Small GTPase patterning: How to stabilise cluster coexistence
Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polaris...
Saved in:
Published in | PloS one Vol. 14; no. 3; p. e0213188 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.03.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns. |
---|---|
AbstractList | Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here “polarisation”), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns. Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns. |
Audience | Academic |
Author | Jacobs, Bas Deinum, Eva E. Molenaar, Jaap |
AuthorAffiliation | Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands Universitat Pompeu Fabra, SPAIN |
AuthorAffiliation_xml | – name: Universitat Pompeu Fabra, SPAIN – name: Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands |
Author_xml | – sequence: 1 givenname: Bas surname: Jacobs fullname: Jacobs, Bas – sequence: 2 givenname: Jaap orcidid: 0000-0001-6011-7487 surname: Molenaar fullname: Molenaar, Jaap – sequence: 3 givenname: Eva E. orcidid: 0000-0001-8564-200X surname: Deinum fullname: Deinum, Eva E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30845201$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk-FrEzEYxg-ZuK36H4gUBNEPrUlzl-QGCmPoVhhM3PRreJu-12akSU1ydv735tZOeyIi9yHhfX_PQ55c3uPiwHmHRfGckjFlgr699W1wYMfrXB6TCWVUykfFEa3ZZMQnhB3s7Q-L4xhvCamY5PxJcciILKsJoUfFu-sVWDs8v_kEEYdrSAmDM25xMrzwm2Hyw5hgZqzJTW3bmLtD7fHO5J3T-LR43ICN-Gy3DoovHz_cnF2MLq_Op2enlyPNa5pGFaFY8znMaiEa3oAUAiaM5INRAbRpeFUygQxrBpIjRwZzlCRnQi60kMgGxXTrO_dwq9bBrCD8UB6Mui_4sFAQktEWVSXnwLCqSCmaUghWA_JGNoKDpEzWs-x1svXawAK7qOiUg6BNvDe0ZhY6800blLPdsm5nUVVlzUqSxe-34lxc4VyjSwFs70T9jjNLtfDfFS9JRXLMQfF6ZxD8txZjUisTNVoLDn0b1YTKuqrqUnToyy26gJzLuMZnR93h6rQSohQZo5ka_4XK3xxXRue30Zhc7wne9ASZSXiXFtDGqKbXn_-fvfraZ1_tsUsEm5bR2zYZ72IffLF_h78u7-FR_v5DOvgYAzZKmwSdT45mrKJEdROgdhOguglQuwnI4vIP8YP_P2U_ARJEC-U |
CitedBy_id | crossref_primary_10_7554_eLife_54434 crossref_primary_10_1103_PhysRevX_14_021014 crossref_primary_10_1007_s12268_022_1859_6 crossref_primary_10_7554_eLife_58768 crossref_primary_10_1016_j_pbi_2024_102614 crossref_primary_10_1103_PhysRevResearch_3_023198 crossref_primary_10_1093_jxb_erad447 crossref_primary_10_1371_journal_pcbi_1010092 crossref_primary_10_1073_pnas_2203900119 crossref_primary_10_1017_qpb_2024_16 crossref_primary_10_1016_j_bpj_2020_08_035 crossref_primary_10_1103_PhysRevE_108_064202 crossref_primary_10_1016_j_jtbi_2020_110351 crossref_primary_10_1146_annurev_biophys_110821_071250 crossref_primary_10_1098_rsob_210208 crossref_primary_10_1042_BST20230642 crossref_primary_10_3390_cells9092011 |
Cites_doi | 10.1016/j.bpj.2014.11.3457 10.1016/S0022-5193(87)80101-7 10.1126/science.1218377 10.1074/jbc.272.52.33175 10.1016/j.cub.2008.11.057 10.1088/1478-3975/13/4/046001 10.1083/jcb.200801086 10.1098/rstb.1952.0012 10.1016/j.cub.2010.05.038 10.1073/pnas.49.2.187 10.1016/j.febslet.2008.03.029 10.1242/jcs.039180 10.1016/S0962-8924(02)00004-1 10.1371/journal.pcbi.1002402 10.1098/rsfs.2011.0097 10.1091/mbc.e03-03-0167 10.1371/journal.pcbi.1006095 10.1137/16M1093847 10.1103/PhysRevE.75.015203 10.1145/779359.779362 10.1126/science.1222597 10.1098/rsif.2017.0805 10.1088/1367-2630/16/6/065009 10.1111/j.1365-2958.2010.07525.x 10.1098/rstb.2017.0107 10.1371/journal.pcbi.1001121 10.1088/1478-3975/12/6/066014 10.1016/j.cell.2012.03.012 10.1007/s11538-013-9914-6 10.1007/BF00289234 10.1242/jcs.112.17.2867 10.1093/imamat/48.3.249 10.3852/08-177 10.1007/s11538-007-9200-6 10.1172/JCI200418829 10.1105/tpc.114.126664 10.12688/f1000research.7370.1 10.1529/biophysj.107.120824 10.1016/j.ydbio.2003.06.003 10.1534/genetics.108.089318 10.1016/j.pbi.2012.10.004 10.1137/10079118X 10.1371/journal.pcbi.0030108 10.1016/S0021-9258(17)42232-0 10.1016/j.cell.2004.12.026 10.1016/j.cub.2009.08.052 10.1105/tpc.001537 10.1042/BST20130155 10.1038/nrm2530 10.1128/MMBR.00028-06 10.1105/tpc.010359 10.1016/j.pbi.2015.10.004 10.1016/j.cell.2009.10.024 10.1016/j.fbr.2015.02.003 10.1103/PhysRevB.37.9638 10.1146/annurev.ms.22.080192.001213 10.1016/S0898-6568(98)00063-1 10.1105/tpc.113.117853 10.12703/P7-23 10.1091/mbc.e04-02-0104 10.1038/sj.embor.7400051 10.1016/j.tcb.2013.05.003 10.3109/07388551.2015.1121967 10.1038/nature01148 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Jacobs et al 2019 Jacobs et al Wageningen University & Research |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Jacobs et al 2019 Jacobs et al – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM QVL DOA |
DOI | 10.1371/journal.pone.0213188 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Small GTPase patterning: How to stabilise cluster coexistence |
EISSN | 1932-6203 |
ExternalDocumentID | oai_doaj_org_article_58da3e55047f47739ae6f8f76a81389b oai_library_wur_nl_wurpubs_549340 PMC6405054 A577475941 30845201 10_1371_journal_pone_0213188 |
Genre | Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7X8 PPXIY PQGLB 5PM PJZUB AAPBV ABPTK BBAFP PQEST PQUKI QVL PUEGO |
ID | FETCH-LOGICAL-c691t-501e96dab977f6fa877a23020317a1ff65437e3e93a86e6e3ade80021e67c78e3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 27 01:30:40 EDT 2025 Thu Oct 13 09:31:29 EDT 2022 Thu Aug 21 18:21:19 EDT 2025 Fri Jul 11 11:20:08 EDT 2025 Tue Jun 17 20:35:45 EDT 2025 Tue Jun 10 20:40:25 EDT 2025 Fri Jun 27 04:51:25 EDT 2025 Fri Jun 27 04:36:41 EDT 2025 Thu May 22 21:21:08 EDT 2025 Wed Feb 19 02:31:09 EST 2025 Thu Apr 24 23:10:38 EDT 2025 Tue Jul 01 01:42:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c691t-501e96dab977f6fa877a23020317a1ff65437e3e93a86e6e3ade80021e67c78e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-8564-200X 0000-0001-6011-7487 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0213188 |
PMID | 30845201 |
PQID | 2189559474 |
PQPubID | 23479 |
PageCount | e0213188 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58da3e55047f47739ae6f8f76a81389b wageningen_narcis_oai_library_wur_nl_wurpubs_549340 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405054 proquest_miscellaneous_2189559474 gale_infotracmisc_A577475941 gale_infotracacademiconefile_A577475941 gale_incontextgauss_ISR_A577475941 gale_incontextgauss_IOV_A577475941 gale_healthsolutions_A577475941 pubmed_primary_30845201 crossref_citationtrail_10_1371_journal_pone_0213188 crossref_primary_10_1371_journal_pone_0213188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-07 |
PublicationDateYYYYMMDD | 2019-03-07 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Y Oda (ref20) 2012; 337 S Ishihara (ref32) 2007; 75 A Howell (ref39) 2012; 149 CA Lancaster (ref7) 1994; 269 H Meinhardt (ref37) 1987; 126 M Raftopoulou (ref3) 2004; 265 Y Mori (ref31) 2011; 71 AS Howell (ref45) 2009; 139 S Smith (ref65) 2018; 15 JU Hwang (ref29) 2010; 123 MA Jones (ref61) 2002; 14 Y Fu (ref23) 2005; 120 R Fritz (ref11) 2016; 5 JU Hwang (ref59) 2008; 18 A Dhooge (ref70) 2003; 29 Z Yang (ref2) 2012; 15 KJ Burns (ref63) 2016 Y Fu (ref26) 2015; 28 RL Friede (ref55) 1963; 49 S Khatibi (ref6) 2018 S Etienne-Manneville (ref4) 2002; 420 J Halatek (ref43) 2018; 373 SD Harris (ref27) 2011; 79 RJH Payne (ref52) 2009; 4 AFM Marée (ref60) 2012; 8 P Knechtle (ref47) 2003; 14 WR Holmes (ref15) 2016; 13 SA Rincón (ref56) 2014; 42 WR Holmes (ref68) 2014; 76 YJ Lee (ref46) 2008; 181 CP Semighini (ref49) 2008; 179 N Verschueren (ref38) 2017; 16 HO Park (ref1) 2007; 71 JD Murray (ref67) 2001 AM Turing (ref12) 1952; 237 SD Harris (ref50) 2008; 100 MO Bergo (ref54) 2004; 113 M Das (ref57) 2012; 337 PS Backlund (ref53) 1997; 272 Y Fu (ref22) 2002; 14 WJ Armour (ref35) 2015; 27 B Olofsson (ref9) 1999; 11 Y Mori (ref14) 2008; 94 A Jilkine (ref5) 2011; 7 H Meinhardt (ref48) 1999; 112 B Novák (ref58) 2008; 9 E Cleary (ref64) 2013 PW Voorhees (ref41) 1992; 22 Y Oda (ref19) 2010; 20 H Meinhardt (ref44) 2012; 2 M Postma (ref10) 2004; 5 TM Rogers (ref42) 1988; 37 V Grieneisen (ref34) 2009 AB Goryachev (ref17) 2008; 582 Y Fu (ref24) 2009; 19 RA Arkowitz (ref28) 2015; 29 J Rubinstein (ref33) 1992; 48 A Jilkine (ref16) 2007; 69 SY Moon (ref8) 2003; 13 JG Chiou (ref36) 2018; 14 A Makhzoum (ref62) 2017; 37 M Otsuji (ref18) 2007; 3 Y Oda (ref21) 2013; 25 PK Trong (ref66) 2014; 16 Y Bauer (ref30) 2004; 15 A Mendrinna (ref25) 2015; 7 CF Wu (ref51) 2013; 23 W Giese (ref40) 2015; 12 W Holmes (ref69) 2015; 108 A Gierer (ref13) 1972; 12 |
References_xml | – volume: 108 start-page: 230 issue: 2 year: 2015 ident: ref69 article-title: Local Perturbation Analysis: A Computational Tool for Biophysical Reaction-Diffusion Models publication-title: Biophysical Journal doi: 10.1016/j.bpj.2014.11.3457 – volume: 126 start-page: 63 issue: 1 year: 1987 ident: ref37 article-title: A model for pattern formation on the shells of molluscs publication-title: Journal of Theoretical Biology doi: 10.1016/S0022-5193(87)80101-7 – volume: 337 start-page: 239 year: 2012 ident: ref57 article-title: Oscillatory Dynamics of Cdc42 GTPase in the Control of Polarized Growth publication-title: Science doi: 10.1126/science.1218377 – year: 2009 ident: ref34 article-title: Dynamics of auxin patterning in plant morphogenesis—A multilevel model study – volume: 272 start-page: 33175 issue: 52 year: 1997 ident: ref53 article-title: Post-translational Processing of RhoA: Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of RhoA publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.272.52.33175 – volume: 18 start-page: 1907 issue: 24 year: 2008 ident: ref59 article-title: A Tip-Localized RhoGAP Controls Cell Polarity by Globally Inhibiting Rho GTPase at the Cell Apex publication-title: Current Biology doi: 10.1016/j.cub.2008.11.057 – volume: 13 start-page: 046001 issue: 4 year: 2016 ident: ref15 article-title: Analysis of a minimal Rho-GTPase circuit regulating cell shape publication-title: Physical Biology doi: 10.1088/1478-3975/13/4/046001 – volume: 181 start-page: 1155 issue: 7 year: 2008 ident: ref46 article-title: Rho-GTPase—dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200801086 – volume: 237 start-page: 37 issue: 641 year: 1952 ident: ref12 article-title: The chemical basis of morphogenesis publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences doi: 10.1098/rstb.1952.0012 – volume: 20 start-page: 1197 issue: 13 year: 2010 ident: ref19 article-title: Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein publication-title: Current Biology doi: 10.1016/j.cub.2010.05.038 – volume: 49 start-page: 187 issue: 2 year: 1963 ident: ref55 article-title: The relationship of body size, nerve cell size, axon length, and glial density in the cerebellum publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.49.2.187 – volume: 582 start-page: 1437 issue: 10 year: 2008 ident: ref17 article-title: Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity publication-title: FEBS Letters doi: 10.1016/j.febslet.2008.03.029 – volume: 123 start-page: 340 issue: 3 year: 2010 ident: ref29 article-title: Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity publication-title: Journal of Cell Science doi: 10.1242/jcs.039180 – year: 2013 ident: ref64 article-title: The Scientific Way to Simulate Pattern Formation in Reaction-Diffusion Equations – volume: 13 start-page: 13 issue: 1 year: 2003 ident: ref8 article-title: Rho GTPase-activating proteins in cell regulation publication-title: Trends in Cell Biology doi: 10.1016/S0962-8924(02)00004-1 – volume: 8 start-page: e1002402 issue: 3 year: 2012 ident: ref60 article-title: How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization and Motility publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002402 – volume: 2 start-page: 407 issue: 4 year: 2012 ident: ref44 article-title: Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition publication-title: Interface Focus doi: 10.1098/rsfs.2011.0097 – start-page: 3 year: 2018 ident: ref6 article-title: Computational Modeling of the Dynamics of Spatiotemporal Rho GTPase Signaling: A Systematic Review – volume: 14 start-page: 4140 issue: 10 year: 2003 ident: ref47 article-title: Maximal Polar Growth Potential Depends on the Polarisome Component AgSpa2 in the Filamentous Fungus Ashbya gossypii publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e03-03-0167 – volume: 14 start-page: e1006095 issue: 4 year: 2018 ident: ref36 article-title: Principles that govern competition or co-existence in Rho-GTPase driven polarization publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1006095 – volume: 16 start-page: 1797 issue: 4 year: 2017 ident: ref38 article-title: A Model for Cell Polarization Without Mass Conservation publication-title: SIAM Journal on Applied Dynamical Systems doi: 10.1137/16M1093847 – volume: 75 start-page: 015203 year: 2007 ident: ref32 article-title: Transient and steady state of mass-conserved reaction-diffusion systems publication-title: Physical Review E doi: 10.1103/PhysRevE.75.015203 – volume: 29 start-page: 141 issue: 2 year: 2003 ident: ref70 article-title: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs publication-title: ACM Transactions on Mathematical Software (TOMS) doi: 10.1145/779359.779362 – volume: 337 start-page: 1333 issue: 6100 year: 2012 ident: ref20 article-title: Initiation of Cell Wall Pattern by a Rho- and Microtubule-Driven Symmetry Breaking publication-title: Science doi: 10.1126/science.1222597 – volume: 15 start-page: 20170805 issue: 140 year: 2018 ident: ref65 article-title: Model reduction enables Turing instability analysis of large reaction-diffusion models publication-title: Journal of The Royal Society Interface doi: 10.1098/rsif.2017.0805 – volume: 16 start-page: 065009 issue: 6 year: 2014 ident: ref66 article-title: Parameter-space topology of models for cell polarity publication-title: New Journal of Physics doi: 10.1088/1367-2630/16/6/065009 – volume: 79 start-page: 1123 issue: 5 year: 2011 ident: ref27 article-title: Cdc42/Rho GTPases in fungi: variations on a common theme publication-title: Molecular microbiology doi: 10.1111/j.1365-2958.2010.07525.x – volume: 373 issue: 1747 year: 2018 ident: ref43 article-title: Self-organization principles of intracellular pattern formation publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences doi: 10.1098/rstb.2017.0107 – volume: 7 start-page: 1 issue: 4 year: 2011 ident: ref5 article-title: A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1001121 – volume: 12 start-page: 066014 issue: 6 year: 2015 ident: ref40 article-title: Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models publication-title: Physical Biology doi: 10.1088/1478-3975/12/6/066014 – volume: 149 start-page: 322 issue: 2 year: 2012 ident: ref39 article-title: Negative Feedback Enhances Robustness in the Yeast Polarity Establishment Circuit publication-title: Cell doi: 10.1016/j.cell.2012.03.012 – volume: 76 start-page: 157 issue: 1 year: 2014 ident: ref68 article-title: An Efficient, Nonlinear Stability Analysis for Detecting Pattern Formation in Reaction Diffusion Systems publication-title: Bulletin of Mathematical Biology doi: 10.1007/s11538-013-9914-6 – volume: 12 start-page: 30 issue: 1 year: 1972 ident: ref13 article-title: A theory of biological pattern formation publication-title: Kybernetik doi: 10.1007/BF00289234 – volume: 112 start-page: 2867 issue: 17 year: 1999 ident: ref48 article-title: Orientation of chemotactic cells and growth cones: models and mechanisms publication-title: Journal of Cell Science doi: 10.1242/jcs.112.17.2867 – volume: 4 start-page: 1 issue: 12 year: 2009 ident: ref52 article-title: A Theoretical Model for ROP Localisation by Auxin in Arabidopsis Root Hair Cells publication-title: PLoS One – volume: 48 start-page: 249 issue: 3 year: 1992 ident: ref33 article-title: Nonlocal reaction—diffusion equations and nucleation publication-title: IMA Journal of Applied Mathematics doi: 10.1093/imamat/48.3.249 – volume: 100 start-page: 823 issue: 6 year: 2008 ident: ref50 article-title: Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems publication-title: Mycologia doi: 10.3852/08-177 – volume: 69 start-page: 1943 issue: 6 year: 2007 ident: ref16 article-title: Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk publication-title: Bulletin of Mathematical Biology doi: 10.1007/s11538-007-9200-6 – volume: 113 start-page: 539 issue: 4 year: 2004 ident: ref54 article-title: Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI200418829 – volume: 27 start-page: 2484 issue: 9 year: 2015 ident: ref35 article-title: Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells publication-title: The Plant Cell Online doi: 10.1105/tpc.114.126664 – volume: 5 start-page: 749 issue: F1000 Faculty Rev year: 2016 ident: ref11 article-title: The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns [version 1; referees: 2 approved] publication-title: F1000Research doi: 10.12688/f1000research.7370.1 – volume: 94 start-page: 3684 issue: 9 year: 2008 ident: ref14 article-title: Wave-Pinning and Cell Polarity from a Bistable Reaction-Diffusion System publication-title: Biophysical Journal doi: 10.1529/biophysj.107.120824 – volume: 265 start-page: 23 issue: 1 year: 2004 ident: ref3 article-title: Cell migration: Rho GTPases lead the way publication-title: Developmental Biology doi: 10.1016/j.ydbio.2003.06.003 – volume: 179 start-page: 1919 issue: 4 year: 2008 ident: ref49 article-title: Regulation of Apical Dominance in Aspergillus nidulans Hyphae by Reactive Oxygen Species publication-title: Genetics doi: 10.1534/genetics.108.089318 – volume: 15 start-page: 601 issue: 6 year: 2012 ident: ref2 article-title: Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2012.10.004 – volume: 71 start-page: 1401 issue: 4 year: 2011 ident: ref31 article-title: Asymptotic and Bifurcation Analysis of Wave-Pinning in a Reaction-Diffusion Model for Cell Polarization publication-title: SIAM Journal on Applied Mathematics doi: 10.1137/10079118X – volume: 3 start-page: 1 issue: 6 year: 2007 ident: ref18 article-title: A Mass Conserved Reaction—Diffusion System Captures Properties of Cell Polarity publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0030108 – volume: 269 start-page: 1137 issue: 2 year: 1994 ident: ref7 article-title: Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(17)42232-0 – volume: 120 start-page: 687 issue: 5 year: 2005 ident: ref23 article-title: Arabidopsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis publication-title: Cell doi: 10.1016/j.cell.2004.12.026 – volume: 19 start-page: 1827 issue: 21 year: 2009 ident: ref24 article-title: A ROP GTPase Signaling Pathway Controls Cortical Microtubule Ordering and Cell Expansion in Arabidopsis publication-title: Current Biology doi: 10.1016/j.cub.2009.08.052 – volume: 14 start-page: 777 issue: 4 year: 2002 ident: ref22 article-title: The ROP2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis publication-title: The Plant Cell Online doi: 10.1105/tpc.001537 – volume: 42 start-page: 201 issue: 1 year: 2014 ident: ref56 article-title: Cdc42 regulates polarized growth and cell integrity in fission yeast publication-title: Biochemical Society Transactions doi: 10.1042/BST20130155 – volume: 9 start-page: 981 year: 2008 ident: ref58 article-title: Design principles of biochemical oscillators publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2530 – volume: 71 start-page: 48 issue: 1 year: 2007 ident: ref1 article-title: Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond publication-title: Microbiology and Molecular Biology Reviews doi: 10.1128/MMBR.00028-06 – volume: 14 start-page: 763 issue: 4 year: 2002 ident: ref61 article-title: The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth publication-title: The Plant Cell doi: 10.1105/tpc.010359 – volume: 28 start-page: 111 issue: Supplement C year: 2015 ident: ref26 article-title: The cytoskeleton in the pollen tube publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2015.10.004 – volume: 139 start-page: 731 issue: 4 year: 2009 ident: ref45 article-title: Singularity in Polarization: Rewiring Yeast Cells to Make Two Buds publication-title: Cell doi: 10.1016/j.cell.2009.10.024 – volume: 29 start-page: 7 issue: 1 year: 2015 ident: ref28 article-title: Regulation of hyphal morphogenesis by Ras and Rho small GTPases publication-title: Fungal Biology Reviews doi: 10.1016/j.fbr.2015.02.003 – volume: 37 start-page: 9638 year: 1988 ident: ref42 article-title: Numerical study of the late stages of spinodal decomposition publication-title: Physical Review B doi: 10.1103/PhysRevB.37.9638 – year: 2001 ident: ref67 article-title: Mathematical Biology. II Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18} – volume: 22 start-page: 197 issue: 1 year: 1992 ident: ref41 article-title: Ostwald Ripening of Two-Phase Mixtures publication-title: Annual Review of Materials Science doi: 10.1146/annurev.ms.22.080192.001213 – volume: 11 start-page: 545 issue: 8 year: 1999 ident: ref9 article-title: Rho Guanine Dissociation Inhibitors: Pivotal Molecules in Cellular Signalling publication-title: Cellular Signalling doi: 10.1016/S0898-6568(98)00063-1 – volume: 25 start-page: 4439 issue: 11 year: 2013 ident: ref21 article-title: Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns publication-title: The Plant Cell Online doi: 10.1105/tpc.113.117853 – volume: 7 start-page: 23 year: 2015 ident: ref25 article-title: Root hair growth: it’s a one way street publication-title: F1000prime reports doi: 10.12703/P7-23 – volume: 15 start-page: 4622 issue: 10 year: 2004 ident: ref30 article-title: A Ras-like GTPase Is Involved in Hyphal Growth Guidance in the Filamentous Fungus Ashbya gossypii publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e04-02-0104 – year: 2016 ident: ref63 article-title: Dedalus: Flexible framework for spectrally solving differential equations – volume: 5 start-page: 35 issue: 1 year: 2004 ident: ref10 article-title: Chemotaxis: signalling modules join hands at front and tail publication-title: EMBO reports doi: 10.1038/sj.embor.7400051 – volume: 23 start-page: 476 issue: 10 year: 2013 ident: ref51 article-title: Beyond symmetry-breaking: competition and negative feedback in GTPase regulation publication-title: Trends in Cell Biology doi: 10.1016/j.tcb.2013.05.003 – volume: 37 start-page: 151 issue: 2 year: 2017 ident: ref62 article-title: Strigolactone biology: genes, functional genomics, epigenetics and applications publication-title: Critical Reviews in Biotechnology doi: 10.3109/07388551.2015.1121967 – volume: 420 start-page: 629 year: 2002 ident: ref4 article-title: Rho GTPases in cell biology publication-title: Nature doi: 10.1038/nature01148 |
SSID | ssj0053866 |
Score | 2.3876607 |
Snippet | Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small... |
SourceID | doaj wageningen pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0213188 |
SubjectTerms | Animals Biology and Life Sciences Biometris (WU MAT) Cell membranes EPS Fungal Proteins - chemistry Fungal Proteins - metabolism Fungi - metabolism Genetic aspects GTPases Mathematical and Statistical Methods - Biometris Models, Molecular Monomeric GTP-Binding Proteins - chemistry Monomeric GTP-Binding Proteins - metabolism PE&RC Physical Sciences Physiological aspects Proteins Research and Analysis Methods Wiskundige en Statistische Methoden - Biometris |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70gWl6BAgYhAYe0m_qNxKEgyoLEQ7RFvVnexAakNFk1G-3fZ8bxLhs4lAOnleKJtRnPeD4nM98Q8rQyGkyHmTwIUeVciZBrCNx5AHlwJwjRMXn84yc5PeMfzsX5RqsvzAkb6IEHxR0IXTnmAUdzFbhSzDgvgw5KOo3f2Ga4-0LMWx2mhj0YvFjKVCjHVHGQ1mV_3jZ-H6IaGLIeBaLI1__3rrwRlv5Mmdxegr83sQBqIyAd3yDXE5KkR8MT7JBrvtklO8lXO_o8EUq_uElenVy4uqbvTr9AyKLzyKiJc76k03ZJFy0FhIg5sjBY1j0yJ9CyRYrMiKdvkbPjt6dvpnlqm5CX0hSLXEwKb2TlZgDtggxOK-XgoHEI7qtcEQJWkyrPvGFOSy89c5VH2Fh4qUqlPbtNthpQ1F1CFRcgI4JwxYzrEg5TptLaFIcTHwD4-IywlQ5tmTjFsbVFbeOHMgVni0EZFjVvk-Yzkq_vmg-cGlfIv8blWcsiI3a8AHZik53Yq-wkI49wce1QXrr2a3skAAArYXiRkSdRAlkxGky7-e76rrPvP3_7B6GTryOhZ0kotKCO0qVSB3gmZNsaSe6NJMG3y9Hw45UpWhzChLjGt31nAZkhdyBXPCN3BtNc64dNNBcA7DKiRkY7UuB4pPn5I1KLS46dDWFO9tu8bYNdrbp4V3q1aJf9pW1q_IF5Oiu4YXxy73-s032yDX_dxDQ_tUe2Fpe9fwC4bzF7GF38F6ttV40 priority: 102 providerName: Directory of Open Access Journals |
Title | Small GTPase patterning: How to stabilise cluster coexistence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30845201 https://www.proquest.com/docview/2189559474 https://pubmed.ncbi.nlm.nih.gov/PMC6405054 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F549340 https://doaj.org/article/58da3e55047f47739ae6f8f76a81389b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28bIXxPgMGyUgJOAhVTPbsYM0oW1qV5A2pm1FfbPcxB5IWVKaVoUX_nbuXLcsfIi9uFJ9tpLLXe7n-Pw7Ql7mqQTToWlkOc8jJriNJATuyII8uBOEaJc8fnKa9Afsw5AP18iyZqtXYP3XpR3WkxpMiva3r9_fgcPvu6oNIl4Oao-r0rQhZoGZynWyCbFJYE2DE7baVwDvdruXiFqiZK9D_WG6f83SCFaO0__PN_eN0PV7WuXWHN4JpTskdSNo9e6SOx5thgcL89gma6a8R7a9P9fha086_eY-2b-41kURHl-eQVgLx451E-d8G_areTitQkCRmEcLnVkxQ3aFMKuQRtNh7gdk0OteHvUjX1ohypI0nka8E5s0yfUI4J9NrJZCaFiMgEZioWNr8cSpMNSkVMvEJIbq3CC0jE0iMiENfUg2SlDUYxIKxkGGW67jEZMZLLjSXMo03usYC-DIBIQudagyzzuO5S8K5TbTBKw_FspQqHnlNR-QaDVqvODd-I_8IT6elSyyZrs_qsmV8k6ouMw1NbAmY8IyIWiqTWKlFYmWuF87CsgzfLhqcQR15fvqgANIFjxlcUBeOAlkzigxNedKz-pavf_46RZCF-cNoVdeyFagjkz74xBwT8jI1ZDcbUiC_2eN7udLU1TYhUlzpalmtQL0hvyCTLCAPFqY5ko_tCMZB_AXENEw2oYCmz3ll8-OfjxhWP0Q5qS_zFuVWPmqdqP850c1n01UWeAPzFMrzlLKOk9ucbU7ZAuuLHWZfmKXbEwnM_MUoN901CLrYiiglUcxtr3jFtk87J6enbfcx5SW83Zsf3R_AnssX5I |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+GTPase+patterning%3A+How+to+stabilise+cluster+coexistence&rft.jtitle=PloS+one&rft.au=Jacobs%2C+Bas&rft.au=Molenaar%2C+Jaap&rft.au=Deinum%2C+Eva+E&rft.date=2019-03-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0213188&rft_id=info:doi/10.1371%2Fjournal.pone.0213188&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |