The right central amygdala shows greater activation in response to an auditory conditioned stimulus in male rats
Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced f...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 78; no. 10; pp. 1563 - 1568 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2016
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
ISSN | 0916-7250 1347-7439 1347-7439 |
DOI | 10.1292/jvms.16-0255 |
Cover
Loading…
Abstract | Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS. |
---|---|
AbstractList | Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS. Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS. Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS. |
Author | KIYOKAWA, Yasushi TAKAHASHI, Daichi MORI, Yuji TAKEUCHI, Yukari |
Author_xml | – sequence: 1 fullname: TAKEUCHI, Yukari organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan – sequence: 1 fullname: MORI, Yuji organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan – sequence: 1 fullname: KIYOKAWA, Yasushi organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan – sequence: 1 fullname: TAKAHASHI, Daichi organization: Laboratory of Veterinary Ethology, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27320818$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLeFG2dkiQsHUvyROMkFCa0oIFXiUs6W155NvErsxXa22v8ep9muoBIX2_L83vOM3xW6cN4BQm8puaGsZZ92hzHeUFEQVlUv0Irysi7qkrcXaEXafF-zilyiqxh3hDBaivYVumQ1Z6ShzQrt73vAwXZ9whpcCmrAajx2Rg0Kx94_RNwFUAkCVjrZg0rWO2wdDhD33kXAyWPlsJqMTT4csfYunzIEBsdkx2mY4syPasjvqBRfo5dbNUR4c9qv0a_br_fr78Xdz28_1l_uCi1akopS6YZTaGnbUMNqwU1jtopwZgQVfAOEa7PZzAgwUhlTNkaX7VboqhGalg2_Rp8X3_20GcGchpP7YEcVjtIrK_-tONvLzh9kRdpKsCobfDgZBP97gpjkaKOGYVAO_BQlbZioCaWEZPT9M3Tnp-DyeJniggtasZl693dH51aewsgAWwAdfIwBtlLb9PjjuUE7SErknLicE5dUyDnxLPr4TPTk-x98veC7mFQHZ1iFZPUAC1w3s3heF9W5qnsVJDj-B8FwyAk |
CitedBy_id | crossref_primary_10_1016_j_bbr_2019_03_024 crossref_primary_10_1016_j_physbeh_2018_05_027 crossref_primary_10_1176_appi_neuropsych_16030051 crossref_primary_10_3390_sym13112138 crossref_primary_10_1292_jvms_20_0568 crossref_primary_10_1016_j_bbr_2017_02_028 crossref_primary_10_1016_j_pnpbp_2023_110732 crossref_primary_10_1016_j_bbr_2019_112065 crossref_primary_10_1093_cercor_bhab376 |
Cites_doi | 10.1037/0735-7044.110.5.991 10.1111/j.1460-9568.2012.08257.x 10.1016/j.bbr.2014.03.043 10.1523/JNEUROSCI.4316-06.2006 10.1126/science.185.4151.623 10.1523/JNEUROSCI.20-21-08177.2000 10.1152/jn.00166.2009 10.1016/j.yhbeh.2016.03.003 10.1016/j.physbeh.2016.05.001 10.1016/j.bbr.2013.08.037 10.1016/0166-4328(94)90091-4 10.1101/lm.92305 10.1016/0006-8993(94)01272-J 10.1016/j.neuron.2012.02.004 10.1016/j.bbr.2010.11.024 10.1101/lm.30901 10.1016/S0022-3565(25)29796-8 10.1037/0735-7044.118.1.15 10.1016/j.physbeh.2016.01.009 10.1523/JNEUROSCI.0740-09.2009 10.1037/0735-7044.118.1.5 10.3109/00207458709043336 10.1016/j.physbeh.2016.02.040 10.1523/JNEUROSCI.3536-06.2007 10.1016/S0376-6357(02)00161-4 10.3389/fnins.2015.00052 10.1007/7854_2015_406 10.1016/0006-8993(95)00108-3 10.1101/lm.37601 10.1016/j.neuroscience.2015.04.055 10.1073/pnas.1400335111 |
ContentType | Journal Article |
Copyright | 2016 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency 2016 2016 The Japanese Society of Veterinary Science 2016 |
Copyright_xml | – notice: 2016 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency 2016 – notice: 2016 The Japanese Society of Veterinary Science 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.16-0255 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 1568 |
ExternalDocumentID | PMC5095625 27320818 10_1292_jvms_16_0255 article_jvms_78_10_78_16_0255_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS ECGQY EJD EYRJQ HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 VH1 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c690t-4ac831e91981d2763d8dfa032d6163be03cdbb831ee205dd48dc49f6c586c1483 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 18:00:34 EDT 2025 Fri Jul 11 10:31:35 EDT 2025 Mon Jun 30 11:16:18 EDT 2025 Mon Jul 21 05:39:34 EDT 2025 Wed Aug 20 07:41:33 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Sep 03 06:29:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c690t-4ac831e91981d2763d8dfa032d6163be03cdbb831ee205dd48dc49f6c586c1483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.16-0255 |
PMID | 27320818 |
PQID | 1836361520 |
PQPubID | 2028964 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5095625 proquest_miscellaneous_1826701100 proquest_journals_1836361520 pubmed_primary_27320818 crossref_citationtrail_10_1292_jvms_16_0255 crossref_primary_10_1292_jvms_16_0255 jstage_primary_article_jvms_78_10_78_16_0255_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2016 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 20. LaBar, K. S. and LeDoux, J. E. 1996. Partial disruption of fear conditioning in rats with unilateral amygdala damage: correspondence with unilateral temporal lobectomy in humans. Behav. Neurosci. 110: 991–997. 31. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. and LeDoux, J. E. 2006. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26: 12387–12396. 7. Coleman-Mesches, K. and McGaugh, J. L. 1995. Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res. 670: 75–81. 24. Muyama, H., Kiyokawa, Y., Inagaki, H., Takeuchi, Y. and Mori, Y. 2016. Alarm pheromone does not modulate 22-kHz calls in male rats. Physiol. Behav. 156: 59–63. 6. Coleman-Mesches, K. and McGaugh, J. L. 1995. Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Res. 676: 183–188. 2. Baker, K. B. and Kim, J. J. 2004. Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav. Neurosci. 118: 15–23. 9. Glick, S. D. and Jerussi, T. P. 1974. Spatial and paw preferences in rats: their relationship to rate-dependent effects of d-amphetamine. J. Pharmacol. Exp. Ther. 188: 714–725. 19. Kobayashi, T., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2015. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone. Front. Neurosci. 9: 52. 5. Carrasquillo, Y. and Gereau, R. W. 4th 2007. Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J. Neurosci. 27: 1543–1551. 1. Alvarez, E. O. and Banzan, A. M. 2011. Functional lateralization of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: role of histamine. Behav. Brain Res. 218: 158–164. 4. Calandreau, L., Desmedt, A., Decorte, L. and Jaffard, R. 2005. A different recruitment of the lateral and basolateral amygdala promotes contextual or elemental conditioned association in Pavlovian fear conditioning. Learn. Mem. 12: 383–388. 12. Ji, G. and Neugebauer, V. 2009. Hemispheric lateralization of pain processing by amygdala neurons. J. Neurophysiol. 102: 2253–2264. 21. LeDoux, J. 2012. Rethinking the emotional brain. Neuron 73: 653–676. 32. Zimmerberg, B., Glick, S. D. and Jerussi, T. P. 1974. Neurochemical correlate of a spatial preference in rats. Science 185: 623–625. 17. Kiyokawa, Y., Ishida, A., Takeuchi, Y. and Mori, Y. 2016. Sustained housing-type social buffering following social housing in male rats. Physiol. Behav. 158: 85–89. 22. LeDoux, J. E. 2014. Coming to terms with fear. Proc. Natl. Acad. Sci. U.S.A. 111: 2871–2878. 29. Waters, N. S. and Denenberg, V. H. 1994. Analysis of two measures of paw preference in a large population of inbred mice. Behav. Brain Res. 63: 195–204. 25. Pitts, M. W., Todorovic, C., Blank, T. and Takahashi, L. K. 2009. The central nucleus of the amygdala and corticotropin-releasing factor: insights into contextual fear memory. J. Neurosci. 29: 7379–7388. 10. Goosens, K. A. and Maren, S. 2001. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8: 148–155. 26. Schafe, G. E., Atkins, C. M., Swank, M. W., Bauer, E. P., Sweatt, J. D. and LeDoux, J. E. 2000. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J. Neurosci. 20: 8177–8187. 11. Ishii, A., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering ameliorates conditioned fear responses in female rats. Horm. Behav. 81: 53–58. 16. Kiyokawa, Y., Honda, A., Takeuchi, Y. and Mori, Y. 2014. A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behav. Brain Res. 267: 189–193. 13. Kiyokawa, Y. 2015. Social Odors: Alarm Pheromones and Social Buffering. Curr. Top. Behav. Neurosci. 18. Kiyokawa, Y., Mikami, K., Mikamura, Y., Ishii, A., Takeuchi, Y. and Mori, Y. 2015. The 3-second auditory conditioned stimulus is a more effective stressor than the 20-second auditory conditioned stimulus in male rats. Neuroscience 299: 79–87. 23. Mikami, K., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering enhances extinction of conditioned fear responses in male rats. Physiol. Behav. 163: 123–128. 28. Tan, U. 1987. Paw preferences in dogs. Int. J. Neurosci. 32: 825–829. 8. Frayer, D. W., Lozano, M., Bermúdez de Castro, J. M., Carbonell, E., Arsuaga, J. L., Radovčić, J., Fiore, I. and Bondioli, L. 2012. More than 500,000 years of right-handedness in Europe. Laterality 17: 51–69. 15. Kiyokawa, Y., Kodama, Y., Takeuchi, Y. and Mori, Y. 2013. Physical interaction is not necessary for the induction of housing-type social buffering of conditioned hyperthermia in male rats. Behav. Brain Res. 256: 414–419. 14. Kiyokawa, Y., Wakabayashi, Y., Takeuchi, Y. and Mori, Y. 2012. The neural pathway underlying social buffering of conditioned fear responses in male rats. Eur. J. Neurosci. 36: 3429–3437. 27. Scicli, A. P., Petrovich, G. D., Swanson, L. W. and Thompson, R. F. 2004. Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. Behav. Neurosci. 118: 5–14. 30. Wells, D. L. 2003. Lateralised behaviour in the domestic dog, Canis familiaris. Behav. Processes 61: 27–35. 3. Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. and LeDoux, J. E. 2001. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8: 229–242. 22 23 24 25 26 27 28 29 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 27158024 - Physiol Behav. 2016 Sep 1;163:123-8 3596925 - Int J Neurosci. 1987 Feb;32(3-4):825-9 17135400 - J Neurosci. 2006 Nov 29;26(48):12387-96 24001757 - Behav Brain Res. 2013 Nov 1;256:414-9 8919001 - Behav Neurosci. 1996 Oct;110(5):991-7 4816334 - J Pharmacol Exp Ther. 1974 Mar;188(3):714-25 7719727 - Brain Res. 1995 Jan 23;670(1):75-81 4858234 - Science. 1974 Aug 16;185(4151):623-5 25755631 - Front Neurosci. 2015 Feb 23;9:52 21500084 - Laterality. 2012;17(1):51-69 12543480 - Behav Processes. 2003 Feb 28;61(1-2):27-35 19625541 - J Neurophysiol. 2009 Oct;102(4):2253-64 11050141 - J Neurosci. 2000 Nov 1;20(21):8177-87 7796168 - Brain Res. 1995 Apr 3;676(1):183-8 14979779 - Behav Neurosci. 2004 Feb;118(1):15-23 25934035 - Neuroscience. 2015 Jul 23;299:79-87 17301163 - J Neurosci. 2007 Feb 14;27(7):1543-51 14979778 - Behav Neurosci. 2004 Feb;118(1):5-14 22909130 - Eur J Neurosci. 2012 Nov;36(10):3429-37 22365542 - Neuron. 2012 Feb 23;73(4):653-76 24501122 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2871-8 26939726 - Physiol Behav. 2016 May 1;158:85-9 27060333 - Horm Behav. 2016 May;81:53-8 19494159 - J Neurosci. 2009 Jun 3;29(22):7379-88 26602247 - Curr Top Behav Neurosci. 2017;30:47-65 16027178 - Learn Mem. 2005 Jul-Aug;12(4):383-8 26796788 - Physiol Behav. 2016 Mar 15;156:59-63 7999303 - Behav Brain Res. 1994 Aug 31;63(2):195-204 11584069 - Learn Mem. 2001 Sep-Oct;8(5):229-42 11390634 - Learn Mem. 2001 May-Jun;8(3):148-55 21075146 - Behav Brain Res. 2011 Mar 17;218(1):158-64 24698797 - Behav Brain Res. 2014 Jul 1;267:189-93 |
References_xml | – reference: 2. Baker, K. B. and Kim, J. J. 2004. Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav. Neurosci. 118: 15–23. – reference: 29. Waters, N. S. and Denenberg, V. H. 1994. Analysis of two measures of paw preference in a large population of inbred mice. Behav. Brain Res. 63: 195–204. – reference: 20. LaBar, K. S. and LeDoux, J. E. 1996. Partial disruption of fear conditioning in rats with unilateral amygdala damage: correspondence with unilateral temporal lobectomy in humans. Behav. Neurosci. 110: 991–997. – reference: 5. Carrasquillo, Y. and Gereau, R. W. 4th 2007. Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J. Neurosci. 27: 1543–1551. – reference: 30. Wells, D. L. 2003. Lateralised behaviour in the domestic dog, Canis familiaris. Behav. Processes 61: 27–35. – reference: 24. Muyama, H., Kiyokawa, Y., Inagaki, H., Takeuchi, Y. and Mori, Y. 2016. Alarm pheromone does not modulate 22-kHz calls in male rats. Physiol. Behav. 156: 59–63. – reference: 15. Kiyokawa, Y., Kodama, Y., Takeuchi, Y. and Mori, Y. 2013. Physical interaction is not necessary for the induction of housing-type social buffering of conditioned hyperthermia in male rats. Behav. Brain Res. 256: 414–419. – reference: 9. Glick, S. D. and Jerussi, T. P. 1974. Spatial and paw preferences in rats: their relationship to rate-dependent effects of d-amphetamine. J. Pharmacol. Exp. Ther. 188: 714–725. – reference: 11. Ishii, A., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering ameliorates conditioned fear responses in female rats. Horm. Behav. 81: 53–58. – reference: 13. Kiyokawa, Y. 2015. Social Odors: Alarm Pheromones and Social Buffering. Curr. Top. Behav. Neurosci. – reference: 26. Schafe, G. E., Atkins, C. M., Swank, M. W., Bauer, E. P., Sweatt, J. D. and LeDoux, J. E. 2000. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J. Neurosci. 20: 8177–8187. – reference: 32. Zimmerberg, B., Glick, S. D. and Jerussi, T. P. 1974. Neurochemical correlate of a spatial preference in rats. Science 185: 623–625. – reference: 25. Pitts, M. W., Todorovic, C., Blank, T. and Takahashi, L. K. 2009. The central nucleus of the amygdala and corticotropin-releasing factor: insights into contextual fear memory. J. Neurosci. 29: 7379–7388. – reference: 22. LeDoux, J. E. 2014. Coming to terms with fear. Proc. Natl. Acad. Sci. U.S.A. 111: 2871–2878. – reference: 14. Kiyokawa, Y., Wakabayashi, Y., Takeuchi, Y. and Mori, Y. 2012. The neural pathway underlying social buffering of conditioned fear responses in male rats. Eur. J. Neurosci. 36: 3429–3437. – reference: 21. LeDoux, J. 2012. Rethinking the emotional brain. Neuron 73: 653–676. – reference: 1. Alvarez, E. O. and Banzan, A. M. 2011. Functional lateralization of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: role of histamine. Behav. Brain Res. 218: 158–164. – reference: 7. Coleman-Mesches, K. and McGaugh, J. L. 1995. Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res. 670: 75–81. – reference: 6. Coleman-Mesches, K. and McGaugh, J. L. 1995. Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Res. 676: 183–188. – reference: 19. Kobayashi, T., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2015. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone. Front. Neurosci. 9: 52. – reference: 10. Goosens, K. A. and Maren, S. 2001. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8: 148–155. – reference: 18. Kiyokawa, Y., Mikami, K., Mikamura, Y., Ishii, A., Takeuchi, Y. and Mori, Y. 2015. The 3-second auditory conditioned stimulus is a more effective stressor than the 20-second auditory conditioned stimulus in male rats. Neuroscience 299: 79–87. – reference: 12. Ji, G. and Neugebauer, V. 2009. Hemispheric lateralization of pain processing by amygdala neurons. J. Neurophysiol. 102: 2253–2264. – reference: 8. Frayer, D. W., Lozano, M., Bermúdez de Castro, J. M., Carbonell, E., Arsuaga, J. L., Radovčić, J., Fiore, I. and Bondioli, L. 2012. More than 500,000 years of right-handedness in Europe. Laterality 17: 51–69. – reference: 31. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. and LeDoux, J. E. 2006. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26: 12387–12396. – reference: 4. Calandreau, L., Desmedt, A., Decorte, L. and Jaffard, R. 2005. A different recruitment of the lateral and basolateral amygdala promotes contextual or elemental conditioned association in Pavlovian fear conditioning. Learn. Mem. 12: 383–388. – reference: 17. Kiyokawa, Y., Ishida, A., Takeuchi, Y. and Mori, Y. 2016. Sustained housing-type social buffering following social housing in male rats. Physiol. Behav. 158: 85–89. – reference: 23. Mikami, K., Kiyokawa, Y., Takeuchi, Y. and Mori, Y. 2016. Social buffering enhances extinction of conditioned fear responses in male rats. Physiol. Behav. 163: 123–128. – reference: 28. Tan, U. 1987. Paw preferences in dogs. Int. J. Neurosci. 32: 825–829. – reference: 16. Kiyokawa, Y., Honda, A., Takeuchi, Y. and Mori, Y. 2014. A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behav. Brain Res. 267: 189–193. – reference: 27. Scicli, A. P., Petrovich, G. D., Swanson, L. W. and Thompson, R. F. 2004. Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. Behav. Neurosci. 118: 5–14. – reference: 3. Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. and LeDoux, J. E. 2001. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8: 229–242. – ident: 19 doi: 10.1037/0735-7044.110.5.991 – ident: 13 doi: 10.1111/j.1460-9568.2012.08257.x – ident: 15 doi: 10.1016/j.bbr.2014.03.043 – ident: 30 doi: 10.1523/JNEUROSCI.4316-06.2006 – ident: 31 doi: 10.1126/science.185.4151.623 – ident: 25 doi: 10.1523/JNEUROSCI.20-21-08177.2000 – ident: 11 doi: 10.1152/jn.00166.2009 – ident: 10 doi: 10.1016/j.yhbeh.2016.03.003 – ident: 22 doi: 10.1016/j.physbeh.2016.05.001 – ident: 14 doi: 10.1016/j.bbr.2013.08.037 – ident: 28 doi: 10.1016/0166-4328(94)90091-4 – ident: 4 doi: 10.1101/lm.92305 – ident: 7 doi: 10.1016/0006-8993(94)01272-J – ident: 20 doi: 10.1016/j.neuron.2012.02.004 – ident: 1 doi: 10.1016/j.bbr.2010.11.024 – ident: 3 doi: 10.1101/lm.30901 – ident: 8 doi: 10.1016/S0022-3565(25)29796-8 – ident: 2 doi: 10.1037/0735-7044.118.1.15 – ident: 23 doi: 10.1016/j.physbeh.2016.01.009 – ident: 24 doi: 10.1523/JNEUROSCI.0740-09.2009 – ident: 26 doi: 10.1037/0735-7044.118.1.5 – ident: 27 doi: 10.3109/00207458709043336 – ident: 16 doi: 10.1016/j.physbeh.2016.02.040 – ident: 5 doi: 10.1523/JNEUROSCI.3536-06.2007 – ident: 29 doi: 10.1016/S0376-6357(02)00161-4 – ident: 18 doi: 10.3389/fnins.2015.00052 – ident: 12 doi: 10.1007/7854_2015_406 – ident: 6 doi: 10.1016/0006-8993(95)00108-3 – ident: 9 doi: 10.1101/lm.37601 – ident: 17 doi: 10.1016/j.neuroscience.2015.04.055 – ident: 21 doi: 10.1073/pnas.1400335111 – reference: 27060333 - Horm Behav. 2016 May;81:53-8 – reference: 24001757 - Behav Brain Res. 2013 Nov 1;256:414-9 – reference: 17135400 - J Neurosci. 2006 Nov 29;26(48):12387-96 – reference: 12543480 - Behav Processes. 2003 Feb 28;61(1-2):27-35 – reference: 27158024 - Physiol Behav. 2016 Sep 1;163:123-8 – reference: 11390634 - Learn Mem. 2001 May-Jun;8(3):148-55 – reference: 26796788 - Physiol Behav. 2016 Mar 15;156:59-63 – reference: 7719727 - Brain Res. 1995 Jan 23;670(1):75-81 – reference: 7796168 - Brain Res. 1995 Apr 3;676(1):183-8 – reference: 3596925 - Int J Neurosci. 1987 Feb;32(3-4):825-9 – reference: 25755631 - Front Neurosci. 2015 Feb 23;9:52 – reference: 11584069 - Learn Mem. 2001 Sep-Oct;8(5):229-42 – reference: 22365542 - Neuron. 2012 Feb 23;73(4):653-76 – reference: 21075146 - Behav Brain Res. 2011 Mar 17;218(1):158-64 – reference: 7999303 - Behav Brain Res. 1994 Aug 31;63(2):195-204 – reference: 19494159 - J Neurosci. 2009 Jun 3;29(22):7379-88 – reference: 22909130 - Eur J Neurosci. 2012 Nov;36(10):3429-37 – reference: 8919001 - Behav Neurosci. 1996 Oct;110(5):991-7 – reference: 14979779 - Behav Neurosci. 2004 Feb;118(1):15-23 – reference: 4816334 - J Pharmacol Exp Ther. 1974 Mar;188(3):714-25 – reference: 16027178 - Learn Mem. 2005 Jul-Aug;12(4):383-8 – reference: 25934035 - Neuroscience. 2015 Jul 23;299:79-87 – reference: 4858234 - Science. 1974 Aug 16;185(4151):623-5 – reference: 26939726 - Physiol Behav. 2016 May 1;158:85-9 – reference: 17301163 - J Neurosci. 2007 Feb 14;27(7):1543-51 – reference: 11050141 - J Neurosci. 2000 Nov 1;20(21):8177-87 – reference: 21500084 - Laterality. 2012;17(1):51-69 – reference: 24501122 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2871-8 – reference: 14979778 - Behav Neurosci. 2004 Feb;118(1):5-14 – reference: 26602247 - Curr Top Behav Neurosci. 2017;30:47-65 – reference: 19625541 - J Neurophysiol. 2009 Oct;102(4):2253-64 – reference: 24698797 - Behav Brain Res. 2014 Jul 1;267:189-93 |
SSID | ssj0021469 |
Score | 2.1267476 |
Snippet | Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1563 |
SubjectTerms | Acoustic Stimulation - veterinary Amygdala Animals auditory fear conditioning Central Amygdaloid Nucleus - physiology Conditioning, Classical Dominance, Cerebral Ethology Fear Fear conditioning fear responses Fos expression Hemispheric laterality lateralization Male Rats Rats, Wistar Rodents Tonic immobility Walking |
Title | The right central amygdala shows greater activation in response to an auditory conditioned stimulus in male rats |
URI | https://www.jstage.jst.go.jp/article/jvms/78/10/78_16-0255/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/27320818 https://www.proquest.com/docview/1836361520 https://www.proquest.com/docview/1826701100 https://pubmed.ncbi.nlm.nih.gov/PMC5095625 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2016, Vol.78(10), pp.1563-1568 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R2kMvVQt9pAXkSnBCodnEjhOpFaqqIgpaTmzFLbJjZwHtZulmt4V_z0zsRF1EL71EijxOoszD3_jxDcAuYlCMhzYPtTRVyCVHl9KVCrMU72VURbmi-Y7hWXo84icX4mINumqj_gc2j6Z2VE9qNJ8c3P66O0SH_9JyI-Txp-vf0-ZgQHtphXgCT3FMklTEYcj79QSqXu1Y91BM4qjvt8A_7E3UwDKJieZtZZx6do1QbWwfQ6EPN1P-NTodvYQXHlayr84OXsGarTdg4yftdWkP3LKhX0PfhBu0DNbm5Mw_jKnp3dioiWLN5exPw8YEJO2c0ZkHN2PLrmo2d7tpLVvMmKqZouMcM3wyJtTGER4ZhvFiupwsG5Kf4tDD0L6a1zA6-n7-7Tj0dRfCEnPlRchVmSUDmw9yBLMxBiCTmUpFSWxSRG_aRklptCYRG0fCGJ6ZkudVWoosLTG9St7Aeo1vfQes1FJVGm2h0hyBF8YPjL6ZzrgQiOojFcB-95eL0pOSU22MSUHJCaqnIPUUg7Qg9QSw10vfODKOf8h9dgrrpbwbOimZUS-6OvG-lQ66YbQIYKtTc9EZZIGfniYI_-IogI99M_oiLbCo2s6WJBOnsiXhC-Cts4r-Czq7CkCu2EsvQDzfqy311WXL9y2ILDIW7_-75wd4jjjPzxxtwfpivrTbiKUWegeziB-nO62z3ANKgCNu |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+right+central+amygdala+shows+greater+activation+in+response+to+an+auditory+conditioned+stimulus+in+male+rats&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=KIYOKAWA%2C+Yasushi&rft.au=TAKAHASHI%2C+Daichi&rft.au=TAKEUCHI%2C+Yukari&rft.au=MORI%2C+Yuji&rft.date=2016&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=78&rft.issue=10&rft.spage=1563&rft.epage=1568&rft_id=info:doi/10.1292%2Fjvms.16-0255&rft_id=info%3Apmid%2F27320818&rft.externalDocID=PMC5095625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |