Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome
Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patien...
Saved in:
Published in | Neurobiology of disease Vol. 68; no. 100; pp. 66 - 77 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2014
Elsevier Academic Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.
•Oxidative damage is demonstrated in the brain, and more specifically in the neurons, of Mecp2 mutant mouse models.•A direct evidence between enhanced oxidative stress and Mecp2 deficiency is provided.•Oxidative damage precedes the behavioral abnormalities in Mecp2 mutant mice.•Mecp2 is likely involved in the protection of the brain from oxidative stress. |
---|---|
AbstractList | Abstract Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 ( MECP2 ). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2 -null (pre-symptomatic, symptomatic, and rescued) and Mecp2 -308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2 -isoprostanes, F4 -neuroprostanes, F2 -dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2 -null (both −/y and stop/y) and Mecp2 -308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2 -null and Mecp2 -308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2 -reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelmingmajority of the cases by loss-of-functionmutations in the gene encodingmethyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 ( MECP2 ). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2 -null (pre-symptomatic, symptomatic, and rescued) and Mecp2 -308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F 2 -isoprostanes, F 4 -neuroprostanes, F 2 -dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2 -null (both −/y and stop/y) and Mecp2 -308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2 -null and Mecp2 -308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2 -reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. • Oxidative damage is demonstrated in the brain, and more specifically in the neurons, of Mecp2 mutant mouse models. • A direct evidence between enhanced oxidative stress and Mecp2 deficiency is provided. • Oxidative damage precedes the behavioral abnormalities in Mecp2 mutant mice. • Mecp2 is likely involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F sub(2)-isoprostanes, F sub(4)-neuroprostanes, F sub(2)-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. •Oxidative damage is demonstrated in the brain, and more specifically in the neurons, of Mecp2 mutant mouse models.•A direct evidence between enhanced oxidative stress and Mecp2 deficiency is provided.•Oxidative damage precedes the behavioral abnormalities in Mecp2 mutant mice.•Mecp2 is likely involved in the protection of the brain from oxidative stress. Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. |
Author | Hayek, Joussef Marracino, Federico Belmonte, Giuseppe Della Ragione, Floriana Ciccoli, Lucia Leoncini, Silvia Oger, Camille Bultel-Poncé, Valérie D'Esposito, Maurizio De Felice, Claudio Galano, Jean-Marie Guy, Alexandre Ricceri, Laura Filosa, Stefania Durand, Thierry Valacchi, Giuseppe Madonna, Michele Guy, Jacky Signorini, Cinzia Laviola, Giovanni Scalabrì, Francesco Pecorelli, Alessandra De Filippis, Bianca |
AuthorAffiliation | b Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy e Child Neuropsychiatry Unit, University Hospital AOUS, Siena, Italy g Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy f Department of Cell Biology and Neuroscience, ISS, Rome, Italy i Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom c IRCCS Neuromed, Pozzilli, Italy d Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy h Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France a Neonatal Intensive Care Unit, University Hospital AOUS, Siena, Italy |
AuthorAffiliation_xml | – name: a Neonatal Intensive Care Unit, University Hospital AOUS, Siena, Italy – name: e Child Neuropsychiatry Unit, University Hospital AOUS, Siena, Italy – name: g Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy – name: h Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France – name: i Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom – name: f Department of Cell Biology and Neuroscience, ISS, Rome, Italy – name: c IRCCS Neuromed, Pozzilli, Italy – name: b Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy – name: d Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy |
Author_xml | – sequence: 1 givenname: Claudio surname: De Felice fullname: De Felice, Claudio email: geniente@gmail.com organization: Neonatal Intensive Care Unit, University Hospital AOUS, Siena, Italy – sequence: 2 givenname: Floriana surname: Della Ragione fullname: Della Ragione, Floriana organization: Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy – sequence: 3 givenname: Cinzia surname: Signorini fullname: Signorini, Cinzia organization: Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy – sequence: 4 givenname: Silvia surname: Leoncini fullname: Leoncini, Silvia organization: Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy – sequence: 5 givenname: Alessandra surname: Pecorelli fullname: Pecorelli, Alessandra organization: Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy – sequence: 6 givenname: Lucia surname: Ciccoli fullname: Ciccoli, Lucia organization: Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy – sequence: 7 givenname: Francesco surname: Scalabrì fullname: Scalabrì, Francesco organization: IRCCS Neuromed, Pozzilli, Italy – sequence: 8 givenname: Federico surname: Marracino fullname: Marracino, Federico organization: IRCCS Neuromed, Pozzilli, Italy – sequence: 9 givenname: Michele surname: Madonna fullname: Madonna, Michele organization: IRCCS Neuromed, Pozzilli, Italy – sequence: 10 givenname: Giuseppe surname: Belmonte fullname: Belmonte, Giuseppe organization: Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy – sequence: 11 givenname: Laura surname: Ricceri fullname: Ricceri, Laura organization: Department of Cell Biology and Neuroscience, ISS, Rome, Italy – sequence: 12 givenname: Bianca surname: De Filippis fullname: De Filippis, Bianca organization: Department of Cell Biology and Neuroscience, ISS, Rome, Italy – sequence: 13 givenname: Giovanni surname: Laviola fullname: Laviola, Giovanni organization: Department of Cell Biology and Neuroscience, ISS, Rome, Italy – sequence: 14 givenname: Giuseppe surname: Valacchi fullname: Valacchi, Giuseppe organization: Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy – sequence: 15 givenname: Thierry surname: Durand fullname: Durand, Thierry organization: Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France – sequence: 16 givenname: Jean-Marie surname: Galano fullname: Galano, Jean-Marie organization: Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France – sequence: 17 givenname: Camille surname: Oger fullname: Oger, Camille organization: Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France – sequence: 18 givenname: Alexandre surname: Guy fullname: Guy, Alexandre organization: Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France – sequence: 19 givenname: Valérie surname: Bultel-Poncé fullname: Bultel-Poncé, Valérie organization: Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM I-UM II-ENSCM, Montpellier, France – sequence: 20 givenname: Jacky surname: Guy fullname: Guy, Jacky organization: Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom – sequence: 21 givenname: Stefania surname: Filosa fullname: Filosa, Stefania organization: Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy – sequence: 22 givenname: Joussef surname: Hayek fullname: Hayek, Joussef organization: Child Neuropsychiatry Unit, University Hospital AOUS, Siena, Italy – sequence: 23 givenname: Maurizio surname: D'Esposito fullname: D'Esposito, Maurizio email: maurizio.desposito@igb.cnr.it organization: Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24769161$$D View this record in MEDLINE/PubMed https://hal.science/hal-00997408$$DView record in HAL |
BookMark | eNqFUl1rFDEUHaRit9Uf4IvMoz7smmTyMUEolFJtYaXgB_gWMsmdbdaZpE1mFvffm3FbsQu2EEi4Oefc3JxzVBz44KEoXmO0wAjz9-uFb-yCIEwXKC_EnxUzjCSbS1b9OChmSHI5l5Ljw-IopTVCGDMpXhSHhAouMcez4vzql7N6cBsom6idL63u9QrKfPoM5obM-3HQfij7MToPZR8sdKkMbfkFhqFMW29j6OFl8bzVXYJXd_tx8f3j-bezi_ny6tPl2elybngth7mRVQUCQDacAjaYmAYRWrNWW0tq1NbckIZxAbS2uBaSMVpp1gjKQLe2IdVxcbnTtUGv1U10vY5bFbRTfwohrpSOgzMdqBaxxlBk29pyqiWptW0wbSxrK22kgKx1stO6GZserAE_RN09EH144921WoWNokhwhqss8G4ncL1HuzhdqqmGkJSConqDM_btXbMYbkdIg-pdMtB12kMYk8J50gwm2binoZWknAgxQd_8O8LfR9zbmwFiBzAxpBShVcYN2e0wTeQ6hZGagqTWKgdJTUFSKC_EMxPvMe_FH-N82HFyRGDjIKpkHHgD1kUwQ_bIPco-2WObznlndPcTtpDWYYw-Z0thlYhC6usU7inbmKL80WzyQ_5f4InmvwF8ageG |
CitedBy_id | crossref_primary_10_1155_2015_326184 crossref_primary_10_1016_j_atherosclerosis_2024_118600 crossref_primary_10_1038_s41598_017_12069_0 crossref_primary_10_3389_fphys_2018_00858 crossref_primary_10_1016_j_bbadis_2020_165793 crossref_primary_10_3390_ijms22073751 crossref_primary_10_3390_pharmaceutics16060756 crossref_primary_10_1016_j_bbadis_2015_07_014 crossref_primary_10_3390_cells10092494 crossref_primary_10_3389_fnmol_2017_00069 crossref_primary_10_1007_s10286_023_00958_6 crossref_primary_10_1098_rsob_170216 crossref_primary_10_1016_j_freeradbiomed_2015_04_019 crossref_primary_10_1016_j_jprot_2016_12_010 crossref_primary_10_3390_biomedicines12112624 crossref_primary_10_1016_j_biochi_2015_06_010 crossref_primary_10_1093_hmg_ddz208 crossref_primary_10_3390_biom11070967 crossref_primary_10_1016_j_neures_2015_10_002 crossref_primary_10_12688_f1000research_14056_1 crossref_primary_10_1016_j_freeradbiomed_2023_07_010 crossref_primary_10_3389_fneur_2022_833239 crossref_primary_10_3390_ijms26052204 crossref_primary_10_1016_j_abb_2021_108768 crossref_primary_10_1016_j_freeradbiomed_2015_02_014 crossref_primary_10_3390_jcm9061669 crossref_primary_10_1113_JP275890 crossref_primary_10_1007_s11010_016_2893_9 crossref_primary_10_1093_hmg_ddy301 crossref_primary_10_3389_fnins_2022_868008 crossref_primary_10_3390_biom13040606 crossref_primary_10_3390_antiox11071406 crossref_primary_10_3390_cells9122539 crossref_primary_10_1038_s41380_024_02725_z crossref_primary_10_1016_j_freeradbiomed_2014_07_045 crossref_primary_10_3389_fnins_2021_729757 crossref_primary_10_1016_j_jneuroim_2023_578019 crossref_primary_10_1016_j_jprot_2019_103537 crossref_primary_10_3389_fnint_2020_00007 crossref_primary_10_1016_j_bbalip_2014_11_004 crossref_primary_10_1113_JP270369 crossref_primary_10_1016_j_biocel_2016_08_001 crossref_primary_10_3390_life12020146 crossref_primary_10_1186_s12974_017_1004_5 crossref_primary_10_1016_j_neubiorev_2019_05_013 crossref_primary_10_3389_fnins_2020_00023 crossref_primary_10_1016_j_peptides_2024_171271 crossref_primary_10_1139_bcb_2017_0147 crossref_primary_10_3389_fncel_2017_00058 crossref_primary_10_1016_j_autrev_2016_01_011 crossref_primary_10_1016_j_jns_2024_123077 crossref_primary_10_1073_pnas_2320383121 crossref_primary_10_1186_s13023_018_0857_8 crossref_primary_10_1128_MCB_00470_16 crossref_primary_10_2217_fnl_15_9 crossref_primary_10_3390_nu16183114 crossref_primary_10_1155_2017_9467819 crossref_primary_10_1016_j_euroneuro_2015_03_012 crossref_primary_10_1016_j_neuint_2016_09_012 crossref_primary_10_1016_j_plefa_2014_08_002 crossref_primary_10_1016_j_abb_2020_108666 crossref_primary_10_1016_j_neubiorev_2018_12_009 crossref_primary_10_3389_fphys_2019_00479 crossref_primary_10_1016_j_freeradbiomed_2022_01_017 crossref_primary_10_1038_s41598_019_46019_9 crossref_primary_10_1016_j_freeradbiomed_2016_12_045 crossref_primary_10_1155_2019_4278658 crossref_primary_10_1002_ejlt_201600320 crossref_primary_10_1002_lipd_12041 crossref_primary_10_3389_fneur_2024_1388506 crossref_primary_10_1016_j_nlm_2018_11_007 crossref_primary_10_3389_fncel_2016_00266 crossref_primary_10_1007_s11064_020_03106_y crossref_primary_10_1007_s12031_018_1197_9 crossref_primary_10_1152_physiol_00008_2020 crossref_primary_10_3390_ijms18061254 crossref_primary_10_1038_nrneurol_2016_186 crossref_primary_10_1038_s41598_021_90517_8 crossref_primary_10_1007_s00109_020_02018_2 crossref_primary_10_1155_2017_3064016 crossref_primary_10_1016_j_biocel_2016_07_015 crossref_primary_10_1016_j_ddmod_2019_11_001 crossref_primary_10_1007_s00335_019_09793_5 crossref_primary_10_3390_toxics3010089 crossref_primary_10_3390_metabo12040291 crossref_primary_10_1089_ars_2017_7161 crossref_primary_10_1007_s11010_019_03633_5 crossref_primary_10_1016_j_neubiorev_2019_06_014 crossref_primary_10_1016_j_freeradbiomed_2019_05_014 crossref_primary_10_1155_2015_421624 crossref_primary_10_20517_and_2023_13 crossref_primary_10_3109_10715762_2014_960867 crossref_primary_10_1016_j_freeradbiomed_2017_06_012 crossref_primary_10_1016_j_freeradbiomed_2017_12_009 crossref_primary_10_1093_hmg_ddw156 crossref_primary_10_3390_antiox7070088 crossref_primary_10_1016_j_cyto_2015_10_002 crossref_primary_10_1371_journal_pone_0150101 crossref_primary_10_1038_srep11204 crossref_primary_10_3390_ijms22084240 crossref_primary_10_3109_10715762_2015_1007969 |
Cites_doi | 10.1002/med.20117 10.1016/j.resp.2013.06.022 10.1016/j.nbd.2012.06.007 10.1111/j.1601-183X.2009.00551.x 10.1016/j.freeradbiomed.2009.05.016 10.1371/journal.pone.0049763 10.1016/j.clinbiochem.2011.01.007 10.1016/j.nbd.2010.10.006 10.1016/j.bbalip.2010.01.009 10.1038/13810 10.3389/fncel.2014.00056 10.1002/stem.1180 10.1155/2014/560120 10.1016/j.febslet.2012.11.033 10.1002/mrdd.10020 10.1038/ng.2738 10.1007/s12263-012-0285-7 10.1016/j.it.2012.10.002 10.1371/journal.pone.0056599 10.1203/01.PDR.0000155945.94249.0A 10.1101/gad.207456.112 10.3233/JAD-2010-100405 10.1038/nature10214 10.1038/nrn3453 10.1111/j.1601-183X.2006.00258.x 10.1126/science.1138389 10.1038/12703 10.1097/FBP.0b013e32830c3645 10.1016/j.cca.2011.04.016 10.1016/j.prostaglandins.2013.04.003 10.1242/dmm.011007 10.1002/mds.21744 10.4236/fns.2013.49A1012 10.1258/ebm.2010.010261 10.1016/S0896-6273(02)00768-7 10.1146/annurev-cellbio-092910-154121 10.1038/nn.2997 10.1093/hmg/ddr093 10.1016/j.braindev.2012.03.011 10.1371/journal.pone.0047848 10.1097/01.wnr.0000208995.38695.2f 10.1038/ng.2714 10.1378/chest.09-3021 10.1038/561 10.1111/j.1469-8749.1998.tb15371.x 10.1073/pnas.0506071102 10.1111/j.1600-079X.2008.00639.x 10.1111/j.1749-6632.2012.06611.x 10.1038/85899 10.1179/1351000211Y.0000000004 10.1016/j.braindev.2005.03.014 10.1055/s-0030-1254118 10.1126/science.1153252 10.3233/JAD-121996 10.1194/jlr.P017798 10.1016/j.biochi.2012.09.017 10.1016/S0387-7604(01)00369-2 10.1046/j.1365-2788.2003.00476.x 10.1038/nature10907 10.1016/j.mrfmmm.2010.03.007 10.1002/ana.22124 10.1038/85906 10.1136/jmg.2004.027730 10.1523/JNEUROSCI.1854-13.2013 10.1523/JNEUROSCI.2623-05.2006 10.1155/2013/343824 10.1093/hmg/ddi016 10.1093/brain/aws096 10.1016/j.febslet.2013.05.042 10.1038/nrg1878 10.1016/j.neuron.2007.10.001 10.1002/jms.520 |
ContentType | Journal Article |
Copyright | 2014 The Authors The Authors Copyright © 2014. Published by Elsevier Inc. Attribution - NonCommercial - NoDerivatives 2014 The Authors 2014 |
Copyright_xml | – notice: 2014 The Authors – notice: The Authors – notice: Copyright © 2014. Published by Elsevier Inc. – notice: Attribution - NonCommercial - NoDerivatives – notice: 2014 The Authors 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 1XC VOOES 5PM DOA |
DOI | 10.1016/j.nbd.2014.04.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
EndPage | 77 |
ExternalDocumentID | oai_doaj_org_article_f05bc40df8d64a928adb14bd5f3ac97e PMC4076513 oai_HAL_hal_00997408v1 24769161 10_1016_j_nbd_2014_04_006 S0969996114000953 1_s2_0_S0969996114000953 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- 0SF 6I. AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ PKN RIG AADPK AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c689t-c933e7ee9b64e1c12cb02485fadd280f86c2b567e48d18795543a5b745eafdb23 |
IEDL.DBID | DOA |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Thu Aug 21 18:07:00 EDT 2025 Fri May 09 12:22:06 EDT 2025 Fri Jul 11 15:51:40 EDT 2025 Fri Jul 11 08:17:43 EDT 2025 Mon Jul 21 06:00:48 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 03:07:23 EDT 2025 Fri Feb 23 02:29:32 EST 2024 Sun Feb 23 10:19:09 EST 2025 Tue Aug 26 16:32:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 100 |
Keywords | Oxidative stress Mecp2 308/x Mecp2 308/y Lipid peroxidation F4-NeuroPs Neurodevelopmental disorder wt-Cre MECP2 Mecp2 stop/y NestinCre RTT 4-HNE 4-HNE PAs wt AdA OS BDNF F2-IsoPs Mecp2 stop/y Mecp2 −/y NPBI F2-dihomo-IsoPs ARA IsoPs PSV Murine models CRE ROS Rett syndrome Brain damage DHA PUFAs ASDs AUs adrenic acid methyl-CpG-binding protein 2 — mouse gene 4-hydroxy-2-nonenal protein adducts Lox/stop pre-symptomatic hemizygous mice methyl-CpG-binding protein 2 — human protein autism spectrum disorders brain-derived neurotrophic factor arachidonic acid symptomatic Mecp2 308-mutated hemizygous males F 2-dihomo-isoprostanes F 2-isoprostanes 4-HNE protein adducts wild type methyl-CpG-binding protein 2 — mouse protein Preserved Speech Variant arbitrary units polyunsaturated fatty acids F 4-neuroprostanes F 2-IsoPs isoprostanes docosahexaenoic acid reactive oxygen species 4-hydroxy-2-nonenal non-protein-bound iron hemizygous null mice wild type expressing Cre recombinase F 2-dihomo-IsoPs symptomatic Mecp2 308-mutated females methyl-CpG-binding protein 2 — human gene Cre-Recombinase rescued Lox/stop mice ( Mecp2 reactivated in the nervous tissue) F 4-NeuroPs oxidative stress |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2014. Published by Elsevier Inc. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c689t-c933e7ee9b64e1c12cb02485fadd280f86c2b567e48d18795543a5b745eafdb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Co-last authors. Co-first authors. |
ORCID | 0000-0002-7027-1207 0000-0002-2153-3872 0000-0002-5177-5792 0000-0003-0006-9414 0000-0001-6086-7296 0000-0001-6412-4967 0000-0001-8206-8946 |
OpenAccessLink | https://doaj.org/article/f05bc40df8d64a928adb14bd5f3ac97e |
PMID | 24769161 |
PQID | 1539462775 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f05bc40df8d64a928adb14bd5f3ac97e pubmedcentral_primary_oai_pubmedcentral_nih_gov_4076513 hal_primary_oai_HAL_hal_00997408v1 proquest_miscellaneous_1543997295 proquest_miscellaneous_1539462775 pubmed_primary_24769161 crossref_citationtrail_10_1016_j_nbd_2014_04_006 crossref_primary_10_1016_j_nbd_2014_04_006 elsevier_sciencedirect_doi_10_1016_j_nbd_2014_04_006 elsevier_clinicalkeyesjournals_1_s2_0_S0969996114000953 elsevier_clinicalkey_doi_10_1016_j_nbd_2014_04_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Academic Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Academic Press |
References | Dani, Chang, Maffei, Turrigiano, Jaenisch, Nelson (bb0060) 2005; 102 De Felice, Signorini, Durand, Oger, Guy, Bultel-Ponce, Galano, Ciccoli, Leoncini, D'Esposito, Filosa, Pecorelli, Valacchi, Hayek (bb0085) 2011; 52 Einspieler, Kerr, Prechtl (bb0125) 2005; 27 Delepine, Nectoux, Bahi-Buisson, Chelly, Bienvenu (bb0105) 2013; 587 Marschik, Lanator, Freilinger, Prechtl, Einspieler (bb0225) 2011; 42 Leonard, Bower (bb0210) 1998; 40 Rouault (bb0300) 2013; 14 Valacchi, Pecorelli, Signorini, Leoncini, Ciccoli, De Felice, Hayek (bb0410) 2014 De Filippis, Ricceri, Laviola (bb0100) 2010; 9 Schroder, Figueiredo, de Lima (bb0310) 2013; 34 De Felice, Ciccoli, Leoncini, Signorini, Rossi, Vannuccini, Guazzi, Latini, Comporti, Valacchi, Hayek (bb0065) 2009; 47 Hagberg (bb0180) 2002; 8 Praticò (bb0275) 2010; 1801 Signorini, Ciccoli, Leoncini, Carloni, Perrone, Comporti, Balduini, Buonocore (bb0325) 2009; 46 Guy, Gan, Selfridge, Cobb, Bird (bb0170) 2007; 315 Guy, Cheval, Selfridge, Bird (bb0165) 2011; 27 Signorini, De Felice, Leoncini, Giardini, D'Esposito, Filosa, Della Ragione, Rossi, Pecorelli, Valacchi, Ciccoli, Hayek (bb0405) 2011; 412 Derecki, Cronk, Lu, Xu, Abbott, Guyenet, Kipnis (bb0115) 2012; 484 Janc, Muller (bb0195) 2014; 8 Robinson, Guy, McKay, Brockett, Spike, Selfridge, De Sousa, Merusi, Riedel, Bird, Cobb (bb0295) 2012; 135 De Felice, Guazzi, Rossi, Ciccoli, Signorini, Leoncini, Tonni, Latini, Valacchi, Hayek (bb0070) 2010; 138 Pecorelli, Leoncini, De Felice, Signorini, Cerrone, Valacchi, Ciccoli, Hayek (bb0260) 2013; 35 Sticozzi, Belmonte, Pecorelli, Cervellati, Leoncini, Signorini, Ciccoli, De Felice, Hayek, Valacchi (bb0350) 2013; 587 Katz, Berger-Sweeney, Eubanks, Justice, Neul, Pozzo-Miller, Blue, Christian, Crawley, Giustetto, Guy, Howell, Kron, Nelson, Samaco, Schaevitz, St Hillaire-Clarke, Young, Zoghbi, Mamounas (bb0205) 2012; 5 Ciccoli, Leoncini, Signorini, Comporti (bb0385) 2008 Lioy, Garg, Monaghan, Raber, Foust, Kaspar, Hirrlinger, Kirchhoff, Bissonnette, Ballas, Mandel (bb0220) 2011; 475 Pecorelli, Ciccoli, Signorini, Leoncini, Giardini, D'Esposito, Filosa, Hayek, De Felice, Valacchi (bb0255) 2011; 44 Ramirez, Ward, Neul (bb0280) 2013; 189 Sierra, Vilaseca, Brandi, Artuch, Mira, Nieto, Pineda (bb0320) 2001; 23 Signorini, De Felice, Durand, Oger, Galano, Leoncini, Pecorelli, Valacchi, Ciccoli, Hayek (bb0335) 2013; 2013 Derecki, Cronk, Kipnis (bb0110) 2013; 34 Yazdani, Deogracias, Guy, Poot, Bird, Barde (bb0375) 2012; 30 De Felice, Signorini, Leoncini, Pecorelli, Durand, Galano, Bultel-Poncé, Guy, Oger, Zollo, Valacchi, Ciccoli, Hayek (bb0390) 2013 Singh, Dang, Arseneault, Ramassamy (bb0345) 2010; 21 Weaving, Ellaway, Gecz, Christodoulou (bb0370) 2005; 42 Nagy, Ackerman (bb0240) 2013; 45 Moretti, Bouwknecht, Teague, Paylor, Zoghbi (bb0230) 2005; 14 Halliwell, Gutteridge (bb0400) 2007 Ricceri, De Filippis, Laviola (bb0290) 2008; 19 De Felice, Signorini, Leoncini, Pecorelli, Durand, Valacchi, Ciccoli, Hayek (bb0090) 2012; 1259 Chahrour, Jung, Shaw, Zhou, Wong, Qin, Zoghbi (bb0035) 2008; 320 Grillo, Lo Rizzo, Bianciardi, Bizzarri, Baldassarri, Spiga, Furini, De Felice, Signorini, Leoncini, Pecorelli, Ciccoli, Mencarelli, Hayek, Meloni, Ariani, Mari, Renieri (bb0155) 2013; 8 Neul, Kaufmann, Glaze, Christodoulou, Clarke, Bahi-Buisson, Leonard, Bailey, Schanen, Zappella, Renieri, Huppke, Percy (bb0245) 2010; 68 Han, Gennarino, Lee, Pang, Hashimoto-Torii, Choufani, Raju, Oldham, Weksberg, Rakic, Liu, Zoghbi (bb0190) 2013; 27 Cheung, Horvath, Grafodatskaya, Pasceri, Weksberg, Hotta, Carrel, Ellis (bb0050) 2011; 20 Buchovecky, Turley, Brown, Kyle, McDonald, Liu, Pieper, Huang, Katz, Russell, Shendure, Justice (bb0020) 2013; 45 Rett (bb0285) 1966; 116 Chen, Akbarian, Tudor, Jaenisch (bb0045) 2001; 27 Panayotis, Pratte, Borges-Correia, Ghata, Villard, Roux (bb0250) 2011; 41 Burford, Kerr, Macleod (bb0025) 2003; 47 Leoncini, De Felice, Signorini, Pecorelli, Durand, Valacchi, Ciccoli, Hayek (bb0215) 2011; 16 Chahrour, Zoghbi (bb0040) 2007; 56 Picker, Yang, Ricceri, Berger-Sweeney (bb0265) 2006; 17 Shahbazian, Young, Yuva-Paylor, Spencer, Antalffy, Noebels, Armstrong, Paylor, Zoghbi (bb0315) 2002; 35 Einspieler, Kerr, Prechtl (bb0130) 2005; 57 Grosser, Hirt, Janc, Menzfeld, Fischer, Kempkes, Vogelgesang, Manzke, Opitz, Salinas-Riester, Muller (bb0160) 2012; 48 Moretti, Levenson, Battaglia, Atkinson, Teague, Antalffy, Armstrong, Arancio, Sweatt, Zoghbi (bb0235) 2006; 26 Durand, De Felice, Signorini, Oger, Bultel-Ponce, Guy, Galano, Leoncini, Ciccoli, Pecorelli, Valacchi, Hayek (bb0120) 2013; 95 Poli, Schaur, Siems, Leonarduzzi (bb0270) 2008; 28 Amir, Van den Veyver, Wan, Tran, Francke, Zoghbi (bb0005) 1999; 23 Signorini, Comporti, Giorgi (bb0330) 2003; 38 Zachariah, Olson, Ezeonwuka, Rastegar (bb0380) 2012; 7 Bertulat, De Bonis, Della Ragione, Lehmkuhl, Milden, Storm, Jost, Scala, Hendrich, D'Esposito, Cardoso (bb0010) 2012; 7 Goffin, Allen, Zhang, Amorim, Wang, Reyes, Mercado-Berton, Ong, Cohen, Hu, Blendy, Carlson, Siegel, Greenberg, Zhou (bb0150) 2012; 15 Tronche, Kellendonk, Kretz, Gass, Anlag, Orban, Bock, Klein, Schutz (bb0360) 1999; 23 Temudo, Maciel, Sequeiros (bb0355) 2007; 22 Garg, Lioy, Cheval, McGann, Bissonnette, Murtha, Foust, Kaspar, Bird, Mandel (bb0145) 2013; 33 De Felice, Signorini, Durand, Ciccoli, Leoncini, D'Esposito, Filosa, Oger, Guy, Bultel-Ponce, Galano, Pecorelli, De Felice, Valacchi, Hayek (bb0080) 2012; 7 De Felice, Rossi, Leoncini, Chisci, Signorini, Lonetti, Vannuccini, Spina, Ginori, Iacona, Cortelazzo, Pecorelli, Valacchi, Ciccoli, Pizzorusso, Hayek (bb0395) 2014; 2014 Santos, Silva-Fernandes, Oliveira, Sousa, Maciel (bb0305) 2007; 6 Guy, Hendrich, Holmes, Martin, Bird (bb0175) 2001; 27 Ferguson (bb0135) 2010; 690 Galano, Mas, Barden, Mori, Signorini, De Felice, Barrett, Opere, Pinot, Schwedhelm, Benndorf, Roy, Le Guennec, Oger, Durand (bb0140) 2013; 107 Calfa, Percy, Pozzo-Miller (bb0030) 2011; 236 Jones, Veenstra, Wade, Vermaak, Kass, Landsberger, Strouboulis, Wolffe (bb0200) 1998; 19 Bienvenu, Chelly (bb0015) 2006; 7 Dani (10.1016/j.nbd.2014.04.006_bb0060) 2005; 102 Han (10.1016/j.nbd.2014.04.006_bb0190) 2013; 27 Delepine (10.1016/j.nbd.2014.04.006_bb0105) 2013; 587 Santos (10.1016/j.nbd.2014.04.006_bb0305) 2007; 6 Lioy (10.1016/j.nbd.2014.04.006_bb0220) 2011; 475 Nagy (10.1016/j.nbd.2014.04.006_bb0240) 2013; 45 Calfa (10.1016/j.nbd.2014.04.006_bb0030) 2011; 236 Einspieler (10.1016/j.nbd.2014.04.006_bb0130) 2005; 57 Robinson (10.1016/j.nbd.2014.04.006_bb0295) 2012; 135 Signorini (10.1016/j.nbd.2014.04.006_bb0335) 2013; 2013 Marschik (10.1016/j.nbd.2014.04.006_bb0225) 2011; 42 Guy (10.1016/j.nbd.2014.04.006_bb0175) 2001; 27 Picker (10.1016/j.nbd.2014.04.006_bb0265) 2006; 17 Cheung (10.1016/j.nbd.2014.04.006_bb0050) 2011; 20 Garg (10.1016/j.nbd.2014.04.006_bb0145) 2013; 33 Temudo (10.1016/j.nbd.2014.04.006_bb0355) 2007; 22 Durand (10.1016/j.nbd.2014.04.006_bb0120) 2013; 95 Poli (10.1016/j.nbd.2014.04.006_bb0270) 2008; 28 Buchovecky (10.1016/j.nbd.2014.04.006_bb0020) 2013; 45 Pecorelli (10.1016/j.nbd.2014.04.006_bb0255) 2011; 44 Katz (10.1016/j.nbd.2014.04.006_bb0205) 2012; 5 De Felice (10.1016/j.nbd.2014.04.006_bb0080) 2012; 7 Schroder (10.1016/j.nbd.2014.04.006_bb0310) 2013; 34 Grillo (10.1016/j.nbd.2014.04.006_bb0155) 2013; 8 Guy (10.1016/j.nbd.2014.04.006_bb0170) 2007; 315 Bienvenu (10.1016/j.nbd.2014.04.006_bb0015) 2006; 7 Yazdani (10.1016/j.nbd.2014.04.006_bb0375) 2012; 30 Signorini (10.1016/j.nbd.2014.04.006_bb0325) 2009; 46 De Felice (10.1016/j.nbd.2014.04.006_bb0390) 2013 Ramirez (10.1016/j.nbd.2014.04.006_bb0280) 2013; 189 Rett (10.1016/j.nbd.2014.04.006_bb0285) 1966; 116 De Felice (10.1016/j.nbd.2014.04.006_bb0065) 2009; 47 Galano (10.1016/j.nbd.2014.04.006_bb0140) 2013; 107 Singh (10.1016/j.nbd.2014.04.006_bb0345) 2010; 21 Derecki (10.1016/j.nbd.2014.04.006_bb0115) 2012; 484 Jones (10.1016/j.nbd.2014.04.006_bb0200) 1998; 19 Leoncini (10.1016/j.nbd.2014.04.006_bb0215) 2011; 16 Ricceri (10.1016/j.nbd.2014.04.006_bb0290) 2008; 19 Hagberg (10.1016/j.nbd.2014.04.006_bb0180) 2002; 8 Signorini (10.1016/j.nbd.2014.04.006_bb0330) 2003; 38 De Felice (10.1016/j.nbd.2014.04.006_bb0070) 2010; 138 Signorini (10.1016/j.nbd.2014.04.006_bb0405) 2011; 412 Pecorelli (10.1016/j.nbd.2014.04.006_bb0260) 2013; 35 Moretti (10.1016/j.nbd.2014.04.006_bb0235) 2006; 26 Guy (10.1016/j.nbd.2014.04.006_bb0165) 2011; 27 Panayotis (10.1016/j.nbd.2014.04.006_bb0250) 2011; 41 Ciccoli (10.1016/j.nbd.2014.04.006_bb0385) 2008 Halliwell (10.1016/j.nbd.2014.04.006_bb0400) 2007 Einspieler (10.1016/j.nbd.2014.04.006_bb0125) 2005; 27 Sticozzi (10.1016/j.nbd.2014.04.006_bb0350) 2013; 587 Tronche (10.1016/j.nbd.2014.04.006_bb0360) 1999; 23 De Felice (10.1016/j.nbd.2014.04.006_bb0085) 2011; 52 Sierra (10.1016/j.nbd.2014.04.006_bb0320) 2001; 23 Zachariah (10.1016/j.nbd.2014.04.006_bb0380) 2012; 7 Chahrour (10.1016/j.nbd.2014.04.006_bb0035) 2008; 320 Janc (10.1016/j.nbd.2014.04.006_bb0195) 2014; 8 Burford (10.1016/j.nbd.2014.04.006_bb0025) 2003; 47 Neul (10.1016/j.nbd.2014.04.006_bb0245) 2010; 68 De Felice (10.1016/j.nbd.2014.04.006_bb0090) 2012; 1259 Chahrour (10.1016/j.nbd.2014.04.006_bb0040) 2007; 56 Derecki (10.1016/j.nbd.2014.04.006_bb0110) 2013; 34 Leonard (10.1016/j.nbd.2014.04.006_bb0210) 1998; 40 De Filippis (10.1016/j.nbd.2014.04.006_bb0100) 2010; 9 Ferguson (10.1016/j.nbd.2014.04.006_bb0135) 2010; 690 Weaving (10.1016/j.nbd.2014.04.006_bb0370) 2005; 42 Rouault (10.1016/j.nbd.2014.04.006_bb0300) 2013; 14 Shahbazian (10.1016/j.nbd.2014.04.006_bb0315) 2002; 35 Goffin (10.1016/j.nbd.2014.04.006_bb0150) 2012; 15 Amir (10.1016/j.nbd.2014.04.006_bb0005) 1999; 23 Moretti (10.1016/j.nbd.2014.04.006_bb0230) 2005; 14 Valacchi (10.1016/j.nbd.2014.04.006_bb0410) 2014 Chen (10.1016/j.nbd.2014.04.006_bb0045) 2001; 27 De Felice (10.1016/j.nbd.2014.04.006_bb0395) 2014; 2014 Bertulat (10.1016/j.nbd.2014.04.006_bb0010) 2012; 7 Praticò (10.1016/j.nbd.2014.04.006_bb0275) 2010; 1801 Grosser (10.1016/j.nbd.2014.04.006_bb0160) 2012; 48 22750529 - Neurobiol Dis. 2012 Oct;48(1):102-14 17914728 - Mov Disord. 2007 Nov 15;22(15):2284-7 14641806 - J Intellect Disabil Res. 2003 Nov;47(Pt 8):588-96 19958389 - Genes Brain Behav. 2010 Mar 1;9(2):213-23 22865604 - Stem Cells. 2012 Oct;30(10):2128-39 21716289 - Nature. 2011 Jul 28;475(7357):497-500 15548546 - Hum Mol Genet. 2005 Jan 15;14(2):205-20 21372149 - Hum Mol Genet. 2011 Jun 1;20(11):2103-15 18690105 - Behav Pharmacol. 2008 Sep;19(5-6):501-17 23115203 - Dis Model Mech. 2012 Nov;5(6):733-45 9620779 - Nat Genet. 1998 Jun;19(2):187-91 21917727 - J Lipid Res. 2011 Dec;52(12):2287-97 23271321 - J Alzheimers Dis. 2013;34(4):797-812 24757286 - Mediators Inflamm. 2014;2014:560120 16848781 - Genes Brain Behav. 2007 Apr;6(3):277-86 17988628 - Neuron. 2007 Nov 8;56(3):422-37 22534237 - Brain Dev. 2013 Feb;35(2):146-54 23816600 - Respir Physiol Neurobiol. 2013 Nov 1;189(2):280-7 23185431 - PLoS One. 2012;7(11):e49763 23820773 - Nat Rev Neurosci. 2013 Aug;14(8):551-64 23892605 - Nat Genet. 2013 Sep;45(9):1013-20 18511691 - Science. 2008 May 30;320(5880):1224-9 20951208 - Neurobiol Dis. 2011 Feb;41(2):385-97 22119903 - Nat Neurosci. 2012 Feb;15(2):274-83 21239731 - Exp Biol Med (Maywood). 2011 Jan;236(1):3-19 23431031 - Genes Dev. 2013 Mar 1;27(5):485-90 11242117 - Nat Genet. 2001 Mar;27(3):322-6 23966684 - J Neurosci. 2013 Aug 21;33(34):13612-20 15718369 - Pediatr Res. 2005 May;57(5 Pt 1):696-700 20116452 - Biochim Biophys Acta. 2010 Aug;1801(8):930-3 21721946 - Annu Rev Cell Dev Biol. 2011;27:631-52 20348192 - Chest. 2010 Aug;138(2):386-92 20634576 - J Alzheimers Dis. 2010;21(3):741-56 20223251 - Mutat Res. 2010 Aug 7;690(1-2):3-11 19141088 - J Pineal Res. 2009 Mar;46(2):148-54 23238081 - FEBS Lett. 2013 Jan 16;587(2):245-53 11242118 - Nat Genet. 2001 Mar;27(3):327-31 23644158 - Prostaglandins Other Lipid Mediat. 2013 Dec;107:95-102 16116096 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12560-5 10508514 - Nat Genet. 1999 Oct;23(2):185-8 23009927 - Biochimie. 2013 Jan;95(1):86-90 22525157 - Brain. 2012 Sep;135(Pt 9):2699-710 23112857 - PLoS One. 2012;7(10):e47848 16182501 - Brain Dev. 2005 Nov;27 Suppl 1:S8-S13 12112728 - Ment Retard Dev Disabil Res Rev. 2002;8(2):61-5 5300597 - Wien Med Wochenschr. 1966 Sep 10;116(37):723-6 12160743 - Neuron. 2002 Jul 18;35(2):243-54 14595856 - J Mass Spectrom. 2003 Oct;38(10):1067-74 15635068 - J Med Genet. 2005 Jan;42(1):1-7 9489500 - Dev Med Child Neurol. 1998 Feb;40(2):115-21 18058921 - Med Res Rev. 2008 Jul;28(4):569-631 22425995 - Nature. 2012 Apr 5;484(7392):105-9 17289941 - Science. 2007 Feb 23;315(5815):1143-7 21530498 - Clin Chim Acta. 2011 Jul 15;412(15-16):1399-406 19464363 - Free Radic Biol Med. 2009 Aug 15;47(4):440-8 16399702 - J Neurosci. 2006 Jan 4;26(1):319-27 16708070 - Nat Rev Genet. 2006 Jun;7(6):415-26 22758644 - Ann N Y Acad Sci. 2012 Jul;1259:121-35 11738881 - Brain Dev. 2001 Dec;23 Suppl 1:S236-9 21154482 - Ann Neurol. 2010 Dec;68(6):944-50 10471508 - Nat Genet. 1999 Sep;23(1):99-103 23985682 - Nat Genet. 2013 Sep;45(9):965-7 22399313 - Genes Nutr. 2012 Jul;7(3):447-58 23844273 - Oxid Med Cell Longev. 2013;2013:343824 23468869 - PLoS One. 2013;8(2):e56599 24605086 - Front Cell Neurosci. 2014 Feb 24;8:56 21276437 - Clin Biochem. 2011 Apr;44(5-6):368-71 21888765 - Redox Rep. 2011;16(4):145-53 23122051 - Trends Immunol. 2013 Mar;34(3):144-50 23711372 - FEBS Lett. 2013 Jul 11;587(14):2199-204 16543822 - Neuroreport. 2006 Apr 3;17(5):541-4 |
References_xml | – volume: 47 start-page: 440 year: 2009 end-page: 448 ident: bb0065 article-title: Systemic oxidative stress in classic Rett syndrome publication-title: Free Radic. Biol. Med. – volume: 587 start-page: 2199 year: 2013 end-page: 2204 ident: bb0350 article-title: Scavenger receptor B1 post-translational modifications in Rett syndrome publication-title: FEBS Lett. – volume: 23 start-page: 99 year: 1999 end-page: 103 ident: bb0360 article-title: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety publication-title: Nat. Genet. – volume: 8 start-page: 61 year: 2002 end-page: 65 ident: bb0180 article-title: Clinical manifestations and stages of Rett syndrome publication-title: Ment. Retard. Dev. Disabil. Res. Rev. – volume: 138 start-page: 386 year: 2010 end-page: 392 ident: bb0070 article-title: Unrecognized lung disease in classic Rett syndrome: a physiologic and high-resolution CT imaging study publication-title: Chest – volume: 484 start-page: 105 year: 2012 end-page: 109 ident: bb0115 article-title: Wild-type microglia arrest pathology in a mouse model of Rett syndrome publication-title: Nature – volume: 56 start-page: 422 year: 2007 end-page: 437 ident: bb0040 article-title: The story of Rett syndrome: from clinic to neurobiology publication-title: Neuron – volume: 41 start-page: 385 year: 2011 end-page: 397 ident: bb0250 article-title: Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse publication-title: Neurobiol. Dis. – volume: 475 start-page: 497 year: 2011 end-page: 500 ident: bb0220 article-title: A role for glia in the progression of Rett's syndrome publication-title: Nature – volume: 95 start-page: 86 year: 2013 end-page: 90 ident: bb0120 article-title: F(2)-dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome publication-title: Biochimie – volume: 35 start-page: 146 year: 2013 end-page: 154 ident: bb0260 article-title: Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism publication-title: Brain Dev. – volume: 587 start-page: 245 year: 2013 end-page: 253 ident: bb0105 article-title: MeCP2 deficiency is associated with impaired microtubule stability publication-title: FEBS Lett. – volume: 42 start-page: 1 year: 2005 end-page: 7 ident: bb0370 article-title: Rett syndrome: clinical review and genetic update publication-title: J. Med. Genet. – volume: 7 start-page: 415 year: 2006 end-page: 426 ident: bb0015 article-title: Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized publication-title: Nat. Rev. Genet. – volume: 7 start-page: 447 year: 2012 end-page: 458 ident: bb0080 article-title: Partial rescue of Rett syndrome by omega-3 polyunsaturated fatty acids (PUFAs) oil publication-title: Genes Nutr. – volume: 14 start-page: 205 year: 2005 end-page: 220 ident: bb0230 article-title: Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome publication-title: Hum. Mol. Genet. – volume: 2014 start-page: 560120 year: 2014 ident: bb0395 article-title: Inflammatory lung disease in Rett syndrome publication-title: Mediat. Inflamm. – volume: 27 start-page: 485 year: 2013 end-page: 490 ident: bb0190 article-title: Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p publication-title: Genes Dev. – volume: 189 start-page: 280 year: 2013 end-page: 287 ident: bb0280 article-title: Breathing challenges in Rett syndrome: lessons learned from humans and animal models publication-title: Respir. Physiol. Neurobiol. – volume: 320 start-page: 1224 year: 2008 end-page: 1229 ident: bb0035 article-title: MeCP2, a key contributor to neurological disease, activates and represses transcription publication-title: Science – volume: 27 start-page: 631 year: 2011 end-page: 652 ident: bb0165 article-title: The role of MeCP2 in the brain publication-title: Annu. Rev. Cell Dev. Biol. – volume: 116 start-page: 723 year: 1966 end-page: 726 ident: bb0285 article-title: On a unusual brain atrophy syndrome in hyperammonemia in childhood publication-title: Wien. Med. Wochenschr. – volume: 44 start-page: 368 year: 2011 end-page: 371 ident: bb0255 article-title: Increased levels of 4HNE-protein plasma adducts in Rett syndrome publication-title: Clin. Biochem. – volume: 7 start-page: e47848 year: 2012 ident: bb0010 article-title: MeCP2 dependent heterochromatin reorganization during neural differentiation of a novel Mecp2-deficient embryonic stem cell reporter line publication-title: PLoS One – volume: 26 start-page: 319 year: 2006 end-page: 327 ident: bb0235 article-title: Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome publication-title: J. Neurosci. – volume: 46 start-page: 148 year: 2009 end-page: 154 ident: bb0325 article-title: Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic–ischemic encephalopathy: neuroprotective effect of melatonin publication-title: J. Pineal Res. – volume: 102 start-page: 12560 year: 2005 end-page: 12565 ident: bb0060 article-title: Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 34 start-page: 797 year: 2013 end-page: 812 ident: bb0310 article-title: Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies publication-title: J. Alzheimer's Dis. – volume: 315 start-page: 1143 year: 2007 end-page: 1147 ident: bb0170 article-title: Reversal of neurological defects in a mouse model of Rett syndrome publication-title: Science – volume: 45 start-page: 965 year: 2013 end-page: 967 ident: bb0240 article-title: Cholesterol metabolism and Rett syndrome pathogenesis publication-title: Nat. Genet. – volume: 236 start-page: 3 year: 2011 end-page: 19 ident: bb0030 article-title: Experimental models of Rett syndrome based on Mecp2 dysfunction publication-title: Exp. Biol. Med. (Maywood) – volume: 47 start-page: 588 year: 2003 end-page: 596 ident: bb0025 article-title: Nurse recognition of early deviation in development in home videos of infants with Rett disorder publication-title: J. Intellect. Disabil. Res. – volume: 107 start-page: 95 year: 2013 end-page: 102 ident: bb0140 article-title: Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans publication-title: Prostaglandins Other Lipid Mediat. – volume: 48 start-page: 102 year: 2012 end-page: 114 ident: bb0160 article-title: Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome publication-title: Neurobiol. Dis. – volume: 412 start-page: 1399 year: 2011 end-page: 1406 ident: bb0405 article-title: F(4)-neuroprostanes mediate neurological severity in Rett syndrome publication-title: Clin. Chim. Acta – volume: 40 start-page: 115 year: 1998 end-page: 121 ident: bb0210 article-title: Is the girl with Rett syndrome normal at birth? publication-title: Dev. Med. Child Neurol. – volume: 16 start-page: 145 year: 2011 end-page: 153 ident: bb0215 article-title: Oxidative stress in Rett syndrome: natural history, genotype, and variants publication-title: Redox Rep. – volume: 23 start-page: S236 year: 2001 end-page: S239 ident: bb0320 article-title: Oxidative stress in Rett syndrome publication-title: Brain Dev. – volume: 22 start-page: 2284 year: 2007 end-page: 2287 ident: bb0355 article-title: Abnormal movements in Rett syndrome are present before the regression period: a case study publication-title: Mov. Disord. – year: 2007 ident: bb0400 article-title: Free Radicals in Biology and Medicine – volume: 19 start-page: 187 year: 1998 end-page: 191 ident: bb0200 article-title: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription publication-title: Nat. Genet. – volume: 8 start-page: e56599 year: 2013 ident: bb0155 article-title: Revealing the complexity of a monogenic disease: Rett syndrome exome sequencing publication-title: PLoS One – volume: 17 start-page: 541 year: 2006 end-page: 544 ident: bb0265 article-title: An altered neonatal behavioral phenotype in Mecp2 mutant mice publication-title: Neuroreport – volume: 14 start-page: 551 year: 2013 end-page: 564 ident: bb0300 article-title: Iron metabolism in the CNS: implications for neurodegenerative diseases publication-title: Nat. Rev. Neurosci. – volume: 35 start-page: 243 year: 2002 end-page: 254 ident: bb0315 article-title: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3 publication-title: Neuron – volume: 30 start-page: 2128 year: 2012 end-page: 2139 ident: bb0375 article-title: Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons publication-title: Stem Cells – volume: 20 start-page: 2103 year: 2011 end-page: 2115 ident: bb0050 article-title: Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation publication-title: Hum. Mol. Genet. – volume: 1259 start-page: 121 year: 2012 end-page: 135 ident: bb0090 article-title: The role of oxidative stress in Rett syndrome: an overview publication-title: Ann. N. Y. Acad. Sci. – volume: 52 start-page: 2287 year: 2011 end-page: 2297 ident: bb0085 article-title: F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome publication-title: J. Lipid Res. – volume: 8 start-page: 56 year: 2014 ident: bb0195 article-title: The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome publication-title: Front. Cell. Neurosci. – volume: 15 start-page: 274 year: 2012 end-page: 283 ident: bb0150 article-title: Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses publication-title: Nat. Neurosci. – volume: 1801 start-page: 930 year: 2010 end-page: 933 ident: bb0275 article-title: The neurobiology of isoprostanes and Alzheimer's disease publication-title: Biochim. Biophys. Acta – volume: 21 start-page: 741 year: 2010 end-page: 756 ident: bb0345 article-title: Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein publication-title: J. Alzheimer's Dis. – volume: 2013 start-page: 343824 year: 2013 ident: bb0335 article-title: Isoprostanes and 4-hydroxy-2-nonenal: markers or mediators of disease? Focus on Rett syndrome as a model of autism spectrum disorder publication-title: Oxid. Med. Cell. Longev. – volume: 34 start-page: 144 year: 2013 end-page: 150 ident: bb0110 article-title: The role of microglia in brain maintenance: implications for Rett syndrome publication-title: Trends Immunol. – volume: 33 start-page: 13612 year: 2013 end-page: 13620 ident: bb0145 article-title: Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome publication-title: J. Neurosci. – volume: 6 start-page: 277 year: 2007 end-page: 286 ident: bb0305 article-title: Evidence for abnormal early development in a mouse model of Rett syndrome publication-title: Genes Brain Behav. – volume: 23 start-page: 185 year: 1999 end-page: 188 ident: bb0005 article-title: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 publication-title: Nat. Genet. – volume: 7 start-page: e49763 year: 2012 ident: bb0380 article-title: Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes publication-title: PLoS One – volume: 19 start-page: 501 year: 2008 end-page: 517 ident: bb0290 article-title: Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches publication-title: Behav. Pharmacol. – volume: 135 start-page: 2699 year: 2012 end-page: 2710 ident: bb0295 article-title: Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome publication-title: Brain – volume: 27 start-page: 322 year: 2001 end-page: 326 ident: bb0175 article-title: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome publication-title: Nat. Genet. – volume: 42 start-page: 22 year: 2011 end-page: 26 ident: bb0225 article-title: Early signs and later neurophysiological correlates of Rett syndrome publication-title: Klin. Neurophysiol. – volume: 38 start-page: 1067 year: 2003 end-page: 1074 ident: bb0330 article-title: Ion trap tandem mass spectrometric determination of F2-isoprostanes publication-title: J. Mass Spectrom. – volume: 45 start-page: 1013 year: 2013 end-page: 1020 ident: bb0020 article-title: A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome publication-title: Nat. Genet. – volume: 5 start-page: 733 year: 2012 end-page: 745 ident: bb0205 article-title: Preclinical research in Rett syndrome: setting the foundation for translational success publication-title: Dis. Model Mech. – start-page: 71 year: 2013 end-page: 75 ident: bb0390 article-title: Fatty acids and autism spectrum disorders: the Rett syndrome conundrum publication-title: Food Nutr. Sci. – volume: 9 start-page: 213 year: 2010 end-page: 223 ident: bb0100 article-title: Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome publication-title: Genes Brain Behav. – volume: 57 start-page: 696 year: 2005 end-page: 700 ident: bb0130 article-title: Is the early development of girls with Rett disorder really normal? publication-title: Pediatr. Res. – volume: 27 start-page: S8 year: 2005 end-page: S13 ident: bb0125 article-title: Abnormal general movements in girls with Rett disorder: the first four months of life publication-title: Brain Dev. – start-page: 167 year: 2008 end-page: 181 ident: bb0385 article-title: Iron and erythrocytes: physiological and pathophysiological aspects publication-title: Oxidant in Biology: A Question of Balance – volume: 28 start-page: 569 year: 2008 end-page: 631 ident: bb0270 article-title: 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest publication-title: Med. Res. Rev. – volume: 68 start-page: 944 year: 2010 end-page: 950 ident: bb0245 article-title: Rett syndrome: revised diagnostic criteria and nomenclature publication-title: Ann. Neurol. – volume: 27 start-page: 327 year: 2001 end-page: 331 ident: bb0045 article-title: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice publication-title: Nat. Genet. – volume: 690 start-page: 3 year: 2010 end-page: 11 ident: bb0135 article-title: Chronic inflammation and mutagenesis publication-title: Mutat. Res. – start-page: 2667 year: 2014 end-page: 2688 ident: bb0410 article-title: 4HNE protein adducts in autistic spectrum disorders: Rett syndrome and autism publication-title: Comprehensive Guide to Autism – volume: 28 start-page: 569 year: 2008 ident: 10.1016/j.nbd.2014.04.006_bb0270 article-title: 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest publication-title: Med. Res. Rev. doi: 10.1002/med.20117 – volume: 189 start-page: 280 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0280 article-title: Breathing challenges in Rett syndrome: lessons learned from humans and animal models publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2013.06.022 – volume: 48 start-page: 102 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0160 article-title: Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2012.06.007 – volume: 9 start-page: 213 year: 2010 ident: 10.1016/j.nbd.2014.04.006_bb0100 article-title: Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome publication-title: Genes Brain Behav. doi: 10.1111/j.1601-183X.2009.00551.x – volume: 47 start-page: 440 year: 2009 ident: 10.1016/j.nbd.2014.04.006_bb0065 article-title: Systemic oxidative stress in classic Rett syndrome publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.05.016 – volume: 7 start-page: e49763 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0380 article-title: Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes publication-title: PLoS One doi: 10.1371/journal.pone.0049763 – volume: 44 start-page: 368 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0255 article-title: Increased levels of 4HNE-protein plasma adducts in Rett syndrome publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2011.01.007 – volume: 41 start-page: 385 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0250 article-title: Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2010.10.006 – volume: 1801 start-page: 930 year: 2010 ident: 10.1016/j.nbd.2014.04.006_bb0275 article-title: The neurobiology of isoprostanes and Alzheimer's disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2010.01.009 – volume: 23 start-page: 185 year: 1999 ident: 10.1016/j.nbd.2014.04.006_bb0005 article-title: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 publication-title: Nat. Genet. doi: 10.1038/13810 – volume: 8 start-page: 56 year: 2014 ident: 10.1016/j.nbd.2014.04.006_bb0195 article-title: The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00056 – volume: 30 start-page: 2128 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0375 article-title: Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons publication-title: Stem Cells doi: 10.1002/stem.1180 – volume: 2014 start-page: 560120 year: 2014 ident: 10.1016/j.nbd.2014.04.006_bb0395 article-title: Inflammatory lung disease in Rett syndrome publication-title: Mediat. Inflamm. doi: 10.1155/2014/560120 – volume: 587 start-page: 245 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0105 article-title: MeCP2 deficiency is associated with impaired microtubule stability publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.11.033 – volume: 8 start-page: 61 year: 2002 ident: 10.1016/j.nbd.2014.04.006_bb0180 article-title: Clinical manifestations and stages of Rett syndrome publication-title: Ment. Retard. Dev. Disabil. Res. Rev. doi: 10.1002/mrdd.10020 – volume: 45 start-page: 965 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0240 article-title: Cholesterol metabolism and Rett syndrome pathogenesis publication-title: Nat. Genet. doi: 10.1038/ng.2738 – volume: 7 start-page: 447 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0080 article-title: Partial rescue of Rett syndrome by omega-3 polyunsaturated fatty acids (PUFAs) oil publication-title: Genes Nutr. doi: 10.1007/s12263-012-0285-7 – volume: 34 start-page: 144 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0110 article-title: The role of microglia in brain maintenance: implications for Rett syndrome publication-title: Trends Immunol. doi: 10.1016/j.it.2012.10.002 – volume: 8 start-page: e56599 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0155 article-title: Revealing the complexity of a monogenic disease: Rett syndrome exome sequencing publication-title: PLoS One doi: 10.1371/journal.pone.0056599 – volume: 57 start-page: 696 year: 2005 ident: 10.1016/j.nbd.2014.04.006_bb0130 article-title: Is the early development of girls with Rett disorder really normal? publication-title: Pediatr. Res. doi: 10.1203/01.PDR.0000155945.94249.0A – volume: 27 start-page: 485 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0190 article-title: Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p publication-title: Genes Dev. doi: 10.1101/gad.207456.112 – volume: 21 start-page: 741 year: 2010 ident: 10.1016/j.nbd.2014.04.006_bb0345 article-title: Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-2010-100405 – volume: 475 start-page: 497 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0220 article-title: A role for glia in the progression of Rett's syndrome publication-title: Nature doi: 10.1038/nature10214 – start-page: 167 year: 2008 ident: 10.1016/j.nbd.2014.04.006_bb0385 article-title: Iron and erythrocytes: physiological and pathophysiological aspects – volume: 14 start-page: 551 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0300 article-title: Iron metabolism in the CNS: implications for neurodegenerative diseases publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3453 – volume: 6 start-page: 277 year: 2007 ident: 10.1016/j.nbd.2014.04.006_bb0305 article-title: Evidence for abnormal early development in a mouse model of Rett syndrome publication-title: Genes Brain Behav. doi: 10.1111/j.1601-183X.2006.00258.x – volume: 315 start-page: 1143 year: 2007 ident: 10.1016/j.nbd.2014.04.006_bb0170 article-title: Reversal of neurological defects in a mouse model of Rett syndrome publication-title: Science doi: 10.1126/science.1138389 – volume: 23 start-page: 99 year: 1999 ident: 10.1016/j.nbd.2014.04.006_bb0360 article-title: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety publication-title: Nat. Genet. doi: 10.1038/12703 – volume: 19 start-page: 501 year: 2008 ident: 10.1016/j.nbd.2014.04.006_bb0290 article-title: Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches publication-title: Behav. Pharmacol. doi: 10.1097/FBP.0b013e32830c3645 – year: 2007 ident: 10.1016/j.nbd.2014.04.006_bb0400 – volume: 412 start-page: 1399 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0405 article-title: F(4)-neuroprostanes mediate neurological severity in Rett syndrome publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2011.04.016 – volume: 107 start-page: 95 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0140 article-title: Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans publication-title: Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2013.04.003 – volume: 5 start-page: 733 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0205 article-title: Preclinical research in Rett syndrome: setting the foundation for translational success publication-title: Dis. Model Mech. doi: 10.1242/dmm.011007 – volume: 22 start-page: 2284 year: 2007 ident: 10.1016/j.nbd.2014.04.006_bb0355 article-title: Abnormal movements in Rett syndrome are present before the regression period: a case study publication-title: Mov. Disord. doi: 10.1002/mds.21744 – start-page: 71 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0390 article-title: Fatty acids and autism spectrum disorders: the Rett syndrome conundrum publication-title: Food Nutr. Sci. doi: 10.4236/fns.2013.49A1012 – volume: 236 start-page: 3 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0030 article-title: Experimental models of Rett syndrome based on Mecp2 dysfunction publication-title: Exp. Biol. Med. (Maywood) doi: 10.1258/ebm.2010.010261 – volume: 35 start-page: 243 year: 2002 ident: 10.1016/j.nbd.2014.04.006_bb0315 article-title: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3 publication-title: Neuron doi: 10.1016/S0896-6273(02)00768-7 – volume: 27 start-page: 631 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0165 article-title: The role of MeCP2 in the brain publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154121 – volume: 15 start-page: 274 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0150 article-title: Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses publication-title: Nat. Neurosci. doi: 10.1038/nn.2997 – volume: 20 start-page: 2103 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0050 article-title: Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr093 – volume: 35 start-page: 146 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0260 article-title: Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism publication-title: Brain Dev. doi: 10.1016/j.braindev.2012.03.011 – volume: 7 start-page: e47848 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0010 article-title: MeCP2 dependent heterochromatin reorganization during neural differentiation of a novel Mecp2-deficient embryonic stem cell reporter line publication-title: PLoS One doi: 10.1371/journal.pone.0047848 – volume: 17 start-page: 541 year: 2006 ident: 10.1016/j.nbd.2014.04.006_bb0265 article-title: An altered neonatal behavioral phenotype in Mecp2 mutant mice publication-title: Neuroreport doi: 10.1097/01.wnr.0000208995.38695.2f – volume: 45 start-page: 1013 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0020 article-title: A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome publication-title: Nat. Genet. doi: 10.1038/ng.2714 – volume: 138 start-page: 386 year: 2010 ident: 10.1016/j.nbd.2014.04.006_bb0070 article-title: Unrecognized lung disease in classic Rett syndrome: a physiologic and high-resolution CT imaging study publication-title: Chest doi: 10.1378/chest.09-3021 – volume: 19 start-page: 187 year: 1998 ident: 10.1016/j.nbd.2014.04.006_bb0200 article-title: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription publication-title: Nat. Genet. doi: 10.1038/561 – volume: 40 start-page: 115 year: 1998 ident: 10.1016/j.nbd.2014.04.006_bb0210 article-title: Is the girl with Rett syndrome normal at birth? publication-title: Dev. Med. Child Neurol. doi: 10.1111/j.1469-8749.1998.tb15371.x – volume: 102 start-page: 12560 year: 2005 ident: 10.1016/j.nbd.2014.04.006_bb0060 article-title: Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506071102 – volume: 46 start-page: 148 year: 2009 ident: 10.1016/j.nbd.2014.04.006_bb0325 article-title: Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic–ischemic encephalopathy: neuroprotective effect of melatonin publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2008.00639.x – start-page: 2667 year: 2014 ident: 10.1016/j.nbd.2014.04.006_bb0410 article-title: 4HNE protein adducts in autistic spectrum disorders: Rett syndrome and autism – volume: 1259 start-page: 121 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0090 article-title: The role of oxidative stress in Rett syndrome: an overview publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2012.06611.x – volume: 27 start-page: 322 year: 2001 ident: 10.1016/j.nbd.2014.04.006_bb0175 article-title: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome publication-title: Nat. Genet. doi: 10.1038/85899 – volume: 16 start-page: 145 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0215 article-title: Oxidative stress in Rett syndrome: natural history, genotype, and variants publication-title: Redox Rep. doi: 10.1179/1351000211Y.0000000004 – volume: 27 start-page: S8 issue: Suppl. 1 year: 2005 ident: 10.1016/j.nbd.2014.04.006_bb0125 article-title: Abnormal general movements in girls with Rett disorder: the first four months of life publication-title: Brain Dev. doi: 10.1016/j.braindev.2005.03.014 – volume: 42 start-page: 22 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0225 article-title: Early signs and later neurophysiological correlates of Rett syndrome publication-title: Klin. Neurophysiol. doi: 10.1055/s-0030-1254118 – volume: 320 start-page: 1224 year: 2008 ident: 10.1016/j.nbd.2014.04.006_bb0035 article-title: MeCP2, a key contributor to neurological disease, activates and represses transcription publication-title: Science doi: 10.1126/science.1153252 – volume: 34 start-page: 797 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0310 article-title: Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-121996 – volume: 52 start-page: 2287 year: 2011 ident: 10.1016/j.nbd.2014.04.006_bb0085 article-title: F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome publication-title: J. Lipid Res. doi: 10.1194/jlr.P017798 – volume: 95 start-page: 86 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0120 article-title: F(2)-dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome publication-title: Biochimie doi: 10.1016/j.biochi.2012.09.017 – volume: 23 start-page: S236 issue: Suppl. 1 year: 2001 ident: 10.1016/j.nbd.2014.04.006_bb0320 article-title: Oxidative stress in Rett syndrome publication-title: Brain Dev. doi: 10.1016/S0387-7604(01)00369-2 – volume: 116 start-page: 723 year: 1966 ident: 10.1016/j.nbd.2014.04.006_bb0285 article-title: On a unusual brain atrophy syndrome in hyperammonemia in childhood publication-title: Wien. Med. Wochenschr. – volume: 47 start-page: 588 year: 2003 ident: 10.1016/j.nbd.2014.04.006_bb0025 article-title: Nurse recognition of early deviation in development in home videos of infants with Rett disorder publication-title: J. Intellect. Disabil. Res. doi: 10.1046/j.1365-2788.2003.00476.x – volume: 484 start-page: 105 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0115 article-title: Wild-type microglia arrest pathology in a mouse model of Rett syndrome publication-title: Nature doi: 10.1038/nature10907 – volume: 690 start-page: 3 year: 2010 ident: 10.1016/j.nbd.2014.04.006_bb0135 article-title: Chronic inflammation and mutagenesis publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2010.03.007 – volume: 68 start-page: 944 year: 2010 ident: 10.1016/j.nbd.2014.04.006_bb0245 article-title: Rett syndrome: revised diagnostic criteria and nomenclature publication-title: Ann. Neurol. doi: 10.1002/ana.22124 – volume: 27 start-page: 327 year: 2001 ident: 10.1016/j.nbd.2014.04.006_bb0045 article-title: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice publication-title: Nat. Genet. doi: 10.1038/85906 – volume: 42 start-page: 1 year: 2005 ident: 10.1016/j.nbd.2014.04.006_bb0370 article-title: Rett syndrome: clinical review and genetic update publication-title: J. Med. Genet. doi: 10.1136/jmg.2004.027730 – volume: 33 start-page: 13612 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0145 article-title: Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1854-13.2013 – volume: 26 start-page: 319 year: 2006 ident: 10.1016/j.nbd.2014.04.006_bb0235 article-title: Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2623-05.2006 – volume: 2013 start-page: 343824 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0335 article-title: Isoprostanes and 4-hydroxy-2-nonenal: markers or mediators of disease? Focus on Rett syndrome as a model of autism spectrum disorder publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2013/343824 – volume: 14 start-page: 205 year: 2005 ident: 10.1016/j.nbd.2014.04.006_bb0230 article-title: Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi016 – volume: 135 start-page: 2699 year: 2012 ident: 10.1016/j.nbd.2014.04.006_bb0295 article-title: Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome publication-title: Brain doi: 10.1093/brain/aws096 – volume: 587 start-page: 2199 year: 2013 ident: 10.1016/j.nbd.2014.04.006_bb0350 article-title: Scavenger receptor B1 post-translational modifications in Rett syndrome publication-title: FEBS Lett. doi: 10.1016/j.febslet.2013.05.042 – volume: 7 start-page: 415 year: 2006 ident: 10.1016/j.nbd.2014.04.006_bb0015 article-title: Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1878 – volume: 56 start-page: 422 year: 2007 ident: 10.1016/j.nbd.2014.04.006_bb0040 article-title: The story of Rett syndrome: from clinic to neurobiology publication-title: Neuron doi: 10.1016/j.neuron.2007.10.001 – volume: 38 start-page: 1067 year: 2003 ident: 10.1016/j.nbd.2014.04.006_bb0330 article-title: Ion trap tandem mass spectrometric determination of F2-isoprostanes publication-title: J. Mass Spectrom. doi: 10.1002/jms.520 – reference: 21917727 - J Lipid Res. 2011 Dec;52(12):2287-97 – reference: 21154482 - Ann Neurol. 2010 Dec;68(6):944-50 – reference: 14595856 - J Mass Spectrom. 2003 Oct;38(10):1067-74 – reference: 22865604 - Stem Cells. 2012 Oct;30(10):2128-39 – reference: 23112857 - PLoS One. 2012;7(10):e47848 – reference: 11242118 - Nat Genet. 2001 Mar;27(3):327-31 – reference: 10508514 - Nat Genet. 1999 Oct;23(2):185-8 – reference: 22534237 - Brain Dev. 2013 Feb;35(2):146-54 – reference: 18058921 - Med Res Rev. 2008 Jul;28(4):569-631 – reference: 20223251 - Mutat Res. 2010 Aug 7;690(1-2):3-11 – reference: 23468869 - PLoS One. 2013;8(2):e56599 – reference: 23985682 - Nat Genet. 2013 Sep;45(9):965-7 – reference: 23644158 - Prostaglandins Other Lipid Mediat. 2013 Dec;107:95-102 – reference: 22758644 - Ann N Y Acad Sci. 2012 Jul;1259:121-35 – reference: 5300597 - Wien Med Wochenschr. 1966 Sep 10;116(37):723-6 – reference: 16848781 - Genes Brain Behav. 2007 Apr;6(3):277-86 – reference: 23892605 - Nat Genet. 2013 Sep;45(9):1013-20 – reference: 15718369 - Pediatr Res. 2005 May;57(5 Pt 1):696-700 – reference: 24757286 - Mediators Inflamm. 2014;2014:560120 – reference: 21530498 - Clin Chim Acta. 2011 Jul 15;412(15-16):1399-406 – reference: 21716289 - Nature. 2011 Jul 28;475(7357):497-500 – reference: 23122051 - Trends Immunol. 2013 Mar;34(3):144-50 – reference: 10471508 - Nat Genet. 1999 Sep;23(1):99-103 – reference: 9620779 - Nat Genet. 1998 Jun;19(2):187-91 – reference: 24605086 - Front Cell Neurosci. 2014 Feb 24;8:56 – reference: 20951208 - Neurobiol Dis. 2011 Feb;41(2):385-97 – reference: 18511691 - Science. 2008 May 30;320(5880):1224-9 – reference: 11242117 - Nat Genet. 2001 Mar;27(3):322-6 – reference: 12112728 - Ment Retard Dev Disabil Res Rev. 2002;8(2):61-5 – reference: 22425995 - Nature. 2012 Apr 5;484(7392):105-9 – reference: 23711372 - FEBS Lett. 2013 Jul 11;587(14):2199-204 – reference: 23966684 - J Neurosci. 2013 Aug 21;33(34):13612-20 – reference: 23816600 - Respir Physiol Neurobiol. 2013 Nov 1;189(2):280-7 – reference: 15548546 - Hum Mol Genet. 2005 Jan 15;14(2):205-20 – reference: 17289941 - Science. 2007 Feb 23;315(5815):1143-7 – reference: 21888765 - Redox Rep. 2011;16(4):145-53 – reference: 23238081 - FEBS Lett. 2013 Jan 16;587(2):245-53 – reference: 23115203 - Dis Model Mech. 2012 Nov;5(6):733-45 – reference: 19464363 - Free Radic Biol Med. 2009 Aug 15;47(4):440-8 – reference: 23431031 - Genes Dev. 2013 Mar 1;27(5):485-90 – reference: 23271321 - J Alzheimers Dis. 2013;34(4):797-812 – reference: 18690105 - Behav Pharmacol. 2008 Sep;19(5-6):501-17 – reference: 16399702 - J Neurosci. 2006 Jan 4;26(1):319-27 – reference: 23820773 - Nat Rev Neurosci. 2013 Aug;14(8):551-64 – reference: 22525157 - Brain. 2012 Sep;135(Pt 9):2699-710 – reference: 23185431 - PLoS One. 2012;7(11):e49763 – reference: 14641806 - J Intellect Disabil Res. 2003 Nov;47(Pt 8):588-96 – reference: 16708070 - Nat Rev Genet. 2006 Jun;7(6):415-26 – reference: 12160743 - Neuron. 2002 Jul 18;35(2):243-54 – reference: 17988628 - Neuron. 2007 Nov 8;56(3):422-37 – reference: 23844273 - Oxid Med Cell Longev. 2013;2013:343824 – reference: 19958389 - Genes Brain Behav. 2010 Mar 1;9(2):213-23 – reference: 17914728 - Mov Disord. 2007 Nov 15;22(15):2284-7 – reference: 21239731 - Exp Biol Med (Maywood). 2011 Jan;236(1):3-19 – reference: 15635068 - J Med Genet. 2005 Jan;42(1):1-7 – reference: 21276437 - Clin Biochem. 2011 Apr;44(5-6):368-71 – reference: 19141088 - J Pineal Res. 2009 Mar;46(2):148-54 – reference: 22119903 - Nat Neurosci. 2012 Feb;15(2):274-83 – reference: 20116452 - Biochim Biophys Acta. 2010 Aug;1801(8):930-3 – reference: 9489500 - Dev Med Child Neurol. 1998 Feb;40(2):115-21 – reference: 22399313 - Genes Nutr. 2012 Jul;7(3):447-58 – reference: 16182501 - Brain Dev. 2005 Nov;27 Suppl 1:S8-S13 – reference: 20634576 - J Alzheimers Dis. 2010;21(3):741-56 – reference: 16116096 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12560-5 – reference: 20348192 - Chest. 2010 Aug;138(2):386-92 – reference: 11738881 - Brain Dev. 2001 Dec;23 Suppl 1:S236-9 – reference: 23009927 - Biochimie. 2013 Jan;95(1):86-90 – reference: 16543822 - Neuroreport. 2006 Apr 3;17(5):541-4 – reference: 21372149 - Hum Mol Genet. 2011 Jun 1;20(11):2103-15 – reference: 22750529 - Neurobiol Dis. 2012 Oct;48(1):102-14 – reference: 21721946 - Annu Rev Cell Dev Biol. 2011;27:631-52 |
SSID | ssj0011597 |
Score | 2.4539444 |
Snippet | Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by... Abstract Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by... Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelmingmajority of the cases by... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66 |
SubjectTerms | Aldehydes - metabolism Analysis of Variance Animals Arachidonic Acid - metabolism Biochemistry, Molecular Biology Brain damage Brain Injuries - blood Brain Injuries - etiology Brain Injuries - pathology Disease Models, Animal Docosahexaenoic Acids - metabolism Female Gas Chromatography-Mass Spectrometry Genomics Isoprostanes - metabolism Life Sciences Lipid peroxidation Male Methyl-CpG-Binding Protein 2 - genetics Mice Mice, Inbred C57BL Mice, Transgenic Murine models Mutation - genetics Nestin - genetics Neurobiology Neurodevelopmental disorder Neurology Neurons and Cognition Neuroprostanes - metabolism Oxidative stress Oxidative Stress - physiology Rett syndrome Rett Syndrome - blood Rett Syndrome - complications Rett Syndrome - genetics |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGHhAvCDY-ypcMQjwghTqOHSePZdpUIQoSMGlvlr-yFdG0WlMEL_zt3DlJtTBUJKQ-tO45duLz-Xfx-XeEvCx55QEYBJjiokwENywx3kk84APLKc9MWeLh5NmHfHoq3p3Jsz1y1J-FwbDKzva3Nj1a665k3D3N8Wo-H38G8I1oHQB9BArI-CmEQi1_82sb5gGAJyZYQeEEpfudzRjjVVskC01FZDvFpEdX1qZI4T9Yom5cYKzkdSD6ZzzllQXq5A653SFLOmk7f5fshfqAHE5q8KoXP-krGmM940v0A3Jz1m2pH5Ljjz_mPrJ_U4vpIqg3C7AxFL7NglvxZLHBRMN0ga_lA42Zc9Z0WdFPoWloT3hwj5yeHH85miZdboXE5UXZJK7MsqBCKG0uQupS7mxkN6vA3vGCVUXuuJW5CqLwMSG5FJmRVgkZTOUtz-6T_XpZh4eEAkKyqWEhZM4J7pmVIi-UrVL0u4UxI8L6p6pdRzyO-S--6T7C7KuGgdA4EJrBh-Uj8npbZdWybuwSfotDtRVEwuxYsLw8153G6IpJ6wTzVeFzYUpeGG9TYb2sMuNKFUaE9wOt-zOpYEXhQvNdLau_VQrrzg6sdarXXDN9TVdHRGxrDtT9Xw2-AB0c3Ol08l5jGUJ9JVjxPR2R572KarAVuAFk6rDcQG9kVoqcKyV3yaCHCi4XyDxo1XrbHofpBe4EtKAGCj_o0PCfen4ROcsFU7lMs0f_d9-PyS381QZePiH7zeUmPAUw2Nhncbb_BmHZWgQ priority: 102 providerName: Elsevier |
Title | Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996114000953 https://www.clinicalkey.es/playcontent/1-s2.0-S0969996114000953 https://dx.doi.org/10.1016/j.nbd.2014.04.006 https://www.ncbi.nlm.nih.gov/pubmed/24769161 https://www.proquest.com/docview/1539462775 https://www.proquest.com/docview/1543997295 https://hal.science/hal-00997408 https://pubmed.ncbi.nlm.nih.gov/PMC4076513 https://doaj.org/article/f05bc40df8d64a928adb14bd5f3ac97e |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYkBAvCDY-wkdlEOIBKeA4dpw8lmlTgXWgwaS9Wf6KVkTTibYIXvjbuXOSqgXUvSBVapXateu73N0vPv-OkOcVrz0EBgFucVGlghuWGu8kHvABd8pzU1V4OHl8UozOxLtzeb5W6gtzwlp64HbhXtdMWieYr0tfCFPx0nibCetlnRtXqYDWF3xeD6a6_QNw0qrfw4zZXI1FWtBMRF5TLG-05oUiWf-GM9q5wKzIv0POPzMn11zR0W1yq4sh6bCd-x1yLTR7ZH_YAH6e_qQvaMzqjI_L98iNcbd5vk8OP_yY-MjzTS0WhqDeTMGaUPg0Du6Sp9MllhSmU3wAH2iskTOns5qehsWC9tQGd8nZ0eHng1HaVVFIXVFWi9RVeR5UCJUtRMhcxp2NPGY1WDZesrosHLeyUEGUPpYelyI30iohg6m95fk9stvMmvCAUIiFbGZYCLlzgntmpShKZesMEbYwJiGsX1XtOopxrHTxVfe5ZF80CEKjIDSDFysS8nLV5bLl19jW-A2KatUQqbHjBVAY3SmMvkphEsJ7Qev-9CnYS_ihybaR1b86hXl3x891pudcM_0JICFiSICZMXzNEyJWPbugpg1WrhrwGejgxj8dDY81XsOgXglWfs8S8rRXUQ1WAbd6TBNmS5iNzCtRcKXktjaIRQFcQZv7rVqvxuNCFQAcYAS1ofAbE9r8pplcRHZywVQhs_zh_5DVI3IT16RNuHxMdhffluEJBIELOyA7r35lA3J9eHB6_BHf374fnQyiFfgNOt1d3g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQEvCDY-yqdBiAekUMex4-SxTJsKtEOCTdqb5a-wIppWa4vghb-dOzepFoaGhNSHyDnXTnw-_y4-_46QlyWvPACDAFNclInghiXGO4kHfGA55ZkpSzycPD7Khyfi_ak83SL77VkYDKtsbP_apkdr3ZT0m7fZn08m_c8AvhGtA6CPQCHbJtcETF9MY_Dm1ybOAxBPzLCC0gmKt1ubMcirtsgWmopId4pZjy4sTpHDv7NGbZ9hsORlJPpnQOWFFerwNrnVQEs6WPf-DtkK9S7ZG9TgVk9_0lc0BnvGr-i75Pq42VPfIwcff0x8pP-mFvNFUG-mYGQoXI2Dm_NkusJMw3SK3-UDjalzFnRW0U9huaQt48FdcnJ4cLw_TJrkConLi3KZuDLLggqhtLkIqUu5s5HerAKDxwtWFbnjVuYqiMLHjORSZEZaJWQwlbc8u0d26lkdHhAKEMmmhoWQOSe4Z1aKvFC2StHxFsb0CGvfqnYN8zgmwPim2xCzrxoGQuNAaAY_lvfI602V-Zp24yrhtzhUG0FkzI4Fs_MvulEZXTFpnWC-KnwuTMkL420qrJdVZlypQo_wdqB1eygVzCj80eSqltXfKoVFYwgWOtULrpm-pKw9IjY1O_r-rwZfgA52nnQ4GGksQ6yvBCu-pz3yvFVRDcYCd4BMHWYr6I3MSpFzpeRVMuiigs8FMvfXar1pjwuVgz8BLaiOwnc61L1TT84iablgKpdp9vD_nvsZuTE8Ho_06N3Rh0fkJt5ZR2E-JjvL81V4AshwaZ_Gmf8bpshdIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+brain+damage+in+Mecp2-mutant+murine+models+of+Rett+syndrome&rft.jtitle=Neurobiology+of+disease&rft.au=De+Felice%2C+Claudio&rft.au=Della+Ragione%2C+Floriana&rft.au=Signorini%2C+Cinzia&rft.au=Leoncini%2C+Silvia&rft.date=2014-08-01&rft.pub=Elsevier+Inc&rft.issn=0969-9961&rft.volume=68&rft.spage=66&rft.epage=77&rft_id=info:doi/10.1016%2Fj.nbd.2014.04.006&rft.externalDocID=S0969996114000953 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996114X00057%2Fcov150h.gif |