Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chroni...
Saved in:
Published in | PloS one Vol. 6; no. 8; p. e22626 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
10.08.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). |
---|---|
AbstractList | In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T 1 -weighted – T1WI, T 2 -weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated ( r = 0.80, p <0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T1-weighted – T1WI, T2-weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T.sub.1 -weighted - T1WI, T.sub.2 -weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89). |
Audience | Academic |
Author | Soltanian-Zadeh, Hamid Ewing, James R. Lu, Mei Bagher-Ebadian, Hassan Jafari-Khouzani, Kourosh Mitsias, Panayiotis D. Chopp, Michael |
AuthorAffiliation | 5 Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran 1 Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America 2 Department of Physics, Oakland University, Rochester, Michigan, United States of America 7 Department of Neurology, Wayne State University, Detroit, Michigan, United States of America Beijing Normal University, China 3 Department of Diagnostic Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America 6 Department of Physiology, Wayne State University, Detroit, Michigan, United States of America 4 Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, United States of America |
AuthorAffiliation_xml | – name: 4 Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, United States of America – name: 7 Department of Neurology, Wayne State University, Detroit, Michigan, United States of America – name: 2 Department of Physics, Oakland University, Rochester, Michigan, United States of America – name: 5 Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran – name: 6 Department of Physiology, Wayne State University, Detroit, Michigan, United States of America – name: Beijing Normal University, China – name: 3 Department of Diagnostic Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America – name: 1 Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America |
Author_xml | – sequence: 1 givenname: Hassan surname: Bagher-Ebadian fullname: Bagher-Ebadian, Hassan – sequence: 2 givenname: Kourosh surname: Jafari-Khouzani fullname: Jafari-Khouzani, Kourosh – sequence: 3 givenname: Panayiotis D. surname: Mitsias fullname: Mitsias, Panayiotis D. – sequence: 4 givenname: Mei surname: Lu fullname: Lu, Mei – sequence: 5 givenname: Hamid surname: Soltanian-Zadeh fullname: Soltanian-Zadeh, Hamid – sequence: 6 givenname: Michael surname: Chopp fullname: Chopp, Michael – sequence: 7 givenname: James R. surname: Ewing fullname: Ewing, James R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21853039$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tu1DAQhiNURA_wBggiIYG42MWnODEXSKuqhZVaWrWUW8tx7F232XixHdo-Aa_NpN1W3apCKBeOJt_84_kzs51tdL4zWfYaozGmJf507vvQqXa8hPAYIUI44c-yLSwoGXGC6MaD981sO8ZzhApacf4i2yS4KiiiYiv7cxxM43Ry3Szfd6CX710l06Xc23wa9dwsnM6nnVUBGN_lZ3EgJyE567QD_Lvpw82RLn24yCcgcR1dHPIP-za50bEKamFSAJ3Dk2nuuvxYJQclYn7p0jw_TcFfmJfZc6vaaF6tzp3sbH_vx-630cHR1-nu5GCkucBpJLhgWtTElnXBbdMoTAzRTYGwtYIprcvCYK5MrRiqucUYixJXmGnNa0ERoTvZ21vdZeujXHkYJaaoLCjhBQVieks0Xp3LZXALFa6lV07eBHyYSQXt69bIShNKTSUYwyUzoq4tIrUtSywqrIvCgtaXVbW-XphGQ9dg1pro-pfOzeXM_5YUFwwLAQIfVgLB_-pNTHLhojZtqzrj-yirijH48QUH8t0j8unmVtRMwf1dZz2U1YOmnLCSVxWpWAXU-AkKnmYYB5g36yC-lvBxLQGYZK7STPUxyunpyf-zRz_X2fcP2LlRbZpH3_bDKMZ18M1Do-8dvht0ANgtoIOPMRh7j2Akh326s0sO-yRX-wRpnx-laZfUUB4cce2_k_8Cn4wm1Q |
CitedBy_id | crossref_primary_10_1161_STROKEAHA_122_041442 crossref_primary_10_1111_ejn_14507 crossref_primary_10_1111_ejn_14505 crossref_primary_10_1002_nbm_3682 crossref_primary_10_22468_cvia_2018_00248 crossref_primary_10_3414_ME14_01_0007 crossref_primary_10_1016_j_ejmp_2016_11_011 crossref_primary_10_1109_TMI_2016_2551324 crossref_primary_10_1117_1_JMI_6_2_026001 crossref_primary_10_1038_s41598_019_49460_y crossref_primary_10_1371_journal_pone_0129569 crossref_primary_10_1073_pnas_1322173111 crossref_primary_10_1016_j_clinimag_2020_09_005 crossref_primary_10_1016_j_wneu_2018_10_084 crossref_primary_10_1080_14737175_2021_1951234 crossref_primary_10_3390_app11041675 crossref_primary_10_1667_RADE_22_00048_1 crossref_primary_10_3389_fneur_2021_613029 crossref_primary_10_1007_s11042_019_07823_7 crossref_primary_10_1016_j_nicl_2012_10_003 crossref_primary_10_1007_s11517_020_02280_z crossref_primary_10_1016_j_measurement_2017_01_001 crossref_primary_10_1080_13682199_2017_1370879 crossref_primary_10_1002_nbm_3739 crossref_primary_10_1016_j_neuroimage_2021_117934 crossref_primary_10_3389_fonc_2019_01313 crossref_primary_10_1007_s00234_021_02639_5 crossref_primary_10_1161_STROKEAHA_117_019440 crossref_primary_10_1016_j_procs_2021_09_063 crossref_primary_10_1155_2022_3064266 crossref_primary_10_1186_s12984_024_01318_9 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_3390_e19050187 |
Cites_doi | 10.4324/9780203451519 10.1161/01.STR.31.3.601 10.1002/jmri.20313 10.1161/01.STR.0000165918.80812.1e 10.1161/01.STR.0000043072.76353.7C 10.1161/01.STR.32.4.950 10.1161/01.STR.0000181066.23213.8f 10.1148/radiol.2232010673 10.1212/WNL.51.2.418 10.1161/01.STR.0000251792.76080.45 10.1007/BF02459570 10.1002/mrm.21332 10.1111/j.2517-6161.1974.tb00994.x 10.1161/01.STR.31.11.2597 10.1097/00004728-198801000-00001 10.1162/neco.1997.9.6.1245 10.1109/TNS.2003.823047 10.1161/hs1101.098331 10.1161/01.STR.0000157668.39374.56 10.1161/01.STR.0000027861.75884.DF 10.1038/sj.jcbfm.9600126 10.1056/NEJM200106213442503 10.1002/ana.410410506 10.1088/0031-9155/44/6/306 10.1161/01.STR.0000166181.86928.8b 10.1081/JA-120004171 10.1161/01.STR.30.10.2230 10.1159/000097044 10.1038/sj.jcbfm.9600328 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Bagher-Ebadian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Bagher-Ebadian et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Bagher-Ebadian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Bagher-Ebadian et al. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0022626 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine Biology |
DocumentTitleAlternate | Predicting Final Extent of Ischemic Infarction |
EISSN | 1932-6203 |
ExternalDocumentID | 1307532653 oai_doaj_org_article_8c233e8944174e9bbf02bf771981c55f PMC3154199 2900140321 A476882848 21853039 10_1371_journal_pone_0022626 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Detroit Michigan Michigan |
GeographicLocations_xml | – name: Michigan – name: United States--US – name: Detroit Michigan |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R03 NS061170 – fundername: NINDS NIH HHS grantid: 1-R03-NS061170 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF NPM PV9 RZL BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c691t-9694c9b2f7b56fdda12e2cd501ff94acc75e16aeba40b6f111971814cc6b93023 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:14 EST 2021 Wed Aug 27 01:05:34 EDT 2025 Thu Aug 21 14:11:07 EDT 2025 Thu Jul 10 18:00:30 EDT 2025 Fri Jul 25 10:19:55 EDT 2025 Tue Jun 17 20:58:15 EDT 2025 Tue Jun 10 20:16:43 EDT 2025 Fri Jun 27 03:35:49 EDT 2025 Fri Jun 27 03:38:37 EDT 2025 Thu May 22 21:19:56 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Wed Aug 20 07:42:04 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c691t-9694c9b2f7b56fdda12e2cd501ff94acc75e16aeba40b6f111971814cc6b93023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: HB-E. Performed the experiments: PDM. Analyzed the data: KJ-K. Contributed reagents/materials/analysis tools: KJ-K. Wrote the paper: HB-E JE. Gave technical consultation: HS-Z. Conducted the statistical analysis: ML. Directed and supervised the study: MC. Supervised the team: JRE. |
OpenAccessLink | https://www.proquest.com/docview/1307532653?pq-origsite=%requestingapplication% |
PMID | 21853039 |
PQID | 1307532653 |
PQPubID | 1436336 |
PageCount | e22626 |
ParticipantIDs | plos_journals_1307532653 doaj_primary_oai_doaj_org_article_8c233e8944174e9bbf02bf771981c55f pubmedcentral_primary_oai_pubmedcentral_nih_gov_3154199 proquest_miscellaneous_884426256 proquest_journals_1307532653 gale_infotracmisc_A476882848 gale_infotracacademiconefile_A476882848 gale_incontextgauss_ISR_A476882848 gale_incontextgauss_IOV_A476882848 gale_healthsolutions_A476882848 pubmed_primary_21853039 crossref_primary_10_1371_journal_pone_0022626 crossref_citationtrail_10_1371_journal_pone_0022626 |
PublicationCentury | 2000 |
PublicationDate | 2011-08-10 |
PublicationDateYYYYMMDD | 2011-08-10 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | PD Mitsias (ref4) 2004; 25 VN Thijs (ref20) 2000; 31 WS McCulloch (ref28) 1990; 52 C Goutte (ref33) 1997; 9 MA Jacobs (ref2) 2001; 32 CB Grandin (ref9) 2002; 223 J Freeman (ref30) 1991 VH Nguyen (ref24) 2008 H Bagher-Ebadian (ref35) 2004; 51 O Wu (ref23) 2007; 27 PA Barber (ref1) 1998; 51 (ref16) 2000; 31 Q Shen (ref22) 2005; 25 C Oppenheim (ref7) 2001; 32 B Scholkopf (ref39) 2002 PW Schaefer (ref12) 2002; 23 M Stone (ref38) 1974; 36 M Koga (ref15) 2005; 36 M Luby (ref26) 2008 PD Mitsias (ref3) 2002; 33 NM Menezes (ref21) 2007; 38 K Gurney (ref29) 1997 M Buscema (ref34) 2002; 37 (ref17) 2005; 36 M Lu (ref5) 2005; 21 AE Baird (ref11) 1997; 41 B Eckert (ref14) 2005; 36 KS Butcher (ref13) 2005; 36 C Bishop (ref32) 1997 A Elisseeff (ref37) 2005; 6 G Montalescot (ref10) 2001; 344 JP Windham (ref27) 1988; 12 GW Albers (ref6) 1999; 30 (ref41) 2004 H Bagher-Ebadian (ref36) 2007; 58 C Looney (ref31) 1997 H Soltanian-Zadeh (ref19) 2007; 23 JF Arenillas (ref8) 2002; 33 ME Hosseini-Ashrafi (ref40) 1999; 44 PD Mitsias (ref18) 2004; 25 VH Nguyen (ref25) 2008 15834917 - J Magn Reson Imaging. 2005 May;21(5):495-502 15914768 - Stroke. 2005 Jun;36(6):1153-9 12180558 - Subst Use Misuse. 2002 Jun-Aug;37(8-10):1093-148 10512933 - Stroke. 1999 Oct;30(10):2230-7 9153519 - Ann Neurol. 1997 May;41(5):581-9 11419426 - N Engl J Med. 2001 Jun 21;344(25):1895-903 16685257 - J Cereb Blood Flow Metab. 2007 Jan;27(1):196-204 12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94 11283396 - Stroke. 2001 Apr;32(4):950-7 16151036 - Stroke. 2005 Oct;36(10):2132-7 17122428 - Stroke. 2007 Jan;38(1):194-7 10700492 - Stroke. 2000 Mar;31(3):601-9 12215587 - Stroke. 2002 Sep;33(9):2197-203 11062281 - Stroke. 2000 Nov;31(11):2597-602 15502128 - AJNR Am J Neuroradiol. 2004 Oct;25(9):1499-508 15829912 - J Cereb Blood Flow Metab. 2005 Oct;25(10):1336-45 17654573 - Magn Reson Med. 2007 Aug;58(2):290-7 2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 17124388 - Cerebrovasc Dis. 2007;23(2-3):91-102 15890988 - Stroke. 2005 Jun;36(6):1160-5 12468779 - Stroke. 2002 Dec;33(12):2839-44 9710013 - Neurology. 1998 Aug;51(2):418-26 11692005 - Stroke. 2001 Nov;32(11):2486-91 15731473 - Stroke. 2005 Apr;36(4):880-90 3335646 - J Comput Assist Tomogr. 1988 Jan-Feb;12(1):1-9 11997538 - Radiology. 2002 May;223(2):361-70 10498520 - Phys Med Biol. 1999 Jun;44(6):1513-28 |
References_xml | – year: 1997 ident: ref29 article-title: An Introduction to Neural Networks. doi: 10.4324/9780203451519 – volume: 31 start-page: 601 year: 2000 ident: ref16 article-title: Abciximab in acute ischemic stroke: a randomized, double-blind, placebo-controlled, dose-escalation study. The Abciximab in Ischemic Stroke Investigators. publication-title: Stroke doi: 10.1161/01.STR.31.3.601 – start-page: 238 year: 2008 ident: ref24 article-title: Stroke tissue outcome prediction using a spatially-correlated model. – volume: 21 start-page: 495 year: 2005 ident: ref5 article-title: Predicting final infarct size using acute and subacute multiparametric MRI measurements in patients with ischemic stroke. publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20313 – volume: 36 start-page: 1160 year: 2005 ident: ref14 article-title: Aggressive therapy with intravenous abciximab and intra-arterial rtPA and additional PTA/stenting improves clinical outcome in acute vertebrobasilar occlusion: combined local fibrinolysis and intravenous abciximab in acute vertebrobasilar stroke treatment (FAST): results of a multicenter study. publication-title: Stroke doi: 10.1161/01.STR.0000165918.80812.1e – volume: 33 start-page: 2839 year: 2002 ident: ref3 article-title: Multiparametric MRI ISODATA ischemic lesion analysis: correlation with the clinical neurological deficit and single-parameter MRI techniques. publication-title: Stroke doi: 10.1161/01.STR.0000043072.76353.7C – volume: 32 start-page: 950 year: 2001 ident: ref2 article-title: Multiparametric MRI tissue characterization in clinical stroke with correlation to clinical outcome: part 2. publication-title: Stroke doi: 10.1161/01.STR.32.4.950 – volume: 25 start-page: 1499 year: 2004 ident: ref18 article-title: Multiparametric iterative self-organizing MR imaging data analysis technique for assessment of tissue viability in acute cerebral ischemia. publication-title: AJNR Am J Neuroradiol – year: 2002 ident: ref39 article-title: Learning with Kernels. – year: 1991 ident: ref30 article-title: Neural Network-Algorithms, Applications and Programming Techniques. – volume: 36 start-page: 2132 year: 2005 ident: ref15 article-title: The existence and evolution of diffusion-perfusion mismatched tissue in white and gray matter after acute stroke. publication-title: Stroke doi: 10.1161/01.STR.0000181066.23213.8f – year: 1997 ident: ref32 article-title: Neural Networks for Pattern Recognition. – volume: 223 start-page: 361 year: 2002 ident: ref9 article-title: Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. publication-title: Radiology doi: 10.1148/radiol.2232010673 – volume: 51 start-page: 418 year: 1998 ident: ref1 article-title: Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. publication-title: Neurology doi: 10.1212/WNL.51.2.418 – volume: 38 start-page: 194 year: 2007 ident: ref21 article-title: The real estate factor: quantifying the impact of infarct location on stroke severity. publication-title: Stroke doi: 10.1161/01.STR.0000251792.76080.45 – volume: 6 start-page: 55 year: 2005 ident: ref37 article-title: Leave-one-out error and stability of learning algorithms with applications Stability of Randomized Learning Algorithms Source. publication-title: Journal of Machine Learning Research – volume: 52 start-page: 99 year: 1990 ident: ref28 article-title: A logical calculus of the ideas immanent in nervous activity. 1943. publication-title: Bull Math Biol doi: 10.1007/BF02459570 – volume: 58 start-page: 290 year: 2007 ident: ref36 article-title: MRI estimation of contrast agent concentration in tissue using a neural network approach. publication-title: Magn Reson Med doi: 10.1002/mrm.21332 – volume: 36 start-page: 111 year: 1974 ident: ref38 article-title: Cross-validatory choice and assessment of statistical predictions (with discussion). publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 23 start-page: 1785 year: 2002 ident: ref12 article-title: Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. publication-title: AJNR Am J Neuroradiol – year: 1997 ident: ref31 article-title: Pattern recognition using neural networks: theory and algorithms for engineers and scientists. – volume: 31 start-page: 2597 year: 2000 ident: ref20 article-title: Is early ischemic lesion volume on diffusion-weighted imaging an independent predictor of stroke outcome? A multivariable analysis. publication-title: Stroke doi: 10.1161/01.STR.31.11.2597 – start-page: 238 year: 2008 ident: ref25 article-title: The Imaging Society of Japan – volume: 25 start-page: 1499 year: 2004 ident: ref4 article-title: Multiparametric Iterative Self-Organizing MR Imaging Data Analysis Technique for Assessment of Tissue Viability in Acute Cerebral Ischemia. publication-title: American Journal of Neuroradiology – year: 2008 ident: ref26 article-title: Neural Network Model for Prediction of Final Infarct Volume in Treated versus Untreated Stroke Patients. – volume: 12 start-page: 1 year: 1988 ident: ref27 article-title: Eigenimage filtering in MR imaging. publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198801000-00001 – volume: 9 start-page: 1245 year: 1997 ident: ref33 article-title: Note on free lunches and cross-validation. publication-title: Neural Computation doi: 10.1162/neco.1997.9.6.1245 – volume: 51 start-page: 184 year: 2004 ident: ref35 article-title: Neural Network and Fuzzy Clustering Approach for Automatic Diagnosis of Coronary Artery Disease in Nuclear Medicine. publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/TNS.2003.823047 – volume: 32 start-page: 2486 year: 2001 ident: ref7 article-title: Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke? publication-title: Stroke doi: 10.1161/hs1101.098331 – volume: 36 start-page: 880 year: 2005 ident: ref17 article-title: Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of a randomized phase 2 trial. publication-title: Stroke doi: 10.1161/01.STR.0000157668.39374.56 – volume: 33 start-page: 2197 year: 2002 ident: ref8 article-title: Prediction of early neurological deterioration using diffusion- and perfusion-weighted imaging in hyperacute middle cerebral artery ischemic stroke. publication-title: Stroke doi: 10.1161/01.STR.0000027861.75884.DF – volume: 25 start-page: 1336 year: 2005 ident: ref22 article-title: Statistical prediction of tissue fate in acute ischemic brain injury. publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600126 – volume: 344 start-page: 1895 year: 2001 ident: ref10 article-title: Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. publication-title: N Engl J Med doi: 10.1056/NEJM200106213442503 – volume: 41 start-page: 581 year: 1997 ident: ref11 article-title: Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. publication-title: Ann Neurol doi: 10.1002/ana.410410506 – volume: 44 start-page: 1513 year: 1999 ident: ref40 article-title: Pre-optimization of radiotherapy treatment planning: an artificial neural network classification aided technique. publication-title: Phys Med Biol doi: 10.1088/0031-9155/44/6/306 – volume: 36 start-page: 1153 year: 2005 ident: ref13 article-title: Refining the perfusion-diffusion mismatch hypothesis. publication-title: Stroke doi: 10.1161/01.STR.0000166181.86928.8b – volume: 37 start-page: 1093 year: 2002 ident: ref34 article-title: A brief overview and introduction to artificial neural networks. publication-title: Subst Use Misuse doi: 10.1081/JA-120004171 – volume: 30 start-page: 2230 year: 1999 ident: ref6 article-title: Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. publication-title: Stroke doi: 10.1161/01.STR.30.10.2230 – volume: 23 start-page: 91 year: 2007 ident: ref19 article-title: Multiparametric iterative self-organizing data analysis of ischemic lesions using pre- or post-Gd T1 MRI. publication-title: Cerebrovasc Dis doi: 10.1159/000097044 – volume: 27 start-page: 196 year: 2007 ident: ref23 article-title: Infarct prediction and treatment assessment with MRI-based algorithms in experimental stroke models. publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600328 – year: 2004 ident: ref41 article-title: SAS/STAT® 9.1 User's Guide. – reference: 3335646 - J Comput Assist Tomogr. 1988 Jan-Feb;12(1):1-9 – reference: 11283396 - Stroke. 2001 Apr;32(4):950-7 – reference: 11419426 - N Engl J Med. 2001 Jun 21;344(25):1895-903 – reference: 11692005 - Stroke. 2001 Nov;32(11):2486-91 – reference: 12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94 – reference: 16685257 - J Cereb Blood Flow Metab. 2007 Jan;27(1):196-204 – reference: 12215587 - Stroke. 2002 Sep;33(9):2197-203 – reference: 9153519 - Ann Neurol. 1997 May;41(5):581-9 – reference: 17654573 - Magn Reson Med. 2007 Aug;58(2):290-7 – reference: 15914768 - Stroke. 2005 Jun;36(6):1153-9 – reference: 2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 – reference: 9710013 - Neurology. 1998 Aug;51(2):418-26 – reference: 11997538 - Radiology. 2002 May;223(2):361-70 – reference: 12468779 - Stroke. 2002 Dec;33(12):2839-44 – reference: 15890988 - Stroke. 2005 Jun;36(6):1160-5 – reference: 10700492 - Stroke. 2000 Mar;31(3):601-9 – reference: 15834917 - J Magn Reson Imaging. 2005 May;21(5):495-502 – reference: 15731473 - Stroke. 2005 Apr;36(4):880-90 – reference: 16151036 - Stroke. 2005 Oct;36(10):2132-7 – reference: 10512933 - Stroke. 1999 Oct;30(10):2230-7 – reference: 15829912 - J Cereb Blood Flow Metab. 2005 Oct;25(10):1336-45 – reference: 17122428 - Stroke. 2007 Jan;38(1):194-7 – reference: 15502128 - AJNR Am J Neuroradiol. 2004 Oct;25(9):1499-508 – reference: 11062281 - Stroke. 2000 Nov;31(11):2597-602 – reference: 10498520 - Phys Med Biol. 1999 Jun;44(6):1513-28 – reference: 17124388 - Cerebrovasc Dis. 2007;23(2-3):91-102 – reference: 12180558 - Subst Use Misuse. 2002 Jun-Aug;37(8-10):1093-148 |
SSID | ssj0053866 |
Score | 2.239116 |
Snippet | In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e22626 |
SubjectTerms | Adult Aged Artificial neural networks Biology Cerebral infarction Cerebral Infarction - complications Cerebral Infarction - diagnosis Cerebral Infarction - pathology Demography Driving while intoxicated Female Humans Infarction Ischemia Lesions Magnetic Resonance Imaging Male Medicine Middle Aged Network analysis Neural networks Neural Networks (Computer) Optimization Patients Prognosis Proton density (concentration) ROC Curve Stroke Stroke - complications Stroke - diagnosis Stroke - pathology Stroke patients Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9QwDI_QPfGCGP92MCBCSMBDWZOmafM4ENOGNECDob1VSZqMidGerr3PwNfGTtPqiiaNB57udHGqnu04tuP8TMhLnRZaC28Sp02JoNppAl6RTbhlnsOGW8uQ0D_5JI_OxMfz_Hyr1RfWhA3wwAPj9kvLs8yVCltlCaeM8Sk3viggWGY2zz1aX9jzxmBqsMGwiqWMF-Wygu1HubxdtY3DFAqXCKawtREFvP7JKi9WV213ncv5d-Xk1lZ0eJfciT4kPRjefYfccs09shNXaUdfRyjpN_fJ7y9rPIjB0mbqsf8VDUnvnraeXkJci5XxFHQMtB0FRLEK_oIiUwZgCYpwl-EjFItTHSFMcH4oRUwQOvwXduWy9OT0GJ5FI1JrRzHFS7t-3f50D8jZ4Ydv74-S2HohsVKxPlFSCasM94XJpa9rzbjjts5T5r0S2toid0xqZ7RIjfQMDyPBVxDWSqOwD9FDsmiA2buEcqMZbIMOj_tFXcqycI7nGr5op2VWL0k2yqGyEZcc22NcVeGwrYD4ZGBrhdKrovSWJJlmrQZcjhvo36GIJ1pE1Q4_gK5VUdeqm3RtSZ6jglTDFdXJNlQHAoI2CF1FuSQvAgUiazRYunOhN11XHX_-_g9EX09nRK8ikW-BHVbH6xLwnxCxa0a5N6ME-2Bnw7uoziNXOjzAhBiVyzyDmaOKXz9Mp2F8KJbjNa7ddFVZCuxkkANbHw0LYmIsRwcwzdSSFLOlMuP8fKS5_BFwzTNw55lSj_-HqJ6Q22P2n6V7ZNGvN-4puI-9eRYsxR_GxXBR priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELegvPCCGP9WGGAhJOAhLHYcJ35CA21akQbVxlDfLNuxx0SVlKb9DHxtfI4TFjQBT63qc5Te-c535_PvEHqp0kIp5nRilS4BVDtNvFdkEmqIo37DrXhI6J984sfn7OMiX8SEWxvLKnubGAx11RjIke97W-s9a8rz7N3qRwJdo-B0NbbQuIluAXQZlHQViyHg8rrMebwulxVkP0rn7aqpLSRSKAdIhSvbUUDtH2zzZLVs2usczz_rJ69sSEd30Z3oSeKDTvQ76Iat76GdqKstfh0Bpd_cRz_naziOgQJnDP14l_gQUt8b3Dg889Et1MfjWe38mgcx4VBGEB7cwUtgQPAIH6FkHPdAJjA_XOBN5gpqvADsH5-czvBljecdXmuLIdGLzzbr5rt9gM6PDr98OE5iA4bEcEE2ieCCGaGpK3TOXVUpQi01VZ4S5wRTxhS5JVxZrViquSNwJOk9BmYM1wK6ET1Ek9ozexdhqhXxm6GFQ39WlbwsrKW58l-UVTyrpijr5SBNRCeHJhlLGY7cCh-ldGyVID0ZpTdFyTBr1aFz_IP-PYh4oAVs7fBDs76QUVVlaWiW2VJAczZmhdYupdoVBRElMXnupug5LBDZXVQdLIQ8YD508wEsK6foRaAAfI0aCngu1LZt5ezz1_8gOjsdEb2KRK7x7DAqXprw_wlwu0aUeyNKbyXMaHgXlnPPlVb-1ic_s1_i1w_jYRgeCkV5tW22rSxLBv0Mcs_WR51CDIyl4AammZiiYqQqI86PR-rLbwHdPPNOPRHi8d_f6gm63Wf3SbqHJpv11j717uFGPws24BeqZmas priority: 102 providerName: ProQuest |
Title | Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21853039 https://www.proquest.com/docview/1307532653 https://www.proquest.com/docview/884426256 https://pubmed.ncbi.nlm.nih.gov/PMC3154199 https://doaj.org/article/8c233e8944174e9bbf02bf771981c55f http://dx.doi.org/10.1371/journal.pone.0022626 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRQLIQEPmWLnw_EDQtvUsiJ1VB1FfYtsx94mqqQ0rQR_Af82PudDBBWxlySqz5Z65_OdfeffIfRa-EyI0EhPC5kAqLbvWa9IeVQRQ63BzWJ3oD-5jC_m4adFtNhDTc3WmoHlzq0d1JOar5cnP77__GAV_r2r2sBI0-lkVeQaDkioddL30YG1TQxUdRK2cQWr3S56CV6LF1M_qC_T_WuUjrFymP7tyt1bLYtyl1v6d3blH-Zq9ADdr_1MfFpNjEO0p_OH6LDW5BK_reGm3z1Cv6ZrCNZA-jOGar1LPISD8Q0uDB5bBkH2PB7nxmoECBG7JAM3cAU-gQHfw71cQjluYE6gv7ve600FZIBBKQA8mY3xbY6nFZprieEYGF9t1sU3_RjNR8Mv5xdeXZ7BUzEnG4_HPFRcUsNkFJssE4RqqrLIJ8bwUCjFIk1ioaUIfRkbAgFL60-ESsWSQ62iJ6iXW2YfIUylINZUakgJCLMkTpjWNBL2Q2gRB1kfBY0cUlVjl0MJjWXqAnLM7mEqtqYgvbSWXh95ba9Vhd3xH_ozEHFLC8jb7odifZ3WipwmigaBTjiUbgs1l9L4VBrGCE-IiiLTRy9hgqTVNdZ2_UhPQ7uxs9vbMOmjV44C0DdySO-5FtuyTMefv96B6GrWIXpTE5nCskOJ-kqF_U-A6tWhPO5Q2jVEdZqPYDo3XCkhyGn3sTSOAtuzmeK7m3HbDINCyl6ui22ZJkkI1Q4iy9anlUK0jKXgJPoB7yPWUZUO57st-e2Nwz4PrMtPOH92F_Y8R_eaCADxj1Fvs97qF9aF3MgB2mcLZp_JOYHn6OMAHZwNL6ezgTuUGbhV4zcHPXWa |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALory6UKiFQMAhNHYSJzkgVKDVhnbLqi_tLTiOXSpWybLZFeIX8G_4jcw4DxpUAZeedrUeR9mZ8Tzs8TeEPJVuKKVvMkfLLEJQbdeBqEg5XDHDweHmwm7ojw7E8MT_MAkmK-RnexcGyypbm2gNdV4q3CPfAlsLkTUXgfdm9tXBrlF4utq20KjVYk9__wYpW_U6eQ_yfcb57s7xu6HTdBVwlIjZwolF7Ks44ybMAmHyXDKuucoDlxkT-1KpMNBMSJ1J382EYXjOBm7QV0pksWeBDsDkXwPH6-KKCiddgge2Q4jmep4Xsq1GG17NykLjxg0XCOFwwf3ZLgGdL1idTcvqskD3z3rNCw5w9xa52USudLtWtTWyoovbZK2xDRV90QBYv7xDfoznePyDBdUU-_9O6Q5utS9oaWgC2TTW49OkMMBMVAtqyxbsg2s4C4qIIfbDlqjTFjgF59sLw85YYk0ZNhego8OEnhd0XOPDVhQ3lunRYl5-0XfJyZWI5h5ZLYDZ64TyTDJwvhqLDPw8ElGoNQ8kfJFaCi8fEK-VQ6oaNHRsyjFN7RFfCFlRzdYUpZc20hsQp5s1q9FA_kH_FkXc0SKWt_2hnJ-ljWlII8U9T0cxNoPzdZxlxuWZCUMWR0wFgRmQTVSQtL4Y21mkdNuHVBESZj8akCeWAvE8CiwYOpPLqkqTj6f_QXR02CN63hCZEtihZHNJA_4T4oT1KDd6lGCVVG94HdW55UqV_l6_MLNV8cuHaTeMD8UiwEKXyyqNIh_7JwTA1vv1gugYyzHsdL14QMLeUulxvj9SnH-2aOoeJBEsjh_8_a02yfXh8Wg_3U8O9h6SG-3JAnM3yOpivtSPIDRdZI-tPaDk01UboF_WXqQB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrhcEsBAIeQmMncZIHhAZbtTA2qo2hvgXHscdElZSmFeIv4H_ir-PO-WBBE_Cyp1b1OUrvzvdhn39HyGPphlL6JnO0zCIE1XYdiIqUwxUzHBxuLuyG_sGh2Dvx306D6Rr52d6FwbLK1iZaQ52XCvfIR2BrIbLmIvBGpimLmOyMX82_OthBCk9a23YatYrs6-_fIH2rXiY7IOsnnI93P7zZc5oOA44SMVs6sYh9FWfchFkgTJ5LxjVXeeAyY2JfKhUGmgmpM-m7mTAMz9zAJfpKiSz2LOgBmP8roRcwXGPhtEv2wI4I0VzV80I2ajTjxbwsNG7icIFwDudcoe0Y0PmFwXxWVhcFvX_Wbp5zhuMb5HoTxdLtWu3WyZoubpL1xk5U9FkDZv38FvkxWeBREBZXU-wFPKO7uO2-pKWhCWTWWJtPk8IAM1FFqC1hsA-uoS0ooofYD1uuTlsQFZxvLw87E4n1ZdhogB4cJfSsoJMaK7aiuMlMj5eL8ou-TU4uRTR3yKAAZm8QyjPJwBFrLDjw80hEodY8kPBFaim8fEi8Vg6papDRsUHHLLXHfSFkSDVbU5Re2khvSJxu1rxGBvkH_WsUcUeLuN72h3JxmjZmIo0U9zwdxdgYztdxlhmXZyYMWRwxFQRmSLZQQdL6kmxnndJtH9JGSJ79aEgeWQrE9ihwlZzKVVWlyfuP_0F0fNQjetoQmRLYoWRzYQP-E2KG9Sg3e5RgoVRveAPVueVKlf5eyzCzVfGLh2k3jA_FgsBCl6sqjSIfeykEwNa79YLoGMsxBHW9eEjC3lLpcb4_Upx9tsjqHiQULI7v_f2ttshVMD3pu-Rw_z651h4yMHeTDJaLlX4AUeoye2jNASWfLtv-_AJ4oKg3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Final+Extent+of+Ischemic+Infarction+Using+Artificial+Neural+Network+Analysis+of+Multi-Parametric+MRI+in+Patients+with+Stroke&rft.jtitle=PloS+one&rft.au=Bagher-Ebadian%2C+Hassan&rft.au=Jafari-Khouzani%2C+Kourosh&rft.au=Mitsias%2C+Panayiotis+D&rft.au=Lu%2C+Mei&rft.date=2011-08-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=6&rft.issue=8&rft.spage=e22626&rft_id=info:doi/10.1371%2Fjournal.pone.0022626&rft.externalDBID=ISR&rft.externalDocID=A476882848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |