Small GTPase patterning: How to stabilise cluster coexistence

Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polaris...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 3; p. e0213188
Main Authors Jacobs, Bas, Molenaar, Jaap, Deinum, Eva E.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.03.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.
AbstractList Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here “polarisation”), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.
Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.
Audience Academic
Author Jacobs, Bas
Deinum, Eva E.
Molenaar, Jaap
AuthorAffiliation Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
Universitat Pompeu Fabra, SPAIN
AuthorAffiliation_xml – name: Universitat Pompeu Fabra, SPAIN
– name: Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
Author_xml – sequence: 1
  givenname: Bas
  surname: Jacobs
  fullname: Jacobs, Bas
– sequence: 2
  givenname: Jaap
  orcidid: 0000-0001-6011-7487
  surname: Molenaar
  fullname: Molenaar, Jaap
– sequence: 3
  givenname: Eva E.
  orcidid: 0000-0001-8564-200X
  surname: Deinum
  fullname: Deinum, Eva E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30845201$$D View this record in MEDLINE/PubMed
BookMark eNqNk-FrEzEYxg-ZuK36H4gUBNEPrUlzl-QGCmPoVhhM3PRreJu-12akSU1ydv735tZOeyIi9yHhfX_PQ55c3uPiwHmHRfGckjFlgr699W1wYMfrXB6TCWVUykfFEa3ZZMQnhB3s7Q-L4xhvCamY5PxJcciILKsJoUfFu-sVWDs8v_kEEYdrSAmDM25xMrzwm2Hyw5hgZqzJTW3bmLtD7fHO5J3T-LR43ICN-Gy3DoovHz_cnF2MLq_Op2enlyPNa5pGFaFY8znMaiEa3oAUAiaM5INRAbRpeFUygQxrBpIjRwZzlCRnQi60kMgGxXTrO_dwq9bBrCD8UB6Mui_4sFAQktEWVSXnwLCqSCmaUghWA_JGNoKDpEzWs-x1svXawAK7qOiUg6BNvDe0ZhY6800blLPdsm5nUVVlzUqSxe-34lxc4VyjSwFs70T9jjNLtfDfFS9JRXLMQfF6ZxD8txZjUisTNVoLDn0b1YTKuqrqUnToyy26gJzLuMZnR93h6rQSohQZo5ka_4XK3xxXRue30Zhc7wne9ASZSXiXFtDGqKbXn_-fvfraZ1_tsUsEm5bR2zYZ72IffLF_h78u7-FR_v5DOvgYAzZKmwSdT45mrKJEdROgdhOguglQuwnI4vIP8YP_P2U_ARJEC-U
CitedBy_id crossref_primary_10_7554_eLife_54434
crossref_primary_10_1103_PhysRevX_14_021014
crossref_primary_10_1007_s12268_022_1859_6
crossref_primary_10_7554_eLife_58768
crossref_primary_10_1016_j_pbi_2024_102614
crossref_primary_10_1103_PhysRevResearch_3_023198
crossref_primary_10_1093_jxb_erad447
crossref_primary_10_1371_journal_pcbi_1010092
crossref_primary_10_1073_pnas_2203900119
crossref_primary_10_1017_qpb_2024_16
crossref_primary_10_1016_j_bpj_2020_08_035
crossref_primary_10_1103_PhysRevE_108_064202
crossref_primary_10_1016_j_jtbi_2020_110351
crossref_primary_10_1146_annurev_biophys_110821_071250
crossref_primary_10_1098_rsob_210208
crossref_primary_10_1042_BST20230642
crossref_primary_10_3390_cells9092011
Cites_doi 10.1016/j.bpj.2014.11.3457
10.1016/S0022-5193(87)80101-7
10.1126/science.1218377
10.1074/jbc.272.52.33175
10.1016/j.cub.2008.11.057
10.1088/1478-3975/13/4/046001
10.1083/jcb.200801086
10.1098/rstb.1952.0012
10.1016/j.cub.2010.05.038
10.1073/pnas.49.2.187
10.1016/j.febslet.2008.03.029
10.1242/jcs.039180
10.1016/S0962-8924(02)00004-1
10.1371/journal.pcbi.1002402
10.1098/rsfs.2011.0097
10.1091/mbc.e03-03-0167
10.1371/journal.pcbi.1006095
10.1137/16M1093847
10.1103/PhysRevE.75.015203
10.1145/779359.779362
10.1126/science.1222597
10.1098/rsif.2017.0805
10.1088/1367-2630/16/6/065009
10.1111/j.1365-2958.2010.07525.x
10.1098/rstb.2017.0107
10.1371/journal.pcbi.1001121
10.1088/1478-3975/12/6/066014
10.1016/j.cell.2012.03.012
10.1007/s11538-013-9914-6
10.1007/BF00289234
10.1242/jcs.112.17.2867
10.1093/imamat/48.3.249
10.3852/08-177
10.1007/s11538-007-9200-6
10.1172/JCI200418829
10.1105/tpc.114.126664
10.12688/f1000research.7370.1
10.1529/biophysj.107.120824
10.1016/j.ydbio.2003.06.003
10.1534/genetics.108.089318
10.1016/j.pbi.2012.10.004
10.1137/10079118X
10.1371/journal.pcbi.0030108
10.1016/S0021-9258(17)42232-0
10.1016/j.cell.2004.12.026
10.1016/j.cub.2009.08.052
10.1105/tpc.001537
10.1042/BST20130155
10.1038/nrm2530
10.1128/MMBR.00028-06
10.1105/tpc.010359
10.1016/j.pbi.2015.10.004
10.1016/j.cell.2009.10.024
10.1016/j.fbr.2015.02.003
10.1103/PhysRevB.37.9638
10.1146/annurev.ms.22.080192.001213
10.1016/S0898-6568(98)00063-1
10.1105/tpc.113.117853
10.12703/P7-23
10.1091/mbc.e04-02-0104
10.1038/sj.embor.7400051
10.1016/j.tcb.2013.05.003
10.3109/07388551.2015.1121967
10.1038/nature01148
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Jacobs et al 2019 Jacobs et al
Wageningen University & Research
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Jacobs et al 2019 Jacobs et al
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
QVL
DOA
DOI 10.1371/journal.pone.0213188
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Small GTPase patterning: How to stabilise cluster coexistence
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_58da3e55047f47739ae6f8f76a81389b
oai_library_wur_nl_wurpubs_549340
PMC6405054
A577475941
30845201
10_1371_journal_pone_0213188
Genre Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
AAPBV
ABPTK
BBAFP
PQEST
PQUKI
QVL
PUEGO
ID FETCH-LOGICAL-c691t-501e96dab977f6fa877a23020317a1ff65437e3e93a86e6e3ade80021e67c78e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 27 01:30:40 EDT 2025
Thu Oct 13 09:31:29 EDT 2022
Thu Aug 21 18:21:19 EDT 2025
Fri Jul 11 11:20:08 EDT 2025
Tue Jun 17 20:35:45 EDT 2025
Tue Jun 10 20:40:25 EDT 2025
Fri Jun 27 04:51:25 EDT 2025
Fri Jun 27 04:36:41 EDT 2025
Thu May 22 21:21:08 EDT 2025
Wed Feb 19 02:31:09 EST 2025
Thu Apr 24 23:10:38 EDT 2025
Tue Jul 01 01:42:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c691t-501e96dab977f6fa877a23020317a1ff65437e3e93a86e6e3ade80021e67c78e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-8564-200X
0000-0001-6011-7487
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0213188
PMID 30845201
PQID 2189559474
PQPubID 23479
PageCount e0213188
ParticipantIDs doaj_primary_oai_doaj_org_article_58da3e55047f47739ae6f8f76a81389b
wageningen_narcis_oai_library_wur_nl_wurpubs_549340
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405054
proquest_miscellaneous_2189559474
gale_infotracmisc_A577475941
gale_infotracacademiconefile_A577475941
gale_incontextgauss_ISR_A577475941
gale_incontextgauss_IOV_A577475941
gale_healthsolutions_A577475941
pubmed_primary_30845201
crossref_citationtrail_10_1371_journal_pone_0213188
crossref_primary_10_1371_journal_pone_0213188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-07
PublicationDateYYYYMMDD 2019-03-07
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Y Oda (ref20) 2012; 337
S Ishihara (ref32) 2007; 75
A Howell (ref39) 2012; 149
CA Lancaster (ref7) 1994; 269
H Meinhardt (ref37) 1987; 126
M Raftopoulou (ref3) 2004; 265
Y Mori (ref31) 2011; 71
AS Howell (ref45) 2009; 139
S Smith (ref65) 2018; 15
JU Hwang (ref29) 2010; 123
MA Jones (ref61) 2002; 14
Y Fu (ref23) 2005; 120
R Fritz (ref11) 2016; 5
JU Hwang (ref59) 2008; 18
A Dhooge (ref70) 2003; 29
Z Yang (ref2) 2012; 15
KJ Burns (ref63) 2016
Y Fu (ref26) 2015; 28
RL Friede (ref55) 1963; 49
S Khatibi (ref6) 2018
S Etienne-Manneville (ref4) 2002; 420
J Halatek (ref43) 2018; 373
SD Harris (ref27) 2011; 79
RJH Payne (ref52) 2009; 4
AFM Marée (ref60) 2012; 8
P Knechtle (ref47) 2003; 14
WR Holmes (ref15) 2016; 13
SA Rincón (ref56) 2014; 42
WR Holmes (ref68) 2014; 76
YJ Lee (ref46) 2008; 181
CP Semighini (ref49) 2008; 179
N Verschueren (ref38) 2017; 16
HO Park (ref1) 2007; 71
JD Murray (ref67) 2001
AM Turing (ref12) 1952; 237
SD Harris (ref50) 2008; 100
MO Bergo (ref54) 2004; 113
M Das (ref57) 2012; 337
PS Backlund (ref53) 1997; 272
Y Fu (ref22) 2002; 14
WJ Armour (ref35) 2015; 27
B Olofsson (ref9) 1999; 11
Y Mori (ref14) 2008; 94
A Jilkine (ref5) 2011; 7
H Meinhardt (ref48) 1999; 112
B Novák (ref58) 2008; 9
E Cleary (ref64) 2013
PW Voorhees (ref41) 1992; 22
Y Oda (ref19) 2010; 20
H Meinhardt (ref44) 2012; 2
M Postma (ref10) 2004; 5
TM Rogers (ref42) 1988; 37
V Grieneisen (ref34) 2009
AB Goryachev (ref17) 2008; 582
Y Fu (ref24) 2009; 19
RA Arkowitz (ref28) 2015; 29
J Rubinstein (ref33) 1992; 48
A Jilkine (ref16) 2007; 69
SY Moon (ref8) 2003; 13
JG Chiou (ref36) 2018; 14
A Makhzoum (ref62) 2017; 37
M Otsuji (ref18) 2007; 3
Y Oda (ref21) 2013; 25
PK Trong (ref66) 2014; 16
Y Bauer (ref30) 2004; 15
A Mendrinna (ref25) 2015; 7
CF Wu (ref51) 2013; 23
W Giese (ref40) 2015; 12
W Holmes (ref69) 2015; 108
A Gierer (ref13) 1972; 12
References_xml – volume: 108
  start-page: 230
  issue: 2
  year: 2015
  ident: ref69
  article-title: Local Perturbation Analysis: A Computational Tool for Biophysical Reaction-Diffusion Models
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2014.11.3457
– volume: 126
  start-page: 63
  issue: 1
  year: 1987
  ident: ref37
  article-title: A model for pattern formation on the shells of molluscs
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(87)80101-7
– volume: 337
  start-page: 239
  year: 2012
  ident: ref57
  article-title: Oscillatory Dynamics of Cdc42 GTPase in the Control of Polarized Growth
  publication-title: Science
  doi: 10.1126/science.1218377
– year: 2009
  ident: ref34
  article-title: Dynamics of auxin patterning in plant morphogenesis—A multilevel model study
– volume: 272
  start-page: 33175
  issue: 52
  year: 1997
  ident: ref53
  article-title: Post-translational Processing of RhoA: Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of RhoA
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.272.52.33175
– volume: 18
  start-page: 1907
  issue: 24
  year: 2008
  ident: ref59
  article-title: A Tip-Localized RhoGAP Controls Cell Polarity by Globally Inhibiting Rho GTPase at the Cell Apex
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.11.057
– volume: 13
  start-page: 046001
  issue: 4
  year: 2016
  ident: ref15
  article-title: Analysis of a minimal Rho-GTPase circuit regulating cell shape
  publication-title: Physical Biology
  doi: 10.1088/1478-3975/13/4/046001
– volume: 181
  start-page: 1155
  issue: 7
  year: 2008
  ident: ref46
  article-title: Rho-GTPase—dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200801086
– volume: 237
  start-page: 37
  issue: 641
  year: 1952
  ident: ref12
  article-title: The chemical basis of morphogenesis
  publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences
  doi: 10.1098/rstb.1952.0012
– volume: 20
  start-page: 1197
  issue: 13
  year: 2010
  ident: ref19
  article-title: Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.05.038
– volume: 49
  start-page: 187
  issue: 2
  year: 1963
  ident: ref55
  article-title: The relationship of body size, nerve cell size, axon length, and glial density in the cerebellum
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.49.2.187
– volume: 582
  start-page: 1437
  issue: 10
  year: 2008
  ident: ref17
  article-title: Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2008.03.029
– volume: 123
  start-page: 340
  issue: 3
  year: 2010
  ident: ref29
  article-title: Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.039180
– year: 2013
  ident: ref64
  article-title: The Scientific Way to Simulate Pattern Formation in Reaction-Diffusion Equations
– volume: 13
  start-page: 13
  issue: 1
  year: 2003
  ident: ref8
  article-title: Rho GTPase-activating proteins in cell regulation
  publication-title: Trends in Cell Biology
  doi: 10.1016/S0962-8924(02)00004-1
– volume: 8
  start-page: e1002402
  issue: 3
  year: 2012
  ident: ref60
  article-title: How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization and Motility
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002402
– volume: 2
  start-page: 407
  issue: 4
  year: 2012
  ident: ref44
  article-title: Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2011.0097
– start-page: 3
  year: 2018
  ident: ref6
  article-title: Computational Modeling of the Dynamics of Spatiotemporal Rho GTPase Signaling: A Systematic Review
– volume: 14
  start-page: 4140
  issue: 10
  year: 2003
  ident: ref47
  article-title: Maximal Polar Growth Potential Depends on the Polarisome Component AgSpa2 in the Filamentous Fungus Ashbya gossypii
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e03-03-0167
– volume: 14
  start-page: e1006095
  issue: 4
  year: 2018
  ident: ref36
  article-title: Principles that govern competition or co-existence in Rho-GTPase driven polarization
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1006095
– volume: 16
  start-page: 1797
  issue: 4
  year: 2017
  ident: ref38
  article-title: A Model for Cell Polarization Without Mass Conservation
  publication-title: SIAM Journal on Applied Dynamical Systems
  doi: 10.1137/16M1093847
– volume: 75
  start-page: 015203
  year: 2007
  ident: ref32
  article-title: Transient and steady state of mass-conserved reaction-diffusion systems
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.75.015203
– volume: 29
  start-page: 141
  issue: 2
  year: 2003
  ident: ref70
  article-title: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs
  publication-title: ACM Transactions on Mathematical Software (TOMS)
  doi: 10.1145/779359.779362
– volume: 337
  start-page: 1333
  issue: 6100
  year: 2012
  ident: ref20
  article-title: Initiation of Cell Wall Pattern by a Rho- and Microtubule-Driven Symmetry Breaking
  publication-title: Science
  doi: 10.1126/science.1222597
– volume: 15
  start-page: 20170805
  issue: 140
  year: 2018
  ident: ref65
  article-title: Model reduction enables Turing instability analysis of large reaction-diffusion models
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2017.0805
– volume: 16
  start-page: 065009
  issue: 6
  year: 2014
  ident: ref66
  article-title: Parameter-space topology of models for cell polarity
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/16/6/065009
– volume: 79
  start-page: 1123
  issue: 5
  year: 2011
  ident: ref27
  article-title: Cdc42/Rho GTPases in fungi: variations on a common theme
  publication-title: Molecular microbiology
  doi: 10.1111/j.1365-2958.2010.07525.x
– volume: 373
  issue: 1747
  year: 2018
  ident: ref43
  article-title: Self-organization principles of intracellular pattern formation
  publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences
  doi: 10.1098/rstb.2017.0107
– volume: 7
  start-page: 1
  issue: 4
  year: 2011
  ident: ref5
  article-title: A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1001121
– volume: 12
  start-page: 066014
  issue: 6
  year: 2015
  ident: ref40
  article-title: Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models
  publication-title: Physical Biology
  doi: 10.1088/1478-3975/12/6/066014
– volume: 149
  start-page: 322
  issue: 2
  year: 2012
  ident: ref39
  article-title: Negative Feedback Enhances Robustness in the Yeast Polarity Establishment Circuit
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.012
– volume: 76
  start-page: 157
  issue: 1
  year: 2014
  ident: ref68
  article-title: An Efficient, Nonlinear Stability Analysis for Detecting Pattern Formation in Reaction Diffusion Systems
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1007/s11538-013-9914-6
– volume: 12
  start-page: 30
  issue: 1
  year: 1972
  ident: ref13
  article-title: A theory of biological pattern formation
  publication-title: Kybernetik
  doi: 10.1007/BF00289234
– volume: 112
  start-page: 2867
  issue: 17
  year: 1999
  ident: ref48
  article-title: Orientation of chemotactic cells and growth cones: models and mechanisms
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.112.17.2867
– volume: 4
  start-page: 1
  issue: 12
  year: 2009
  ident: ref52
  article-title: A Theoretical Model for ROP Localisation by Auxin in Arabidopsis Root Hair Cells
  publication-title: PLoS One
– volume: 48
  start-page: 249
  issue: 3
  year: 1992
  ident: ref33
  article-title: Nonlocal reaction—diffusion equations and nucleation
  publication-title: IMA Journal of Applied Mathematics
  doi: 10.1093/imamat/48.3.249
– volume: 100
  start-page: 823
  issue: 6
  year: 2008
  ident: ref50
  article-title: Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems
  publication-title: Mycologia
  doi: 10.3852/08-177
– volume: 69
  start-page: 1943
  issue: 6
  year: 2007
  ident: ref16
  article-title: Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1007/s11538-007-9200-6
– volume: 113
  start-page: 539
  issue: 4
  year: 2004
  ident: ref54
  article-title: Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI200418829
– volume: 27
  start-page: 2484
  issue: 9
  year: 2015
  ident: ref35
  article-title: Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells
  publication-title: The Plant Cell Online
  doi: 10.1105/tpc.114.126664
– volume: 5
  start-page: 749
  issue: F1000 Faculty Rev
  year: 2016
  ident: ref11
  article-title: The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns [version 1; referees: 2 approved]
  publication-title: F1000Research
  doi: 10.12688/f1000research.7370.1
– volume: 94
  start-page: 3684
  issue: 9
  year: 2008
  ident: ref14
  article-title: Wave-Pinning and Cell Polarity from a Bistable Reaction-Diffusion System
  publication-title: Biophysical Journal
  doi: 10.1529/biophysj.107.120824
– volume: 265
  start-page: 23
  issue: 1
  year: 2004
  ident: ref3
  article-title: Cell migration: Rho GTPases lead the way
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2003.06.003
– volume: 179
  start-page: 1919
  issue: 4
  year: 2008
  ident: ref49
  article-title: Regulation of Apical Dominance in Aspergillus nidulans Hyphae by Reactive Oxygen Species
  publication-title: Genetics
  doi: 10.1534/genetics.108.089318
– volume: 15
  start-page: 601
  issue: 6
  year: 2012
  ident: ref2
  article-title: Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2012.10.004
– volume: 71
  start-page: 1401
  issue: 4
  year: 2011
  ident: ref31
  article-title: Asymptotic and Bifurcation Analysis of Wave-Pinning in a Reaction-Diffusion Model for Cell Polarization
  publication-title: SIAM Journal on Applied Mathematics
  doi: 10.1137/10079118X
– volume: 3
  start-page: 1
  issue: 6
  year: 2007
  ident: ref18
  article-title: A Mass Conserved Reaction—Diffusion System Captures Properties of Cell Polarity
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.0030108
– volume: 269
  start-page: 1137
  issue: 2
  year: 1994
  ident: ref7
  article-title: Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(17)42232-0
– volume: 120
  start-page: 687
  issue: 5
  year: 2005
  ident: ref23
  article-title: Arabidopsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.026
– volume: 19
  start-page: 1827
  issue: 21
  year: 2009
  ident: ref24
  article-title: A ROP GTPase Signaling Pathway Controls Cortical Microtubule Ordering and Cell Expansion in Arabidopsis
  publication-title: Current Biology
  doi: 10.1016/j.cub.2009.08.052
– volume: 14
  start-page: 777
  issue: 4
  year: 2002
  ident: ref22
  article-title: The ROP2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis
  publication-title: The Plant Cell Online
  doi: 10.1105/tpc.001537
– volume: 42
  start-page: 201
  issue: 1
  year: 2014
  ident: ref56
  article-title: Cdc42 regulates polarized growth and cell integrity in fission yeast
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST20130155
– volume: 9
  start-page: 981
  year: 2008
  ident: ref58
  article-title: Design principles of biochemical oscillators
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm2530
– volume: 71
  start-page: 48
  issue: 1
  year: 2007
  ident: ref1
  article-title: Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond
  publication-title: Microbiology and Molecular Biology Reviews
  doi: 10.1128/MMBR.00028-06
– volume: 14
  start-page: 763
  issue: 4
  year: 2002
  ident: ref61
  article-title: The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth
  publication-title: The Plant Cell
  doi: 10.1105/tpc.010359
– volume: 28
  start-page: 111
  issue: Supplement C
  year: 2015
  ident: ref26
  article-title: The cytoskeleton in the pollen tube
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2015.10.004
– volume: 139
  start-page: 731
  issue: 4
  year: 2009
  ident: ref45
  article-title: Singularity in Polarization: Rewiring Yeast Cells to Make Two Buds
  publication-title: Cell
  doi: 10.1016/j.cell.2009.10.024
– volume: 29
  start-page: 7
  issue: 1
  year: 2015
  ident: ref28
  article-title: Regulation of hyphal morphogenesis by Ras and Rho small GTPases
  publication-title: Fungal Biology Reviews
  doi: 10.1016/j.fbr.2015.02.003
– volume: 37
  start-page: 9638
  year: 1988
  ident: ref42
  article-title: Numerical study of the late stages of spinodal decomposition
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.37.9638
– year: 2001
  ident: ref67
  article-title: Mathematical Biology. II Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}
– volume: 22
  start-page: 197
  issue: 1
  year: 1992
  ident: ref41
  article-title: Ostwald Ripening of Two-Phase Mixtures
  publication-title: Annual Review of Materials Science
  doi: 10.1146/annurev.ms.22.080192.001213
– volume: 11
  start-page: 545
  issue: 8
  year: 1999
  ident: ref9
  article-title: Rho Guanine Dissociation Inhibitors: Pivotal Molecules in Cellular Signalling
  publication-title: Cellular Signalling
  doi: 10.1016/S0898-6568(98)00063-1
– volume: 25
  start-page: 4439
  issue: 11
  year: 2013
  ident: ref21
  article-title: Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns
  publication-title: The Plant Cell Online
  doi: 10.1105/tpc.113.117853
– volume: 7
  start-page: 23
  year: 2015
  ident: ref25
  article-title: Root hair growth: it’s a one way street
  publication-title: F1000prime reports
  doi: 10.12703/P7-23
– volume: 15
  start-page: 4622
  issue: 10
  year: 2004
  ident: ref30
  article-title: A Ras-like GTPase Is Involved in Hyphal Growth Guidance in the Filamentous Fungus Ashbya gossypii
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e04-02-0104
– year: 2016
  ident: ref63
  article-title: Dedalus: Flexible framework for spectrally solving differential equations
– volume: 5
  start-page: 35
  issue: 1
  year: 2004
  ident: ref10
  article-title: Chemotaxis: signalling modules join hands at front and tail
  publication-title: EMBO reports
  doi: 10.1038/sj.embor.7400051
– volume: 23
  start-page: 476
  issue: 10
  year: 2013
  ident: ref51
  article-title: Beyond symmetry-breaking: competition and negative feedback in GTPase regulation
  publication-title: Trends in Cell Biology
  doi: 10.1016/j.tcb.2013.05.003
– volume: 37
  start-page: 151
  issue: 2
  year: 2017
  ident: ref62
  article-title: Strigolactone biology: genes, functional genomics, epigenetics and applications
  publication-title: Critical Reviews in Biotechnology
  doi: 10.3109/07388551.2015.1121967
– volume: 420
  start-page: 629
  year: 2002
  ident: ref4
  article-title: Rho GTPases in cell biology
  publication-title: Nature
  doi: 10.1038/nature01148
SSID ssj0053866
Score 2.3876607
Snippet Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small...
SourceID doaj
wageningen
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0213188
SubjectTerms Animals
Biology and Life Sciences
Biometris (WU MAT)
Cell membranes
EPS
Fungal Proteins - chemistry
Fungal Proteins - metabolism
Fungi - metabolism
Genetic aspects
GTPases
Mathematical and Statistical Methods - Biometris
Models, Molecular
Monomeric GTP-Binding Proteins - chemistry
Monomeric GTP-Binding Proteins - metabolism
PE&RC
Physical Sciences
Physiological aspects
Proteins
Research and Analysis Methods
Wiskundige en Statistische Methoden - Biometris
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70gWl6BAgYhAYe0m_qNxKEgyoLEQ7RFvVnexAakNFk1G-3fZ8bxLhs4lAOnleKJtRnPeD4nM98Q8rQyGkyHmTwIUeVciZBrCNx5AHlwJwjRMXn84yc5PeMfzsX5RqsvzAkb6IEHxR0IXTnmAUdzFbhSzDgvgw5KOo3f2Ga4-0LMWx2mhj0YvFjKVCjHVHGQ1mV_3jZ-H6IaGLIeBaLI1__3rrwRlv5Mmdxegr83sQBqIyAd3yDXE5KkR8MT7JBrvtklO8lXO_o8EUq_uElenVy4uqbvTr9AyKLzyKiJc76k03ZJFy0FhIg5sjBY1j0yJ9CyRYrMiKdvkbPjt6dvpnlqm5CX0hSLXEwKb2TlZgDtggxOK-XgoHEI7qtcEQJWkyrPvGFOSy89c5VH2Fh4qUqlPbtNthpQ1F1CFRcgI4JwxYzrEg5TptLaFIcTHwD4-IywlQ5tmTjFsbVFbeOHMgVni0EZFjVvk-Yzkq_vmg-cGlfIv8blWcsiI3a8AHZik53Yq-wkI49wce1QXrr2a3skAAArYXiRkSdRAlkxGky7-e76rrPvP3_7B6GTryOhZ0kotKCO0qVSB3gmZNsaSe6NJMG3y9Hw45UpWhzChLjGt31nAZkhdyBXPCN3BtNc64dNNBcA7DKiRkY7UuB4pPn5I1KLS46dDWFO9tu8bYNdrbp4V3q1aJf9pW1q_IF5Oiu4YXxy73-s032yDX_dxDQ_tUe2Fpe9fwC4bzF7GF38F6ttV40
  priority: 102
  providerName: Directory of Open Access Journals
Title Small GTPase patterning: How to stabilise cluster coexistence
URI https://www.ncbi.nlm.nih.gov/pubmed/30845201
https://www.proquest.com/docview/2189559474
https://pubmed.ncbi.nlm.nih.gov/PMC6405054
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F549340
https://doaj.org/article/58da3e55047f47739ae6f8f76a81389b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28bIXxPgMGyUgJOAhVTPbsYM0oW1qV5A2pm1FfbPcxB5IWVKaVoUX_nbuXLcsfIi9uFJ9tpLLXe7n-Pw7Ql7mqQTToWlkOc8jJriNJATuyII8uBOEaJc8fnKa9Afsw5AP18iyZqtXYP3XpR3WkxpMiva3r9_fgcPvu6oNIl4Oao-r0rQhZoGZynWyCbFJYE2DE7baVwDvdruXiFqiZK9D_WG6f83SCFaO0__PN_eN0PV7WuXWHN4JpTskdSNo9e6SOx5thgcL89gma6a8R7a9P9fha086_eY-2b-41kURHl-eQVgLx451E-d8G_areTitQkCRmEcLnVkxQ3aFMKuQRtNh7gdk0OteHvUjX1ohypI0nka8E5s0yfUI4J9NrJZCaFiMgEZioWNr8cSpMNSkVMvEJIbq3CC0jE0iMiENfUg2SlDUYxIKxkGGW67jEZMZLLjSXMo03usYC-DIBIQudagyzzuO5S8K5TbTBKw_FspQqHnlNR-QaDVqvODd-I_8IT6elSyyZrs_qsmV8k6ouMw1NbAmY8IyIWiqTWKlFYmWuF87CsgzfLhqcQR15fvqgANIFjxlcUBeOAlkzigxNedKz-pavf_46RZCF-cNoVdeyFagjkz74xBwT8jI1ZDcbUiC_2eN7udLU1TYhUlzpalmtQL0hvyCTLCAPFqY5ko_tCMZB_AXENEw2oYCmz3ll8-OfjxhWP0Q5qS_zFuVWPmqdqP850c1n01UWeAPzFMrzlLKOk9ucbU7ZAuuLHWZfmKXbEwnM_MUoN901CLrYiiglUcxtr3jFtk87J6enbfcx5SW83Zsf3R_AnssX5I
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+GTPase+patterning%3A+How+to+stabilise+cluster+coexistence&rft.jtitle=PloS+one&rft.au=Jacobs%2C+Bas&rft.au=Molenaar%2C+Jaap&rft.au=Deinum%2C+Eva+E&rft.date=2019-03-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0213188&rft_id=info:doi/10.1371%2Fjournal.pone.0213188&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon