The assessment of total antioxidant capacity and superoxide dismutase levels, and the possible role of manganese superoxide dismutase polymorphism in acromegaly

Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influ...

Full description

Saved in:
Bibliographic Details
Published inENDOCRINE JOURNAL Vol. 65; no. 1; pp. 91 - 99
Main Authors Ilhan, Muzaffer, Turgut, Seda, Tasan, Ertugrul, Ergen, Hayriye Arzu, Yaylim, Ilhan, Turan, Saime, Cekic, Sema Demirci, Dursun, Gurbet Korkmaz, Karaman, Ozcan, Mezani, Brunilda, Apak, Mustafa Resat
Format Journal Article
LanguageEnglish
Published Japan The Japan Endocrine Society 01.01.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0918-8959
1348-4540
1348-4540
DOI10.1507/endocrj.EJ17-0300

Cover

Loading…
Abstract Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33–60) pg/mL and 1,313.7 (155–1,902) μM in acromegaly; and 46.3 (38–95) pg/mL and 1,607.3 (195–1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
AbstractList Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) μM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) μM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) μM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
[Abstract.] Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60)pg/mL and 1,313.7 (155-1,902)μM in acromegaly; and 46.3 (38-95)pg/mL and 1,607.3 (195-1,981)μM in healthy subjects (p<0.001, p<0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p=0.05 and p=0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p<0.05 and p<0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
Author Turgut, Seda
Turan, Saime
Dursun, Gurbet Korkmaz
Mezani, Brunilda
Ergen, Hayriye Arzu
Tasan, Ertugrul
Yaylim, Ilhan
Cekic, Sema Demirci
Ilhan, Muzaffer
Karaman, Ozcan
Apak, Mustafa Resat
Author_xml – sequence: 1
  fullname: Ilhan, Muzaffer
  organization: Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
– sequence: 1
  fullname: Turgut, Seda
  organization: Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
– sequence: 1
  fullname: Tasan, Ertugrul
  organization: Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
– sequence: 1
  fullname: Ergen, Hayriye Arzu
  organization: The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
– sequence: 1
  fullname: Yaylim, Ilhan
  organization: The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
– sequence: 1
  fullname: Turan, Saime
  organization: The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
– sequence: 1
  fullname: Cekic, Sema Demirci
  organization: Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
– sequence: 1
  fullname: Dursun, Gurbet Korkmaz
  organization: The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
– sequence: 1
  fullname: Karaman, Ozcan
  organization: Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
– sequence: 1
  fullname: Mezani, Brunilda
  organization: The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
– sequence: 1
  fullname: Apak, Mustafa Resat
  organization: Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29046499$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURKeFB2CDIrFhQYod_yReoqotoEpsytpynJsZjxw7tR3EvA2PWqcznUoVYnMt2d85Pr7XZ8WJ8w6K4j1GF5ih5gu43uuwvbj6gZsKEYReFStMaFtRRtFJsUICt1UrmDgtzmLcIkQIo-RNcVoLRDkVYlX8vdtAqWKEGEdwqfRDmXxStlQuGf_H9HkttZqUNmmXN_syzhOE5QTK3sRxTipCaeE32Pj5EUjZcfIxms5CGXwu2XRUbq0cZPSf-snb3ejDtMk7pXGl0sGPsFZ297Z4PSgb4d1hPS9-XV_dXX6rbn_efL_8eltpLnCqWiY4axuFOkbaruN1Q0DxhvSa4x5RViPeN1oMvBOYIgLN0A-a0lpR0tFON-S8-LT3nYK_nyEmOZqowdqc2s9RYsFILVosFvTjC3Tr5-ByOlkjnHvPkKgz9eFAzd0IvZyCGVXYyafeZ6DZA_mtMQYYZO6xyl13KShjJUZymbI8TFkuU5bLlLMSv1A-mf9Pc7PX5CxGK-udNQ6ek-t7_ihantBKhDhDWKLsh_IvWoogqKa8Zc9O25jUGo53q5CMtnC8mzOJl3LMcCT0RoWMkQd5EOAh
CitedBy_id crossref_primary_10_3389_fendo_2019_00437
crossref_primary_10_3389_fpsyt_2021_684445
crossref_primary_10_1007_s11154_020_09560_x
crossref_primary_10_1177_0006355X241290980
crossref_primary_10_1186_s12951_024_02383_x
crossref_primary_10_3389_fphar_2021_565748
crossref_primary_10_1007_s42000_022_00409_3
crossref_primary_10_1007_s12020_023_03444_1
crossref_primary_10_1016_j_jclepro_2022_133794
Cites_doi 10.1097/00008571-200303000-00004
10.1016/j.clinbiochem.2010.07.002
10.1002/cbf.1128
10.1210/jc.2009-2670
10.1007/s12032-011-0057-z
10.1016/j.clinbiochem.2003.11.015
10.1007/s100380300021
10.1093/ajcn/57.5.715S
10.1111/j.1365-2265.2009.03685.x
10.1021/bi010197n
10.1507/endocrj.K07E-125
10.1007/s11010-011-1160-3
10.1016/j.numecd.2006.05.007
10.1006/bbrc.1998.9998
10.1016/j.freeradbiomed.2009.05.018
10.1111/j.1540-8175.2010.01179.x
10.1038/sj.jhh.1002105
10.1210/jcem.87.7.8643
10.5551/jat.1255
10.1016/S0188-4409(01)00381-2
10.1016/j.lfs.2009.02.026
10.1007/s11010-005-5424-7
10.1016/j.pnpbp.2004.10.014
10.1210/er.2003-0009
10.1016/S0893-133X(99)00156-6
10.1046/j.1365-2265.2000.01127.x
10.1172/JCI39375
10.1098/rstb.1985.0168
10.1016/S0026-0495(99)90152-X
10.1016/0891-5849(90)90152-9
10.1016/S0009-8981(03)00328-0
10.2337/db06-0698
10.1159/000022873
10.2147/NDT.S52585
10.1093/eurheartj/ehm500
10.1016/j.gene.2015.05.009
ContentType Journal Article
Copyright The Japan Endocrine Society
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: The Japan Endocrine Society
– notice: Copyright Japan Science and Technology Agency 2018
CorporateAuthor Department of Chemistry
The Institute of Experimental Medicine
Department of Molecular Medicine
Istanbul University
Faculty of Engineering
Department of Endocrinology and Metabolism
Bezmialem Vakif University
CorporateAuthor_xml – name: Department of Endocrinology and Metabolism
– name: Faculty of Engineering
– name: Department of Chemistry
– name: Bezmialem Vakif University
– name: Istanbul University
– name: The Institute of Experimental Medicine
– name: Department of Molecular Medicine
DBID AAYXX
CITATION
NPM
7QP
7T5
7TK
8FD
FR3
H94
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1507/endocrj.EJ17-0300
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Nursing & Allied Health Premium


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1348-4540
EndPage 99
ExternalDocumentID 29046499
10_1507_endocrj_EJ17_0300
cq6endoc_2018_006501_010_0091_00993024685
article_endocrj_65_1_65_EJ17_0300_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29G
2WC
3O-
53G
5GY
5RE
AAEJM
AAFWJ
ACPRK
ADBBV
AENEX
AFPKN
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
JMI
JSF
JSH
KQ8
MOJWN
OK1
OVT
P2P
RJT
RNS
RPM
RZJ
SV3
TKC
TR2
X7M
XSB
ZGI
ZXP
AAYXX
CITATION
NPM
7QP
7T5
7TK
8FD
FR3
H94
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c691t-8596587a0b538bb6273ea673dc61d045206d7c9f6b91403e7fdfc442a43b4bc73
ISSN 0918-8959
1348-4540
IngestDate Fri Jul 11 06:48:19 EDT 2025
Mon Jun 30 07:55:16 EDT 2025
Thu Apr 03 07:06:34 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Tue Jul 01 01:17:29 EDT 2025
Thu Jul 10 16:10:46 EDT 2025
Wed Sep 03 06:30:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Acromegaly
Superoxide dismutase
Total antioxidant capacity
Oxidative status
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c691t-8596587a0b538bb6273ea673dc61d045206d7c9f6b91403e7fdfc442a43b4bc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/endocrj/65/1/65_EJ17-0300/_article/-char/en
PMID 29046499
PQID 2014545092
PQPubID 2048504
PageCount 9
ParticipantIDs proquest_miscellaneous_1953298197
proquest_journals_2014545092
pubmed_primary_29046499
crossref_citationtrail_10_1507_endocrj_EJ17_0300
crossref_primary_10_1507_endocrj_EJ17_0300
medicalonline_journals_cq6endoc_2018_006501_010_0091_00993024685
jstage_primary_article_endocrj_65_1_65_EJ17_0300_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Kyoto
PublicationTitle ENDOCRINE JOURNAL
PublicationTitleAlternate Endocr J
PublicationYear 2018
Publisher The Japan Endocrine Society
Japan Science and Technology Agency
Publisher_xml – name: The Japan Endocrine Society
– name: Japan Science and Technology Agency
References 18 Mollsten A, Marklund SL, Wessman M, Svensson M, Forsblom C, et al. (2007) A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 56: 265–269.
27 Abdilla N, Tormo MC, Fabia MJ, Chaves FJ, Saez G, et al. (2007) Impact of the components of metabolic syndrome on oxidative stress and enzymatic antioxidant activity in essential hypertension. J Hum Hypertens 21: 68–75.
12 Opara EC, Abdel-Rahman E, Soliman S, Kamel WA, Souka S, et al. (1999) Depletion of total antioxidant capacity in type 2 diabetes. Metabolism 48: 1414–1417.
13 Kondo T, Hirose M, Kageyama K (2009) Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb 16: 532–538.
34 Grasbon-Frodl EM, Kosel S, Riess O, Muller U, Mehraein P, et al. (1999) Analysis of mitochondrial targeting sequence and coding region polymorphisms of the manganese superoxide dismutase gene in German Parkinson disease patients. Biochem Biophys Res Commun 255: 749–752.
16 Saruwatari J, Yasui-Furukori N, Kamihashi R, Yoshimori Y, Oniki K, et al. (2013) Possible associations between antioxidant enzyme polymorphisms and metabolic abnormalities in patients with schizophrenia. Neuropsychiatr Dis Treat 9: 1683–1698.
25 Chrysohoou C, Panagiotakos DB, Pitsavos C, Skoumas I, Papademetriou L, et al. (2007) The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr Metab Cardiovasc Dis 17: 590–597.
31 Nomiyama T, Tanaka Y, Piao L, Nagasaka K, Sakai K, et al. (2003) The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. J Hum Genet 48: 138–141.
26 Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84: 705–712.
19 Giustina A, Chanson P, Bronstein MD, Klibanski A, Lamberts S, et al. (2010) A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab 95: 3141–3148.
32 Hori H, Ohmori O, Shinkai T, Kojima H, Okano C, et al. (2000) Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology 23: 170–177.
15 Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8: 523–539.
1 Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Invest 119: 3189–3202.
30 Duarte MM, Moresco RN, Duarte T, Santi A, Bagatini MD, et al. (2010) Oxidative stress in hypercholesterolemia and its association with Ala16Val superoxide dismutase gene polymorphism. Clin Biochem 43: 1118–1123.
33 Van Landeghem GF, Tabatabaie P, Kucinskas V, Saha N, Beckman G (1999) Ethnic variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum Hered 49: 190–193.
6 Anagnostis P, Efstathiadou ZA, Gougoura S, Polyzos SA, Karathanasi E, et al. (2013) Oxidative stress and reduced antioxidative status, along with endothelial dysfunction in acromegaly. Horm Metab Res 45: 314–318.
29 Chen H, Yu M, Li M, Zhao R, Zhu Q, et al. (2012) Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol Cell Biochem 363: 85–91.
4 Clayton RN (2003) Cardiovascular function in acromegaly. Endocr Rev 24: 272–277.
7 Boero L, Cuniberti L, Magnani N, Manavela M, Yapur V, et al. (2010) Increased oxidized low density lipoprotein associated with high ceruloplasmin activity in patients with active acromegaly. Clin Endocrinol (Oxf) 72: 654–660.
39 Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47: 344–356.
37 Becer E, Cirakoglu A (2015) Association of the Ala16Val MnSOD gene polymorphism with plasma leptin levels and oxidative stress biomarkers in obese patients. Gene 568: 35–39.
17 Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, et al. (2008) Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 29: 1267–1274.
35 Akyol O, Yanik M, Elyas H, Namli M, Canatan H, et al. (2005) Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29: 123–131.
2 Brevetti G, Marzullo P, Silvestro A, Pivonello R, Oliva G, et al. (2002) Early vascular alterations in acromegaly. J Clin Endocrinol Metab 87: 3174–3179.
36 Kocabas NA, Sardas S, Cholerton S, Daly AK, Elhan AH, et al. (2005) Genetic polymorphism of manganese superoxide dismutase (MnSOD) and breast cancer susceptibility. Cell Biochem Funct 23: 73–76.
5 Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311: 617–631.
28 Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, et al. (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13: 145–157.
21 Akgul E, Tokgozoglu SL, Erbas T, Kabakci G, Aytemir K, et al. (2010) Evaluation of the impact of treatment on endothelial function and cardiac performance in acromegaly. Echocardiography 27: 990–996.
3 Maison P, Demolis P, Young J, Schaison G, Giudicelli JF, et al. (2000) Vascular reactivity in acromegalic patients: preliminary evidence for regional endothelial dysfunction and increased sympathetic vasoconstriction. Clin Endocrinol (Oxf) 53: 445–451.
20 Çekiç SD, Kara N, Tütem E, Başkan KS, Apak R (2012) Protein-Incorporated Serum Total Antioxidant Capacity Measurement by a Modified CUPRAC (CUPRIC Reducing Antioxidant Capacity) Method. Anal Lett 45: 754–763.
23 Yarman S, Ozden TA, Gokkusu C (2003) The evaluation of lipid peroxidation and acute effect of octreotide on lipid peroxidation in patients with active acromegaly. Clin Chim Acta 336: 45–48.
14 Kucukgergin C, Sanli O, Amasyali AS, Tefik T, Seckin S (2012) Genetic variants of MnSOD and GPX1 and susceptibility to bladder cancer in a Turkish population. Med Oncol 29: 1928–1934.
24 Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57: 715S–724S; discussion 724S–725S.
22 Sakai H, Tsuchiya K, Nakayama C, Iwashima F, Izumiyama H, et al. (2008) Improvement of endothelial dysfunction in acromegaly after transsphenoidal surgery. Endocr J 55: 853–859.
10 Kashyap MK, Yadav V, Sherawat BS, Jain S, Kumari S, et al. (2005) Different antioxidants status, total antioxidant power and free radicals in essential hypertension. Mol Cell Biochem 277: 89–99.
11 Tamer L, Sucu N, Polat G, Ercan B, Aytacoglu B, et al. (2002) Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res 33: 257–260.
38 Knirsch L, Clerch LB (2001) Tyrosine phosphorylation regulates manganese superoxide dismutase (MnSOD) RNA-binding protein activity and MnSOD protein expression. Biochemistry 40: 7890–7895.
8 Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37: 277–285.
9 Erhola M, Nieminen MM, Kellokumpu-Lehtinen P, Huusari H, Alanko K, et al. (1998) Effects of surgical removal of lung cancer on total plasma antioxidant capacity in lung cancer patients. J Exp Clin Cancer Res 17: 219–225.
22
23
24
E Akgul (20) 2010; 27
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
18
19
1
2
3
4
5
6
7
8
9
21
References_xml – reference: 23 Yarman S, Ozden TA, Gokkusu C (2003) The evaluation of lipid peroxidation and acute effect of octreotide on lipid peroxidation in patients with active acromegaly. Clin Chim Acta 336: 45–48.
– reference: 34 Grasbon-Frodl EM, Kosel S, Riess O, Muller U, Mehraein P, et al. (1999) Analysis of mitochondrial targeting sequence and coding region polymorphisms of the manganese superoxide dismutase gene in German Parkinson disease patients. Biochem Biophys Res Commun 255: 749–752.
– reference: 27 Abdilla N, Tormo MC, Fabia MJ, Chaves FJ, Saez G, et al. (2007) Impact of the components of metabolic syndrome on oxidative stress and enzymatic antioxidant activity in essential hypertension. J Hum Hypertens 21: 68–75.
– reference: 3 Maison P, Demolis P, Young J, Schaison G, Giudicelli JF, et al. (2000) Vascular reactivity in acromegalic patients: preliminary evidence for regional endothelial dysfunction and increased sympathetic vasoconstriction. Clin Endocrinol (Oxf) 53: 445–451.
– reference: 39 Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47: 344–356.
– reference: 18 Mollsten A, Marklund SL, Wessman M, Svensson M, Forsblom C, et al. (2007) A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 56: 265–269.
– reference: 11 Tamer L, Sucu N, Polat G, Ercan B, Aytacoglu B, et al. (2002) Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res 33: 257–260.
– reference: 32 Hori H, Ohmori O, Shinkai T, Kojima H, Okano C, et al. (2000) Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology 23: 170–177.
– reference: 30 Duarte MM, Moresco RN, Duarte T, Santi A, Bagatini MD, et al. (2010) Oxidative stress in hypercholesterolemia and its association with Ala16Val superoxide dismutase gene polymorphism. Clin Biochem 43: 1118–1123.
– reference: 13 Kondo T, Hirose M, Kageyama K (2009) Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb 16: 532–538.
– reference: 38 Knirsch L, Clerch LB (2001) Tyrosine phosphorylation regulates manganese superoxide dismutase (MnSOD) RNA-binding protein activity and MnSOD protein expression. Biochemistry 40: 7890–7895.
– reference: 4 Clayton RN (2003) Cardiovascular function in acromegaly. Endocr Rev 24: 272–277.
– reference: 8 Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37: 277–285.
– reference: 7 Boero L, Cuniberti L, Magnani N, Manavela M, Yapur V, et al. (2010) Increased oxidized low density lipoprotein associated with high ceruloplasmin activity in patients with active acromegaly. Clin Endocrinol (Oxf) 72: 654–660.
– reference: 16 Saruwatari J, Yasui-Furukori N, Kamihashi R, Yoshimori Y, Oniki K, et al. (2013) Possible associations between antioxidant enzyme polymorphisms and metabolic abnormalities in patients with schizophrenia. Neuropsychiatr Dis Treat 9: 1683–1698.
– reference: 25 Chrysohoou C, Panagiotakos DB, Pitsavos C, Skoumas I, Papademetriou L, et al. (2007) The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr Metab Cardiovasc Dis 17: 590–597.
– reference: 17 Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, et al. (2008) Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 29: 1267–1274.
– reference: 33 Van Landeghem GF, Tabatabaie P, Kucinskas V, Saha N, Beckman G (1999) Ethnic variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum Hered 49: 190–193.
– reference: 31 Nomiyama T, Tanaka Y, Piao L, Nagasaka K, Sakai K, et al. (2003) The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. J Hum Genet 48: 138–141.
– reference: 14 Kucukgergin C, Sanli O, Amasyali AS, Tefik T, Seckin S (2012) Genetic variants of MnSOD and GPX1 and susceptibility to bladder cancer in a Turkish population. Med Oncol 29: 1928–1934.
– reference: 28 Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, et al. (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13: 145–157.
– reference: 29 Chen H, Yu M, Li M, Zhao R, Zhu Q, et al. (2012) Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol Cell Biochem 363: 85–91.
– reference: 15 Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8: 523–539.
– reference: 1 Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Invest 119: 3189–3202.
– reference: 35 Akyol O, Yanik M, Elyas H, Namli M, Canatan H, et al. (2005) Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29: 123–131.
– reference: 2 Brevetti G, Marzullo P, Silvestro A, Pivonello R, Oliva G, et al. (2002) Early vascular alterations in acromegaly. J Clin Endocrinol Metab 87: 3174–3179.
– reference: 12 Opara EC, Abdel-Rahman E, Soliman S, Kamel WA, Souka S, et al. (1999) Depletion of total antioxidant capacity in type 2 diabetes. Metabolism 48: 1414–1417.
– reference: 6 Anagnostis P, Efstathiadou ZA, Gougoura S, Polyzos SA, Karathanasi E, et al. (2013) Oxidative stress and reduced antioxidative status, along with endothelial dysfunction in acromegaly. Horm Metab Res 45: 314–318.
– reference: 9 Erhola M, Nieminen MM, Kellokumpu-Lehtinen P, Huusari H, Alanko K, et al. (1998) Effects of surgical removal of lung cancer on total plasma antioxidant capacity in lung cancer patients. J Exp Clin Cancer Res 17: 219–225.
– reference: 37 Becer E, Cirakoglu A (2015) Association of the Ala16Val MnSOD gene polymorphism with plasma leptin levels and oxidative stress biomarkers in obese patients. Gene 568: 35–39.
– reference: 22 Sakai H, Tsuchiya K, Nakayama C, Iwashima F, Izumiyama H, et al. (2008) Improvement of endothelial dysfunction in acromegaly after transsphenoidal surgery. Endocr J 55: 853–859.
– reference: 10 Kashyap MK, Yadav V, Sherawat BS, Jain S, Kumari S, et al. (2005) Different antioxidants status, total antioxidant power and free radicals in essential hypertension. Mol Cell Biochem 277: 89–99.
– reference: 26 Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84: 705–712.
– reference: 36 Kocabas NA, Sardas S, Cholerton S, Daly AK, Elhan AH, et al. (2005) Genetic polymorphism of manganese superoxide dismutase (MnSOD) and breast cancer susceptibility. Cell Biochem Funct 23: 73–76.
– reference: 5 Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311: 617–631.
– reference: 21 Akgul E, Tokgozoglu SL, Erbas T, Kabakci G, Aytemir K, et al. (2010) Evaluation of the impact of treatment on endothelial function and cardiac performance in acromegaly. Echocardiography 27: 990–996.
– reference: 24 Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57: 715S–724S; discussion 724S–725S.
– reference: 19 Giustina A, Chanson P, Bronstein MD, Klibanski A, Lamberts S, et al. (2010) A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab 95: 3141–3148.
– reference: 20 Çekiç SD, Kara N, Tütem E, Başkan KS, Apak R (2012) Protein-Incorporated Serum Total Antioxidant Capacity Measurement by a Modified CUPRAC (CUPRIC Reducing Antioxidant Capacity) Method. Anal Lett 45: 754–763.
– ident: 27
  doi: 10.1097/00008571-200303000-00004
– ident: 29
  doi: 10.1016/j.clinbiochem.2010.07.002
– ident: 35
  doi: 10.1002/cbf.1128
– ident: 19
  doi: 10.1210/jc.2009-2670
– ident: 14
  doi: 10.1007/s12032-011-0057-z
– ident: 8
  doi: 10.1016/j.clinbiochem.2003.11.015
– ident: 30
  doi: 10.1007/s100380300021
– ident: 23
  doi: 10.1093/ajcn/57.5.715S
– ident: 7
  doi: 10.1111/j.1365-2265.2009.03685.x
– ident: 37
  doi: 10.1021/bi010197n
– ident: 21
  doi: 10.1507/endocrj.K07E-125
– ident: 28
  doi: 10.1007/s11010-011-1160-3
– ident: 9
– ident: 24
  doi: 10.1016/j.numecd.2006.05.007
– ident: 33
  doi: 10.1006/bbrc.1998.9998
– ident: 38
  doi: 10.1016/j.freeradbiomed.2009.05.018
– volume: 27
  start-page: 990
  issn: 0742-2822
  year: 2010
  ident: 20
  publication-title: Echocardiography
  doi: 10.1111/j.1540-8175.2010.01179.x
– ident: 26
  doi: 10.1038/sj.jhh.1002105
– ident: 2
  doi: 10.1210/jcem.87.7.8643
– ident: 13
  doi: 10.5551/jat.1255
– ident: 11
  doi: 10.1016/S0188-4409(01)00381-2
– ident: 25
  doi: 10.1016/j.lfs.2009.02.026
– ident: 10
  doi: 10.1007/s11010-005-5424-7
– ident: 34
  doi: 10.1016/j.pnpbp.2004.10.014
– ident: 4
  doi: 10.1210/er.2003-0009
– ident: 31
  doi: 10.1016/S0893-133X(99)00156-6
– ident: 3
  doi: 10.1046/j.1365-2265.2000.01127.x
– ident: 1
  doi: 10.1172/JCI39375
– ident: 5
  doi: 10.1098/rstb.1985.0168
– ident: 12
  doi: 10.1016/S0026-0495(99)90152-X
– ident: 15
  doi: 10.1016/0891-5849(90)90152-9
– ident: 22
  doi: 10.1016/S0009-8981(03)00328-0
– ident: 18
  doi: 10.2337/db06-0698
– ident: 32
  doi: 10.1159/000022873
– ident: 16
  doi: 10.2147/NDT.S52585
– ident: 17
  doi: 10.1093/eurheartj/ehm500
– ident: 6
– ident: 36
  doi: 10.1016/j.gene.2015.05.009
SSID ssj0033543
ssib022572652
ssib044735826
ssib058492669
ssib002822051
ssib000750009
Score 2.227669
Snippet Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we...
[Abstract.] Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this...
SourceID proquest
pubmed
crossref
medicalonline
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms Acromegaly
Antioxidants
Manganese
Manganese compounds
Oxidation
Oxidative status
Superoxide dismutase
Total antioxidant capacity
Title The assessment of total antioxidant capacity and superoxide dismutase levels, and the possible role of manganese superoxide dismutase polymorphism in acromegaly
URI https://www.jstage.jst.go.jp/article/endocrj/65/1/65_EJ17-0300/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=cq6endoc/2018/006501/010&name=0091-0099e
https://www.ncbi.nlm.nih.gov/pubmed/29046499
https://www.proquest.com/docview/2014545092
https://www.proquest.com/docview/1953298197
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Endocrine Journal, 2018, Vol.65(1), pp.91-99
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKQAgJId4pDGQkPlE28urU30CjaBoaEmKT9s1KbHdkNMnoiwT7NfwifhN3tuO0rEOML1nl2Ne59_jOvjvfEfIizkBrqhiD2pXeSlJcc6lUZl3Bq2GWFSba4iPbPUz2jtKjXu_XUtTSYl5sy7O190r-h6vQBnzFW7KX4KwnCg3wGfgLT-AwPP-Zx7lPrWnc_c3cXP6H7_xeKvg7kKANJW61jYV8gXnB4Y1Gz0yF8dh6MMG4oVkbxmmuTjW4UiZd7GGV18c51qpcT-G0mfyoGuAYVtwo60GOQX4adM-Kz3hUq0biZcPB8uQQlpMv1gy7vzjLsV5LF_QxPV4YLfFZd5YDaHVW27ysPC7f6aqcynKwo7-W0g5xKsfZNMLhkk3DGSehbchdrnBtRXOMps_UJndqZbetM7GCUSuIbQkwp9JtCaZzyiI18SHaTP5ke7QH-hpEXtBpxjYa4A-F6cMY8QAFRIQjIZCEQBJXyNUIji2oKD588l6tOE5tFGc7O-dlBxKvz_0XK_ukaydwVMAcEDcr676zaVQuPhWZ3dHBbXLLHWvoW4vRO6Sn67vk-r4L3LhHfgJUaQdV2oypgSpdgiptoQqNinZAox5o1EL1lekAQKUtUCkCFYl6oK4fvwxUWta0A-p9cvh-dLCzu-WKg2xJxsM5SBRMW5TlQQEquygYbMN1zrJYSRYqrBMQMJVJPmYFx5SUOhursUySKE_iIilkFj8gG3VT60eEDiUIq3HBVBToJGc8Z6nKMh2iRz-NctknQcsKIV3mfCzgMhEXAqBPXvohpzZtzN86v7H89V2dRPFdWSpCfPghvgfezYRuQGIFGcIt5JmQ35ihInCdCXMiC0UQYlJgHuKDx7BNZ8O0TzZbMHWjI4w6AAnOoz557l-DBkK3IrCzWcwEOuIjDieLrE8eWhD6iUQcQyc4f3yZ3-MJudEJhU2yMZ8u9FPY-s-LZ2Y9_QaX5g2j
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+assessment+of+total+antioxidant+capacity+and+superoxide+dismutase+levels%2C+and+the+possible+role+of+manganese+superoxide+dismutase+polymorphism+in+acromegaly&rft.jtitle=Endocrine+journal&rft.au=Ilhan%2C+Muzaffer&rft.au=Turgut%2C+Seda&rft.au=Turan%2C+Saime&rft.au=Demirci+Cekic%2C+Sema&rft.date=2018-01-01&rft.issn=0918-8959&rft.eissn=1348-4540&rft.volume=65&rft.issue=1&rft.spage=91&rft.epage=99&rft_id=info:doi/10.1507%2Fendocrj.EJ17-0300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1507_endocrj_EJ17_0300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon