Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke

In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chroni...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 8; p. e22626
Main Authors Bagher-Ebadian, Hassan, Jafari-Khouzani, Kourosh, Mitsias, Panayiotis D., Lu, Mei, Soltanian-Zadeh, Hamid, Chopp, Michael, Ewing, James R.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.08.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
AbstractList In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T 1 -weighted – T1WI, T 2 -weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated ( r  = 0.80, p <0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T1-weighted – T1WI, T2-weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T.sub.1 -weighted - T1WI, T.sub.2 -weighted-T2WI, and proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
Audience Academic
Author Soltanian-Zadeh, Hamid
Ewing, James R.
Lu, Mei
Bagher-Ebadian, Hassan
Jafari-Khouzani, Kourosh
Mitsias, Panayiotis D.
Chopp, Michael
AuthorAffiliation 5 Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
1 Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
2 Department of Physics, Oakland University, Rochester, Michigan, United States of America
7 Department of Neurology, Wayne State University, Detroit, Michigan, United States of America
Beijing Normal University, China
3 Department of Diagnostic Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
6 Department of Physiology, Wayne State University, Detroit, Michigan, United States of America
4 Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, United States of America
AuthorAffiliation_xml – name: 4 Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, United States of America
– name: 7 Department of Neurology, Wayne State University, Detroit, Michigan, United States of America
– name: 2 Department of Physics, Oakland University, Rochester, Michigan, United States of America
– name: 5 Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– name: 6 Department of Physiology, Wayne State University, Detroit, Michigan, United States of America
– name: Beijing Normal University, China
– name: 3 Department of Diagnostic Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
– name: 1 Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
Author_xml – sequence: 1
  givenname: Hassan
  surname: Bagher-Ebadian
  fullname: Bagher-Ebadian, Hassan
– sequence: 2
  givenname: Kourosh
  surname: Jafari-Khouzani
  fullname: Jafari-Khouzani, Kourosh
– sequence: 3
  givenname: Panayiotis D.
  surname: Mitsias
  fullname: Mitsias, Panayiotis D.
– sequence: 4
  givenname: Mei
  surname: Lu
  fullname: Lu, Mei
– sequence: 5
  givenname: Hamid
  surname: Soltanian-Zadeh
  fullname: Soltanian-Zadeh, Hamid
– sequence: 6
  givenname: Michael
  surname: Chopp
  fullname: Chopp, Michael
– sequence: 7
  givenname: James R.
  surname: Ewing
  fullname: Ewing, James R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21853039$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggiIYG42MWnODEXSKuqhZVaWrWUW8tx7F232XixHdo-Aa_NpN1W3apCKBeOJt_84_kzs51tdL4zWfYaozGmJf507vvQqXa8hPAYIUI44c-yLSwoGXGC6MaD981sO8ZzhApacf4i2yS4KiiiYiv7cxxM43Ry3Szfd6CX710l06Xc23wa9dwsnM6nnVUBGN_lZ3EgJyE567QD_Lvpw82RLn24yCcgcR1dHPIP-za50bEKamFSAJ3Dk2nuuvxYJQclYn7p0jw_TcFfmJfZc6vaaF6tzp3sbH_vx-630cHR1-nu5GCkucBpJLhgWtTElnXBbdMoTAzRTYGwtYIprcvCYK5MrRiqucUYixJXmGnNa0ERoTvZ21vdZeujXHkYJaaoLCjhBQVieks0Xp3LZXALFa6lV07eBHyYSQXt69bIShNKTSUYwyUzoq4tIrUtSywqrIvCgtaXVbW-XphGQ9dg1pro-pfOzeXM_5YUFwwLAQIfVgLB_-pNTHLhojZtqzrj-yirijH48QUH8t0j8unmVtRMwf1dZz2U1YOmnLCSVxWpWAXU-AkKnmYYB5g36yC-lvBxLQGYZK7STPUxyunpyf-zRz_X2fcP2LlRbZpH3_bDKMZ18M1Do-8dvht0ANgtoIOPMRh7j2Akh326s0sO-yRX-wRpnx-laZfUUB4cce2_k_8Cn4wm1Q
CitedBy_id crossref_primary_10_1161_STROKEAHA_122_041442
crossref_primary_10_1111_ejn_14507
crossref_primary_10_1111_ejn_14505
crossref_primary_10_1002_nbm_3682
crossref_primary_10_22468_cvia_2018_00248
crossref_primary_10_3414_ME14_01_0007
crossref_primary_10_1016_j_ejmp_2016_11_011
crossref_primary_10_1109_TMI_2016_2551324
crossref_primary_10_1117_1_JMI_6_2_026001
crossref_primary_10_1038_s41598_019_49460_y
crossref_primary_10_1371_journal_pone_0129569
crossref_primary_10_1073_pnas_1322173111
crossref_primary_10_1016_j_clinimag_2020_09_005
crossref_primary_10_1016_j_wneu_2018_10_084
crossref_primary_10_1080_14737175_2021_1951234
crossref_primary_10_3390_app11041675
crossref_primary_10_1667_RADE_22_00048_1
crossref_primary_10_3389_fneur_2021_613029
crossref_primary_10_1007_s11042_019_07823_7
crossref_primary_10_1016_j_nicl_2012_10_003
crossref_primary_10_1007_s11517_020_02280_z
crossref_primary_10_1016_j_measurement_2017_01_001
crossref_primary_10_1080_13682199_2017_1370879
crossref_primary_10_1002_nbm_3739
crossref_primary_10_1016_j_neuroimage_2021_117934
crossref_primary_10_3389_fonc_2019_01313
crossref_primary_10_1007_s00234_021_02639_5
crossref_primary_10_1161_STROKEAHA_117_019440
crossref_primary_10_1016_j_procs_2021_09_063
crossref_primary_10_1155_2022_3064266
crossref_primary_10_1186_s12984_024_01318_9
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_3390_e19050187
Cites_doi 10.4324/9780203451519
10.1161/01.STR.31.3.601
10.1002/jmri.20313
10.1161/01.STR.0000165918.80812.1e
10.1161/01.STR.0000043072.76353.7C
10.1161/01.STR.32.4.950
10.1161/01.STR.0000181066.23213.8f
10.1148/radiol.2232010673
10.1212/WNL.51.2.418
10.1161/01.STR.0000251792.76080.45
10.1007/BF02459570
10.1002/mrm.21332
10.1111/j.2517-6161.1974.tb00994.x
10.1161/01.STR.31.11.2597
10.1097/00004728-198801000-00001
10.1162/neco.1997.9.6.1245
10.1109/TNS.2003.823047
10.1161/hs1101.098331
10.1161/01.STR.0000157668.39374.56
10.1161/01.STR.0000027861.75884.DF
10.1038/sj.jcbfm.9600126
10.1056/NEJM200106213442503
10.1002/ana.410410506
10.1088/0031-9155/44/6/306
10.1161/01.STR.0000166181.86928.8b
10.1081/JA-120004171
10.1161/01.STR.30.10.2230
10.1159/000097044
10.1038/sj.jcbfm.9600328
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
2011 Bagher-Ebadian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Bagher-Ebadian et al. 2011
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011 Bagher-Ebadian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Bagher-Ebadian et al. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0022626
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
ProQuest Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Agricultural Science Database



MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Biology
DocumentTitleAlternate Predicting Final Extent of Ischemic Infarction
EISSN 1932-6203
ExternalDocumentID 1307532653
oai_doaj_org_article_8c233e8944174e9bbf02bf771981c55f
PMC3154199
2900140321
A476882848
21853039
10_1371_journal_pone_0022626
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Detroit Michigan
Michigan
GeographicLocations_xml – name: Michigan
– name: United States--US
– name: Detroit Michigan
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R03 NS061170
– fundername: NINDS NIH HHS
  grantid: 1-R03-NS061170
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PV9
RZL
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c691t-9694c9b2f7b56fdda12e2cd501ff94acc75e16aeba40b6f111971814cc6b93023
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:14 EST 2021
Wed Aug 27 01:05:34 EDT 2025
Thu Aug 21 14:11:07 EDT 2025
Thu Jul 10 18:00:30 EDT 2025
Fri Jul 25 10:19:55 EDT 2025
Tue Jun 17 20:58:15 EDT 2025
Tue Jun 10 20:16:43 EDT 2025
Fri Jun 27 03:35:49 EDT 2025
Fri Jun 27 03:38:37 EDT 2025
Thu May 22 21:19:56 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Wed Aug 20 07:42:04 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c691t-9694c9b2f7b56fdda12e2cd501ff94acc75e16aeba40b6f111971814cc6b93023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: HB-E. Performed the experiments: PDM. Analyzed the data: KJ-K. Contributed reagents/materials/analysis tools: KJ-K. Wrote the paper: HB-E JE. Gave technical consultation: HS-Z. Conducted the statistical analysis: ML. Directed and supervised the study: MC. Supervised the team: JRE.
OpenAccessLink https://www.proquest.com/docview/1307532653?pq-origsite=%requestingapplication%
PMID 21853039
PQID 1307532653
PQPubID 1436336
PageCount e22626
ParticipantIDs plos_journals_1307532653
doaj_primary_oai_doaj_org_article_8c233e8944174e9bbf02bf771981c55f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3154199
proquest_miscellaneous_884426256
proquest_journals_1307532653
gale_infotracmisc_A476882848
gale_infotracacademiconefile_A476882848
gale_incontextgauss_ISR_A476882848
gale_incontextgauss_IOV_A476882848
gale_healthsolutions_A476882848
pubmed_primary_21853039
crossref_primary_10_1371_journal_pone_0022626
crossref_citationtrail_10_1371_journal_pone_0022626
PublicationCentury 2000
PublicationDate 2011-08-10
PublicationDateYYYYMMDD 2011-08-10
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References PD Mitsias (ref4) 2004; 25
VN Thijs (ref20) 2000; 31
WS McCulloch (ref28) 1990; 52
C Goutte (ref33) 1997; 9
MA Jacobs (ref2) 2001; 32
CB Grandin (ref9) 2002; 223
J Freeman (ref30) 1991
VH Nguyen (ref24) 2008
H Bagher-Ebadian (ref35) 2004; 51
O Wu (ref23) 2007; 27
PA Barber (ref1) 1998; 51
(ref16) 2000; 31
Q Shen (ref22) 2005; 25
C Oppenheim (ref7) 2001; 32
B Scholkopf (ref39) 2002
PW Schaefer (ref12) 2002; 23
M Stone (ref38) 1974; 36
M Koga (ref15) 2005; 36
M Luby (ref26) 2008
PD Mitsias (ref3) 2002; 33
NM Menezes (ref21) 2007; 38
K Gurney (ref29) 1997
M Buscema (ref34) 2002; 37
(ref17) 2005; 36
M Lu (ref5) 2005; 21
AE Baird (ref11) 1997; 41
B Eckert (ref14) 2005; 36
KS Butcher (ref13) 2005; 36
C Bishop (ref32) 1997
A Elisseeff (ref37) 2005; 6
G Montalescot (ref10) 2001; 344
JP Windham (ref27) 1988; 12
GW Albers (ref6) 1999; 30
(ref41) 2004
H Bagher-Ebadian (ref36) 2007; 58
C Looney (ref31) 1997
H Soltanian-Zadeh (ref19) 2007; 23
JF Arenillas (ref8) 2002; 33
ME Hosseini-Ashrafi (ref40) 1999; 44
PD Mitsias (ref18) 2004; 25
VH Nguyen (ref25) 2008
15834917 - J Magn Reson Imaging. 2005 May;21(5):495-502
15914768 - Stroke. 2005 Jun;36(6):1153-9
12180558 - Subst Use Misuse. 2002 Jun-Aug;37(8-10):1093-148
10512933 - Stroke. 1999 Oct;30(10):2230-7
9153519 - Ann Neurol. 1997 May;41(5):581-9
11419426 - N Engl J Med. 2001 Jun 21;344(25):1895-903
16685257 - J Cereb Blood Flow Metab. 2007 Jan;27(1):196-204
12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94
11283396 - Stroke. 2001 Apr;32(4):950-7
16151036 - Stroke. 2005 Oct;36(10):2132-7
17122428 - Stroke. 2007 Jan;38(1):194-7
10700492 - Stroke. 2000 Mar;31(3):601-9
12215587 - Stroke. 2002 Sep;33(9):2197-203
11062281 - Stroke. 2000 Nov;31(11):2597-602
15502128 - AJNR Am J Neuroradiol. 2004 Oct;25(9):1499-508
15829912 - J Cereb Blood Flow Metab. 2005 Oct;25(10):1336-45
17654573 - Magn Reson Med. 2007 Aug;58(2):290-7
2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97
17124388 - Cerebrovasc Dis. 2007;23(2-3):91-102
15890988 - Stroke. 2005 Jun;36(6):1160-5
12468779 - Stroke. 2002 Dec;33(12):2839-44
9710013 - Neurology. 1998 Aug;51(2):418-26
11692005 - Stroke. 2001 Nov;32(11):2486-91
15731473 - Stroke. 2005 Apr;36(4):880-90
3335646 - J Comput Assist Tomogr. 1988 Jan-Feb;12(1):1-9
11997538 - Radiology. 2002 May;223(2):361-70
10498520 - Phys Med Biol. 1999 Jun;44(6):1513-28
References_xml – year: 1997
  ident: ref29
  article-title: An Introduction to Neural Networks.
  doi: 10.4324/9780203451519
– volume: 31
  start-page: 601
  year: 2000
  ident: ref16
  article-title: Abciximab in acute ischemic stroke: a randomized, double-blind, placebo-controlled, dose-escalation study. The Abciximab in Ischemic Stroke Investigators.
  publication-title: Stroke
  doi: 10.1161/01.STR.31.3.601
– start-page: 238
  year: 2008
  ident: ref24
  article-title: Stroke tissue outcome prediction using a spatially-correlated model.
– volume: 21
  start-page: 495
  year: 2005
  ident: ref5
  article-title: Predicting final infarct size using acute and subacute multiparametric MRI measurements in patients with ischemic stroke.
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20313
– volume: 36
  start-page: 1160
  year: 2005
  ident: ref14
  article-title: Aggressive therapy with intravenous abciximab and intra-arterial rtPA and additional PTA/stenting improves clinical outcome in acute vertebrobasilar occlusion: combined local fibrinolysis and intravenous abciximab in acute vertebrobasilar stroke treatment (FAST): results of a multicenter study.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000165918.80812.1e
– volume: 33
  start-page: 2839
  year: 2002
  ident: ref3
  article-title: Multiparametric MRI ISODATA ischemic lesion analysis: correlation with the clinical neurological deficit and single-parameter MRI techniques.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000043072.76353.7C
– volume: 32
  start-page: 950
  year: 2001
  ident: ref2
  article-title: Multiparametric MRI tissue characterization in clinical stroke with correlation to clinical outcome: part 2.
  publication-title: Stroke
  doi: 10.1161/01.STR.32.4.950
– volume: 25
  start-page: 1499
  year: 2004
  ident: ref18
  article-title: Multiparametric iterative self-organizing MR imaging data analysis technique for assessment of tissue viability in acute cerebral ischemia.
  publication-title: AJNR Am J Neuroradiol
– year: 2002
  ident: ref39
  article-title: Learning with Kernels.
– year: 1991
  ident: ref30
  article-title: Neural Network-Algorithms, Applications and Programming Techniques.
– volume: 36
  start-page: 2132
  year: 2005
  ident: ref15
  article-title: The existence and evolution of diffusion-perfusion mismatched tissue in white and gray matter after acute stroke.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000181066.23213.8f
– year: 1997
  ident: ref32
  article-title: Neural Networks for Pattern Recognition.
– volume: 223
  start-page: 361
  year: 2002
  ident: ref9
  article-title: Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements.
  publication-title: Radiology
  doi: 10.1148/radiol.2232010673
– volume: 51
  start-page: 418
  year: 1998
  ident: ref1
  article-title: Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI.
  publication-title: Neurology
  doi: 10.1212/WNL.51.2.418
– volume: 38
  start-page: 194
  year: 2007
  ident: ref21
  article-title: The real estate factor: quantifying the impact of infarct location on stroke severity.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000251792.76080.45
– volume: 6
  start-page: 55
  year: 2005
  ident: ref37
  article-title: Leave-one-out error and stability of learning algorithms with applications Stability of Randomized Learning Algorithms Source.
  publication-title: Journal of Machine Learning Research
– volume: 52
  start-page: 99
  year: 1990
  ident: ref28
  article-title: A logical calculus of the ideas immanent in nervous activity. 1943.
  publication-title: Bull Math Biol
  doi: 10.1007/BF02459570
– volume: 58
  start-page: 290
  year: 2007
  ident: ref36
  article-title: MRI estimation of contrast agent concentration in tissue using a neural network approach.
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21332
– volume: 36
  start-page: 111
  year: 1974
  ident: ref38
  article-title: Cross-validatory choice and assessment of statistical predictions (with discussion).
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 23
  start-page: 1785
  year: 2002
  ident: ref12
  article-title: Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging.
  publication-title: AJNR Am J Neuroradiol
– year: 1997
  ident: ref31
  article-title: Pattern recognition using neural networks: theory and algorithms for engineers and scientists.
– volume: 31
  start-page: 2597
  year: 2000
  ident: ref20
  article-title: Is early ischemic lesion volume on diffusion-weighted imaging an independent predictor of stroke outcome? A multivariable analysis.
  publication-title: Stroke
  doi: 10.1161/01.STR.31.11.2597
– start-page: 238
  year: 2008
  ident: ref25
  article-title: The Imaging Society of Japan
– volume: 25
  start-page: 1499
  year: 2004
  ident: ref4
  article-title: Multiparametric Iterative Self-Organizing MR Imaging Data Analysis Technique for Assessment of Tissue Viability in Acute Cerebral Ischemia.
  publication-title: American Journal of Neuroradiology
– year: 2008
  ident: ref26
  article-title: Neural Network Model for Prediction of Final Infarct Volume in Treated versus Untreated Stroke Patients.
– volume: 12
  start-page: 1
  year: 1988
  ident: ref27
  article-title: Eigenimage filtering in MR imaging.
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-198801000-00001
– volume: 9
  start-page: 1245
  year: 1997
  ident: ref33
  article-title: Note on free lunches and cross-validation.
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.6.1245
– volume: 51
  start-page: 184
  year: 2004
  ident: ref35
  article-title: Neural Network and Fuzzy Clustering Approach for Automatic Diagnosis of Coronary Artery Disease in Nuclear Medicine.
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/TNS.2003.823047
– volume: 32
  start-page: 2486
  year: 2001
  ident: ref7
  article-title: Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke?
  publication-title: Stroke
  doi: 10.1161/hs1101.098331
– volume: 36
  start-page: 880
  year: 2005
  ident: ref17
  article-title: Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of a randomized phase 2 trial.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000157668.39374.56
– volume: 33
  start-page: 2197
  year: 2002
  ident: ref8
  article-title: Prediction of early neurological deterioration using diffusion- and perfusion-weighted imaging in hyperacute middle cerebral artery ischemic stroke.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000027861.75884.DF
– volume: 25
  start-page: 1336
  year: 2005
  ident: ref22
  article-title: Statistical prediction of tissue fate in acute ischemic brain injury.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600126
– volume: 344
  start-page: 1895
  year: 2001
  ident: ref10
  article-title: Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction.
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200106213442503
– volume: 41
  start-page: 581
  year: 1997
  ident: ref11
  article-title: Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging.
  publication-title: Ann Neurol
  doi: 10.1002/ana.410410506
– volume: 44
  start-page: 1513
  year: 1999
  ident: ref40
  article-title: Pre-optimization of radiotherapy treatment planning: an artificial neural network classification aided technique.
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/44/6/306
– volume: 36
  start-page: 1153
  year: 2005
  ident: ref13
  article-title: Refining the perfusion-diffusion mismatch hypothesis.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000166181.86928.8b
– volume: 37
  start-page: 1093
  year: 2002
  ident: ref34
  article-title: A brief overview and introduction to artificial neural networks.
  publication-title: Subst Use Misuse
  doi: 10.1081/JA-120004171
– volume: 30
  start-page: 2230
  year: 1999
  ident: ref6
  article-title: Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection.
  publication-title: Stroke
  doi: 10.1161/01.STR.30.10.2230
– volume: 23
  start-page: 91
  year: 2007
  ident: ref19
  article-title: Multiparametric iterative self-organizing data analysis of ischemic lesions using pre- or post-Gd T1 MRI.
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000097044
– volume: 27
  start-page: 196
  year: 2007
  ident: ref23
  article-title: Infarct prediction and treatment assessment with MRI-based algorithms in experimental stroke models.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600328
– year: 2004
  ident: ref41
  article-title: SAS/STAT® 9.1 User's Guide.
– reference: 3335646 - J Comput Assist Tomogr. 1988 Jan-Feb;12(1):1-9
– reference: 11283396 - Stroke. 2001 Apr;32(4):950-7
– reference: 11419426 - N Engl J Med. 2001 Jun 21;344(25):1895-903
– reference: 11692005 - Stroke. 2001 Nov;32(11):2486-91
– reference: 12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94
– reference: 16685257 - J Cereb Blood Flow Metab. 2007 Jan;27(1):196-204
– reference: 12215587 - Stroke. 2002 Sep;33(9):2197-203
– reference: 9153519 - Ann Neurol. 1997 May;41(5):581-9
– reference: 17654573 - Magn Reson Med. 2007 Aug;58(2):290-7
– reference: 15914768 - Stroke. 2005 Jun;36(6):1153-9
– reference: 2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97
– reference: 9710013 - Neurology. 1998 Aug;51(2):418-26
– reference: 11997538 - Radiology. 2002 May;223(2):361-70
– reference: 12468779 - Stroke. 2002 Dec;33(12):2839-44
– reference: 15890988 - Stroke. 2005 Jun;36(6):1160-5
– reference: 10700492 - Stroke. 2000 Mar;31(3):601-9
– reference: 15834917 - J Magn Reson Imaging. 2005 May;21(5):495-502
– reference: 15731473 - Stroke. 2005 Apr;36(4):880-90
– reference: 16151036 - Stroke. 2005 Oct;36(10):2132-7
– reference: 10512933 - Stroke. 1999 Oct;30(10):2230-7
– reference: 15829912 - J Cereb Blood Flow Metab. 2005 Oct;25(10):1336-45
– reference: 17122428 - Stroke. 2007 Jan;38(1):194-7
– reference: 15502128 - AJNR Am J Neuroradiol. 2004 Oct;25(9):1499-508
– reference: 11062281 - Stroke. 2000 Nov;31(11):2597-602
– reference: 10498520 - Phys Med Biol. 1999 Jun;44(6):1513-28
– reference: 17124388 - Cerebrovasc Dis. 2007;23(2-3):91-102
– reference: 12180558 - Subst Use Misuse. 2002 Jun-Aug;37(8-10):1093-148
SSID ssj0053866
Score 2.239116
Snippet In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e22626
SubjectTerms Adult
Aged
Artificial neural networks
Biology
Cerebral infarction
Cerebral Infarction - complications
Cerebral Infarction - diagnosis
Cerebral Infarction - pathology
Demography
Driving while intoxicated
Female
Humans
Infarction
Ischemia
Lesions
Magnetic Resonance Imaging
Male
Medicine
Middle Aged
Network analysis
Neural networks
Neural Networks (Computer)
Optimization
Patients
Prognosis
Proton density (concentration)
ROC Curve
Stroke
Stroke - complications
Stroke - diagnosis
Stroke - pathology
Stroke patients
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9QwDI_QPfGCGP92MCBCSMBDWZOmafM4ENOGNECDob1VSZqMidGerr3PwNfGTtPqiiaNB57udHGqnu04tuP8TMhLnRZaC28Sp02JoNppAl6RTbhlnsOGW8uQ0D_5JI_OxMfz_Hyr1RfWhA3wwAPj9kvLs8yVCltlCaeM8Sk3viggWGY2zz1aX9jzxmBqsMGwiqWMF-Wygu1HubxdtY3DFAqXCKawtREFvP7JKi9WV213ncv5d-Xk1lZ0eJfciT4kPRjefYfccs09shNXaUdfRyjpN_fJ7y9rPIjB0mbqsf8VDUnvnraeXkJci5XxFHQMtB0FRLEK_oIiUwZgCYpwl-EjFItTHSFMcH4oRUwQOvwXduWy9OT0GJ5FI1JrRzHFS7t-3f50D8jZ4Ydv74-S2HohsVKxPlFSCasM94XJpa9rzbjjts5T5r0S2toid0xqZ7RIjfQMDyPBVxDWSqOwD9FDsmiA2buEcqMZbIMOj_tFXcqycI7nGr5op2VWL0k2yqGyEZcc22NcVeGwrYD4ZGBrhdKrovSWJJlmrQZcjhvo36GIJ1pE1Q4_gK5VUdeqm3RtSZ6jglTDFdXJNlQHAoI2CF1FuSQvAgUiazRYunOhN11XHX_-_g9EX09nRK8ikW-BHVbH6xLwnxCxa0a5N6ME-2Bnw7uoziNXOjzAhBiVyzyDmaOKXz9Mp2F8KJbjNa7ddFVZCuxkkANbHw0LYmIsRwcwzdSSFLOlMuP8fKS5_BFwzTNw55lSj_-HqJ6Q22P2n6V7ZNGvN-4puI-9eRYsxR_GxXBR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELegvPCCGP9WGGAhJOAhLHYcJ35CA21akQbVxlDfLNuxx0SVlKb9DHxtfI4TFjQBT63qc5Te-c535_PvEHqp0kIp5nRilS4BVDtNvFdkEmqIo37DrXhI6J984sfn7OMiX8SEWxvLKnubGAx11RjIke97W-s9a8rz7N3qRwJdo-B0NbbQuIluAXQZlHQViyHg8rrMebwulxVkP0rn7aqpLSRSKAdIhSvbUUDtH2zzZLVs2usczz_rJ69sSEd30Z3oSeKDTvQ76Iat76GdqKstfh0Bpd_cRz_naziOgQJnDP14l_gQUt8b3Dg889Et1MfjWe38mgcx4VBGEB7cwUtgQPAIH6FkHPdAJjA_XOBN5gpqvADsH5-czvBljecdXmuLIdGLzzbr5rt9gM6PDr98OE5iA4bEcEE2ieCCGaGpK3TOXVUpQi01VZ4S5wRTxhS5JVxZrViquSNwJOk9BmYM1wK6ET1Ek9ozexdhqhXxm6GFQ39WlbwsrKW58l-UVTyrpijr5SBNRCeHJhlLGY7cCh-ldGyVID0ZpTdFyTBr1aFz_IP-PYh4oAVs7fBDs76QUVVlaWiW2VJAczZmhdYupdoVBRElMXnupug5LBDZXVQdLIQ8YD508wEsK6foRaAAfI0aCngu1LZt5ezz1_8gOjsdEb2KRK7x7DAqXprw_wlwu0aUeyNKbyXMaHgXlnPPlVb-1ic_s1_i1w_jYRgeCkV5tW22rSxLBv0Mcs_WR51CDIyl4AammZiiYqQqI86PR-rLbwHdPPNOPRHi8d_f6gm63Wf3SbqHJpv11j717uFGPws24BeqZmas
  priority: 102
  providerName: ProQuest
Title Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke
URI https://www.ncbi.nlm.nih.gov/pubmed/21853039
https://www.proquest.com/docview/1307532653
https://www.proquest.com/docview/884426256
https://pubmed.ncbi.nlm.nih.gov/PMC3154199
https://doaj.org/article/8c233e8944174e9bbf02bf771981c55f
http://dx.doi.org/10.1371/journal.pone.0022626
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRQLIQEPmWLnw_EDQtvUsiJ1VB1FfYtsx94mqqQ0rQR_Af82PudDBBWxlySqz5Z65_OdfeffIfRa-EyI0EhPC5kAqLbvWa9IeVQRQ63BzWJ3oD-5jC_m4adFtNhDTc3WmoHlzq0d1JOar5cnP77__GAV_r2r2sBI0-lkVeQaDkioddL30YG1TQxUdRK2cQWr3S56CV6LF1M_qC_T_WuUjrFymP7tyt1bLYtyl1v6d3blH-Zq9ADdr_1MfFpNjEO0p_OH6LDW5BK_reGm3z1Cv6ZrCNZA-jOGar1LPISD8Q0uDB5bBkH2PB7nxmoECBG7JAM3cAU-gQHfw71cQjluYE6gv7ve600FZIBBKQA8mY3xbY6nFZprieEYGF9t1sU3_RjNR8Mv5xdeXZ7BUzEnG4_HPFRcUsNkFJssE4RqqrLIJ8bwUCjFIk1ioaUIfRkbAgFL60-ESsWSQ62iJ6iXW2YfIUylINZUakgJCLMkTpjWNBL2Q2gRB1kfBY0cUlVjl0MJjWXqAnLM7mEqtqYgvbSWXh95ba9Vhd3xH_ozEHFLC8jb7odifZ3WipwmigaBTjiUbgs1l9L4VBrGCE-IiiLTRy9hgqTVNdZ2_UhPQ7uxs9vbMOmjV44C0DdySO-5FtuyTMefv96B6GrWIXpTE5nCskOJ-kqF_U-A6tWhPO5Q2jVEdZqPYDo3XCkhyGn3sTSOAtuzmeK7m3HbDINCyl6ui22ZJkkI1Q4iy9anlUK0jKXgJPoB7yPWUZUO57st-e2Nwz4PrMtPOH92F_Y8R_eaCADxj1Fvs97qF9aF3MgB2mcLZp_JOYHn6OMAHZwNL6ezgTuUGbhV4zcHPXWa
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALory6UKiFQMAhNHYSJzkgVKDVhnbLqi_tLTiOXSpWybLZFeIX8G_4jcw4DxpUAZeedrUeR9mZ8Tzs8TeEPJVuKKVvMkfLLEJQbdeBqEg5XDHDweHmwm7ojw7E8MT_MAkmK-RnexcGyypbm2gNdV4q3CPfAlsLkTUXgfdm9tXBrlF4utq20KjVYk9__wYpW_U6eQ_yfcb57s7xu6HTdBVwlIjZwolF7Ks44ybMAmHyXDKuucoDlxkT-1KpMNBMSJ1J382EYXjOBm7QV0pksWeBDsDkXwPH6-KKCiddgge2Q4jmep4Xsq1GG17NykLjxg0XCOFwwf3ZLgGdL1idTcvqskD3z3rNCw5w9xa52USudLtWtTWyoovbZK2xDRV90QBYv7xDfoznePyDBdUU-_9O6Q5utS9oaWgC2TTW49OkMMBMVAtqyxbsg2s4C4qIIfbDlqjTFjgF59sLw85YYk0ZNhego8OEnhd0XOPDVhQ3lunRYl5-0XfJyZWI5h5ZLYDZ64TyTDJwvhqLDPw8ElGoNQ8kfJFaCi8fEK-VQ6oaNHRsyjFN7RFfCFlRzdYUpZc20hsQp5s1q9FA_kH_FkXc0SKWt_2hnJ-ljWlII8U9T0cxNoPzdZxlxuWZCUMWR0wFgRmQTVSQtL4Y21mkdNuHVBESZj8akCeWAvE8CiwYOpPLqkqTj6f_QXR02CN63hCZEtihZHNJA_4T4oT1KDd6lGCVVG94HdW55UqV_l6_MLNV8cuHaTeMD8UiwEKXyyqNIh_7JwTA1vv1gugYyzHsdL14QMLeUulxvj9SnH-2aOoeJBEsjh_8_a02yfXh8Wg_3U8O9h6SG-3JAnM3yOpivtSPIDRdZI-tPaDk01UboF_WXqQB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrhcEsBAIeQmMncZIHhAZbtTA2qo2hvgXHscdElZSmFeIv4H_ir-PO-WBBE_Cyp1b1OUrvzvdhn39HyGPphlL6JnO0zCIE1XYdiIqUwxUzHBxuLuyG_sGh2Dvx306D6Rr52d6FwbLK1iZaQ52XCvfIR2BrIbLmIvBGpimLmOyMX82_OthBCk9a23YatYrs6-_fIH2rXiY7IOsnnI93P7zZc5oOA44SMVs6sYh9FWfchFkgTJ5LxjVXeeAyY2JfKhUGmgmpM-m7mTAMz9zAJfpKiSz2LOgBmP8roRcwXGPhtEv2wI4I0VzV80I2ajTjxbwsNG7icIFwDudcoe0Y0PmFwXxWVhcFvX_Wbp5zhuMb5HoTxdLtWu3WyZoubpL1xk5U9FkDZv38FvkxWeBREBZXU-wFPKO7uO2-pKWhCWTWWJtPk8IAM1FFqC1hsA-uoS0ooofYD1uuTlsQFZxvLw87E4n1ZdhogB4cJfSsoJMaK7aiuMlMj5eL8ou-TU4uRTR3yKAAZm8QyjPJwBFrLDjw80hEodY8kPBFaim8fEi8Vg6papDRsUHHLLXHfSFkSDVbU5Re2khvSJxu1rxGBvkH_WsUcUeLuN72h3JxmjZmIo0U9zwdxdgYztdxlhmXZyYMWRwxFQRmSLZQQdL6kmxnndJtH9JGSJ79aEgeWQrE9ihwlZzKVVWlyfuP_0F0fNQjetoQmRLYoWRzYQP-E2KG9Sg3e5RgoVRveAPVueVKlf5eyzCzVfGLh2k3jA_FgsBCl6sqjSIfeykEwNa79YLoGMsxBHW9eEjC3lLpcb4_Upx9tsjqHiQULI7v_f2ttshVMD3pu-Rw_z651h4yMHeTDJaLlX4AUeoye2jNASWfLtv-_AJ4oKg3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Final+Extent+of+Ischemic+Infarction+Using+Artificial+Neural+Network+Analysis+of+Multi-Parametric+MRI+in+Patients+with+Stroke&rft.jtitle=PloS+one&rft.au=Bagher-Ebadian%2C+Hassan&rft.au=Jafari-Khouzani%2C+Kourosh&rft.au=Mitsias%2C+Panayiotis+D&rft.au=Lu%2C+Mei&rft.date=2011-08-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=6&rft.issue=8&rft.spage=e22626&rft_id=info:doi/10.1371%2Fjournal.pone.0022626&rft.externalDBID=ISR&rft.externalDocID=A476882848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon