1016_j_ctcp_2016_04_004 crossref_primary_10_3389_fnbeh_2015_00111 crossref_primary_10_1002_hbm_22114 crossref_primary_10_1016_j_neuroimage_2013_08_004 crossref_primary_10_1038_s41598_017_14744_8 crossref_primary_10_3390_brainsci11070938 crossref_primary_10_1016_j_biopsycho_2024_108967 crossref_primary_10_1016_j_neuroimage_2011_02_050 crossref_primary_10_1371_journal_pone_0319213 crossref_primary_10_1007_s10548_021_00876_8 crossref_primary_10_1088_1741_2552_ad9cc0 crossref_primary_10_1016_j_nlm_2019_107098 crossref_primary_10_1523_ENEURO_0170_17_2017 crossref_primary_10_3389_fnhum_2014_00703 crossref_primary_10_1088_1741_2560_12_4_046020 crossref_primary_10_1371_journal_pone_0068038 crossref_primary_10_1002_cne_24804 crossref_primary_10_1080_10615806_2017_1419205 crossref_primary_10_1002_hbm_24489 crossref_primary_10_1016_j_neuroscience_2017_01_012 crossref_primary_10_1002_hbm_22623 crossref_primary_10_1016_j_bandc_2014_01_018 crossref_primary_10_1016_j_neuroimage_2024_120535 crossref_primary_10_1080_00207144_2014_961875 crossref_primary_10_1162_jocn_a_01417 crossref_primary_10_1016_j_jns_2014_06_035 crossref_primary_10_1111_psyp_13735 crossref_primary_10_1016_j_neuroimage_2010_10_074 crossref_primary_10_1162_jocn_a_01461 crossref_primary_10_3390_jcm14061895 crossref_primary_10_1016_j_nlm_2021_107476 crossref_primary_10_1073_pnas_1019676108 crossref_primary_10_1093_brain_awx051 crossref_primary_10_1162_jocn_a_00379 crossref_primary_10_1038_s41598_024_75427_9 crossref_primary_10_1007_s10548_017_0575_x crossref_primary_10_1016_j_neuroimage_2019_116295 crossref_primary_10_1007_s13246_016_0438_x crossref_primary_10_3389_fncom_2014_00146 crossref_primary_10_1007_s11682_016_9537_2 crossref_primary_10_3389_fnagi_2021_631172 crossref_primary_10_1007_s00702_024_02810_1 crossref_primary_10_1002_hbm_25764 crossref_primary_10_1016_j_clinph_2024_03_008 crossref_primary_10_1186_1471_2202_15_52 crossref_primary_10_1016_j_clinph_2017_03_005 crossref_primary_10_3389_fpsyt_2016_00029 crossref_primary_10_1016_j_brainres_2022_148198 crossref_primary_10_1016_j_nicl_2016_01_023 crossref_primary_10_1007_s10548_020_00787_0 crossref_primary_10_1016_j_neuroimage_2015_10_003 crossref_primary_10_1002_hbm_22124 crossref_primary_10_3389_fnbeh_2017_00215 crossref_primary_10_1177_09727531241308701 crossref_primary_10_1371_journal_pone_0072024 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science 2010 Michels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Michels et al. 2010 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: 2010 Michels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Michels et al. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0010298 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | EEG-fMRI during Cognition |
EISSN | 1932-6203 |
ExternalDocumentID | 1289443843 oai_doaj_org_article_f22988f9a76b48648e2d41874637e801 PMC2858659 2897091631 A473897615 20421978 10_1371_journal_pone_0010298 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Switzerland |
GeographicLocations_xml | – name: Switzerland |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c691t-daa5dee327c93f2de047db8862c2feebd3dc9c3be7a2d6f0d616d1d509771b23 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:24 EST 2021 Wed Aug 27 01:24:01 EDT 2025 Thu Aug 21 14:30:43 EDT 2025 Fri Jul 11 01:03:12 EDT 2025 Fri Jul 25 10:43:55 EDT 2025 Tue Jun 17 21:21:17 EDT 2025 Tue Jun 10 20:51:13 EDT 2025 Fri Jun 27 04:15:19 EDT 2025 Fri Jun 27 05:09:20 EDT 2025 Thu May 22 20:54:42 EDT 2025 Mon Jul 21 06:03:01 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 03:53:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c691t-daa5dee327c93f2de047db8862c2feebd3dc9c3be7a2d6f0d616d1d509771b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: LM KB RL EM DJ DB. Performed the experiments: LM KB RL PK. Analyzed the data: LM KB. Wrote the paper: LM PK EM DJ DB. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0010298 |
PMID | 20421978 |
PQID | 1289443843 |
PQPubID | 1436336 |
PageCount | e10298 |
ParticipantIDs | plos_journals_1289443843 doaj_primary_oai_doaj_org_article_f22988f9a76b48648e2d41874637e801 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2858659 proquest_miscellaneous_733916113 proquest_journals_1289443843 gale_infotracmisc_A473897615 gale_infotracacademiconefile_A473897615 gale_incontextgauss_ISR_A473897615 gale_incontextgauss_IOV_A473897615 gale_healthsolutions_A473897615 pubmed_primary_20421978 crossref_primary_10_1371_journal_pone_0010298 crossref_citationtrail_10_1371_journal_pone_0010298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-22 |
PublicationDateYYYYMMDD | 2010-04-22 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 9927550 - Neuroimage. 1999 Feb;9(2):216-26 12122036 - Cereb Cortex. 2002 Aug;12(8):877-82 17707538 - Int J Psychophysiol. 2008 Mar;67(3):242-51 10349966 - Vis Neurosci. 1999 May-Jun;16(3):449-59 9592102 - J Neurosci. 1998 Jun 1;18(11):4244-54 12958209 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11053-8 11222977 - Clin Neurophysiol. 2001 Mar;112(3):536-44 16547508 - Nat Neurosci. 2006 Apr;9(4):569-77 15618888 - Neuroreport. 2005 Jan 19;16(1):45-8 18466752 - Neuron. 2008 May 8;58(3):429-41 18465747 - Hum Brain Mapp. 2009 Apr;30(4):1168-87 17266103 - Hum Brain Mapp. 2007 Aug;28(8):785-92 8753885 - J Neurosci. 1996 Jul 1;16(13):4240-9 17996378 - Neuroscience. 2007 Dec 5;150(2):346-56 12464325 - Clin Neurophysiol. 2002 Dec;113(12):1882-93 17555828 - Trends Neurosci. 2007 Jul;30(7):309-16 11906227 - Neuroimage. 2002 Apr;15(4):870-8 11312302 - J Neurosci. 2001 May 1;21(9):3175-83 18272404 - Neuroimage. 2008 Apr 15;40(3):1296-310 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 17670949 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5 19280706 - Neuroimage. 2009 Apr 15;45(3):903-16 15167540 - Neuroreport. 2004 Jun 7;15(8):1233-8 11449264 - Nature. 2001 Jul 12;412(6843):150-7 3992243 - Science. 1985 May 10;228(4700):750-2 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 11068244 - Clin Neurophysiol. 2000 Nov;111(11):2071-8 15927487 - Neuroimage. 2005 Aug 15;27(2):341-56 18632934 - J Neurosci. 2008 Jul 16;28(29):7304-12 18056698 - Cereb Cortex. 2008 Aug;18(8):1843-55 14568454 - Neuroimage. 2003 Oct;20(2):816-27 7823151 - J Neurosci. 1995 Jan;15(1 Pt 1):47-60 17112747 - Neuroimage. 2007 Jan 15;34(2):598-607 19744566 - Neuroimage. 2010 Jan 1;49(1):865-74 11102669 - Int J Psychophysiol. 2000 Dec 1;38(3):301-13 10769304 - J Cogn Neurosci. 2000 Jan;12(1):1-47 11741027 - Curr Opin Neurobiol. 2001 Dec;11(6):739-44 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 10913328 - Neuroimage. 2000 Aug;12(2):230-9 19862343 - Front Integr Neurosci. 2009 Oct 07;3:25 11798382 - J Cogn Neurosci. 2002 Jan 1;14(1):1-10 17190968 - Cereb Cortex. 2007 Oct;17(10):2364-74 16216533 - Neuroimage. 2006 Feb 1;29(3):764-73 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 11994134 - Eur J Neurosci. 2002 Apr;15(8):1395-9 12097514 - J Neurosci. 2002 Jul 1;22(13):5630-8 9080445 - Neuroreport. 1997 Jan 20;8(2):545-9 15862231 - Neuroimage. 2005 May 15;26(1):302-8 18547820 - Neuroimage. 2008 Aug 1;42(1):158-68 12134152 - Nat Neurosci. 2002 Aug;5(8):805-11 9177767 - Cereb Cortex. 1997 Jun;7(4):374-85 8951411 - Exp Brain Res. 1996 Nov;112(1):96-102 10933205 - Exp Brain Res. 2000 Jul;133(1):3-11 11559960 - Hum Brain Mapp. 2001 Nov;14(3):152-65 18840533 - Neuroimage. 2009 Feb 1;44(3):1224-38 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 6199188 - Electroencephalogr Clin Neurophysiol. 1984 Mar;57(3):270-6 19458939 - Exp Brain Res. 2009 Sep;198(2-3):363-72 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 9133405 - J Neurosci. 1997 May 15;17(10):3870-82 9758737 - Neuroimage. 1998 Oct;8(3):229-39 18977169 - Clin Neurophysiol. 2008 Dec;119(12):2762-74 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21 17376984 - J Neurosci. 2007 Mar 21;27(12):3244-51 16537111 - Neuroimage. 2006 Jul 15;31(4):1408-18 10846167 - Science. 2000 Jun 9;288(5472):1835-8 18225747 - Bull Exp Biol Med. 2007 Mar;143(3):302-4 12499854 - Neuroreport. 2002 Dec 20;13(18):2487-92 15054050 - Cereb Cortex. 2004 Jul;14(7):713-20 12763194 - Brain Res Cogn Brain Res. 2003 Jun;17(1):75-82 10982744 - Cereb Cortex. 2000 Sep;10(9):829-39 14527577 - Neuroimage. 2003 Sep;20(1):145-58 11339986 - Brain Res Cogn Brain Res. 2001 Jun;11(3):363-76 15601739 - J Neurophysiol. 2005 May;93(5):2864-72 18625208 - Brain Res. 2008 Oct 15;1235:31-44 12948703 - Neuroimage. 2003 Aug;19(4):1463-76 19111791 - Behav Brain Res. 2009 Apr 12;199(1):3-23 7746482 - Neurosci Lett. 1995 Jan 2;183(1-2):39-42 16989782 - Brain Res. 2006 Nov 20;1120(1):131-40 16887192 - Brain Res Rev. 2007 Jan;53(1):63-88 20408186 - Hum Brain Mapp. 1996;4(1):58-73 17170134 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83 9278548 - J Neurosci. 1997 Sep 15;17(18):7141-7 16023377 - Neuroimage. 2005 Oct 15;28(1):280-6 10076094 - Brain Res Cogn Brain Res. 1999 Mar;7(4):493-501 10970058 - Curr Opin Neurol. 2000 Aug;13(4):415-21 16290018 - Neuroimage. 2006 Mar;30(1):203-13 5939936 - Science. 1966 Aug 5;153(3736):652-4 16081740 - Science. 2005 Aug 5;309(5736):948-51 17080437 - Hum Brain Mapp. 2007 Aug;28(8):793-803 17900976 - Clin Neurophysiol. 2007 Nov;118(11):2419-36 14615302 - Cereb Cortex. 2003 Dec;13(12):1369-74 16962192 - Int J Psychophysiol. 2007 Apr;64(1):39-45 |
References_xml | – reference: 12122036 - Cereb Cortex. 2002 Aug;12(8):877-82 – reference: 6199188 - Electroencephalogr Clin Neurophysiol. 1984 Mar;57(3):270-6 – reference: 17112747 - Neuroimage. 2007 Jan 15;34(2):598-607 – reference: 7746482 - Neurosci Lett. 1995 Jan 2;183(1-2):39-42 – reference: 16887192 - Brain Res Rev. 2007 Jan;53(1):63-88 – reference: 17170134 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 15862231 - Neuroimage. 2005 May 15;26(1):302-8 – reference: 18465747 - Hum Brain Mapp. 2009 Apr;30(4):1168-87 – reference: 17670949 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5 – reference: 19111791 - Behav Brain Res. 2009 Apr 12;199(1):3-23 – reference: 9278548 - J Neurosci. 1997 Sep 15;17(18):7141-7 – reference: 11312302 - J Neurosci. 2001 May 1;21(9):3175-83 – reference: 16081740 - Science. 2005 Aug 5;309(5736):948-51 – reference: 16547508 - Nat Neurosci. 2006 Apr;9(4):569-77 – reference: 14527577 - Neuroimage. 2003 Sep;20(1):145-58 – reference: 16023377 - Neuroimage. 2005 Oct 15;28(1):280-6 – reference: 8753885 - J Neurosci. 1996 Jul 1;16(13):4240-9 – reference: 11339986 - Brain Res Cogn Brain Res. 2001 Jun;11(3):363-76 – reference: 14568454 - Neuroimage. 2003 Oct;20(2):816-27 – reference: 16216533 - Neuroimage. 2006 Feb 1;29(3):764-73 – reference: 5939936 - Science. 1966 Aug 5;153(3736):652-4 – reference: 9080445 - Neuroreport. 1997 Jan 20;8(2):545-9 – reference: 11559960 - Hum Brain Mapp. 2001 Nov;14(3):152-65 – reference: 19458939 - Exp Brain Res. 2009 Sep;198(2-3):363-72 – reference: 11102669 - Int J Psychophysiol. 2000 Dec 1;38(3):301-13 – reference: 18977169 - Clin Neurophysiol. 2008 Dec;119(12):2762-74 – reference: 18225747 - Bull Exp Biol Med. 2007 Mar;143(3):302-4 – reference: 20408186 - Hum Brain Mapp. 1996;4(1):58-73 – reference: 18840533 - Neuroimage. 2009 Feb 1;44(3):1224-38 – reference: 10076094 - Brain Res Cogn Brain Res. 1999 Mar;7(4):493-501 – reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 – reference: 10933205 - Exp Brain Res. 2000 Jul;133(1):3-11 – reference: 15054050 - Cereb Cortex. 2004 Jul;14(7):713-20 – reference: 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 – reference: 8951411 - Exp Brain Res. 1996 Nov;112(1):96-102 – reference: 17996378 - Neuroscience. 2007 Dec 5;150(2):346-56 – reference: 12499854 - Neuroreport. 2002 Dec 20;13(18):2487-92 – reference: 17900976 - Clin Neurophysiol. 2007 Nov;118(11):2419-36 – reference: 9758737 - Neuroimage. 1998 Oct;8(3):229-39 – reference: 18466752 - Neuron. 2008 May 8;58(3):429-41 – reference: 11741027 - Curr Opin Neurobiol. 2001 Dec;11(6):739-44 – reference: 18272404 - Neuroimage. 2008 Apr 15;40(3):1296-310 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 – reference: 9133405 - J Neurosci. 1997 May 15;17(10):3870-82 – reference: 10982744 - Cereb Cortex. 2000 Sep;10(9):829-39 – reference: 11068244 - Clin Neurophysiol. 2000 Nov;111(11):2071-8 – reference: 10970058 - Curr Opin Neurol. 2000 Aug;13(4):415-21 – reference: 17080437 - Hum Brain Mapp. 2007 Aug;28(8):793-803 – reference: 19280706 - Neuroimage. 2009 Apr 15;45(3):903-16 – reference: 12763194 - Brain Res Cogn Brain Res. 2003 Jun;17(1):75-82 – reference: 9927550 - Neuroimage. 1999 Feb;9(2):216-26 – reference: 12464325 - Clin Neurophysiol. 2002 Dec;113(12):1882-93 – reference: 18632934 - J Neurosci. 2008 Jul 16;28(29):7304-12 – reference: 9592102 - J Neurosci. 1998 Jun 1;18(11):4244-54 – reference: 18056698 - Cereb Cortex. 2008 Aug;18(8):1843-55 – reference: 10846167 - Science. 2000 Jun 9;288(5472):1835-8 – reference: 17707538 - Int J Psychophysiol. 2008 Mar;67(3):242-51 – reference: 17376984 - J Neurosci. 2007 Mar 21;27(12):3244-51 – reference: 10349966 - Vis Neurosci. 1999 May-Jun;16(3):449-59 – reference: 15167540 - Neuroreport. 2004 Jun 7;15(8):1233-8 – reference: 18547820 - Neuroimage. 2008 Aug 1;42(1):158-68 – reference: 11906227 - Neuroimage. 2002 Apr;15(4):870-8 – reference: 15927487 - Neuroimage. 2005 Aug 15;27(2):341-56 – reference: 16290018 - Neuroimage. 2006 Mar;30(1):203-13 – reference: 19744566 - Neuroimage. 2010 Jan 1;49(1):865-74 – reference: 10913328 - Neuroimage. 2000 Aug;12(2):230-9 – reference: 19862343 - Front Integr Neurosci. 2009 Oct 07;3:25 – reference: 12097514 - J Neurosci. 2002 Jul 1;22(13):5630-8 – reference: 12948703 - Neuroimage. 2003 Aug;19(4):1463-76 – reference: 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21 – reference: 14615302 - Cereb Cortex. 2003 Dec;13(12):1369-74 – reference: 12134152 - Nat Neurosci. 2002 Aug;5(8):805-11 – reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7 – reference: 11798382 - J Cogn Neurosci. 2002 Jan 1;14(1):1-10 – reference: 15618888 - Neuroreport. 2005 Jan 19;16(1):45-8 – reference: 9177767 - Cereb Cortex. 1997 Jun;7(4):374-85 – reference: 3992243 - Science. 1985 May 10;228(4700):750-2 – reference: 16537111 - Neuroimage. 2006 Jul 15;31(4):1408-18 – reference: 17190968 - Cereb Cortex. 2007 Oct;17(10):2364-74 – reference: 10769304 - J Cogn Neurosci. 2000 Jan;12(1):1-47 – reference: 16962192 - Int J Psychophysiol. 2007 Apr;64(1):39-45 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 15601739 - J Neurophysiol. 2005 May;93(5):2864-72 – reference: 11994134 - Eur J Neurosci. 2002 Apr;15(8):1395-9 – reference: 16989782 - Brain Res. 2006 Nov 20;1120(1):131-40 – reference: 7823151 - J Neurosci. 1995 Jan;15(1 Pt 1):47-60 – reference: 17266103 - Hum Brain Mapp. 2007 Aug;28(8):785-92 – reference: 11222977 - Clin Neurophysiol. 2001 Mar;112(3):536-44 – reference: 17555828 - Trends Neurosci. 2007 Jul;30(7):309-16 – reference: 18625208 - Brain Res. 2008 Oct 15;1235:31-44 – reference: 12958209 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11053-8 |
SSID | ssj0053866 |
Score | 2.4123814 |
Snippet | EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the... Background EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity... BACKGROUND: EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity... Background EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e10298 |
SubjectTerms | Adult Alpha Rhythm Beta Rhythm Brain Brain Mapping Brain research Child & adolescent psychiatry Children & youth Correlation Cortex (cingulate) Cortex (frontal) Cortex (occipital) Cortex (parietal) Cortex (temporal) EEG Electroencephalography Electroencephalography - methods Female Frequencies Frontal gyrus Functional magnetic resonance imaging Humans Low frequencies Low frequency bands Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Memory, Short-Term - physiology Mental task performance Neuroscience Neuroscience/Cognitive Neuroscience Neurosurgery Oscillations Oxygen - blood Physiology Physiology/Cognitive Neuroscience Prefrontal cortex Retention Semantics Short term memory Studies Superior temporal gyrus Temporal gyrus Temporal lobe Theta Rhythm Theta rhythms Trends Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQTlwQ5dVAWyyEBBy27dpe28utoJQWqSC1BfVm-Vki0k3UTVX13zNeO6suqlQOXNefo-w87Jlk5huE3hqqtZC6KqQLvogUWgWkza5gXEIoRwMzdWwUPvrGD36wr2fV2a1RX7EmLNEDJ8HtBEJqKUOtBTdMciY9cSwOkuNUeJk6t-DOWyVT6QwGL-Y8N8pRUe5kvWwv5o3f7mjUajm4iDq-_v5UHi1m8_aukPPvyslbV9H-Y_Qox5B4L333NfTAN0_QWvbSFr_PVNIfniJ1Mo0Vg7rxkODjyeRLEY6OD3HqTcQaX6efyvFFrLe9wUvd_v6IL-Yuz_Rq8bTBs_k11o3DkdgYh8tUen2DTewRfoZO9yennw-KPFKhsLwul4XTunLeUyIsKII4v8uEMxLSGkuC98ZRZ2tLjReaOB52HS-5Kx1EFUKUhtDnaNSADNcRNtRB9hMqx71lNlhDA6fMWVkTgAo9RnQlXmUz3XicejFT3X9oAtKOJC0VlaKyUsao6HctEt3GPfhPUXM9NpJldw_AhFQ2IXWfCY3R66h3lTpPe5dXe0xAOCcg5hujNx0iEmY0sSLnXF-1rTr8_vMfQCfHA9C7DApzEIfVuQsC3ikScQ2QGwMkuL0dLK9HK11JpVUQaNSMUcko7FxZ7t3LuF-OHxqr7DozVILGNuyyBMiLZOe9YAkc7mUtQOBi4AEDyQ9Xmumvjq6cyEryqn75P1T1Cj1M5RusIGQDjZaXV34TosKl2eoOgD-wYl90 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELagvPCCGL9WGGAhJOAh22I7tsML2lC7DVGQtoL2Zjm2s1VMSWk6of333CVuIWgCXusvVXvnO985390R8rLg1ipts0T7MiTYQiuBtNknQmoI5XgpihwLhSef5OEX8eE0O40Xbk2kVa58Yuuofe3wjnwH_GguBNeCv5t_T3BqFL5djSM0bpJbKZw0SOnS44OVJwZbljKWy3GV7kTtbM_rKmy3zdRy3TuO2q79a988mF_UzXWB55_8yd8OpPFdcidGknSvU_0GuRGqe2Qj2mpDX8eG0m_uE3MyQ96grQKk-XQ0OkjKyfER7SoUqaXxwpxOkHV7Rae2-faWTmofJ3s1dFbRj_UPaitPkRdCx4uOgH1F97FS-AGZjkfT94dJHKyQOJmny8Rbm_kQOFMO1MF82BXKFxqSG8fKEArPvcsdL4KyzMty18tU-tRDbKFUWjD-kAwqkOEmoQX3kAOVmZfBCVe6gpeSC-90zgCq7JDwlXiNi03HcfbFhWnfpClIPjppGVSKiUoZkmT91LxruvEP_D5qbo3FltntB_XizEQLNCUDpC5zq2QhtBQ6MC9wIqHkKsA5PSTPUe-mqz9dG77ZEwqCOgWR35C8aBHYNqNCXs6ZvWwac_T563-ATo57oFcRVNYgDmdjLQT8J2zH1UNu9ZBg_K63vIm7dCWVxvwyE3hytXOvX6brZfxS5Nq129AojsXYaQqQR90-XwuWgYtPcwUCVz0L6Em-v1LNztum5UxnWmb547__qifkdkfPEAljW2SwXFyGpxD1LYtnrWn_BITbV4Y priority: 102 providerName: ProQuest |
Title | Simultaneous EEG-fMRI during a Working Memory Task: Modulations in Low and High Frequency Bands |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20421978 https://www.proquest.com/docview/1289443843 https://www.proquest.com/docview/733916113 https://pubmed.ncbi.nlm.nih.gov/PMC2858659 https://doaj.org/article/f22988f9a76b48648e2d41874637e801 http://dx.doi.org/10.1371/journal.pone.0010298 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe27sIFMb5WGMVCSMAhVWM7toOE0Dq12xAdqOtQb5ETO6OiSkrTCnrhb-c5cSOCitjFh_jnSHkffs_x-0DoZUyVElIFntSp8WwJLQ-OzdpjXIIrR1MWhzZReHTJz6_Zh2kw3UPbnq2OgMXOo53tJ3W9nHd_ft-8B4V_V3ZtEP52UXeRZ6ZbFkkL5T46ANskbE-DEavvFUC7y9tL67V4nPSoS6b711saxqqs6V_v3K3FPC92uaV_R1f-Ya6G99Bd52fik0owDtGeye6jQ6fJBX7tyk2_eYCiq5mNKlSZydcFHgzOvHQ0vsBV_iJW2P1OxyMbk7vBE1V8e4tHuXZ9vwo8y_DH_AdWmcY2agQPl1V49gb3bR7xQzQZDian555ru-AlPPRXnlYq0MZQIhJgFtGmx4SOJRx9EpIaE2uqkzChsRGKaJ72NPe59jV4HkL4MaGPUCsDGh4hHFMNJ6Q00NwkLEmTmKacMp3IkABUqDaiW_JGiStJbjtjzKPynk3A0aSiVmSZEjmmtJFXr1pUJTn-g-9bztVYW1C7fJAvbyKnn1FKACnTUAkeM8mZNEQz26-QU2HAirfRc8v3qMpOrbeF6IQJcPkE-IVt9KJE2KIamY3auVHrooguPn25Behq3AC9cqA0B3IkymVKwDfZYl0N5HEDCVtD0pg-slK6pUoRgTMSMkYlo7ByK7m7p3E9bV9qI_FKMYwEtanavg-Qx5Wc14QlYAD8UADBRUMDGpRvzmSzr2VJcyIDyYPwya2__Cm6U8VxMI-QY9RaLdfmGbiHq7iD9sVUwChPfTsOzzrooD-4_DzulD9cOuWOYMdfg98VnGmo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELam8QAviPFrhcEsBAIesi22aydICG2wrmXtkLaC9mY5tjMmpqQsm6b9UfyP3CVOIWgCXvZaf4nSu_PdObn7jpDnGTdGJaYfJS73EVJoRXBsdpGQCaRyPBdZio3Ckz05_Cw-HvYPF8iPthcGyypbn1g7aldafEe-Dn40FYIngr-bfY9wahR-XW1HaDRmsesvL-DIVr0dfQD9vmBssD19P4zCVIHIyjQ-i5wxfec9Z8rCszDnN4RyWQKZvWW595njzqaWZ14Z5mS-4WQsXewgsCoVZ8hzAB7_huAQyLExfbDTOn5wHVKG7jyu4vVgDGuzsvBrNXdbmnSiXz0kYB4KFmcnZXVVnvtnueZv8W9wh9wOiSvdbCxtiSz44i5ZCq6hoq8Cf_Xre0QfHGOZoil8eV7R7e2dKJ_sj2jTEEkNDe_n6QSLfC_p1FTf3tBJ6cIgsYoeF3RcXlBTOIplKHRw2tR7X9ItbEy-T6bXIfEHZLEAGS4TmnEHR66876S3wuY247nkwtkkZQBVpkd4K15tA8c5jto40fWHOwVnnUZaGpWig1J6JJpfNWs4Pv6B30LNzbHI0F3_UJ4e6bDhdc4AmeSpUTITiRSJZ07gAETJlYe0oEdWUe-6aXed-xm9KRTkkAoSzR55ViOQpaPAMqAjc15VevTpy3-ADvY7oJcBlJcgDmtC6wX8J2T_6iBXOkjwNbazvIxW2kql0r92JVzZWu7Vy3S-jDfF0r7aDLXi2PsdxwB52Nj5XLAMIkqcKhC46uyAjuS7K8Xx15ojnSX9RPbTR39_qlVyczidjPV4tLf7mNxqKkNExNgKWTw7PfdPIOE8y57W25wSfc1u5Sf_YZYK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeEOO2wmAWAgEPWRfbtR0khHYrK1sH2gram-XYzpiYktJ0mvbT-HccJ04gaAJe9lp_idJz83HynXMQep5SrYXUg0jazEW-hVYEx2YbMS4hlaMZSxNfKDw-4Luf2YfjwfEC-tHUwnhaZRMTq0BtC-PfkfchjiaMUcloPwu0iE_bw3fT75GfIOW_tDbjNGoT2XOXF3B8K9-OtkHXLwgZ7ky2dqMwYSAyPInnkdV6YJ2jRBh4LmLdOhM2lZDlG5I5l1pqTWJo6oQmlmfrlsfcxhY2WSHi1Pc8gOh_Q1AhvYvJrZZdAmGE81CpR0XcD4axNi1yt1b1cUtkZyesBga028Li9Kwor8p5_6Ru_rYXDu-g2yGJxRu11S2hBZffRUshTJT4Vehl_foeUkennrKoc1ecl3hn532UjQ9HuC6OxBqHd_V47Am_l3iiy29v8LiwYahYiU9zvF9cYJ1b7CkpeDirud-XeNMXKd9Hk-uQ-AO0mIMMlxFOqYXjVzaw3BlmMpPSjFNmjUwIQIXuIdqIV5nQ79yP3ThT1Uc8AeeeWlrKK0UFpfRQ1F41rft9_AO_6TXXYn237uqHYnaigvOrjABSZokWPGWSM-mIZX4YIqfCQYrQQ6te76oufW1jjtpgAvJJAUlnDz2rEL5jR-5t_0Sfl6UaffzyH6Cjww7oZQBlBYjD6FCGAf_JdwLrIFc6SIg7prO87K20kUqpfnkoXNlY7tXLuF32N_U0v8oMlaC-DjyOAfKwtvNWsAR2lzgRIHDR8YCO5Lsr-enXql86kQPJB8mjvz_VKroJAUXtjw72HqNbNUmERYSsoMX57Nw9gdxznj6tvBwjdc1R5Sdoa5oL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+EEG-fMRI+during+a+Working+Memory+Task%3A+Modulations+in+Low+and+High+Frequency+Bands&rft.jtitle=PloS+one&rft.au=Michels%2C+Lars&rft.au=Bucher%2C+Kerstin&rft.au=L%C3%BCchinger%2C+Rafael&rft.au=Klaver%2C+Peter&rft.date=2010-04-22&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=5&rft.issue=4&rft.spage=e10298&rft_id=info:doi/10.1371%2Fjournal.pone.0010298&rft.externalDocID=A473897615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |