Cofactor requirement of HpyAV restriction endonuclease

Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 2; p. e9071
Main Authors Chan, Siu-Hong, Opitz, Lars, Higgins, Lauren, O'loane, Diana, Xu, Shuang-Yong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.02.2010
Public Library of Science (PLoS)
Subjects
DNA
Online AccessGet full text

Cover

Loading…
More Information
Summary:Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg(++). The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.
Bibliography:Conceived and designed the experiments: SHC SyX. Performed the experiments: SHC LO LH SyX. Analyzed the data: SHC LO LH SyX. Contributed reagents/materials/analysis tools: SHC DO SyX. Wrote the paper: SHC SyX.
Current address: Value Stream Secondary, GlaxoSmithKline Biologicals, Dresden, Germany
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0009071