The right central amygdala shows greater activation in response to an auditory conditioned stimulus in male rats

Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced f...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 78; no. 10; pp. 1563 - 1568
Main Authors TAKEUCHI, Yukari, MORI, Yuji, KIYOKAWA, Yasushi, TAKAHASHI, Daichi
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2016
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text
ISSN0916-7250
1347-7439
1347-7439
DOI10.1292/jvms.16-0255

Cover

Loading…
Abstract Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.
AbstractList Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.
Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.
Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.
Author KIYOKAWA, Yasushi
TAKAHASHI, Daichi
MORI, Yuji
TAKEUCHI, Yukari
Author_xml – sequence: 1
  fullname: TAKEUCHI, Yukari
  organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
– sequence: 1
  fullname: MORI, Yuji
  organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
– sequence: 1
  fullname: KIYOKAWA, Yasushi
  organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
– sequence: 1
  fullname: TAKAHASHI, Daichi
  organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27320818$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFG2dkiQsHUvyROMkFCa0oIFXiUs6W155NvErsxXa22v8ep9muoBIX2_L83vOM3xW6cN4BQm8puaGsZZ92hzHeUFEQVlUv0Irysi7qkrcXaEXafF-zilyiqxh3hDBaivYVumQ1Z6ShzQrt73vAwXZ9whpcCmrAajx2Rg0Kx94_RNwFUAkCVjrZg0rWO2wdDhD33kXAyWPlsJqMTT4csfYunzIEBsdkx2mY4syPasjvqBRfo5dbNUR4c9qv0a_br_fr78Xdz28_1l_uCi1akopS6YZTaGnbUMNqwU1jtopwZgQVfAOEa7PZzAgwUhlTNkaX7VboqhGalg2_Rp8X3_20GcGchpP7YEcVjtIrK_-tONvLzh9kRdpKsCobfDgZBP97gpjkaKOGYVAO_BQlbZioCaWEZPT9M3Tnp-DyeJniggtasZl693dH51aewsgAWwAdfIwBtlLb9PjjuUE7SErknLicE5dUyDnxLPr4TPTk-x98veC7mFQHZ1iFZPUAC1w3s3heF9W5qnsVJDj-B8FwyAk
CitedBy_id crossref_primary_10_1016_j_bbr_2019_03_024
crossref_primary_10_1016_j_physbeh_2018_05_027
crossref_primary_10_1176_appi_neuropsych_16030051
crossref_primary_10_3390_sym13112138
crossref_primary_10_1292_jvms_20_0568
crossref_primary_10_1016_j_bbr_2017_02_028
crossref_primary_10_1016_j_pnpbp_2023_110732
crossref_primary_10_1016_j_bbr_2019_112065
crossref_primary_10_1093_cercor_bhab376
Cites_doi 10.1037/0735-7044.110.5.991
10.1111/j.1460-9568.2012.08257.x
10.1016/j.bbr.2014.03.043
10.1523/JNEUROSCI.4316-06.2006
10.1126/science.185.4151.623
10.1523/JNEUROSCI.20-21-08177.2000
10.1152/jn.00166.2009
10.1016/j.yhbeh.2016.03.003
10.1016/j.physbeh.2016.05.001
10.1016/j.bbr.2013.08.037
10.1016/0166-4328(94)90091-4
10.1101/lm.92305
10.1016/0006-8993(94)01272-J
10.1016/j.neuron.2012.02.004
10.1016/j.bbr.2010.11.024
10.1101/lm.30901
10.1016/S0022-3565(25)29796-8
10.1037/0735-7044.118.1.15
10.1016/j.physbeh.2016.01.009
10.1523/JNEUROSCI.0740-09.2009
10.1037/0735-7044.118.1.5
10.3109/00207458709043336
10.1016/j.physbeh.2016.02.040
10.1523/JNEUROSCI.3536-06.2007
10.1016/S0376-6357(02)00161-4
10.3389/fnins.2015.00052
10.1007/7854_2015_406
10.1016/0006-8993(95)00108-3
10.1101/lm.37601
10.1016/j.neuroscience.2015.04.055
10.1073/pnas.1400335111
ContentType Journal Article
Copyright 2016 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency 2016
2016 The Japanese Society of Veterinary Science 2016
Copyright_xml – notice: 2016 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency 2016
– notice: 2016 The Japanese Society of Veterinary Science 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.16-0255
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 1568
ExternalDocumentID PMC5095625
27320818
10_1292_jvms_16_0255
article_jvms_78_10_78_16_0255_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
EYRJQ
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c690t-4ac831e91981d2763d8dfa032d6163be03cdbb831ee205dd48dc49f6c586c1483
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:00:34 EDT 2025
Fri Jul 11 10:31:35 EDT 2025
Mon Jun 30 11:16:18 EDT 2025
Mon Jul 21 05:39:34 EDT 2025
Wed Aug 20 07:41:33 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed Sep 03 06:29:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c690t-4ac831e91981d2763d8dfa032d6163be03cdbb831ee205dd48dc49f6c586c1483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.16-0255
PMID 27320818
PQID 1836361520
PQPubID 2028964
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5095625
proquest_miscellaneous_1826701100
proquest_journals_1836361520
pubmed_primary_27320818
crossref_citationtrail_10_1292_jvms_16_0255
crossref_primary_10_1292_jvms_16_0255
jstage_primary_article_jvms_78_10_78_16_0255_article_char_en
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2016
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 20. LaBar, K. S. and LeDoux, J. E. 1996. Partial disruption of fear conditioning in rats with unilateral amygdala damage: correspondence with unilateral temporal lobectomy in humans. Behav. Neurosci. 110: 991–997.
31. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. and LeDoux, J. E. 2006. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26: 12387–12396.
7. Coleman-Mesches, K. and McGaugh, J. L. 1995. Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res. 670: 75–81.
24. Muyama, H., Kiyokawa, Y., Inagaki, H., Takeuchi, Y. and Mori, Y. 2016. Alarm pheromone does not modulate 22-kHz calls in male rats. Physiol. Behav. 156: 59–63.
6. Coleman-Mesches, K. and McGaugh, J. L. 1995. Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Res. 676: 183–188.
2. Baker, K. B. and Kim, J. J. 2004. Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav. Neurosci. 118: 15–23.
9. Glick, S. D. and Jerussi, T. P. 1974. Spatial and paw preferences in rats: their relationship to rate-dependent effects of d-amphetamine. J. Pharmacol. Exp. Ther. 188: 714–725.
19. Kobayashi, T., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2015. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone. Front. Neurosci. 9: 52.
5. Carrasquillo, Y. and Gereau, R. W. 4th 2007. Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J. Neurosci. 27: 1543–1551.
1. Alvarez, E. O. and Banzan, A. M. 2011. Functional lateralization of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: role of histamine. Behav. Brain Res. 218: 158–164.
4. Calandreau, L., Desmedt, A., Decorte, L. and Jaffard, R. 2005. A different recruitment of the lateral and basolateral amygdala promotes contextual or elemental conditioned association in Pavlovian fear conditioning. Learn. Mem. 12: 383–388.
12. Ji, G. and Neugebauer, V. 2009. Hemispheric lateralization of pain processing by amygdala neurons. J. Neurophysiol. 102: 2253–2264.
21. LeDoux, J. 2012. Rethinking the emotional brain. Neuron 73: 653–676.
32. Zimmerberg, B., Glick, S. D. and Jerussi, T. P. 1974. Neurochemical correlate of a spatial preference in rats. Science 185: 623–625.
17. Kiyokawa, Y., Ishida, A., Takeuchi, Y. and Mori, Y. 2016. Sustained housing-type social buffering following social housing in male rats. Physiol. Behav. 158: 85–89.
22. LeDoux, J. E. 2014. Coming to terms with fear. Proc. Natl. Acad. Sci. U.S.A. 111: 2871–2878.
29. Waters, N. S. and Denenberg, V. H. 1994. Analysis of two measures of paw preference in a large population of inbred mice. Behav. Brain Res. 63: 195–204.
25. Pitts, M. W., Todorovic, C., Blank, T. and Takahashi, L. K. 2009. The central nucleus of the amygdala and corticotropin-releasing factor: insights into contextual fear memory. J. Neurosci. 29: 7379–7388.
10. Goosens, K. A. and Maren, S. 2001. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8: 148–155.
26. Schafe, G. E., Atkins, C. M., Swank, M. W., Bauer, E. P., Sweatt, J. D. and LeDoux, J. E. 2000. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J. Neurosci. 20: 8177–8187.
11. Ishii, A., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering ameliorates conditioned fear responses in female rats. Horm. Behav. 81: 53–58.
16. Kiyokawa, Y., Honda, A., Takeuchi, Y. and Mori, Y. 2014. A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behav. Brain Res. 267: 189–193.
13. Kiyokawa, Y. 2015. Social Odors: Alarm Pheromones and Social Buffering. Curr. Top. Behav. Neurosci.
18. Kiyokawa, Y., Mikami, K., Mikamura, Y., Ishii, A., Takeuchi, Y. and Mori, Y. 2015. The 3-second auditory conditioned stimulus is a more effective stressor than the 20-second auditory conditioned stimulus in male rats. Neuroscience 299: 79–87.
23. Mikami, K., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering enhances extinction of conditioned fear responses in male rats. Physiol. Behav. 163: 123–128.
28. Tan, U. 1987. Paw preferences in dogs. Int. J. Neurosci. 32: 825–829.
8. Frayer, D. W., Lozano, M., Bermúdez de Castro, J. M., Carbonell, E., Arsuaga, J. L., Radovčić, J., Fiore, I. and Bondioli, L. 2012. More than 500,000 years of right-handedness in Europe. Laterality 17: 51–69.
15. Kiyokawa, Y., Kodama, Y., Takeuchi, Y. and Mori, Y. 2013. Physical interaction is not necessary for the induction of housing-type social buffering of conditioned hyperthermia in male rats. Behav. Brain Res. 256: 414–419.
14. Kiyokawa, Y., Wakabayashi, Y., Takeuchi, Y. and Mori, Y. 2012. The neural pathway underlying social buffering of conditioned fear responses in male rats. Eur. J. Neurosci. 36: 3429–3437.
27. Scicli, A. P., Petrovich, G. D., Swanson, L. W. and Thompson, R. F. 2004. Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. Behav. Neurosci. 118: 5–14.
30. Wells, D. L. 2003. Lateralised behaviour in the domestic dog, Canis familiaris. Behav. Processes 61: 27–35.
3. Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. and LeDoux, J. E. 2001. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8: 229–242.
22
23
24
25
26
27
28
29
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
27158024 - Physiol Behav. 2016 Sep 1;163:123-8
3596925 - Int J Neurosci. 1987 Feb;32(3-4):825-9
17135400 - J Neurosci. 2006 Nov 29;26(48):12387-96
24001757 - Behav Brain Res. 2013 Nov 1;256:414-9
8919001 - Behav Neurosci. 1996 Oct;110(5):991-7
4816334 - J Pharmacol Exp Ther. 1974 Mar;188(3):714-25
7719727 - Brain Res. 1995 Jan 23;670(1):75-81
4858234 - Science. 1974 Aug 16;185(4151):623-5
25755631 - Front Neurosci. 2015 Feb 23;9:52
21500084 - Laterality. 2012;17(1):51-69
12543480 - Behav Processes. 2003 Feb 28;61(1-2):27-35
19625541 - J Neurophysiol. 2009 Oct;102(4):2253-64
11050141 - J Neurosci. 2000 Nov 1;20(21):8177-87
7796168 - Brain Res. 1995 Apr 3;676(1):183-8
14979779 - Behav Neurosci. 2004 Feb;118(1):15-23
25934035 - Neuroscience. 2015 Jul 23;299:79-87
17301163 - J Neurosci. 2007 Feb 14;27(7):1543-51
14979778 - Behav Neurosci. 2004 Feb;118(1):5-14
22909130 - Eur J Neurosci. 2012 Nov;36(10):3429-37
22365542 - Neuron. 2012 Feb 23;73(4):653-76
24501122 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2871-8
26939726 - Physiol Behav. 2016 May 1;158:85-9
27060333 - Horm Behav. 2016 May;81:53-8
19494159 - J Neurosci. 2009 Jun 3;29(22):7379-88
26602247 - Curr Top Behav Neurosci. 2017;30:47-65
16027178 - Learn Mem. 2005 Jul-Aug;12(4):383-8
26796788 - Physiol Behav. 2016 Mar 15;156:59-63
7999303 - Behav Brain Res. 1994 Aug 31;63(2):195-204
11584069 - Learn Mem. 2001 Sep-Oct;8(5):229-42
11390634 - Learn Mem. 2001 May-Jun;8(3):148-55
21075146 - Behav Brain Res. 2011 Mar 17;218(1):158-64
24698797 - Behav Brain Res. 2014 Jul 1;267:189-93
References_xml – reference: 2. Baker, K. B. and Kim, J. J. 2004. Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav. Neurosci. 118: 15–23.
– reference: 29. Waters, N. S. and Denenberg, V. H. 1994. Analysis of two measures of paw preference in a large population of inbred mice. Behav. Brain Res. 63: 195–204.
– reference: 20. LaBar, K. S. and LeDoux, J. E. 1996. Partial disruption of fear conditioning in rats with unilateral amygdala damage: correspondence with unilateral temporal lobectomy in humans. Behav. Neurosci. 110: 991–997.
– reference: 5. Carrasquillo, Y. and Gereau, R. W. 4th 2007. Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J. Neurosci. 27: 1543–1551.
– reference: 30. Wells, D. L. 2003. Lateralised behaviour in the domestic dog, Canis familiaris. Behav. Processes 61: 27–35.
– reference: 24. Muyama, H., Kiyokawa, Y., Inagaki, H., Takeuchi, Y. and Mori, Y. 2016. Alarm pheromone does not modulate 22-kHz calls in male rats. Physiol. Behav. 156: 59–63.
– reference: 15. Kiyokawa, Y., Kodama, Y., Takeuchi, Y. and Mori, Y. 2013. Physical interaction is not necessary for the induction of housing-type social buffering of conditioned hyperthermia in male rats. Behav. Brain Res. 256: 414–419.
– reference: 9. Glick, S. D. and Jerussi, T. P. 1974. Spatial and paw preferences in rats: their relationship to rate-dependent effects of d-amphetamine. J. Pharmacol. Exp. Ther. 188: 714–725.
– reference: 11. Ishii, A., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering ameliorates conditioned fear responses in female rats. Horm. Behav. 81: 53–58.
– reference: 13. Kiyokawa, Y. 2015. Social Odors: Alarm Pheromones and Social Buffering. Curr. Top. Behav. Neurosci.
– reference: 26. Schafe, G. E., Atkins, C. M., Swank, M. W., Bauer, E. P., Sweatt, J. D. and LeDoux, J. E. 2000. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J. Neurosci. 20: 8177–8187.
– reference: 32. Zimmerberg, B., Glick, S. D. and Jerussi, T. P. 1974. Neurochemical correlate of a spatial preference in rats. Science 185: 623–625.
– reference: 25. Pitts, M. W., Todorovic, C., Blank, T. and Takahashi, L. K. 2009. The central nucleus of the amygdala and corticotropin-releasing factor: insights into contextual fear memory. J. Neurosci. 29: 7379–7388.
– reference: 22. LeDoux, J. E. 2014. Coming to terms with fear. Proc. Natl. Acad. Sci. U.S.A. 111: 2871–2878.
– reference: 14. Kiyokawa, Y., Wakabayashi, Y., Takeuchi, Y. and Mori, Y. 2012. The neural pathway underlying social buffering of conditioned fear responses in male rats. Eur. J. Neurosci. 36: 3429–3437.
– reference: 21. LeDoux, J. 2012. Rethinking the emotional brain. Neuron 73: 653–676.
– reference: 1. Alvarez, E. O. and Banzan, A. M. 2011. Functional lateralization of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: role of histamine. Behav. Brain Res. 218: 158–164.
– reference: 7. Coleman-Mesches, K. and McGaugh, J. L. 1995. Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res. 670: 75–81.
– reference: 6. Coleman-Mesches, K. and McGaugh, J. L. 1995. Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Res. 676: 183–188.
– reference: 19. Kobayashi, T., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2015. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone. Front. Neurosci. 9: 52.
– reference: 10. Goosens, K. A. and Maren, S. 2001. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8: 148–155.
– reference: 18. Kiyokawa, Y., Mikami, K., Mikamura, Y., Ishii, A., Takeuchi, Y. and Mori, Y. 2015. The 3-second auditory conditioned stimulus is a more effective stressor than the 20-second auditory conditioned stimulus in male rats. Neuroscience 299: 79–87.
– reference: 12. Ji, G. and Neugebauer, V. 2009. Hemispheric lateralization of pain processing by amygdala neurons. J. Neurophysiol. 102: 2253–2264.
– reference: 8. Frayer, D. W., Lozano, M., Bermúdez de Castro, J. M., Carbonell, E., Arsuaga, J. L., Radovčić, J., Fiore, I. and Bondioli, L. 2012. More than 500,000 years of right-handedness in Europe. Laterality 17: 51–69.
– reference: 31. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. and LeDoux, J. E. 2006. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26: 12387–12396.
– reference: 4. Calandreau, L., Desmedt, A., Decorte, L. and Jaffard, R. 2005. A different recruitment of the lateral and basolateral amygdala promotes contextual or elemental conditioned association in Pavlovian fear conditioning. Learn. Mem. 12: 383–388.
– reference: 17. Kiyokawa, Y., Ishida, A., Takeuchi, Y. and Mori, Y. 2016. Sustained housing-type social buffering following social housing in male rats. Physiol. Behav. 158: 85–89.
– reference: 23. Mikami, K., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering enhances extinction of conditioned fear responses in male rats. Physiol. Behav. 163: 123–128.
– reference: 28. Tan, U. 1987. Paw preferences in dogs. Int. J. Neurosci. 32: 825–829.
– reference: 16. Kiyokawa, Y., Honda, A., Takeuchi, Y. and Mori, Y. 2014. A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behav. Brain Res. 267: 189–193.
– reference: 27. Scicli, A. P., Petrovich, G. D., Swanson, L. W. and Thompson, R. F. 2004. Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. Behav. Neurosci. 118: 5–14.
– reference: 3. Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. and LeDoux, J. E. 2001. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8: 229–242.
– ident: 19
  doi: 10.1037/0735-7044.110.5.991
– ident: 13
  doi: 10.1111/j.1460-9568.2012.08257.x
– ident: 15
  doi: 10.1016/j.bbr.2014.03.043
– ident: 30
  doi: 10.1523/JNEUROSCI.4316-06.2006
– ident: 31
  doi: 10.1126/science.185.4151.623
– ident: 25
  doi: 10.1523/JNEUROSCI.20-21-08177.2000
– ident: 11
  doi: 10.1152/jn.00166.2009
– ident: 10
  doi: 10.1016/j.yhbeh.2016.03.003
– ident: 22
  doi: 10.1016/j.physbeh.2016.05.001
– ident: 14
  doi: 10.1016/j.bbr.2013.08.037
– ident: 28
  doi: 10.1016/0166-4328(94)90091-4
– ident: 4
  doi: 10.1101/lm.92305
– ident: 7
  doi: 10.1016/0006-8993(94)01272-J
– ident: 20
  doi: 10.1016/j.neuron.2012.02.004
– ident: 1
  doi: 10.1016/j.bbr.2010.11.024
– ident: 3
  doi: 10.1101/lm.30901
– ident: 8
  doi: 10.1016/S0022-3565(25)29796-8
– ident: 2
  doi: 10.1037/0735-7044.118.1.15
– ident: 23
  doi: 10.1016/j.physbeh.2016.01.009
– ident: 24
  doi: 10.1523/JNEUROSCI.0740-09.2009
– ident: 26
  doi: 10.1037/0735-7044.118.1.5
– ident: 27
  doi: 10.3109/00207458709043336
– ident: 16
  doi: 10.1016/j.physbeh.2016.02.040
– ident: 5
  doi: 10.1523/JNEUROSCI.3536-06.2007
– ident: 29
  doi: 10.1016/S0376-6357(02)00161-4
– ident: 18
  doi: 10.3389/fnins.2015.00052
– ident: 12
  doi: 10.1007/7854_2015_406
– ident: 6
  doi: 10.1016/0006-8993(95)00108-3
– ident: 9
  doi: 10.1101/lm.37601
– ident: 17
  doi: 10.1016/j.neuroscience.2015.04.055
– ident: 21
  doi: 10.1073/pnas.1400335111
– reference: 27060333 - Horm Behav. 2016 May;81:53-8
– reference: 24001757 - Behav Brain Res. 2013 Nov 1;256:414-9
– reference: 17135400 - J Neurosci. 2006 Nov 29;26(48):12387-96
– reference: 12543480 - Behav Processes. 2003 Feb 28;61(1-2):27-35
– reference: 27158024 - Physiol Behav. 2016 Sep 1;163:123-8
– reference: 11390634 - Learn Mem. 2001 May-Jun;8(3):148-55
– reference: 26796788 - Physiol Behav. 2016 Mar 15;156:59-63
– reference: 7719727 - Brain Res. 1995 Jan 23;670(1):75-81
– reference: 7796168 - Brain Res. 1995 Apr 3;676(1):183-8
– reference: 3596925 - Int J Neurosci. 1987 Feb;32(3-4):825-9
– reference: 25755631 - Front Neurosci. 2015 Feb 23;9:52
– reference: 11584069 - Learn Mem. 2001 Sep-Oct;8(5):229-42
– reference: 22365542 - Neuron. 2012 Feb 23;73(4):653-76
– reference: 21075146 - Behav Brain Res. 2011 Mar 17;218(1):158-64
– reference: 7999303 - Behav Brain Res. 1994 Aug 31;63(2):195-204
– reference: 19494159 - J Neurosci. 2009 Jun 3;29(22):7379-88
– reference: 22909130 - Eur J Neurosci. 2012 Nov;36(10):3429-37
– reference: 8919001 - Behav Neurosci. 1996 Oct;110(5):991-7
– reference: 14979779 - Behav Neurosci. 2004 Feb;118(1):15-23
– reference: 4816334 - J Pharmacol Exp Ther. 1974 Mar;188(3):714-25
– reference: 16027178 - Learn Mem. 2005 Jul-Aug;12(4):383-8
– reference: 25934035 - Neuroscience. 2015 Jul 23;299:79-87
– reference: 4858234 - Science. 1974 Aug 16;185(4151):623-5
– reference: 26939726 - Physiol Behav. 2016 May 1;158:85-9
– reference: 17301163 - J Neurosci. 2007 Feb 14;27(7):1543-51
– reference: 11050141 - J Neurosci. 2000 Nov 1;20(21):8177-87
– reference: 21500084 - Laterality. 2012;17(1):51-69
– reference: 24501122 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2871-8
– reference: 14979778 - Behav Neurosci. 2004 Feb;118(1):5-14
– reference: 26602247 - Curr Top Behav Neurosci. 2017;30:47-65
– reference: 19625541 - J Neurophysiol. 2009 Oct;102(4):2253-64
– reference: 24698797 - Behav Brain Res. 2014 Jul 1;267:189-93
SSID ssj0021469
Score 2.1267476
Snippet Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1563
SubjectTerms Acoustic Stimulation - veterinary
Amygdala
Animals
auditory fear conditioning
Central Amygdaloid Nucleus - physiology
Conditioning, Classical
Dominance, Cerebral
Ethology
Fear
Fear conditioning
fear responses
Fos expression
Hemispheric laterality
lateralization
Male
Rats
Rats, Wistar
Rodents
Tonic immobility
Walking
Title The right central amygdala shows greater activation in response to an auditory conditioned stimulus in male rats
URI https://www.jstage.jst.go.jp/article/jvms/78/10/78_16-0255/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/27320818
https://www.proquest.com/docview/1836361520
https://www.proquest.com/docview/1826701100
https://pubmed.ncbi.nlm.nih.gov/PMC5095625
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2016, Vol.78(10), pp.1563-1568
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R2kMvVQt9pAXkSnBCodnEjhOpFaqqIgpaTmzFLbJjZwHtZulmt4V_z0zsRF1EL71EijxOoszD3_jxDcAuYlCMhzYPtTRVyCVHl9KVCrMU72VURbmi-Y7hWXo84icX4mINumqj_gc2j6Z2VE9qNJ8c3P66O0SH_9JyI-Txp-vf0-ZgQHtphXgCT3FMklTEYcj79QSqXu1Y91BM4qjvt8A_7E3UwDKJieZtZZx6do1QbWwfQ6EPN1P-NTodvYQXHlayr84OXsGarTdg4yftdWkP3LKhX0PfhBu0DNbm5Mw_jKnp3dioiWLN5exPw8YEJO2c0ZkHN2PLrmo2d7tpLVvMmKqZouMcM3wyJtTGER4ZhvFiupwsG5Kf4tDD0L6a1zA6-n7-7Tj0dRfCEnPlRchVmSUDmw9yBLMxBiCTmUpFSWxSRG_aRklptCYRG0fCGJ6ZkudVWoosLTG9St7Aeo1vfQes1FJVGm2h0hyBF8YPjL6ZzrgQiOojFcB-95eL0pOSU22MSUHJCaqnIPUUg7Qg9QSw10vfODKOf8h9dgrrpbwbOimZUS-6OvG-lQ66YbQIYKtTc9EZZIGfniYI_-IogI99M_oiLbCo2s6WJBOnsiXhC-Cts4r-Czq7CkCu2EsvQDzfqy311WXL9y2ILDIW7_-75wd4jjjPzxxtwfpivrTbiKUWegeziB-nO62z3ANKgCNu
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+right+central+amygdala+shows+greater+activation+in+response+to+an+auditory+conditioned+stimulus+in+male+rats&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=KIYOKAWA%2C+Yasushi&rft.au=TAKAHASHI%2C+Daichi&rft.au=TAKEUCHI%2C+Yukari&rft.au=MORI%2C+Yuji&rft.date=2016&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=78&rft.issue=10&rft.spage=1563&rft.epage=1568&rft_id=info:doi/10.1292%2Fjvms.16-0255&rft_id=info%3Apmid%2F27320818&rft.externalDocID=PMC5095625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon